
Math 416

Worksheet 16. Min-Cost Spanning Trees

Min-cost spanning trees Suppose we want to network n computers and that connecting the ith

computer with the jth has cost cij . We would like to connect all the computers as cheaply as possible.

Input: A weighted graph G = (V,E,wt) with edge weights wt(e), which we will assume is connected.
Output: A tree T = (V,E′), with E′ ⊆ E, a spanning tree of G for which the total cost:

cost(T) =
∑
e∈E′

wt(e)

is minimal among all spanning trees of G. Such a T is called a minimum-cost spanning tree (mcst).

Problem 0. Find the costs of the blue and red (thickly drawn) spanning trees below. Is either one
a mcst?

A

B

C

DE

1

5 6

2

3

4
A

B

C

DE

1

5 6

2

3

4

Idea #1: Start with all vertices, adding edges one at a time in increasing order of weight, as
long as no cycle is introduced.

This works! It is the idea behind Kruskal’s algorithm.

Idea #2: Grow the tree, adding at each stage a ‘frontier’ edge that minimizes an ‘attachment
cost,’ as in Dijkstra’s algorithm.

This idea works too! It is the idea behind Prim’s algorithm.

Each maintains the following loop invariant.
For the tree T built so far, T is a subset of some min-cost spanning tree.

The Cut Property This is the key to the correctness of both Kruskal and Prim.

Definition. A cut in a graph is a partition of the vertices into
two pieces, say S and ¬S; an edge e crosses the cut (S,¬S) if
it’s incident to one vertex in S and another in ¬S.

S ¬S

Theorem (Cut Property). Let A ⊆ E be included in some mcst. Let (S,¬S) be any cut of G
such that A has no edges crossing (S,¬S). If e is an edge of minimal weight crossing (S,¬S), then
A ∪ {e} is also a subset of a mcst.

Problem 1. On the left is a weighted graph. On the right is a mcst (you can check):

A

B

C

D

E

F

1

2 2

1

2

3

3

4

1

A

B

C

D

E

F

Consider the set of edges {AB,AC,EF} and the cut {A,B,C,D} ∪ {E,F}:

A

B

C

D

E

F

1

2 2

1

2

3

3

4

1

S V \ S

The edge DE is minimal among those crossing across the cut, so according to the Cut Property
there should be a mcst including {AB,AC,EF,DE}. Find it:

A

B

C

D

E

F

1

2 2

1

2

3

3

4

1

Problem 2. Prove the Cut Property Theorem, as follows.
(a) The proof uses an exchange argument. Suppose that T is a mcst with A ⊆ T . We may

assume e /∈ T , since otherwise . . . ?
(b) So we have vertices u ∈ S and v ∈ ¬S for which e = (u, v). (Draw a picture and) Explain

why there is a path in T from u to v; so that this path has a first edge e′ crossing the cut
(S,¬S).

(c) Explain why cost(T − e′ + e) ≤ cost(T).
(d) Why is the subgraph T − e′ + e connected?
(e) Conclude that T − e′ + e is a spanning tree. Conclude that it is a mcst.
(f) Verify that you have completed the proof of the Theorem.

Kruskal’s algorithm. Here is a high-level description of Kruskal’s algorithm:
(i) Order edges in nondecreasing order of weight:

wt(e1) ≤ wt(e2) ≤ · · · ≤ wt(em).

(ii) Starting with E0 = ∅ build sets of edges E0 ⊆ E1 ⊆ · · · as follows.

Ei =

{
Ei−1 ∪ {ei} if (V,Ei−1 ∪ {ei}) has no cycles
Ei−1 otherwise

(iii) Stop when all edges have been considered (i.e., i = m) or |Ei| = |V | − 1. This final Ei is the
set of edges of the output tree T .

Problem 3. Run Kruskal’s algorithm, breaking ties with the alphabetical ordering:

A B

CD

E F

GH

3

4

4

4

2

2

22
1

1 3
1

2

Problem 4. Prove the correctness of Kruskal’s algorithm, as follows.
(a) We will show by induction on i ≤ m that Ei is included in a mcst. If this induction is

successful, why does the correctness of Kruskal follow?
(b) An edge ei that we are adding to Ei connects two connected components of the graph (V,Ei).

Why?
(c) Say that one of these connected components is S, so that ei crosses the cut (S,¬S). Why is

ei a minimum-weight edge crossing the cut?
(d) Finish the proof.

Remark. Using a new data structure for unions of disjoint sets (which we won’t worry about much),
Kruskal’s algorithm can be implemented to run in O(m log n) time. (m = |E|, n = |V |).

Algorithm 1: Prim’s algorithm
Input: a weighted connected graph G = (V,E,wt) (with nonnegative weights)
Output: a min-cost spanning tree T = (V,E∗)

1 let e be any edge of minimum weight ;
2 set X = {e} ;
3 while |X| < |V | − 1 do
4 let S be the set of vertices incident to at least one edge in X ;

// no edge in X crosses the cut (S,¬S)
5 let e be an edge of minimum weight crossing the cut (S,¬S);
6 set X = X ∪ {e} ;
7 return (V,X)

Prim’s algorithm

Problem 5. Run Prim’s algorithm on the graph from Problem 3, breaking ties with the alphabetical
ordering:

Problem 6. Explain how the correctness of Prim’s algorithm follows from the Cut Property.

Remark. Prim’s algorithm can also be implemented to run in O(m log n) time. (m = |E|, n = |V |).

	Min-Cost Spanning Trees

