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Motivated by the study of maximal rationally connected fibrations, introduced by Kollár,
Miyaoka, and Mori in [12] and Campana in [4, 5], we study di�erent notions of fibrations
where instead of requiring that the general fibers be rationally connected, we require di�erent
types of birational simplicity. The birational invariants we consider are the Chow groups
of 0-cycles and the groups of holomorphic p -forms. The main result of this paper is the
construction of maximal Chow constant and cohomologically constant fibrations.

Consider a fibration (Def. 1.1) of smooth complex projective varieties

f : X!Y.
We say f is a Chow constant �bration if f⇤ : CH0(X )!CH0(Y ) is an isomorphism. We say
a fibration is cohomologically constant if f ⇤ : H p,0(Y ) � H p,0(X ) is an isomorphism for all
p . These definitions extend to the case when f is a rational map.

Theorem A. Any smooth complex projective variety X admits a maximal Chow constant (resp.
cohomologically constant) �bration:

⌘ : XdY.

Y is de�ned up to birational isomorphism and satis�es the following universal property: another
�bration � : XdZ is Chow constant (resp. cohomologically constant) () ⌘ factors through �.
Moreover, ⌘ is almost holomorphic (i.e. there is a nonempty open set U ⇢ Y over which ⌘ is proper).

Chow groups of 0-cycles have played an important role in algebraic geometry. Already in
the 60s, Mumford [13] observed that even in dimension two, CH0(X ) can be quite exotic, and
proved that if X is a complex K3 surface, then CH0(X ) is infinite dimensional in a precise
sense. Roı̆tman proved [15] the torsion in CH0(X ) is isomorphic to the torsion subgroup
of Alb(X ). Colliot-Thélène, Voisin, and others (see e.g. [6]) have made major progress in
understanding rationality questions by considering specializations of “universally CH0-trivial
varieties", or equivalently varieties which admit integral decompositions of their diagonals.
Beauville and Voisin [1] showed that given a K3 surface, there is a distinguished degree 1 cycle
cX 2 CH0(X ) such that many geometrically defined 0-cycles are a multiple of cX . There has
been some work in understanding a similar picture for higher dimensional hyperKähler man-
ifolds. Huybrechts [8] has initiated a study of “Chow constant subvarieties", i.e. subvarieties
V ⇢ X such that the image of CH0(V ) in CH0(X ) is isomorphic to Z. Vial [17] has studied
fibrations similar to the ones considered here, especially from the motivic perspective.



On the other hand, the vector spaces H p,0(X ) of holomorphic p -forms are some of a vari-
ety’s most useful birational invariants. From the perspective of this paper, the motivation for
considering p -forms along with 0-cycles is Bloch’s conjecture.

Conjecture B (Bloch’s Conjecture). If X is a smooth projective complex variety, then CH0(X ) =
Z () H p,0(X ) = 0 for all p > 0.

The forward implication is known, but the opposite is known in very few examples (for
surfaces with (X ) < 2 and a few classes of general type surfaces). There are several gener-
alizations of Bloch’s conjecture. For this paper the most relevant generalization is

Conjecture C (see [18, Conj. 1.11]). If H p,0(X ) = 0 for all p > m then CH0(X ) is supported on
an m-dimensional algebraic subsetV ⇢ X , i.e. CH0(V ) surjects onto CH0(X ).

The following proposition explains the relationship between Chow constant and cohomolog-
ically constant fibrations and the significance of Conjecture C to our setting.

Proposition D. Let X be a smooth complex projective variety and letY be the base of its maximal
Chow constant �bration.

(1) Every Chow constant �bration of X is cohomologically constant.
(2) The dimension ofY equals the minimum dimension of an algebraic subset V ⇢ X such that

CH0(X ) is supported onV .
(3) If Conjecture C is true then

dim(Y ) = max{p |H p,0(X ) , 0},
andY coincides with the maximal cohomologically constant �bration. Thus, conjecturally, a
�bration is Chow constant () it is cohomologically constant.

We give some examples and applications which arise in the study of these fibrations. First,
we show that being a Chow constant fibration has consequences on the Chow group of the
generic fibers.

Proposition E. Let X be a smooth projective threefold with a Chow constant �bration over a curve
B , and let ⇠ = C(B) be the function �eld of B . Then, there is a divisorD ⇢ X such that CH0(X⇠ )⌦Q
is supported on D⇠ . Thus, CH0(X⇠ ) ⌦ Q is �nite dimensional in the sense of Mumford.

We give several examples of K3 surfaces X⇠ over the function field ⇠ of a complex curve such
that CH0(X⇠ ) is finite dimensional.

We consider two other classes of fibrations, which are defined only by the properties of
their fibers. Let

f : X!Y
be a fibration of smooth projective varieties. We say f is a Chow trivial �bration if, for
a general fiber Xy , CH0(Xy ) � Z. Likewise, we say that f is a cohomologically trivial
�bration if H p,0(Xy ) = 0 for all p > 0. (We also define these fibrations when f is a rational
map.) They also give rise to maximal fibrations.

2



Theorem F. Any smooth complex projective variety X admits a maximal Chow trivial (resp. coho-
mologically trivial) �bration:

⌘ : XdY.
Y is de�ned up to birational isomorphism, and satis�es the following universal property: if a �bration
� : XdZ is Chow trivial (resp. cohomologically trivial) then ⌘ factors through �. As in Theorem A,
⌘ is almost holomorphic.

For a rational fibration f : XdY (see Def. 1.1), we have the following chain of implications:
✓
f is a rationally
conn. fibration

◆ ✓
f is a Chow

trivial fibration

◆ ✓
f is a cohom.
trivial fibration

◆

✓
f is a Chow

constant fibration

◆ ✓
f is a cohom.

constant fibration

◆
.

Prop. 2.9

Cor. 2.7 Cor. 1.15

Conj. B

Prop. 2.9

Conj. C

As another application, we note that the study of cohomologically trivial fibrations is
relevant to the study of rational singularities. Let X be a variety and X rat ⇢ X the locus where
X has rational singularities. Kollár has asked the following question: does there exist a partial
resolution µ : X 0!X of X such that X 0 has rational singularities and µ is an isomorphism on
the preimage of X rat? Motivated by this question, we consider a refinement of the problem
in the case of cones. When X is smooth and projective and L an ample line bundle on X ,
then the projective cone C (X ,L) has a canonical resolution

µ : P(O � L)!C (X ,L)
by blowing up the cone point. Say a birational model R of C (X ,L) is an intermediate
rationalization of singularities of C (X ,L) if R has rational singularities and µ factors as

P(O � L) R C (X ,L).

µ

We have the following characterization of intermediate rationalizations of singularities of
C (X ,L) (generalizing the criterion for cones to have rational singularities in [11, Prop. 3.13]).

Theorem G. If L is su�ciently positive, there is a bijective correspondence⇢
intermediate rationalizations of
singularities of C (X ,L)

�
 !

⇢
regular cohom. trivial �brations f : X!Y
such thatY has rational singularities

�
.

One can remove the assumption about the positivity of L by modifying the right hand side.

In §1 we prove some basic facts about cohomologically constant and cohomologically
trivial fibrations. We give a criterion for a fibration to be cohomologically constant in terms
of a natural distribution/foliation on X (see Def. 1.6) which was suggested to us by Claire
Voisin. In §2 we prove analogous facts about Chow constant and Chow trivial fibrations. We
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show that a fibration is Chow constant if the fibers are Chow constant subvarieties in the sense
of Huybrechts (see Theorem 2.5). We also recall some examples of Chow constant fibrations
and prove Proposition E. In §3 we prove Theorem G. In §4 and §5 we prove Theorem A
and Theorem F. In §4 we recall the quotient of a variety by an algebraic equivalence relation
(which we attribute to Roı̆tman). In §5 we prove that one can produce maximal quotients
with fibers in an arbitrary foliation, as suggested to us by Claire Voisin. Lastly, in Appendix
A we prove an elementary result: when CH0(X ) of a variety X over an arbitrary field k is
supported on a curve, then it is finite dimensional in the sense of Mumford.

