WINDOWS, CORES AND SKINNING MAPS

JEFFREY F. BROCK, KENNETH W. BROMBERG, RICHARD D. CANARY,
AND YAIR N. MINSKY

ABSTRACT. We give a generalization of Thurston’s Bounded Image Theorem
for skinning maps, which applies to pared 3-manifolds with incompressible bound-
ary that are not necessarily acylindrical. Along the way we study properties of
divergent sequences in the deformation space of such a manifold, establishing
the existence of compact cores satisfying a certain notion of uniform geometry.

1. Introduction

Critical to Thurston’s Geometrization Theorem for Haken 3-manifolds was a
fixed-point problem, phrased for a self-mapping of the deformation space of a hy-
perbolic 3-manifold with boundary. This skinning map implicitly describes how
to enhance a topological gluing of a 3-manifold along its boundary with geometric
information; a fixed point for the skinning map realizes a geometric solution to the
gluing problem, resulting in a hyperbolic structure on the gluing.

Beyond its utility in geometrization, the map itself reveals more quantitatively
the relationship between topological and geometric features of a hyperbolic 3-
manifold. Indeed, Thurston’s Bounded Image Theorem (see Thurston [47], Mor-
gan [41], Kent [30]) which provides the desired fixed-point, guarantees that for
an acylindrical 3-manifold, the image of the skinning map is a bounded subset of
Teichmiiller space. In this paper, we investigate the skinning map in the more gen-
eral case when the 3-manifold is only assumed to have incompressible boundary.
Here, the image of the skinning map need not be bounded, but the restriction onto
any essential subsurface of the boundary that is homotopic off of the characteristic
submanifold is bounded. One may think of this as a strong form of Thurston’s Rel-
ative Compactness Theorem. Along the way, we refine our understanding of the
interior geometry of a hyperbolic 3-manifold, establishing existence of a uniformly
controlled family of compact cores for each deformation space of such manifolds.

Let M be a compact oriented hyperbolizable 3-manifold whose boundary is in-
compressible and contains no tori and let CCy(M) denote the set of convex co-
compact hyperbolic structures on the interior of M. A convex cocompact hy-
perbolic structure N, on the interior of M gives rise to a holonomy representa-
tion p : m; (M) — PSL(2,C) and induces a well-defined conformal structure on its
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boundary dM. Bers [8] shows that one obtains an identification of CCy(M) with
T (dM), the Teichmiiller space of conformal structures on dM. The skinning map

oy : CCo(M) — T (IM)

records the asymptotic geometry of the “inward-pointing” end of the cover asso-
ciated to each boundary component. If M has connected boundary S and N, is in
CCy(M), then the cover Ny of N, associated to 7 (S) is quasifuchsian, i.e. a point
in CCy(S x [0,1]), so may be identified to a point (X,Y) € F(S) x F(S). Then,
ou(p) =Y and X is the point in .7 (S) associated to p by the Bers parametriza-
tion. (The skinning map will be defined more carefully, and in greater generality,
in Section 2.1.)

A compact, oriented, hyperbolizable 3-manifold M is said to be acylindrical if
it contains no essential annuli, or, equivalently, if ;(M) does not admit a non-
trivial splitting over a cyclic subgroup. In this setting, Thurston’s Bounded Image
Theorem has the following form.

Thurston’s Bounded Image Theorem: If M is a compact, oriented, acylindrical,
hyperbolizable 3-manifold with no torus boundary components, then the skinning
map Oy : CCy(M) — T (IM) has bounded image.

The skinning map has been studied extensively when M is acylindrical. This
study has focussed on obtaining bounds on the diameter of the skinning map in
terms of the topology of M and the geometry of its unique hyperbolic metric with
totally geodesic boundary, see Kent [30] and Kent-Minsky [31]. In the case that M
is not required to be acylindrical, it is known that the skinning map is non-constant
(Dumas-Kent [24]) and finite-to-one (Dumas [23]), while Gaster [26] demonstrated
that it need not be injective.

In order to state our generalization of Thurston’s Bounded Image Theorem to the
setting where M is only assumed to have incompressible boundary, we recall that
the characteristic submanifold ¥(M) is a minimal collection of solid and thickened
tori and interval bundles in M whose frontier is a collection of essential annuli such
that every (embedded) essential annulus in M is isotopic into X(M) (see Johannson
[28] or Jaco-Shalen [27]). Thurston [49] defines the window of M to be the union
of the interval bundles in X(M), together with a regular neighborhood of each com-
ponent of the frontier of (M) which is not homotopic into an interval bundle. Let
JnwM denote the intersection of dM with the complement of the window. Compo-
nents of d,,,M are either components of the intersection of dM with the (relatively)
acylindrical pieces of the decomposition, or annuli in the boundaries of the solid
or thickened tori pieces.

