
MATH 416, PROBLEM SET 1

Comments about homework.
• Solutions to homework should be written clearly, with justification, in complete sentences.

Your solution should resemble something you’d write to teach another student in the class
how to solve the problem.
• You are encouraged to work with other 416 students on the homework, but solutions must be

written independently. Include a list of your collaborators at the top of your homework.
• You should submit your homework on Gradescope, indicating to Gradescope where the various

pieces of your solutions are. The easiest (and recommended) way to do this is to start a new
page for each problem.
• Attempting and struggling with problems is critical to learning mathematics. Do not search

for published solutions to problems. I don’t have to tell you that doing so constitutes academic
dishonesty; it’s also a terrible way to get better at math.

If you get stuck, ask someone else for a hint. Better yet, go for a walk.

Warning. These are not necessarily model solutions; they are meant to help you understand
the problems you didn’t totally solve and maybe to give you alternative solutions. Sometimes
I will give less or more detail here than I would expect from you.

Problem 1. Arrange the following list of functions in ascending order of growth rate. That is,
if function g(n) immediately follows function f (n) in your list, then it should be the case that
f (n) is O(g(n)). Give a brief explanation for each pair of consecutive functions.

g1(n) = 2
√

log n

g2(n) = 2n

g3(n) = n(log n)3

g4(n) = n4/3

g5(n) = nlog n

g6(n) = 22n

g7(n) = 2n2

Solution. (a) The correct order is
g1 � g3 � g4 � g5 � g2 � g7 � g6.

Why?
g1 � g3: log(g1(n)) =

√
log n is (for sufficiently large n) smaller than log n, which in

turn is smaller than log(g3(n)) = log n +3 log(log n). Exponentiating each side of this
inequality gives g1(n) < g3(n) for such n.

g3 � g4: For all sufficiently large n, we have log n < n1/9 (a special case of a fact from
class), which implies n(log n)3 < n4/3.

g4 � g5: The inequality n4/3 < nlog n is true for all n for which 4/3 < log n, i.e., 24/3 < n.
g5 � g2: Notice that g5(n) = 2(log n)2 .
g2 � g7: 2n ≤ 2n2 for all n ∈ N.
g7 � g6: Follows from the fact that n2 < 2n for sufficiently large n.

2 MATH 416, PROBLEM SET 1

Problem 2. Assume that f (n) and g(n) are functions such that f (n) is O(g(n)). For each
of the following statements, decide whether it is true or false and provide either a proof or
counterexample:
(a) log2 f (n) is O(log2 g(n)).
(b) 2f (n) is O(2g(n)).
(c) f (n)2 is O(g(n)2).

Solution. (i) False, but for the stupid reason that log g(n) could be 0 for many n. For
example, take f (n) = 2, g(n) = 1. Then f is O(g) yet 1 = log f (n) 6≤ c log g(n) = 0.

It’s easy to correct this problem, though. For example, if we simply require that
g(n) ≥ 2 for all n ≥ n1, then the statement holds. Since f (n) ≤ cg(n) for all n ≥ n0, we
have

log f (n) ≤ log g(n) + log c ≤ (log c)(log g(n))
for n ≥ max(n0, n1).

(ii) False. While something is true on the level of numbers (f (n) ≤ g(n) implies 2f (n) ≤ 2g(n)),
the problem is the constant multiple. Take f (n) = 2n and g(n) = n. Then f is O(g)
(indeed, f is Θ(g)), but 2f (n) = 4n while 2g(n) = 2n.

(iii) True. If n0 and c are such that f (n) ≤ cg(n) for all n ≥ n0, then (f (n))2 ≤ c2(g(n))2 for
all n ≥ n0. �

MATH 416, PROBLEM SET 1 3

Problem 3. Prove that o(f (n))∩ω(f (n)) is the empty set. (See WS3 for the definition of little
o and little ω.)

Solution. Suppose g(n) ∈ o(f (n)). Suppose C > 0 is an arbitrary real number and let
N1 ∈ N be arbitrary. By definition of o(f (n)), there exists N0 ∈ N such that

g(n) < Cf (n)
for all n ≥ N0. Therefore if n ≥ max{N0, N1}, it is not possible that

g(n) > Cf (n).
So g(n) is not ω(f (n)) and thus the intersection o(f (n)) ∩ ω(f (n)) is the emptyset.

4 MATH 416, PROBLEM SET 1

Problem 4. Suppose that H and S together with preference arrays are given. For h ∈ H
and s, t ∈ S, define maxh(s, t) to be the higher of s and t in h’s preference list. Show that if
M and P are two stable matchings for this instance of the stable-matching problem, then

M ∨ P = {(h, max
h

(s, t))|(h, s) ∈ M, (h, t) ∈ P}

is also a stable matching. (In particular, you must show that it is a matching.)

Solution. Suppose toward a contradiction that M ∨ P is not a perfect matching. Then there
must be h 6= h′ in H and s, s′, t, t ′ ∈ S for which

• (h, s), (h′, s′) ∈ M ,
• (h, t), (h′, t′) ∈ P , and
• maxh(s, t) = maxh′(s′, t′).