Unless explicitly stated, we work over C. All our varieties are by assumption irreducible.
By a regular fibration we mean a fibration which is everywhere defined. By abuse of notation
if k ⇢ ⇠ is a field extension and X is a variety over k then we use X⇠ to denote the base
change X⇠ := X ⇥Spec(k ) Spec(⇠).
We would like to thank Ed Dewey, Lawrence Ein, Laure Flapan, Charles Godfrey, Elham

Izadi, Robert Lazarsfeld, Stefan Kebekus, Daniel Litt, James McKernan, Mircea Mustaţă,
John Ottem, Alex Perry, Ari Shnidman, Fumiaki Suzuki, Burt Totaro, and Claire Voisin for
interesting discussions and helpful comments.

1. C�������������� C������� ��� T������ F���������

In this section, we define cohomologically constant and cohomologically trivial fibrations.
We are grateful to Claire Voisin who suggested we define a natural integrable distribution on
a variety VX which controls when a fibration is cohomologically constant. The existence of
this distribution is what allows us in §5 to define the maximal cohomologically constant and
cohomologically trivial fibrations.

Let X andY be projective varieties. Let f : XdY be a rational map.

De�nition 1.1. We say f is a �bration if f is dominant and the closure of a general fiber
of f is irreducible.

Recall the following fact about global p -forms.

Lemma 1.2 ([19, Lem. 2.2]). For any p � 0, the group H p,0(X ) is a birational invariant among
smooth projective varieties.

Thus for any rational map f as above we can define a pull-back on p -forms by first resolving
the rational map f

X

X Y

f

f

and defining f ⇤ to be the composition:

f ⇤ : H p,0(Y )
f
⇤

��! H p,0(X ) � H p,0(X ).
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De�nition 1.3. We say a fibration f : XdY between smooth projective varieties is a coho-
mologically constant �bration if f ⇤ : H p,0(Y )!H p,0(X ) is an isomorphism for all p .

Example 1.4. As pullback on p -forms is injective, a simple class of examples of cohomolog-
ically constant fibrations are those where the domain satisfies H p,0(X ) = 0 for all p > 0. For
instance, if f : P3dP1 is a pencil of quartics, then f is a cohomologically constant fibration.

Remark 1.5. If X is smooth, projective of dimension n, and H n,0(X ) , 0, then every coho-
mologically constant fibration is birational.

The property of being a cohomologically constant fibration is controlled by a natural
distribution on X .

De�nition 1.6. Let VX ⇢ TX be the subsheaf of TX defined as follows:

VX (U ) :=
(
v 2 TX (U )

�����
8p > 0, 8! 2 H p,0(X ), the
contraction !y(v |U ) = 0 2 ⌦p�1X (U )

)
.

We call VX Voisin’s distribution. It is straightforward to show that VX is integrable (e.g.
by applying the invariant formula for the exterior derivative and using that for any form
! 2 H p,0(X ), we have d! = 0). Thus VX generically defines a foliation on X , which we call
Voisin’s foliation.

Remark 1.7. For each p > 0 there is a contraction map

contp : TX ! H p,0(X )⇤ ⌦C ⌦p�1X .

We could equivalently define VX := \p>0 ker(contp).
Remark 1.8. If f : X!S is a regular fibration of smooth projective varieties with relative
dimension r , we can also define a relative version of Voisin’s distribution (resp. Voisin’s
foliation) Vf ⇢ TX . Let U ⇢ S be the open set where f is smooth and XU := f �1(U ).
Consider the kernel of the relative contraction map:

TXU /U!
r 
p=1

f ⇤
�
f⇤(^p⌦XU /U )

�⇤ ⌦ ^p�1⌦XU /U .
As a subsheaf ofTXU , the kernel can be extended to some subsheaf ofTX and Vf is defined as
the saturation of any such extension. Then Vf is an integrable distribution and for a general
fiber Xs of f , the restriction to Xs is Voisin’s distribution on the fiber, i.e. Vf |Xs = VXs .

Consider the following diagram of smooth projective varieties

Z X ,

Y

 

⇡

such that both ⇡ and  are surjective and a general fiber of ⇡ is irreducible. Voisin’s distri-
bution is useful for determining when p -forms on X descend toY .
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Proposition 1.9. The following are equivalent:

(1) Global p -forms on X descend toY ; i.e. for each p > 0 and every p -form ! 2 H p,0(X ) there
is a form ⌘ 2 H p,0(Y ) such that  ⇤(!) = ⇡⇤(⌘).

(2) The �bers of the family Z !Y map into Voisin’s foliation; i.e. there is a nonempty open set
U ⇢ Z and a factorization:

TZ/Y |U  ⇤(TX )|U .

 ⇤(VX )|U

9

Remark 1.10. This implies that if f : XdY is a fibration, then f is cohomologically constant
if and only if a general fiber of f is generically contained in a leaf of Voisin’s foliation.

Proof of Proposition. (1) =) (2): This direction is straightforward. Let U ⇢ Z be the
nonempty open set where ⇡ and  are both smooth. If v 2 TZ/Y (U ), then

 ⇤(!)|U yv = ⇡⇤(⌘)|U yv = 0 2 (^p�1⌦Z )z .

It follows that locally  ⇤(!)|U yv = 0 for every global p -form ! and thus d ⇤v 2  ⇤(VX ).
(2) =) (1): Let z 2 U ⇢ Z be a general point. Then ⇡ is smooth in a neighborhood of

⇡(z ). There are coordinates
x1, . . . , xr , y1, . . . , ys 2 OZ,z

in the local ring at z such that the {yi } cuts out the fiber of ⇡ at z and the {x j } gives coordinates
on the fiber. Likewise there is a basis for (⌦pZ )z locally at z given by p -wedges of dxi s and
dy j s. The assumption in (2) implies that for any dual basis vector v j = @

@x j
2 (TZ/B )z we have

 ⇤(!)z yv j =  ⇤(!)z yd ⇤(v j ) = 0.

Thus in the local coordinates:

 ⇤(!) = f1dy1 ^ · · · + . . .

and all the terms with dx j s vanish.

LetW ⇢ ⇡(U ) ⇢ Y be a nonempty open set over which ⇡ is smooth and let ZW = ⇡�1(W ).
It follows that

 ⇤(!)|ZW 2 H 0(ZW , ⇡⇤(⌦pW )|ZW ),
and thus  ⇤(!) descends to a meromorphic p -form ⌘ on B . Showing it extends to a global
p -form is straightforward. LetY 0 ⇢ Z be a multisection of ⇡ and let ⇡0 = ⇡ |Y 0. Then we have

⌘ =
1

deg(⇡0) tr⇡
0( ⇤(!)|Y 0)

as meromorphic forms onY . But the form on the right is a regular p -form, so we are done. ⇤
6



De�nition 1.11. Let f : XdY be a fibration, letV be the closure of a general fiber, and let
V be a resolution of singularities of V . We say f is a cohomologically trivial �bration if
H p,0(V ) = 0 for all p > 0.

Example 1.12. Let X be smooth and projective. Then f : X!Spec(C) is a cohomologically
constant fibration () f is a cohomologically trivial fibration() hp,0(X ) = 0 8p > 0.

Example 1.13. Continuing with Example 1.4, we see that not all cohomologically constant
fibrations are cohomologically trivial. If smooth, the closure of a fiber of f : P3dP1 is a
quartic K3 surface V ⇢ P3, thus H 2,0(V ) , 0 for the general fiber V .

To relate cohomologically constant and trivial fibrations, we recall a theorem of Kollár:

Theorem 1.14 ([10, Thm. 7.1]). Let ⇡ : X!Z be a surjective map between projective varieties,
X smooth, Z normal. Let F be the geometric generic �ber of ⇡ and assume that F is connected. The
following two statements are equivalent:

(1) Rp⇡⇤OX = 0 for all p > 0;
(2) Z has rational singularities and hp(F,OF ) = 0 for all p > 0.

The following corollary is a straightforward application of Kollár’s theorem using that
H p(F,OF ) � H p,0(F ) = 0 for all p > 0.

Corollary 1.15. If f : XdY is a cohomologically trivial �bration of smooth projective varieties,
then f is cohomologically constant.