Our main theorem asserts that any curve in d,,M, equivalently any curve in
dM which may be homotoped off the characteristic submanifold, has uniformly
bounded length in the hyperbolic structures which arise in the skinning image.

Theorem 1.1. Let M be a compact, oriented, hyperbolizable 3-manifold whose
boundary is incompressible. For each curve . in dp,,M, its length ly (¢) is bounded
as Y varies over the image of Cy.
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If W is an essential subsurface of dM, then o), induces a map
oy 1 CCo(M) — F (W)

where .7 (W) is the Fricke space of all hyperbolic structures on the interior of W.
Notice that these hyperbolic structures are allowed to have either finite or infinite
area. Our main theorem immediately translates to the fact that GX,[V has bounded
image:

Corollary 1.2. Let M be a compact, oriented, hyperbolizable 3-manifold whose
boundary is incompressible. If W is a component of 0,,,M, then the image of GAV,}/
is bounded in F (W).

Note that these statements allow dM to have torus components, and moreover
the theorem applies more generally, when we consider the space AHy(M) of all
hyperbolic structures on the interior of M. Given an element of AHy(M ) with holo-
nomy representation p : 7; (M) — PSL(2,C) and quotient manifold N,, we obtain
an end invariant oy/(p) on the non-toroidal part of the boundary, which records
the asymptotic geometry of the inward-pointing end of the covers of N, associated
to those boundary components of M. This ending invariant consists of a multic-
urve, known as the parabolic locus, and either a finite area hyperbolic structure or
a minimal filling geodesic lamination on each component of the complement. If a
curve & on dM is homotopic into a component of the complement of the parabolic
locus which has a hyperbolic structure, then /5, () (@) denotes the length of the
geodesic representative of ¢ in this hyperbolic structure; if & is homotopic into the
parabolic locus then £, () (o) = 0; and otherwise £, (p) () = +oo.

With these definitions, Theorem 1.1 continues to hold. In addition, GX,‘,’ can still
be defined on AHy(M) when W is a component of d,,,M, and Corollary 1.2 holds
as well. Notice that Corollary 1.2 contains Thurston’s original Bounded Image
Theorem as a special case. Both results also have natural generalizations to the
pared setting, which we will state and prove in Section 5.

Along the way to proving Theorem 1.1, we will develop some tools and struc-
tural results on the geometry of hyperbolic 3-manifolds that may be of independent
interest. One is a new tool for studying the geometry of surface groups, and the
other is a uniformity statement for compact cores of manifolds in a deformation
space AHy(M).

Length bounds in Kleinian surface groups. If S is a compact surface, we let
AH(S) = AHy(S x [0,1],dS x [0,1]) denote the space of Kleinian surface groups.
In [40, 15], Brock, Canary, and Minsky give an explicit connection between the
geometry at infinity of N, when [p] € AH(S), and its internal geometry, by means
of a “model manifold” combinatorially built up from the ending data v(p). In
Section 3 we use the structure of this model, together with some refinements proved
in [14], to “reverse engineer’”” a usable criterion for bounding the length at infinity
of a curve in S, based on the situation in the interior.

Specifically, let & be a simple curve in S, and O a representative of « in the the
3-manifold N,, which is contained in a “level surface” in a product structure on
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N,. Let €(a,L) denote the set of curves on S which intersect o essentially and
whose geodesic representatives in Ny have length at most L and do not “lie above™
o (in a sense to be made precise in Section 2.4). We will show that, given a length
bound on @ and constraints on ¢’ (@,L), we can obtain bounds on the length of «
in the “bottom” conformal structure v=(p).

The idea here is that, in order for & to be considerably longer in v~ (p) than &
is, there must be some kind of geometric complexity between o and the bottom
end of N,, and this is what ¢ (a,L) captures. We give a loose statement of the
theorem here, in the closed case; see section 3 for a more carefully quantified
general version.