Since M and P are each matchings, s 6= s′ and t 6= t′. So without loss of generality (i.e., by
renaming people if necessary), we may assume that

s = max
h

(s, t) = max
h′

(s′, t′) = t′.

Then s prefers either h or h′. If s prefers h, then (s, h) is a blocking pair in P; if s prefers h′,
then (s, h′) is a blocking pair in M . Either way, contradiction.

Stability is easier to check: with the notation as above, if (h, s′) were a blocking pair in
M ∨ P , then h would prefer s′ to either s or t, which implies that (h, s′) is also a blocking
pair in M , contradiction. (M because that’s the matching in which s′ is matching with their
partner in M ∨ P .) �

MATH 416, PROBLEM SET 1 5

Problem 5 (Examples of stable matchings).
(a) Give preference lists (for a fixed small n, say 2 ≤ n ≤ 10) and a stable matching in which

no hospital or student is matched with their first choice.
(b) Now for any n ≥ 2, give preference lists and a stable matching in which every student is

matched with their first choice but every hospital is matched with its last choice.
(c) Show that for every k ≥ 1 there are preference lists for n = 2k hospitals and 2k students

that admit at least 2k stable matchings. (So the number of stable matchings can grow
exponentially in the number of parties.)

(Hint: First solve the problem for k = 1. Then for the general case try to paste together many
‘independent’ copies of your solution for k = 1.)

Solution. (a) Consider these preference lists:
X A B C
Y B C A
Z C A B

A Y Z X
B Z X Y
C X Y Z

The matching that pairs each party with their second choice (i.e., (XB, YC, ZA)) is stable.
(b) A useful observation: if all the students have different first choices, then the matching

that pairs every student with their first choice is stable, no matter what the hospitals’ prefer-
ences are. So make hk the first choice of sk for every k , and make sk the last choice of hk for
every k . The rest of the preferences don’t matter. And {(hk , sk)|k ≤ n} is a stable matching
with the requested property.

(c) The idea is to paste together instances of the solution to the problem for k = 1:
X A B
Y B A

A Y X
B X Y

For these preference lists, either of the two possible perfect matchings is stable. (Why?
because either both students get their first choice or both hospitals get their first choice.)
Now let

H = {X1, Y1, X2, Y2, . . . , Xk , Yk}, S = {A1, B1, A2, B2, . . . , Ak , Bk}
and consider the preference lists

X1 A1 B1 · · ·
Y1 B1 A1 · · ·
X2 A2 B2 · · ·
Y2 B2 A2 · · ·
...

Xk Ak Bk · · ·
Yk Bk Ak · · ·

A1 Y1 X1 · · ·
B1 X1 Y1 · · ·
A2 Y2 X2 · · ·
B2 X2 Y2 · · ·
...

Ak Yk Xk · · ·
Bk Xk Yk · · ·

(The rest of the preference lists can be filled in in any way.) For any function t : k → 2 define
a matching Mt by

Mt := {(Xl, Al), (Yl, Bl)|t(l) = 0} ∪ {(Xl, Bl), (Yl, Al)|t(l) = 1}.
This matching is stable, since every party is matched with their first or second choice, and a
party p is matched with their second choice iff p’s first choice q is paired with q’s first choice.
(So there are no unstable pairs.) �

6 MATH 416, PROBLEM SET 1

Problem 6.
(a) Prove that in a stable matching produced by the GS Algorithm, at most one hospital is

paired with its last choice. (Contrast with Problem ????.)
(b) For every n, give an example of preference lists such that in the stable matching produced

by the GS Algorithm, there is exactly one hospital matched with its last choice and each
of the other n − 1 hospitals is matched with its second-to-last choice.

(Hint: One approach is to make one student the last choice of every hospital.)
(c) Prove that, for every n ≥ 1, there are preference lists for |H| = |S| = n for which the

while loop in the GS algorithm must iterate n2 − n + 1 times, so that the running time
of the algorithm is Θ(n2).

(Hint: This is not unrelated to the previous part.)

Solution. (a) Recall that in the GS Algorithm, once a student is matched, they remain matched
(though perhaps to a different hospital) throughout the remaining execution of the algorithm.
Recall also that, in the course of the execution of the GS Algorithm, the partial matching
constructed so far is always a matching, meaning that no two students are matched to the
same hospital and no two hospitals are matched with the same student.

If, in the execution of the algorithm, hospital h makes an offer to its last choice, then it has
made offers to all n−1 other students, who are therefore matched. There are n−1 hospitals
other than h, so those n− 1 hospitals must be matched to the other n− 1 students. So, after
matching h with its last choice, the algorithm halts, because all the hospitals are matched.
This means that the first time a hospital makes an offer to its last choice must also be the
last, so this happens at most once.