Moreover we have:

Corollary 1.16. Let f : XdY and g : YdZ be �brations. If f and g are cohomologically constant
(resp. trivial) �brations, then g � f is a cohomologically constant (resp. trivial) �bration.

Proof. If f and g are cohomologically constant, certainly g � f is cohomologically constant.
Now assume f and g are cohomologically trivial and let Xz (resp. Yz ) denote the closure of
the fiber of g � f (resp. g ) over a general point z 2 Z . Let X z (resp. Y z ) denote a resolution
of singularities of Xz (resp. Yz ). Note that generality of the point z 2 Z implies that the
induced rational map X zdY z is a cohomologically trivial fibration. Thus by Corollary 1.15
we have H p,0(Y z ) = H p,0(X z ) = 0 for all p > 0. ⇤

Finally we prove an auxiliary result, which will eventually show that all of our maximal
fibrations are “generically proper" over their codomain. Let X and Y be smooth projective
varieties and

f : XdY

be a dominant rational map and �f ⇢ X ⇥Y the closure of the graph of f . Then f can be
extended across the locus where the projection p : �f!X is finite.
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De�nition 1.17. With the setup above, we say the exceptional locus of f is the locus in
X over which p is not finite. We say f is almost holomorphic if the exceptional locus of f
does not intersect the closure of a general fiber.

Lemma 1.18. With the setup above, if f is not almost holomorphic, thenY is uniruled.

Proof. As X is smooth, the fibers of p are rationally chain connected subvarieties ofY . There-
fore, if the closure of a general fiber meets the exceptional locus of f , then there is a rational
curve through a general point inY . ⇤

2. C��� �������� ��� C��� ������� ����������

In this section we define Chow constant and Chow trivial fibrations. We show that the
property of being a Chow constant fibration is equivalent to having fibers which are Chow
constant cycles in the sense of Huybrechts [8, Def. 3.1]. We give some examples of Chow
constant fibrations, focusing for the sake of exposition on Chow constant fibrations where
the fibers are K3 surfaces. We also prove Proposition E relating Chow constant fibrations
and the Chow groups of their generic fibers. To start, recall the following fact about CH0(X ).
Lemma 2.1 ([7, Ex. 16.1.11]). The group CH0(X ) is a birational invariant among smooth projec-
tive varieties.

Therefore, for a fibration f we may define a pushforward at the level of 0-cycles in analogy
with our definition of pull-back of p -forms. Let

X

X Y

f

f

be a resolution of the map f . Then we define f⇤ to be the composition:

f⇤ : CH0(X ) � CH0(X )
f ⇤��! CH0(Y ).

This is independent of the resolution of f .

De�nition 2.2. We say that a fibration f : XdY between smooth projective varieties is a
Chow constant �bration if f⇤ is an isomorphism.

It will be useful to consider Chow-theoretic properties of subvarieties. Let V ⇢ X be a
subvariety and let V be a resolution of singularities of V .

De�nition 2.3. We say V is a Chow constant subvariety (see [8, Def. 3.1]) if for any two
points x1, x2 2 V we have x1 = x2 2 CH0(X ). We say that V is a Chow trivial subvariety if
CH0(V ) � Z.

De�nition 2.4. We say a fibration is a Chow trivial �bration if the closure of a general
fiber is a Chow trivial subvariety.
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Now we show that Chow constant fibrations are exactly the fibrations where the general
fibers are Chow constant subvarieties.

Theorem 2.5. Let f : XdY be a �bration of smooth projective varieties. Then f is a Chow constant
�bration () a general �ber of f is a Chow constant subvariety.

Proof. If f⇤ is a Chow constant fibration, then a general fiber is clearly a Chow constant
subvariety. For the other direction, we first show that f⇤ is an isomorphism modulo torsion,
i.e. after tensoring with Q. Then, we use Roı̆tman’s theorem to complete the proof.

By definition of f⇤ we are free to resolve f , i.e. assume that f is everywhere defined. It
is clear that f⇤ : CH0(X )!CH0(Y ) is a surjection. We must show it is also injective. Let
i : Z ,! X be a smooth multisection of f of degree d , i.e. a smooth and closed subvariety
which maps generically finitely ontoY . Let g = f |Z . There is an open set U ⇢ Y over which
g is étale such that for any point y 2 U the fiber Xy is a Chow-constant subvariety.

Both of the following compositions

(i⇤ � g ⇤) � f⇤ : CH0(X )!CH0(X ) and f⇤ � (i⇤ � g ⇤) : CH0(Y )!CH0(Y ),

are equal to multiplication by d . For the second map f⇤ � (i⇤ � g ⇤) this is straightforward. To
prove it for (i⇤ � g ⇤) � f⇤, we use the following: any ↵ 2 CH0(X ) can be moved so that it is
supported on f �1(U ), and for any point x 2 f �1(U ) we have (i⇤ � g ⇤) � f⇤(x) is a union of d -
points inXf (x). AsXf (x) is a Chow constant subvariety, we have (i⇤�g ⇤)�f⇤(x) = d ·x 2 CH0(X ).
Thus (i⇤ � g ⇤) � f⇤ is equal to multiplication by d , which implies

f⇤ ⌦ Q : CH0(X ) ⌦ Q!CH0(Y ) ⌦ Q

is an isomorphism. Therefore the kernel of f⇤ is d -torsion.

The previous paragraph shows that if x1, x2 2 Xy are two points in a fiber of f then the
di�erence x1 � x2 is torsion in CH0(X ). Let

albX : X!Alb(X )

be the Albanese map of X . For any two points x1, x2 2 Xy , the di�erence albX (x1)�albX (x2) 2
Alb(X ) is torsion. But as Xy is connected and the torsion points are countable, this implies
that the map albX is constant on the fibers of f . So there is a factorization:

Y

X Alb(X ).

9f

albX

Now Roı̆tman’s theorem [15] implies the composition

CH0(X )tors
f⇤�! CH0(Y )tors!Alb(X )tors � CH0(Alb(X ))tors

is an isomorphism. This proves that f⇤ is injective, so it is an isomorphism. ⇤
9



Remark 2.6. In the previous theorem one can weaken the smoothness hypotheses quite a
bit. To show that the kernel of f⇤ is a torsion group requires no smoothness. To conclude
that the kernel of f⇤ is trivial, it would su�ce to assume that X and Y are normal, and that
a resolution of singularities X of X induces an isomorphism CH0(X ) � CH0(X ).

The following corollary is immediate.

Corollary 2.7. Let f : XdY be a �bration of smooth projective varieties. If f is a Chow trivial
�bration, then it is a Chow constant �bration.

Moreover, one may compose these fibrations:

Corollary 2.8. Let f : XdY and g : YdZ be two �brations of projective varieties. If f and g are
both Chow constant (resp. trivial) �brations then g � f is a Chow constant (resp. trivial) �bration.

Proof. If f and g are Chow constant, it is straightforward to see g � f is Chow constant.
Proving triviality follows an similar argument to the proof of Corollary 1.16. We just note
that by the previous theorem, if

f : XdY

is a Chow trivial fibration over a Chow trivial varietyY , then CH0(X ) = Z. ⇤

Proposition 2.9. Let f : XdY be a �bration.

(1) If f is a Chow constant �bration, then f is a cohomologically constant �bration.
(2) If f is a Chow trivial �bration, then f is a cohomologically trivial �bration.

Proof. Part (1) holds by the following lemma. Part (2) can be seen as a special case of the
following lemma or follows from Mumford’s original paper [13]. ⇤

Suppose

Z X

B

 

⇡

is a diagram of smooth projective varieties such that ⇡ is surjective and a general fiber of ⇡
is irreducible.

Lemma 2.10. Let Zb := ⇡�1(b) be a �ber of ⇡ over a general point b 2 B . If the image  (Zb ) is
a Chow constant subvariety, then for any ! 2 H p,0(X ) there is an ⌘ 2 H p,0(B) such that  ⇤(!) =
⇡⇤(⌘). As a special case, this implies that if CH0(X ) = Z, then H p,0(X ) = 0 for all p > 0.

