Ion mobility

Qualitatively: Large ions in viscous liquids can be expected to be drifting slowly and have low conductivities

electric field strength Quantitatively: drift velocity $s = \mu E$

Two forces are acting on the ion: $F_{field} = zeE$ elementary charge

Stokes' law $F_{retardation} = 6\pi\eta rs$ drift velocity ion radius umber of ion charges viscosity

When the ion has reached its drift velocity, both forces are equal!

$$\Rightarrow ezE = 6\pi\eta rs \Rightarrow s = \frac{ezE}{6\pi\eta r}$$

$$u = \frac{s}{E} = \frac{ez}{6\pi\eta r} \quad [m^2 s^{-1} V^{-1}]$$

$$u = \frac{s}{E} = \frac{ez}{6\pi\eta r} \quad [m^2 s^{-1} V^{-1}]$$

ionic conductivities:

$$\lambda_{+} = z_{+}Fu_{+}$$
 $\lambda_{-} = z_{-}Fu_{-}$ Faraday constant

Measured ion mobilities

$$u = \frac{ez}{6\pi\eta r}$$

\Rightarrow u is high for an ion that is:

- highly charged
- in a solution of low viscosity
- of small radius r

BUT: r = hydrodynamic radius (including water ligands)

Table 9.2 Ionic mobilities in water at 29 $u/(10^{-8} \text{ m}^2 \text{ s}^{-1} \text{ V}^{-1})$			
Cations		Anions	
H	36.23	OH-	20.

H	36.23	OH-	20.64
Li	4.01	F-	5.74
Na	5.19	CI	7.92
K ⁺	7.62	Br	8.09
Rb⁺	8.06	1-	7.96
Cs⁺	8.00	CO ₃ ²⁻	7.18
Mg ²⁻	5.50	NO ₃	7.41
Ca ²⁻	6.17	SO ₄ ²⁻	8.29
Sr ²⁻	6.16		
NH ₄ ⁺	7.62		
[N(CH ₃) ₄]	4.65		

Special case H+: Grotthus conduction mechanism

3.38

[N(C2H5)4]

Electrochemical cells

If two different electrolytes are used:

Electrode compartments

Galvanic cell: electrochemical cell in which electricity is produced as a result of a spontaneous reaction (e.g., fuel cells, electric fish!)

Electrolytic cell: electrochemical cell in which a non-spontaneous reaction is driven by an external source of current

Nils Walter: Chem 260

Reactions at electrodes: Half-reactions

Redox reactions: Reactions in which electrons are transferred from one species to another

E.g.,
$$CuS(s) + O_2(g) \rightarrow Cu(s) + SO_2(g)$$
 reduced oxidized

Any redox reactions can be expressed as the difference between two reduction half-reactions in which e⁻ are taken up

Reduction of Cu^{2+} : $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Reduction of Zn^{2+} : $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$

Difference: $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$

More complex: MnO_4 -(aq) + $8H^+$ + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O(l)$

Half-reactions are only a formal way of writing a redox reaction

Carrying the concept further

Reduction of Cu^{2+} : $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

In general: redox couple Ox/Red, half-reaction Ox + $ve^- \rightarrow Red$

Any reaction can be expressed in redox half-reactions:

$$2 H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g, p_{f})$$

$$2 H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g, p_{i})$$

Expansion of gas: $H_2(g, p_i) \rightarrow H_2(g, p_f)$

$$AgCl(s)+e^-\to Ag(s)+Cl^-(aq)$$

$$Ag^+(aq)+e^-\to Ag(s)$$
 Dissolution of a sparingly soluble salt:
$$AgCl(s)\to Ag^+(aq)+Cl^-(aq)$$

Reaction quotients:
$$Q = a_{Cl^-} \approx [Cl^-]$$
 $Q = \frac{1}{a_{Ag^+}} \approx \frac{1}{[Ag^+]}$