Theorem 3.1. Let S be a closed surface and o an essential simple closed curve in
S. Let 0 be a representative of o in Ny for [p] € AH(S) which is contained in a
level surface that avoids the thin part of Ny. Given a length bound on @, an upper
bound on the number of elements of € (Q., L) (for suitable L) and a lower bound on
the length of all elements of € (Q, L), we obtain an upper bound on ly-(py ().

Uniform Core Models. If M is acylindrical, then it follows from Thurston’s Com-
pactness Theorem [48] and work of Anderson-Canary [4] that there is a fixed met-
ric on M such that for each [p] € AHy(M) there is a uniformly bilipschitz embed-
ding of M into N, in the homotopy class of p. The image of this embedding is a
compact core with uniformly bounded geometry. In our setting this is no longer
possible, since a sequence of hyperbolic manifolds in AHy(M) may “pull apart”
along Margulis tubes. Moreover, one must take into account the action of the outer
automorphism group, which will be infinite if M is not acylindrical.

In Section 4 we define a notion of a model core for an element [p] € AHy(M).
Roughly, a model core is a metric m on the complement M., of a collection of
solid and thickened tori in M. We say that a model core controls N, if there is an
embedding of M into N, which is 2-bilipschitz with respect to m on M, takes
the components of M . M, into the thin part of Ny, and lies in the homotopy
class of p o ¢, where ¢ : M — M is a homeomorphism which is the identity on the
complement of the characteristic submanifold. The image of the embedding is a
compact core for N, with uniformly bounded geometry on M, (and, in particular,
on the complement of the characteristic submanifold).

Theorem 4.1. If M is a hyperbolizable 3-manifold with incompressible boundary
then there is a finite collection of model cores so that each element of AHy(M) is
controlled by one of them.

The proof of Theorem 4.1 utilizes a version of Thurston’s Relative Compactness
Theorem [49] from Canary-Minsky-Taylor [22] and the analysis of the relation-
ship between algebraic and geometric limits of sequences of isomorphic Kleinian
groups carried out by Anderson, Canary, and McCullough [4, 6].

Summary of Proof of Theorem 1.1: It is instructive to first think about our argu-
ment in the case where M is acylindrical, which is the setting of Thurston’s original
Bounded Image Theorem. We will also simplify the discussion by assuming that
dM =S is connected. Let o be a fixed closed curve in S.
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Theorem 4.1 gives us, in this case, a finite collection {Cy,...,C,} of compact
Riemannian manifolds with boundary so that any [p] € AHy(M) has a compact
core which is 2-bilipschitz to some C;. (In the acylindrical case this can be directly
obtained from Thurston’s Compactness Theorem [48] and the work of Anderson-
Canary [4] on cores and limits). For such a compact core C, its boundary F lifts
to a level surface F for the cover N associated to p(7;(S)), which contains a
representative o of o whose length is uniformly bounded. Let C be the compo-
nent of the pre-image of C in Ng which contains F in its boundary. Since M is

acylindrical, each component of Ng C which lies below @ is simply connected.
Therefore, every bounded length closed geodesic which is not above & must in-
tersect C. Moreover, again since M is acylindrical, distinct closed geodesics in Ng
project to distinct geodesics in Np. Since C has uniformly bounded geometry we
obtain an upper bound on the number of such geodesics and a lower bound on their
length. Theorem 3.1 then implies that £, ,s)(c), which is exactly a’s length in
the skinning structure, is uniformly bounded.

In order to generalize this proof to the setting where M is only assumed to have
incompressible boundary, we need the more general statement of Theorem 4.1
about model cores. This theorem gives us, for [p] € AHy(M), a compact core C
in N, whose geometry is uniformly controlled on the “non-window” part (as well
as on parts of the window). Picking a component F' of dC and a curve o on the
non-window part of F, we can again lift to the corresponding cover Ng . Now we

learn that a bounded length geodesic lying below F will either intersect C or lie in
a complementary region of C which retracts to the window part. In the latter case
this geodesic cannot represent a curve that intersects o essentially, and hence does
not count as a member of ¢’ (&,L). An application of Theorem 3.1, with a bit of
additional care, again gives us the desired bound.

Relationship to proofs of Thurston’s Bounded Image Theorem: Our proof is
new even in the acylindrical setting. The only known proof of Thurston’s original
Bounded Image Theorem, due to Kent [30], uses the work of Anderson-Canary
[4] to extend the skinning map continuously to all of AHy(M) and then applies
Thurston’s Compactness Theorem, which gives that AHy(M) is compact, to con-
clude that the image is bounded. In our more general setting, the skinning map
does not extend continuously to AHy(M), in any reasonable sense, and AHy(M)
fails to be compact, so it was necessary to develop a new approach to the proof.

Potential applications: The model manifolds constructed in [40, 15] are bilips-
chitz equivalent to N, for any [p] € AH(M), but the bilipschitz constant is not in
general uniform over all of AH(M). For the case of surface groups, we do have
uniformity once the genus is fixed, but a uniform model construction that would
apply in general would be helpful for a better global understanding of AH (M).
When M is acylindrical, Thurston’s Bounded Image Theorem suggests a nat-
ural candidate for this uniform model: In this case, there is a unique hyperbolic
3-manifold Cy, with totally geodesic boundary homeomorphic to M. LetY € .7 (dM)
denote the conformal structure of this boundary. A model for the hyperbolic
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3-manifold in CCy(M) with conformal structure X € .7 (dM) can then be assem-
bled from Cj; and the quasifuchsian hyperbolic 3-manifold with conformal struc-
ture (X,Y). One expects Thurston’s Bounded Image Theorem and the Bilipschitz
Model Manifold Theorem from [15] to be the main tools for showing that this
model is uniform over CCy(M).

Our relative bounded image theorem should play a similar role in constructing
uniform models for hyperbolic 3-manifolds with finitely generated, freely inde-
composable fundamental group. The complement of the characteristic submani-
fold admits a cusped hyperbolic metric with totally geodesic boundary, and this
should play the role of the manifold Cy,.

The relative bounded image theorem may also be useful in establishing a par-
ticularly mysterious step in Thurston’s original proof of his Geometrization The-
orem (see Morgan [41, Section 10]). If 7: M — M is an orientation-reversing
homeomorphism so that the 3-manifold M, is atoroidal, then 7T induces a map
71 T(OM) — T (IM). (Here we allow M to have two components and make
the natural adjustments to the notation.) Thurston claimed the following result,
which, along with Maskit’s combination theorems [34], completed the final step of
the proof of his Geometrization Theorem.

Theorem: (Thurston) If M; is atoroidal, then there exists n € N so that (Tt ooy )"
has bounded image.

As far as we know, no one currently knows a proof of Thurston’s result. All
written versions of Thurston’s proof of hyperbolization only produce a fixed point
of 7; 0 o) (which suffices to hyperbolize M:), see for example Kapovich [29],
McMullen [38], Morgan [41] and Otal [44].

Brock, Bromberg, Canary and Lecuire [12] used a special case of our uniform
core theorem to completely characterize, in terms of the asymptotic behavior of
end invariants, which sequences in AH(S) have convergent sequences. We hope
that the version of our uniform core theorem given in section 4.4 will be useful
in generalizing these results to the setting of AH (M), where M is allowed to have
incompressible boundary.

2. Background

In this section we recall some standard ideas and notation, with a few new no-
tions particular to this paper. Section 2.1 is a brief review of deformation spaces,
end invariants and the definition of skinning maps. Section 2.2 reviews pared man-
ifolds and the Jaco-Shalen-Johannson theory of characteristic submanifolds, and
introduces the notion of robust systems of annuli which give useful ways to cut up
3-manifolds that correspond to the way in which sequences of hyperbolic structures
diverge along cusps. Section 2.3 discusses algebraic and geometric convergence for
representations, and introduces language for describing divergent sequences that
converge on subgroups. Section 2.4 recalls the notion of markings and hierarchies
for curve complexes of surfaces, which are the combinatorial ingredients for the
model manifold construction of [40] and are needed here in the proof of Theorem
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3.1. Section 2.5 shows how to use Thurston’s Relative Compactness Theorem to
extract convergent behavior from a diverging sequence of elements of AHy(M, P).
Corollary 2.9 is the main result we will need, adapting ideas from Canary-Minsky-
Taylor [22] to provide a robust system of annuli for such a sequence so that a
subsequence converges in a suitable sense on its complementary pieces.

2.1. Deformation spaces and skinning maps

We begin with a quick review of the terminology for deformation spaces of
hyperbolic 3-manifolds.

Hyperbolic 3-manifolds. A hyperbolic 3-manifold is the quotient N = H?/T" of
hyperbolic 3-space by a group I' of isometries acting freely and properly discon-
tinuously. We will always assume that N is orientable, so

I C Isom, (H*) = PSL(2,C).

The convex core C(N) of N is the smallest convex submanifold of N.

There exists a constant 3 > 0, called the Margulis constant, such that if € < u3

and

N(O,e) = {X eEN | ian(x) < 8}

is the set of points in N with injectivity radius less than &, then every component
of No,e) is a Margulis region, i.e. either a Margulis tube, (a metric neighborhood
of a closed geodesic) or a cusp region (a quotient of a horoball by a parabolic
subgroup). If yis a nontrivial element of 7 (N), we denote by T¢(y) the component
of N(g.¢)» possibly empty, associated to the maximal abelian subgroup containing ¥,
and similarly define T¢(a) (or T¢(A)) if @ is a curve in N (or A is an incompressible
annulus in N). We fix an explicit value & € (0, u3) which we use as a default
value for Margulis regions. (For convenience, we choose the value g used in the
Bilipschitz Model Theorem from [15]). In particular, we will use the shorthand
T(a) =Tg(a).

Let N° be obtained from N by removing all cusp regions in N,g,)- If N has
finitely generated fundamental group, then N° contains a relative compact core
(M,P) C (N°,dN?), where M is a codimension zero submanifold such that the in-
clusion into N is a homotopy equivalence, each component X of dN” contains
exactly one component Q of P, and the inclusion of Q into X is a homotopy
equivalence (see Kulkarni-Shalen [32] or McCullough [37]). More generally, if
€ € (0, u3), we define N to be the complement of the non-compact components of
N(o,¢) and note that one may similarly define relative compact cores for N*.

Pared manifolds. A pared manifold is a pair (M,P) where M is a compact ori-
ented irreducible 3-manifold and P is a closed subsurface of dM whose compo-
nents are incompressible annuli and tori, such that
(1) every abelian, non-cyclic subgroup of (M) is conjugate into a subgroup
of m;(Q) where Q is a component of P, and
(2) any 7j-injective map f : (S' x [0,1],8! x {0,1}) — (M, P) of an annulus
into M is homotopic, as a map of pairs, to a map with image in P.
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Thurston’s Geometrization Theorem, see Morgan [41, Theorem B’], implies
that (M, P) is pared if and only if it is the relative compact core of a hyperbolic
3-manifold with finitely generated fundamental group.

The closure dM — P of the complement of P in M is called the pared boundary
and denoted dy(M,P). We say that (M, P) has pared incompressible boundary if
each component of dy(M, P) is incompressible.

Bonahon’s Tameness Theorem [10] implies that if N has finitely generated
fundamental group and its relative compact core (M, P) has pared incompressible
boundary, then N° —int(M) is homeomorphic to do(M, P) x [0,0). It follows that
the relative compact core is well-defined up to isotopy in this case.

Spaces of representations. If G is a group let D(G) denote the subset of Hom(G,PSL,(C))
consisting of discrete, faithful representations. For a 3-manifold M, let D(M) =
D(m(M)), and for a pared manifold (M, P), let D(M, P) denote the subset of D(M)
consisting of representations such that 7; (Q) maps to a parabolic subgroup for each
component Q of P. Let AH(M, P) be the set of conjugacy classes in D(M, P). If P

is empty or consists only of tori, then we use AH (M) as shorthand for AH (M, P).

We give Hom(G,PSL;(C)) the compact-open topology, D(M) and D(M, P) inherit

the subspace topology and we give AH (M, P) the quotient topology.

If p € D(M,P), let N, = H? /p(m(M)) be the quotient manifold, and let (M,, P,)
be a relative compact core for NS. Note that the conjugacy class [p] € AH(M) de-
termines a homotopy class of homotopy equivalences &, : M — M), and associated
maps of pairs hp : (M,P) — (M, Fp). Let AHy(M, P) comprise those elements of
AH (M, P) for which the homotopy class of /1, contains a an orientation-preserving
pared homeomorphism.

Let GF(M,P) C AH(M,P) denote the geometrically finite representations (i.e.
those for which the intersection of the convex core C(N,) with Ng is compact)
whose only parabolic subgroups correspond to components of P. (In this case,
(C(Np),C(Np) N 8N8) is a relative compact core unless p is Fuchsian, in which
case C(N, ) is two-dimensional.) Let GFy(M,P) C GF(M,P) denote the geomet-
rically finite elements which also lie in AHy (M, P). If P is empty, then GFy(M, P)
agrees with the deformation space CC(M) introduced in the introduction.

End invariants. If (M, P) has pared incompressible boundary, the Bers parame-
terization (see Bers [7, 8] or [20, Chapter 7]) gives rise to a homeomorphism

B:GFy(M,P) — 7 (3y(M,P)).

Here .7 (S), for a compact surface S, denotes the Teichmiiller space of marked,
finite area hyperbolic structures on the interior of S. A special case of this is the
product case M = S x [0,1] for a compact surface S, and P = dS x [0,1]. In this
case GFy(Sx [0,1],05 x [0,1]) = 7 (S) x 7 (S) denotes the space of quasifuchsian
representations of S, where S is S with the opposite orientation. We use the notation
QF (S) for GFy(S x [0,1],08 x [0, 1]), D(S) for D(S x [0,1],dS x [0,1]), and AH(S)
for AH(S x [0,1],dS x [0,1]). Bonahon’s Tameness Theorem implies that

AH(S) = AHo(S x [0,1],95 x [0,1]).
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Thurston’s end invariants generalize Bers’ parameters. An end invariant for a
point [p] in AHy(M, P) is the following data: A multicurve p in dy(M, P), called
the parabolic locus, and for each component X of dy(M, P) \ p that is not a 3-holed
sphere, either a point of .7 (X), in which case X is called a geometrically finite
component, or a minimal filling geodesic lamination on X, in which case X is
called a geometrically infinite component. The parabolic locus p is a collection
of core curves of components of h;l (Pp). Each geometrically finite component
corresponds to a component of the conformal boundary at infinity which bounds
a component of the complement of the relative compact core of (Np)o, and each
geometrically infinite component corresponds to a component which is “simply
degenerate” in the sense of Thurston, in which case the lamination is the ending
lamination of that component. See [40, 15] for a detailed discussion.

We write the end invariant of p € AHy(M,P) as v(p). If S is a component of
do(M, P) and « is a curve on S, then we define £,,(,)(y) € [0, +o] to be 0 if y is ho-
motopic into the parabolic locus, to be the length of ¥ in the associated hyperbolic
metric if 7y is contained in a geometrically finite component of the parabolic locus,
and to be +oo otherwise.

In the quasifuchsian space QF (S) we write v(p) as a pair (v (p),v—(p)) asso-
ciated to the two copies of the surface. The ordering of this pair is determined by
keeping track of the orientation of S and of the quotient 3-manifold. In particular
given an orientation-preserving embedding S x [0, 1] as a relative compact core and
identifying N, \ T(dS) with § xR, v corresponds to the component S x (1,00),
and v~ corresponds to S x (—eo,0), which we call the top and bottom ends, respec-
tively.

Let &(S) denote the set of all possible end invariants on a surface S. The Ending
Lamination Theorem [15] tells us that the map

Viu,p) i AHy(M,P) — &(do(M, P))
is an injection. In the special case of a compact surface S we obtain
vs: AH(S) — &(S) x &(S)

which has the form (v, Vg ). We note that, while the Bers parameterization is a
holomorphic isomorphism, there is no natural topology on & (dy(M, P)) for which
Vv is even continuous (see Brock [11]).

Skinning maps. If (M, P) has pared incompressible boundary, then for each com-
ponent S of dy(M, P), we have a restriction map D(M,P) — D(S) which induces a
map

ronp)  AHo(M,P) — AH(S).

Thurston proved that every cover of a geometrically finite Kleinian group of infi-
nite volume which has finitely generated fundamental group is itself geometrically
finite (see Morgan [41, Prop. 7.1]). If P is empty, or if no non-peripheral curve in
S is homotopic into P, then r(SM P)(GFO (M,P)) C QF(S). In these cases, using the
Bers parametrization, we obtain a map

P T ((M.P) = T(S) x T (5)
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and, putting this together over all components we get

Foup) = 7 (00(M,P)) — T (d(M,P)) x T (d(M,P))
which has the form 7, py = (Id, 0y p)), Where
Surrp): T (M, P)) = 7 (3(M, P)).
is Thurston’s skinning map.
To define a skinning map in general, for each component S of dy(M,P) we
consider the map