Proof. This is well known but we include a proof for the convenience of the reader. We follow
the outline of the proof [18, Thm. 3.13] which is a very similar situation. First we reduce to
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the case that ⇡ has a section. Taking a generically finite cover B 0!B we can assume there is
a diagram:

Z 0 Z X

B 0 B

 0

⇡0
 

⇡

�

satisfying (1) ⇡0 has a section � : B 0!Z 0, (2) Z 0 and B 0 are smooth, projective varieties, and
(3) there is a nonempty open set U ⇢ B over which ⇡0 is the base change of ⇡.

Note that  0 and ⇡0 satisfy the hypotheses in the lemma. Furthermore, if there exists
⌘0 2 H p,0(B 0) such that ⇡0⇤(⌘0) =  0⇤(!) then setting

⌘ =
1

deg(�) tr�(⌘
0) 2 H p,0(B)

we have ⇡⇤(⌘) =  ⇤(!).
Thus it su�ces to prove the lemma in the case that ⇡ has a section � : B!Z , which we

now assume. Consider the following two cycles in Z ⇥ X :

� = {(z, (z )) 2 Z ⇥ X } and � ���⇡ = {(z, (�(⇡(z )))) 2 Z ⇥ X }.
The assumption that  (Zb ) is a Chow constant subvariety implies that the fibers (� )z and
(� ���⇡)z are rationally equivalent. By Bloch and Srinivas’s result [3, Prop. 1], we can write

� = � ���⇡ +W 2 CH⇤(Z ⇥ X ) ⌦ Q

whereW is supported on D ⇥ X for some divisor D ⇢ X . As a consequence the map

(� )⇤ =  ⇤ : H p,0(X )!H p,0(Z )
is a sum of the following maps:

H p,0(X ) ( ��)⇤�����! H p,0(B) ⇡⇤��! H p,0(X )
and

W⇤ : H p,0(X )!H p,0(Z ).
The second map must vanish as it factors through the Gysin pushforward of the group
H p�1,�1(D) = 0 (see [18, Thm. 3.13] for an elaboration on this point). It follows that the
pullback  ⇤(!) of any p -form on X can be written as the ⇡⇤(⌘) for some ⌘ 2 H p,0(B). ⇤

Now, we present several examples of Chow constant fibrations. There are two main sources
of examples: fibrations where the domain has CH0(X ) = Z and examples which arise as
quotients by finite group actions. We think the following is a natural problem:

Problem 2.11. Find new techniques for constructing Chow constant fibrations.

Example 2.12. If X is a rationally connected variety (or any variety with CH0(X ) = Z) then
any fibration f : XdY is a Chow constant fibration.
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Now we recall an example of Bloch, Kas, and Lieberman [2]. Those authors were interested
specifically in the case of surfaces fibered over a curve. We rephrase their construction in the
higher dimensional setting.

Example 2.13. LetG = Z/dZ and letY be a smooth projective variety with aG -action such
that the quotient

⌧ : Y!Z :=Y /G
is smooth and satisfies CH0(Z ) = Z. Bloch, Kas, and Lieberman consider the case when Y
is a cyclic cover of Z = P1. Another example of interest is when Y is a K3 surface which is
either a double cover of P2 or the double cover of an Enriques surface.

Let E0 be an elliptic curve with a choice of d -torsion point ✏ 2 E0 so that G acts freely on
E0 by translation by ✏ . Thus G ⇥G acts onY ⇥ E0 and we can consider the quotient

� : Y ⇥ E0!X := (Y ⇥ E0)/G
by the diagonal action of G onY ⇥ E0. Define E := E0/G . There is a map

⇡ : X!E .
Note that ⇡ is an isotrivial family with all fibers being isomorphic toY .

Proposition 2.14. The map ⇡ : X!E is a Chow constant �bration.

Proof. This argument is due to Bloch, Kas, and Lieberman ([2]). First we show that ⇡ = albX .
One can compute:

H 1,0(X ) � H 1,0(Y ⇥ E0)G � H 1,0(Y )G � H 1,0(E0)G � H 1,0(Z ) � H 1,0(E).
Now H 1,0(Z ) = 0 as CH0(Z ) � Z (by Lemma 2.10). It follows that Alb(X ) is isogenous to E .
But as ⇡ has connected fibers we get albX = ⇡. Thus, as in the proof of Theorem 2.5 (i.e. by
applying Roı̆tman’s theorem) it su�ces to show that

⇡⇤ ⌦ Q : CH0(X ) ⌦ Q!CH0(E) ⌦ Q

is an isomorphism.

Note that there is a G � (G ⇥ G /G ) action on X . Taking the quotient by G we get the
following commuting diagram

X E,

Z ⇥ E

⇡

q p

where q is the quotient map and p is the projection onto E . Then we have CH0(Z ⇥ E) �
CH0(E) (as Z is a Chow trivial variety), and by averaging: CH0(Z ⇥E)⌦Q � (CH0(X )⌦Q)G .
So it su�ces to show that CH0(X )⌦Q � (CH0(X )⌦Q)G , i.e. we want to show that for any

x 2 X and any g 2 G we have

x = g · x 2 CH0(X ) ⌦ Q.
12



As X = (Y ⇥ E0)/G there a G -equivariant map E0!X whose image contains x 2 X . As the
action of G on E0 is translation by a d -torsion point, the Abel-Jacobi theorem implies that
x = g · x 2 CH0(E0) ⌦ Q. Pushing forward to X proves the result. ⇤

Example 2.15. In the above construction we can replace E0 with P1 and replace translation
by a d -torsion point with multiplication by a d -th root of unity. If we further assume that the
quotient X = (Y ⇥ P1)/G is smooth then the same proof as above implies that the map

⇡ : X!P1 � (P1/G )
is a Chow-constant fibration over P1, hence we have CH0(X ) � Z. For example, when Y is
a K3 surface which double covers an Enriques surface then the quotient (Y ⇥ P1)/(Z/2Z) is
smooth so has this property.

Now we prove Proposition E. Suppose thatX is a smooth projective threefold, B is a smooth
projective curve, and ⇡ : X!B is a Chow constant fibration. Let ⇠ = C(B) be the function
field of B . We show that the property of being a Chow constant fibration has consequences
on the group CH0(X⇠ ). Recall that given a smooth surface X with h2,0(X ) , 0 over an
uncountable algebraically closedy field of characteristic 0, Mumford showed that CH0(X ) is
not finite dimensional in the following sense:

De�nition 2.16. Let ⇠ be an arbitrary field, let X be a variety over ⇠ and let CH0(X )0 be
the 0-cycles of degree 0. We say CH0(X ) is �nite dimensional in the sense of Mumford if
there exists a d such that every 0-cycle of degree 0 is rationally equivalent to a di�erence of
e�ective 0-cycle of degree d (i.e. the map of sets:

Symd (X )(⇠) ⇥ Symd (X )(⇠)!CH0(X )0
(Õ xi ) ⇥ (Õ y j ) 7! (Õ xi �Õ y j )

is surjective). Taking some personal liberties, we say CH0(X ) ⌦ Q is �nite dimensional in
the sense of Mumford if there exists d > 0 such that the map

Symd (X )(⇠) ⇥ Symd (X )(⇠) ⇥Q!CH0(X )0 ⌦ Q

(Õ xi ) ⇥ (Õ y j ) ⇥ ↵ 7! (Õ xi �Õ y j )↵
is surjective.

Proof of Proposition E. As ⇡ : X!B is a Chow constant fibration over a curve, if

i : C ,! X

is any multisection of ⇡ (i.e. a curve so that ⇡ � i : C!B is surjective) then we have CH0(X )
is supported on C . That is, the map

CH0(C )!CH0(X )
is surjective. So we can apply Bloch and Srinivas’s result [3, Prop. 1] to give a decomposition
of the diagonal

�X = Z1 + Z2 2 CH0(X ⇥ X ) ⌦ Q,
13



where Z1 is supported on C ⇥ X and Z2 is supported on X ⇥D for some divisor D ⇢ X .