(b) There are multiple solutions here; one approach is to make one student s1 last on all
the hospitals’ preference lists, so that the n hospitals are, in effect, competing for only n− 1
students. Then the students’ preference lists can be arranged to make this competition very
inefficient, meaning that it takes many proposals to settle on a stable matching.

h1 s2 s3 · · · sn−1 sn s1
h2 s3 s4 · · · sn s2 s1
...

hn−1 sn s2 · · · sn−2 sn−1 s1
hn s2 s3 · · · sn−1 sn s1

s1
s2 h2 h3 · · · hn−1 hn h1
...

sn−1 hn−1 hn h1 h2 · · · hn−2
sn hn h1 h2 · · · hn−2 hn−1

The preference list of hk for k = 1, . . . , n−1 begins with a cyclic permutation of (s2, . . . , sn)
from sk+1 to sk , and lists s1 last. The preference list for hn is identical to the preference list
for h1.

The preference list for sk , k = 2, . . . , n, is a cyclic permutation of (h1, . . . , hn) from hk to
hk−1. The preference list for s1 can be anything.

With these preference lists, the offers made in the execution of the algorithm are as follows.
In order, hk makes an offer to sk+1, its first choice, until hn makes an offer to s2, forcing h1
to make an offer to s3 since s2 prefers hn to h1. Then all the hospitals (in order) make offers
to their second choices, and then their third, and so on, until all but hn have made offers to
their second-to-last choices. Finally, hn makes an offer to sn, who accepts it over h1, forcing
h1 to make an offer to s1 and ending the algorithm.

(It is possible, though more difficult, to prove without discussing the execution of the algo-
rithm that sk is hk ’s highest-ranked valid partner for k = 2, . . . , n − 1 and conclude that the
matching given is the hospital-optimal one.)

MATH 416, PROBLEM SET 1 7

(c) The number of iterations of the while loop is the number of offers, which in the previous
example must be (n − 1)2 + n = n2 − n + 1. (Hospitals h2, . . . , hn each make n − 1 offers,
while h1 makes n offers.) This proves that the worst-case running time of the algorithm is
Ω(n2 − n + 1) = Ω(n2), so it is Θ(n2). �

8 MATH 416, PROBLEM SET 1

Problem 7. Recall that the Gale–Shapley Algorithm produces the unique hospital-optimal,
student-pessimal stable matching. By falsifying their preference list, can a student end up
(after running the algorithm) with a better position than they would with their true preference
list? Give a proof or an example.

Solution. Yes! Consider the following preference lists:

X B A C
Y A B C
Z A B C

A X Y Z
B Y X Z
C Y X Z
A∗ X Z Y

where A∗ indicates the false preferences that A will report. With the true preference lists,
the GS Algorithm runs as follows:

X B
Y A
Z ABC,

in the end producing the matching (XB, YA, ZC), in which A gets their second choice. The
idea is that A should falsely claim to prefer Z to Y in order to invalidate Y as a possible
partner, so that they end up with X , their first choice. With the false preferences, the algorithm
runs as follows:

X B A
Y A B
Z A C

and A ends up with their top choice X instead of their second choice Y . �

MATH 416, PROBLEM SET 1 9

Problem 8. Suppose that we are given preference lists for |H| = |S| = n. Prove that there is
no perfect matching, stable or otherwise (!), in which every hospital is matched with a student
it strictly prefers to the student matched with it by the Gale–Shapley Algorithm.

(Hint: Consider the final step of the algorithm before it stops.)

Solution. Let M∗ be the (hospital-optimal) stable matching produced by the GS Algorithm.
Suppose toward a contradiction that M is a perfect matching in which every hospital is paired
with a student that it prefers to its match in M∗. Let (h, s) ∈ M∗ be the last pair produced
in the execution of the GS Algorithm. Then s does not reject any offers during the execution
of the algorithm, since the algorithm halts after the final student receives their first offer. Let
k be the partner of s in M , and let t be the partner of k in M∗. So (by choice of M) k
prefers s to t, which means that k must have made an offer to s and been rejected by s, a
contradiction. �

10 MATH 416, PROBLEM SET 1

Problem 9. A past math 416 student proposed the following algorithm for the stable-matching
problem.

Start with an arbitrary perfect matching M of hospitals and students. (For
instance, {(h1, s1), (h2, s2), . . . , (hn, sn)}.)

Search for pairs of pairs (h, s), (h′, s′) ∈ M for which (h, s′) is a blocking
pair; if you find one, then rematch these four parties: i.e., replace the pairs
(h, s), (h′, s′) with (h, s′), (h′, s).

Repeat until there are no more blocking pairs.
This algorithm will certainly succeed if it halts. Prove that, unfortunately, it need not halt.
(Hint: You should be able to produce an example with |H| = |S| = 3.)

Solution. The preference lists are as follows.
X B A C
Y
Z A B C

A X Z Y
B Z X Y
C

(The preferences of Y and of C don’t matter.) Here is a sequence of unstable matchings, with
all instabilities listed to the right:

S1 : XA Y B ZC XB, ZB
S2 : XB YA ZC ZA, ZB
S3 : XC Y A ZB XA, ZA
S4 : XC Y B ZA XA, XB

S5 = S1 : XA Y B ZC X

This means that if the described algorithm chose the blocking pairs in the order indicated, it
would never terminate. �

