Worksheet 16. Min-Cost Spanning Trees

Min-cost spanning trees Suppose we want to network n computers and that connecting the $i^{\text {th }}$ computer with the $j^{\text {th }}$ has cost $c_{i j}$. We would like to connect all the computers as cheaply as possible.

Input: A weighted graph $G=(V, E, \mathrm{wt})$ with edge weights $\mathrm{wt}(e)$, which we will assume is connected. Output: A tree $T=\left(V, E^{\prime}\right)$, with $E^{\prime} \subseteq E$, a spanning tree of G for which the total cost:

$$
\operatorname{cost}(T)=\sum_{e \in E^{\prime}} \mathrm{wt}(e)
$$

is minimal among all spanning trees of G. Such a T is called a minimum-cost spanning tree (MCST).
Problem 0. Find the costs of the blue and red (thickly drawn) spanning trees below. Is either one a MCST?

Idea $\# 1$: Start with all vertices, adding edges one at a time in increasing order of weight, as long as no cycle is introduced.

This works! It is the idea behind Kruskal's algorithm.
Idea \#2: Grow the tree, adding at each stage a 'frontier' edge that minimizes an 'attachment cost,' as in Dijkstra's algorithm.

This idea works too! It is the idea behind Prim's algorithm.
Each maintains the following loop invariant.
For the tree T built so far, T is a subset of some min-cost spanning tree.

The Cut Property This is the key to the correctness of both Kruskal and Prim.
Definition. A cut in a graph is a partition of the vertices into two pieces, say S and $\neg S$; an edge e crosses the cut $(S, \neg S)$ if it's incident to one vertex in S and another in $\neg S$.

Theorem (Cut Property). Let $A \subseteq E$ be included in some mCST. Let $(S, \neg S)$ be any cut of G such that A has no edges crossing $(S, \neg S)$. If e is an edge of minimal weight crossing ($S, \neg S$), then $A \cup\{e\}$ is also a subset of a MCST.

Problem 1. On the left is a weighted graph. On the right is a MCST (you can check):

Consider the set of edges $\{A B, A C, E F\}$ and the cut $\{A, B, C, D\} \cup\{E, F\}$:

The edge $D E$ is minimal among those crossing across the cut, so according to the Cut Property there should be a MCST including $\{A B, A C, E F, D E\}$. Find it:

Problem 2. Prove the Cut Property Theorem, as follows.
(a) The proof uses an exchange argument. Suppose that T is a MCST with $A \subseteq T$. We may assume $e \notin T$, since otherwise ...?
(b) So we have vertices $u \in S$ and $v \in \neg S$ for which $e=(u, v)$. (Draw a picture and) Explain why there is a path in T from u to v; so that this path has a first edge e^{\prime} crossing the cut ($S, \neg S$).
(c) Explain why $\operatorname{cost}\left(T-e^{\prime}+e\right) \leq \operatorname{cost}(T)$.
(d) Why is the subgraph $T-e^{\prime}+e$ connected?
(e) Conclude that $T-e^{\prime}+e$ is a spanning tree. Conclude that it is a mCST.
(f) Verify that you have completed the proof of the Theorem.

Kruskal's algorithm. Here is a high-level description of Kruskal's algorithm:
(i) Order edges in nondecreasing order of weight:

$$
\operatorname{wt}\left(e_{1}\right) \leq \operatorname{wt}\left(e_{2}\right) \leq \cdots \leq \operatorname{wt}\left(e_{m}\right)
$$

(ii) Starting with $E_{0}=\emptyset$ build sets of edges $E_{0} \subseteq E_{1} \subseteq \cdots$ as follows.

$$
E_{i}= \begin{cases}E_{i-1} \cup\left\{e_{i}\right\} & \text { if }\left(V, E_{i-1} \cup\left\{e_{i}\right\}\right) \text { has no cycles } \\ E_{i-1} & \text { otherwise }\end{cases}
$$

(iii) Stop when all edges have been considered (i.e., $i=m$) or $\left|E_{i}\right|=|V|-1$. This final E_{i} is the set of edges of the output tree T.

Problem 3. Run Kruskal's algorithm, breaking ties with the alphabetical ordering:

Problem 4. Prove the correctness of Kruskal's algorithm, as follows.
(a) We will show by induction on $i \leq m$ that E_{i} is included in a mCST. If this induction is successful, why does the correctness of Kruskal follow?
(b) An edge e_{i} that we are adding to E_{i} connects two connected components of the graph $\left(V, E_{i}\right)$. Why?
(c) Say that one of these connected components is S, so that e_{i} crosses the cut $(S, \neg S)$. Why is e_{i} a minimum-weight edge crossing the cut?
(d) Finish the proof.

Remark. Using a new data structure for unions of disjoint sets (which we won't worry about much), Kruskal's algorithm can be implemented to run in $O(m \log n)$ time. $(m=|E|, n=|V|)$.

```
Algorithm 1: Prim's algorithm
    Input: a weighted connected graph \(G=(V, E\), wt) (with nonnegative weights)
    Output: a min-cost spanning tree \(T=\left(V, E^{*}\right)\)
    let \(e\) be any edge of minimum weight ;
    set \(X=\{e\}\);
    while \(|X|<|V|-1\) do
        let \(S\) be the set of vertices incident to at least one edge in \(X\);
        // no edge in \(X\) crosses the cut \((S, \neg S)\)
        let \(e\) be an edge of minimum weight crossing the cut \((S, \neg S)\);
        set \(X=X \cup\{e\}\);
    return ( \(V, X\) )
```


Prim's algorithm

Problem 5. Run Prim's algorithm on the graph from Problem 3, breaking ties with the alphabetical ordering:

Problem 6. Explain how the correctness of Prim's algorithm follows from the Cut Property.
Remark. Prim's algorithm can also be implemented to run in $O(m \log n)$ time. $(m=|E|, n=|V|)$.