Now suppose that ↵ ⇢ X is any irreducible curve, and let p1, p2 denote projections of X ⇥X
onto each factor. Then we can use the decomposition of diagonal to write

[↵] = p2⇤(p⇤1([↵]) · �X )
= p2⇤(p⇤1([↵]) · (Z1 + Z2)) 2 CH1(X ) ⌦ Q

By assumption, Z1 is supported on C ⇥ X . The pullback of [↵] to CH⇤(C ⇥ X ) under the
composition

C ⇥ X!C i�! X

vanishes as the intersection [C ] · [↵] = 0 for dimension reasons (they are both curves in a
threefold). Thus we have the intersection p⇤1([↵]) · Z1 = 0. Therefore [↵] = p2⇤(p⇤1[↵] · Z2) is
supported on D , which implies CH1(X ) ⌦ Q is supported on the divisor D .

So we have shown that the map

CH1(D) ⌦ Q!CH1(X ) ⌦ Q

is surjective. The localization sequence for Chow groups implies that for any open setU ⇢ X
we have a commutative diagram:

CH1(D) ⌦ Q CH1(D \U ) ⌦ Q

CH1(X ) ⌦ Q CH1(X \U ) ⌦ Q

and moreover, all the maps in the diagrams are surjections.

Finally we use the following expression for CH0(X⇠ ) ⌦ Q:

CH0(X⇠ ) ⌦ Q = colim
;,V ⇢B

⇣
CH1(X \ ⇡�1(V )) ⌦ Q

⌘
,

and likewise
CH0(D⇠ ) ⌦ Q = colim

;,V ⇢B

⇣
CH1(D \ ⇡�1(V )) ⌦ Q

⌘
.

(The colimit is taken over nonempty open subsets V ⇢ B .) Thus the map

CH0(D⇠ ) ⌦ Q!CH0(X⌘) ⌦ Q

is surjective, i.e. CH0(X⇠ ) ⌦Q is supported on the curve D⇠ . By Corollary A.4, CH0(X⇠ ) ⌦Q
is finite dimensional. ⇤

Example 2.17. This gives examples of K3 surfaces X⇠ over function fields of curves such
that CH0(X⇠ ) is finite dimensional. For example, ifY is a K3 surface which double covers P2

or an Enriques surface, and we apply the construction of Bloch, Kas, and Lieberman (see
Prop. 2.14) then we get a Chow constant fibration ⇡ : X!B = E . (To see other examples
where CH0(X ) is finite dimensional for K3 surfaces over function fields, and related discussion
see [9, §12.22].)
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Example 2.18. It is frequently possible to explicitly compute CH0(X⇠ ). For example, let
X ⇢ P3 ⇥ P1 be the total space of a pencil of quartics in P3 (c.f. Example 1.4) and assume
that the base locus of the pencil is a smooth complete intersection curveC of type (4, 4). Thus
X is the blow up of P3 at the curve C , and the map p : X!P1 is a Chow constant fibration.
Let E � C ⇥ P1 be the exceptional divisor of q : X!P3. Then by [19, Thm. 2.13], we have

CH1(X ) = CH0(C ) � Z[ℓ ]

where ℓ ⇢ X is the preimage of a general line in P3. In this family, there is necessarily a fiber
X0 such that the quartic surface X0 contains a line (quartics containing a line are an ample
divisor in the projective space of quartics). It follows that

P3 \ X0 � X \ (E [ X0)

and by the localization sequence we get

CH1(X0)!CH1(P3)!CH1(P3 \ X0) � CH1(X \ (E [ X0)) = 0.

We also have E \ X0 � C and E \C � C ⇥A1 which gives a diagram of surjections

CH1(C ⇥A1) CH1(X \ X0)

CH0(X⇠ )

Moreover, it is easy to show that in fact CH0(X⇠ ) � CH0(C ⇥A1) � Pic(C⇠ ) � Pic(C ).

Example 2.19. The previous example can be modified to give an example of a K3 surface
X⇠ over ⇠ = C(P1) with CH0(X⇠ ) � Z. Let X0,X1 ⇢ P3 be two quartics which are both the
union of four transverse planes, so that the singularities of X0 and X1 do not meet.

F����� 1. Some of the lines in the
intersection of the degenerate quar-
tic surfaces.

Let X ⇢ P3⇥P1 be the total space of the pencil spanned by
X0 and X1 (i.e. the blow up of the intersection C = X0\X1).
Let p : X!P3 be the blow up map and E = C ⇥ P1 be the
exceptional divisor. Then, we have C = ℓ1 [ · · · [ ℓ16 is the
union of 16 lines. The localization sequence again shows that

CH1(E)!CH1(X )
is surjective, and we can write CH1(E) = CH1(C ⇥ P1) �
CH0(C ) � CH1(C ). But as C is a connected union of rational
curves we have CH0(C ) � Z. And the group CH1(C ) is the
kernel of the composition

CH1(E)!CH1(X )!CH0(X⇠ ),
which shows CH0(X⇠ ) � CH0(C )Z.
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3. R��������������� �� S������������ �� C����

Motivated by Kollár’s question, we consider rationalizations of singularities of cones and
prove a more general version of Theorem G.

De�nition 3.1. Over an algebraically closed field of characteristic zero, a variety X has
rational singularities if, for any proper birational morphism µ : X 0 ! X , Rp µ⇤OX 0 = 0 for
all p > 0.

Let X rat ⇢ X denote the open set where X has rational singularities.

De�nition 3.2. We say a proper birational morphism µ : X 0 ! X is a rationalization of
singularities of X if X 0 has rational singularities. We say that µ is a strict rationalization of
singularities if X 0 has rational singularities and µ gives an isomorphism between µ�1(X rat)
and X rat.

Thus Kollár asks whether or not strict rationalizations of singularities exist.

We will study certain rationalizations of singularities of cones. Let X be a smooth variety
and let C (X ,L) denote the projective cone over L (see [11, pg. 97]). Then C (X ,L) has a
natural resolution:

µ : P(O � L)!C (X ,L)
given by blowing up the cone point. Thus Kollár’s question is trivial for cones (either C (X ,L)
or P(O � L) solves the problem), however following refinement remains interesting:

Problem 3.3. To what extent do there exist minimal rationalizations of singularities?

We give a partial answer to this question in the case of cones.

De�nition 3.4. We say a birational model R of C (X ,L) is an intermediate rationalization
of singularities of a cone C (X ,L) if R has rational singularities and fits into a diagram

P(O � L) R C (X ,L)
µ

We recall the criterion for cones to have rational singularities.

Theorem 3.5. [11, Prop. 3.13] Let X be a complex projective variety with rational singularities.
Let L be an ample line bundle on X . The cone C (X ,L) has rational singularities if and only if
H p(X ,Lm) = 0 for all p > 0 and m � 0.

The following generalization classifies intermediate rationalizations of singularities.

Theorem 3.6. Let X be a smooth projective variety with an ample line bundle L. There is a bijective
correspondence⇢

int. rationalizations
of sings. of C (X ,L)

�
 !

⇢
regular and cohom. trivial �brations f : X!Y , such that
Y has rational sings. and Rp f⇤(Lm) = 0 for p,m > 0

�
.
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Remark 3.7. If L is su�ciently positive (e.g. if !�1 ⌦ L is also ample) then the vanishing of
Rp f⇤(Lm) for p,m > 0 is automatic. Thus Theorem 3.6 implies Theorem G. Note that L is
always “su�ciently positive" if �KX is nef.

Remark 3.8. If H p,0(X ) = 0 for all p > 0, then Theorem 3.6 implies Theorem 3.5 (at least
in the case X is smooth).

Proof. By [10, Thm. 7.1] (or see Theorem 1.14 and Corollary 1.15), given a smooth projective
variety X and a regular fibration f : X !Y withY normal, the following are equivalent:

(1) Rp f⇤OX = 0 for p > 0
(2) Y has rational singularities and f is a cohomologically trivial fibration.

Thus the conditions on the right hand side of the theorem can be rephrased as regular
fibrations f : X!Y such that Rp f⇤Lm = 0 for all p > 0 and all m � 0.

Start with an intermediate rationalization of singularities:

P(O � L) R C (X ,L)
µ

h g

Note that the exceptional divisor E of µ is isomorphic to X . Define Y := h(E) to be the
image of E in R. We call the induced map f : X!Y . We want to show that Rp f⇤Lm = 0
for all p > 0 and m � 0. Note that the thickening mE admits a map to X (the projection
mE ⇢ P(O � L) ⇡�! X ) which makes OmE into a graded OX -algebra, and we may write

OmE = OX � L � · · · � Lm�1,

as a graded OX -module. By the theorem on formal functions,

úRph⇤
�
OP(O�L)

�
Y = �m�0R

p f⇤(Lm).

The assumption that R has rational singularities implies the left hand side vanishes. There-
fore Rp f⇤Lm = 0 for all p > 0 and all m � 0.

In the other direction, start with a cohomologically trivial fibration such that Rp f⇤Lm =
0 for all p > 0 and m � 0. We need to construct an intermediate rationalization. Let
⇡ : P(O � L)!X denote the projection onto X . Define R = RX ,L,f to be the normalization of
the image of the map

� = (µ, f � ⇡) : P(O � L)!C (X ,L) ⇥Y.
Let h : P(O�L)!R and g : R!C (X ,L) denote the inducedmaps. Clearly, the sheafRph⇤(OP(O�L))
is supported on a thickening of h(E) ⇢ R. By applying the theorem on formal functions in the
same way as above, we get that R has rational singularities and thus defines an intermediate
rationalization of singularities of C (X ,L). Showing that these constructions are compatible
is straightforward. ⇤
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Example 3.9. We give an example of a cone with infinitely many intermediate rationaliza-
tions. Consider a K3 surface X with infinitely many (-2)-curves. Each curve C is contractible
and the contraction defines a map fC : X ! Y , where Y has a single canonical (and thus
rational) singularity. As KX = 0 is nef, Remark 3.7 implies that any ample line bundle L
on X is “su�ciently positive" in the sense of Theorem G. Thus by Theorem G, there are in-
finitely many (non Q-factorial) intermediate rationalizations of singularities of C (X ,L). And
in fact, there cannot exist a “minimal" one. (It is maybe worth noting that although there
are infinitely many (-2)-curves, by [16, Thm. 0.1(b)] these (-2)-curves have only finitely many
orbits under the automorphism group Aut(X ).)

4. M������ C��� �������� ��� C��� ������� ����������

In this section we show that maximal Chow constant fibrations and maximal Chow trivial
fibrations exist. One of the key points is that Chow constant fibrations are the fibrations
whose fibers are Chow constant subvarieties (see Theorem 2.5). The existence of maximal
Chow constant fibrations is in some sense due to Roı̆tman [14, Lemma 2]. The construction
is quite general and seemingly well known to experts and it is possible there is a more original
reference. We start by recalling Roı̆tman’s construction. Moreover, we give criteria for the
nontriviality of these maximal fibrations.

Let X be a smooth complex projective variety. Let Chow(X ) denote the Chow variety
which parameterizes cycles in X . Let W ⇢ X ⇥ X be an equivalence relation which is a
countable union of closed irreducible subsetsW = [i2NWi (assume no factors are repeated).
Roı̆tman constructs a maximal quotient ⌘ : XdX /W withW -equivalent fibers.

Proposition 4.1 ([14, Lem. 2]). Let X andW be as above.

(1) There is a unique maximal and irreducible componentW0 ⇢W which contains the diagonal
�X ⇢ X ⇥ X .

(2) W0 induces a rational map:

⌘ : XdChow(X ),

to the Chow variety of X , and a general �ber of ⌘ is irreducible. (Thus if we de�neY to be a
resolution of singularities of the closure of the image of ⌘ then

⌘ : XdY

is a �bration.)
(3) The �bration ⌘ is uniquely maximal in the following sense, if � : XdZ is another �bration

then the �bers of � are equivalent under the relationW () ⌘ factors through �.

De�nition 4.2. We call the map ⌘ : XdY in the previous proposition the maximal W-
constant �bration. WhenW ⇢ X ⇥X is the equivalence relation defined by equivalence of
points in CH0(X ) we sayY is themaximal Chow constant �bration. Thus Proposition 4.1
implies Theorem A for Chow constant fibrations.
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Sketch of Proof. Throughout, for a subvarietyW 0 ⇢ X ⇥ X we use

W 0
z :=W

0 \ (z ⇥ X ) ⇢ X
to denote the fiber ofW 0 over z 2 X under the first projection. First, we remark that if z 2 X
is general andW 0 ⇢ X ⇥ X is irreducible and contains the diagonal then every component
ofW 0

z contains the diagonal point (z, z ) 2 �X .
To prove (1), assume that there are two maximal componentsW0,W1 ⇢W which contain

the diagonal. The idea is to use the transitivity ofW . We make the following assertion, which
is a standard application of the Baire category theorem:

(?) Maximality ofW0 along with the uncountability of C guarantees
that a very general point (x1, x2) 2W0 satisfies (x1, x2) <

–
i2Ni,0

Wi .

Let z 2 X be very general and let (z, x) 2W0 be a very general point in (W0)z . By transitivity,
z ⇥ (W1)x ⇢W and contains the very general point (z, x) 2 z ⇥Wz . It follows from (?) that
(W1)x ⇢ (W0)z . Taking the limit as x approaches z shows (W1)z ⇢ (W0)z . (This uses that z is
very general, so the projection ofW1 onto the first factor is flat in a neighborhood of z .) As
z is very general andW0 andW1 are maximal, we haveW0 =W1.

So letW0 ⇢W be the unique, maximal irreducible component which contains �X . Clearly
W0 ⇢ X ⇥ X is a reflexive subset. A similar argument to the previous paragraph implies
that for z general (W0)z is irreducible, and it also shows that if (z, x) 2 (W0)z is general, then
(W0)x = (W0)z ⇢ X . Thus we have shown (2) and define the maximalW -constant fibration
to be the map

⌘ : XdChow(X )
sending x 7! ⌘(x) := [(W0)x ].

By reflexivity, for a general point x 2 X , the closure of the fibers of ⌘ at x is (W0)x .
The universal property (3) follows from the fact that pairs of points in a general fiber of �

gives rise to an irreducible component ofW which contains �X . Unique maximality ofW0

then implies that ⌘ factors through �. ⇤

Theorem 4.3. Let ⌘ : XdY be the maximal Chow constant �bration of a smooth n-dimensional
projective variety X . The following are equivalent.

(1) dim(Y )  d .
(2) CH0(X ) is supported on a variety of dimension d .
(3) CH0(X ) is supported on a smooth irreducible variety of dimension d .
(4) For every point x 2 X there is a dimension n � d subvariety V ⇢ X such that every point

x0 2 V satis�es x = x0 2 CH0(X ).

Proof. For (1) =) (4) let �⌘ ⇢ X ⇥Y be the closure of the graph of ⌘. Let y be a point in
the image of (�⌘)x . Then (�⌘)y ⇢ X consists of points rationally equivalent to x 2 X and
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has dimension at least n � d . For (4) =) (3), take a general complete intersection of ample
divisors on X . (3) =) (2) is clear.

What remains is (2) =) (1). Suppose that CH0(X ) is supported on a union of subvarieties
V ⇢ X such that dim(V ) = d . LetW ⇢ X ⇥ X correspond to equivalence in CH0(X ). Take
the preimage ofWV in V ⇥ X , i.e. define

WV := {(v, x) 2 V ⇥ X | v = x 2 CH0(X )}.

WV is a countable union of subvarieties, and as CH0(X ) is supported on V , we have that
there is a component ofW1 ⇢WV such that the projection

p2 : V ⇥ X!X

maps W1 surjectively onto X . For a point v 2 V , p2((W1)v ) consists of points which are
rationally equivalent. Surjectivity of p2 |W1 implies that through a general point x 2 X there is a
Chow constant subvariety Zx ⇢ X containing x and satisfying dim(Zx ) � n�d . Therefore, the
maximal componentW0 ⇢W containing the diagonal has fiber dimension dim((W0)x ) � n�d .
Thus by construction ofY , dim(Y )  d . ⇤

To obtain the maximal Chow trivial fibration is not much more di�cult. It will be necessary
to construct a relative Chow constant fibration. Let ⇡ : X!Z be a regular fibration of pro-
jective varieties. Assume that X is smooth. Consider the equivalence relationW (⇡) ⇢ X ⇥X
defined by:

W (⇡) := {(x1, x2) 2 X |⇡(x1) = ⇡(x2) = z and x1 = x2 2 CH0(Xz )}.

Then we haveW (⇡) = –
i2N
W (⇡)i is a countable union of closed subsets. LetW (⇡)0 be the

unique maximal component containing �X .

Lemma 4.4. (1) Let Y := (X /W (⇡)) be the maximal W (⇡)-constant �bration. There is a
commutative diagram:

X Y := (X /W (⇡)).

Z
⇡

⌘⇡

(2) If z 2 Z is very general, then (W (⇡)0)z = (W (⇡)z )0, i.e. for very general z 2 Z the map

⌘⇡ |Xz : XzdYz

is equivalent to the maximal Chow constant �bration of Xz .

Proof. (1) holds because the closure of the fibers of ⌘x are contained in fibers of ⇡. (2) follows
from the assertion (?) in the sketch of the proof of Proposition 4.1. ⇤
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To construct the maximal Chow-trivial fibration of X we consider the following sequence:

X = X0 X1 · · · Xn · · ·

Spec(C) Y0 Y1 · · · Yn · · ·
⇡0

⌘0
⇡1

⌘1

 1  2

⇡2
⇡n ⌘n

 n

⇡n+1

 n+1

Each Xi is a resolution of the map ⌘i�1, the map  i is birational, and ⌘i is defined to be the
maximal relative Chow constant fibration of ⇡i . The following proposition implies Theorem F
for Chow trivial fibrations.

Proposition 4.5. For n � 0, we haveYn 'bir Yn+1 'bir · · · . SetY1 :=Yn .

(1) The composition

X Xn+1 Y1'bir

⌘1

⇡n+1

is a Chow-trivial �bration.
(2) If � : XdZ is another Chow-trivial �bration, then ⌘1 factors through �.
(3) We have dim(Y1)  m if and only if through a very general point x 2 X , there is a Chow

trivial subvariety x 2 V of codimension � m.

Proof. (1) follows from Lemma 4.4(2) and the fact that the map from a fiber Xy to a point is a
Chow constant fibration () CH0(Xy ) � Z. (2) and (3) can be checked for ⌘1, · · · , ⌘n . ⇤

De�nition 4.6. Let ⌘1 and Y1 be as in the previous proposition. The maximal Chow
trivial �bration is the rational map

⌘1 : XdY1.

Remark 4.7. It follows from Lemma 1.18 and Corollary 2.8 that the maximal Chow constant
fibration and the maximal Chow trivial are almost holomorphic (see Def. 1.17). As a conse-
quence if x 2 X is very general, any Chow constant (resp. trivial) subvariety is contained in
a smooth Chow constant (resp. trivial) subvariety.

5. M������ C�������������� C������� ��� T������ F���������

The aim of this section is to prove the existence of maximal cohomologically constant
and trivial fibrations. In fact, we show that given any integrable distribution D on a smooth
complex projective variety (e.g. Voisin’s distribution, Def. 1.6) there is a maximal fibration
whose generic fibers are contained in the leaves of the associated foliation. The idea of using
a foliation to prove the existence of maximal fibrations was suggested to us by Claire Voisin.

De�nition 5.1. Let D ⇢ TX be an integrable distribution on a smooth variety X . We say
that a subvariety V ⇢ X is contained in D if at a general point x 2 V ,
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(1) D is locally a vector subbundle of TX at x (i.e. the quotient TX /D is locally free at
x), and

(2) the subspace TV |x ⇢ TX |x is contained in D |x .

Remark 5.2. Assume that V intersects the open set U ⇢ X where D ⇢ TX is a sub-vector
bundle. Consider the composition

TV TX |V (TX |V )/(D |V )
↵

Then V is contained in D () ↵ |V \U ⌘ 0.

Remark 5.3. If U is the open set where D ⇢ TX is a subbundle, then D gives rise to a
foliation on U . Assuming x 2 V \U , then V is contained in D () analytically locally
around x , V is contained in a leaf of the foliation.

De�nition 5.4. Let X be a smooth projective variety. A fibration f : X d Y is aD-constant
�bration if the general fiber is contained in D.

Remark 5.5. By Proposition 1.9 we have that for a smooth projective variety X , a fibration
f : XdY is Chow constant () it is VX -constant () a general fiber is contained in
Voisin’s distribution.

To construct maximal D-constant fibrations, we want to show that there is a maximal
family of D-constant subvarieties. We proceed as follows. Let Hilb(X ) be the Hilbert scheme
of X and consider the locally closed subset

DVar :=
⇢
[V ] 2 Hilb(X )

���� V is a variety, and
V is contained in D

�
⇢ Hilb(X ),

with the reduced scheme structure. Then DVar is a countable union of quasiprojective vari-
eties. Write

DVar =
ÿ
i2N

Si

where each Si is a subvariety and Si ⇢ S j () i = j . Let S i denote the closure of
Si ⇢ Hilb(X ). Write F i for the universal family over S i . F i comes equipped with projections:

F i X .

S i

qi

pi

It is natural to restrict ourselves to the varieties contained in D which sweep out X . Define

I := {i 2 N | qi is dominant} ⇢ N, and DDom := {S i }i2I
Remark 5.6. Let x 2 X be a very general point, and letV ⇢ X be a subvariety contained in
D. If x 2 V then there exists S i 2 DDom such that [V ] 2 S i .
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We make DDom into a partially ordered set by

S i  S j () for [V ] 2 S i general, 9 [W ] 2 S j such that V ⇢W.
For any i, j 2 N we define

S �i := {S k |Sk � Si } ⇢ DDom, and S i _ S j := S �i \ S � j .

Construction 5.7. We show that for any S i,S j 2 DDom, the set S i _S j , ;.We may choose
very general points x 2 X , [V1] 2 S i , and [V2] 2 S j subject to the following conditions:

(i) x is very general in the sense of Remark 5.6,
(ii) for any S k and [V3] 2 S k such that V1,V2 ⇢ V3 we have S k 2 S i _ S j ,
(iii) x 2 V1 and x 2 V2.

Let Q ⇢ q�1j (V1) be an irreducible component such that [V2] 2 p j (Q ) and define:

V1x

V2

X

leaf

F����� 2. The deformations ofV2 considered are lo-
cally contained in a leaf. As they meet V1, which is
also contained in a leaf, they are all contained in the
same leaf.

V3 := q j (p�1j (p j (Q ))).
Then, V3 ⇢ X is a subvariety containing both
V1 and V2. If we can show that V3 is con-
tained in D, then by condition (iv) above we
are done. As x is very general, D is a subbundle
of TX in a neighborhood of x . Therefore, V3 is
(the closure of) a union of D-constant subvari-
eties which are deformations ofV2, all of which
meet V1. As V1 is also D-constant, in an ana-
lytic neighborhood of x every deformation ofV2

must be contained in the leaf which contains x .
Therefore, V3 is analytically locally contained
in the leaf at x , hence by Remark 5.3 we see
that V3 is contained in D.

Remark 5.8. Note that the construction of V3 involves choices and is asymmetric in i and
j . The following properties hold:

(1) if V1 =V3 then p�1j (p j (Q )) = Q , and
(2) if V2 =V3 then p j (Q ) is a single point and the map q j : F j!X is generically finite.

As the dimension of subvarieties of X are bounded from above, there is a unique maximal
family S 0 2 DDom. Thus S 0 _ S 0 = {S 0}.

Theorem 5.9. With the above setup.

(1) The map q0 : F 0!X is birational, and the composition

X F 0 S 0

⌘

q�10 p0
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is a D-constant �bration.
(2) If V ⇢ X is a D-constant subvariety which contains a very general point x 2 X , then V is

contracted by ⌘.
(3) If � : XdY is any D-constant �bration, then ⌘ factors through �.

Proof. It follows from Remark 5.8 that q0 is birational. By construction, the map ⌘ is a D-
constant fibration, which proves (1). To prove (2), by Remark 5.6 there exists an S i 2 DDom
such that [V ] 2 S i . But S 0 is uniquely maximal, so V must be contained in a fiber of ⌘ .
Finally, to prove (3), let Vy = ��1(y) be the closure of a very general fiber of �. By (2), this
must be contracted by ⌘. As a consequence, the closure of the image of XdY ⇥ S 0 is the
graph of the appropriate rational mapYdS 0. ⇤

De�nition 5.10. After resolving the singularities of S 0, we call the map ⌘ the maximal D-
constant �bration. WhenD = VX , ⌘ is themaximal cohomologically constant �bration.

This proves Theorem A for cohomologically constant fibrations. Furthermore, we have

Corollary 5.11. Given a regular �bration ⇡ : X!Z of smooth projective varieties, there is a maxi-
mal relative cohomologically constant �bration

X Y

Z

⌘⇡

⇡

Proof. Apply the construction of the maximal D-constant fibration when D = V⇡, the relative
Voisin distribution (Remark 1.8). Then, if necessary, resolve the map Y!Z . This defines a
maximal relative cohomologically constant fibration ⌘⇡ : XdY over Z , as desired. ⇤

Lemma 5.12. Given a regular �bration ⇡ : X!Z of smooth projective varieties, for a very general
point z 2 Z , the maximal relative cohomologically constant �bration ⌘⇡ induces the maximal coho-
mologically constant �bration on the �bers over z (i.e., for general z 2 Z , the map ⌘⇡ |Xz : XzdYz is
the maximal cohomologically constant �bration of Xz ).

Proof. As stated in Remark 1.8, for a general point x 2 Xz , the distribution V⇡ is equal to VXz .
The statement follows. ⇤

To obtain the maximal cohomologically trivial fibration of a smooth variety X , we proceed
as in the end of §4. Consider the sequence

X = X0 X1 · · · Xn · · ·

Spec(C) Y0 Y1 · · · Yn · · ·
⇡0

⌘0
⇡1

⌘1

 1  2

⇡2
⇡n ⌘n

 n

⇡n+1

 n+1

where the birational map  i : Xi!Xi�1 is a resolution of the map ⌘i�1 and ⌘i is defined to be
the maximal relative cohomologically constant fibration of ⇡i .
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For n � 0, Yn 'bir Yn+1 'bir . . . (as the fiber dimension is bounded). For n su�ciently
large define Y1 :=Yn . Define ⌘1 : XdY1 to be the composition ⌘1 : X 'bir Xn+1!Yn =Y1.
This is the maximal cohomologically trivial fibration of X .

Proposition 5.13. (1) The rational map ⌘1 : XdY1 is a cohomologically trivial �bration.
(2) If � : XdZ is another cohomologically trivial �bration, then ⌘1 factors through �.

Proof. To show (1), as Yn 'bir Yn+1 'bir · · · it follows by Lemma 5.12 that for a very general
fiber Xy of ⌘n , the map from Xy to a point is a cohomologically constant fibration. Thus Xy
is cohomologically trivial. (2) can be checked for each map ⌘i using Theorem 5.9(2). ⇤

This proves Theorem F for cohomologically trivial fibrations.

De�nition 5.14. For a smooth projective variety X , the rational map ⌘1 : XdY1 defined
above is the maximal cohomologically trivial �bration.

Remark 5.15. As in Remark 4.7, it follows from Lemma 1.18 and Corollary 1.16 that the
maximal cohomologically constant fibration and the maximal cohomologically trivial fibra-
tion are almost holomorphic.

A������� A.

Throughout this appendix, by a curve we mean a reduced, 1-dimensional scheme of finite
type over an arbitrary field k . The point of this appendix is to prove that if X is a projective
variety over an arbitrary field k and CH0(X ) (resp. CH0(X )⌦Q) is supported on a curve, then
CH0(X ) (resp. CH0(X ) ⌦ Q) is finite dimensional in the sense of Mumford (see Def. 2.16).
The main technical problems arise in considering reducible and singular curves. If

C = C1 tC2

is a disjoint union of two projective curves then CH0(C ) is not finite dimensional, as

CH0(C )0 =
ÿ
k2Z

(CH0(C1)k ⇥ CH0(C2)�k )

contains divisors with unbounded degree on C1. This issue can be overcome in two parts.

(1) If C is a connected curve, then CH0(C ) (resp. CH0(C ) ⌦ Q) is finite dimensional.
(2) If CH0(X ) is supported on a curve, then it is also supported on a connected curve.

Proposition A.1. IfC = C1[· · ·[Cm is a projective connected curve, thenCH0(C ) (resp. CH0(C )⌦
Q) is �nite dimensional.

Proof. First note that the map of sets:

CH0(C ) ⇥Q!CH0(C ) ⌦ Q

is surjective. Thus, if CH0(C ) is finite dimensional, then so is CH0(C ) ⌦ Q.
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Let

⌫ : D!C
be the normalization of C , i.e. D = D1 t · · · t Dm where Di is the normalization of Ci . Let
U ⇢ C be the regular locus. ThenU is nonempty in each component Ci , and the map D!C
is an isomorphism over U . Let a (resp. b) be the number of closed points in D \U (resp.
C \U ). Consider the localization sequences:

Za CH0(D) CH0(U ) 0

Zb CH0(C ) CH0(U ) 0.

� ⌫⇤ �

The rows of the above diagram are exact. Moreover, the image of � is full rank in Zb (every
singularity point in C has a nonempty preimage in D). As a consequence, the cokernel
CH0(C )/Im(⌫⇤) is finite, thus the cokernel doesn’t a�ect the finite dimensionality of CH0(C ).
So, to prove CH0(C ) is finite dimensional is su�ces to show there exists an integer d > 0

such that the di�erence map:

Symd (D)(k ) ⇥ Symd (D)(k )!CH0(C )

contains Im(⌫⇤) \ CH0(C )0. Consider the following commutative diagram of degrees:

0 ker(⌫⇤) CH0(D) CH0(C )

0 Zm�1 Zm Z 0

⌫⇤

deg degÕ

where deg = (deg1, · · · ,degm) and degi is the degree map on Di . It is easy to see that the
image of deg has full rank, and it follows that the image of ker(⌫⇤) in Zm�1 has full rank. Let

�N := {� 2 CH0(D)0 | |degi (� )|  N 8i } ⇢ CH0(D)0,

i.e. �N is the subset of total degree 0 cycles such that each |degi | is bounded by N . As ker(⌫⇤)
has full rank in Zm�1, it follows that there exists N � 0 such that any

Im(⌫⇤) \ CH0(C )0 ⇢ ⌫⇤(�N ) ⇢ CH0(C ).

The proposition now follows from the following lemma. ⇤

Let D = D1 t · · · tDm and �N be as in the proof of the proposition.

Lemma A.2. There exists d > 0 such that the image of the di�erence map

Symd (D)(k ) ⇥ Symd (D)(k )!CH0(D)0

contains �N .
26



Proof. Let � 2 �N be a degree 0 divisor such that |degi (� )|  N for each i . The point
is to show that any such � is the di�erence of e�ective divisors of bounded degree. Let
A 2 CH0(D) be an ample divisor. By applying Riemann-Roch for each component Di , there
exists an ℓ � 0 such that OD (ℓA + � ) is e�ective for any � 2 �N . As a consequence, we can
take d = ℓ · deg(A) in the statement. ⇤

Lastly we need the following easy lemma.

Lemma A.3. Let X be any projective variety over k . Any curve C ⇢ X is contained in a connected
curve C 0 ⇢ X .

Proof. Any two closed points in X can be connected via a connected curve (take a complete
intersection of su�ciently ample divisors through both points). The lemma follows. ⇤

Thus we have shown:

Corollary A.4. If X is a variety over an arbitrary �eld k and CH0(X ) (resp. CH0(X ) ⌦ Q) is
supported on a curve C ⇢ X , then CH0(X ) (resp. CH0(X ) ⌦ Q) is �nite dimensional.
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