G(SMJD) =vy O”(SM.,P) :AHy(M,P) — &(S).
The skinning map is the product

omrn= [ Ofup
SCay (M,P)

where the product is taken over all components of dy(M, P). Notice that

[T Vvsoriup :AHo(M,P) — &£(3(M,P)) x &(d(M, P))
SC(?()(M,P)

has the form (V(y p), G(a.p))-

Fricke spaces. If S is a compact, orientable surface with negative Euler character-
istic, one may consider the Fricke space .7 (S) of all complete marked hyperbolic
structures on the interior of S. Notice that the Teichmiiller space .7 (S) of all finite
area complete hyperbolic structures on S is naturally the boundary of the Fricke
space. If S has genus g and n boundary components, then

3—5(5) ~ R6g—6+2n % [O,oo)"

and one may define Fenchel-Nielsen coordinates just as for .7 (S), the only differ-
ence being that one has an additional coordinate which records the lengths of the
geodesics in the homotopy class of dS, see Bers-Gardiner [9] for details.

For an annulus A we declare .% (A) to be [0,0), where the parameter denotes the
translation length of the core of A in a complete hyperbolic structure on the interior
of A.

2.2. Characteristic submanifold theory

Jaco-Shalen [27] and Johannson [28] introduced the characteristic submanifold
Y(M) of a compact, orientable, irreducible 3-manifold M with incompressible
boundary, which is a canonical collection of Seifert-fibered and interval bundle
submanifolds which contain all the incompressible annuli and tori in M. Johann-
son [28] further proved that every homotopy equivalence of M can be homotoped
to preserve £(M) and its complement M — X(M). In this section, we recall the key
properties of the characteristic submanifold in the setting of pared manifolds. (For
a more detailed discussion of the characteristic submanifold in the pared setting,
see either Morgan [41, Sec. 11] or Canary-McCullough [20, Chap. 5]).)
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We must introduce some additional notation to handle the pared case. If B is a
compact surface with boundary, we say that f : B — M is admissible in (M,P) if
whenever C is a component of dB, then either f(C) C int(P) or f(C) C dy(M, P).
We say that two admissible maps (or admissible embeddings) f : B — M and
g : B — M are admissibly homotopic (or admissibly isotopic) if there exists a ho-
motopy (isotopy) H : B x [0,1] — M from f to g such that if C is a component of
dB, then either H(C x [0,1]) C P or H(C x [0,1]) C dy(M, P). We recall that if A
is an annulus or Md6bius band, then an admissible map f : A — M is an essential
immersed annulus or Mébius band in (M, P), if f. : 1 (A) — m (M) is injective,
and f is not admissibly homotopic to a map with image in M. If f is an embed-
ding, we will simply call f an essential annulus or Mobius band in (M, P). In this
case we will often abuse notation and also refer to the image f(A) as an essential
annulus or Mobius band in (M, P). Notice that with this definition annuli which
are parallel to components of P are inessential.

The following result encodes the basic properties of the characteristic submani-
fold of a pared manifold with pared incompressible boundary.

Theorem 2.1. (Jaco-Shalen [27], Johannson [28]) Let (M, P) be a pared 3-manifold
with incompressible pared boundary. There exists a codimension zero submanifold
Y(M, P) satisfying the following properties:

(1) Each component ¥; of X(M, P) is either

(i) an interval bundle over a compact surface F; with negative Euler
characteristic so that ;1 do(M, P) is its associated dI-bundle,

(ii) a solid torus 'V, or

(iii) a thickened torus X such that dX contains a toroidal component
of P.

(2) The frontier Fr(X(M,P)) of L(M, P) is a collection of essential annuli with
boundary in oM — P.

(3) If an annular component of P is homotopic into a solid torus component V,
of X(M, P), then it is contained in the interior of a component of dV N IM.

(4) Any immersed essential annulus or Mébius band in (M, P) is admissibly
homotopic into (M, P). If the annulus or Mébius band is embedded, then
it is is admissibly isotopic into X(M, P).

(5) If Y is a component of M —X(M,P), then either m(Y) is non-abelian
or (Y,Fr(Y)) = (8" x [0,1] x [0,1],8" x [0,1] x {0,1}) and Y lies between
an interval bundle component of £(M,P) and a thickened or solid torus
component of X(M, P).

Moreover, the component of L(M,P)UY which contains Y is not a sub-
manifold of type (1).

A submanifold with these properties is unique up to isotopy, and is called the char-
acteristic submanifold of M.

Remark: For statements of Jaco, Shalen and Johannson’s results in a form quite
similar to the above statement, see Canary-McCullough [20, Thm. 2.9.1 and 5.3.4].
In Johannson [28] (and in Canary-McCullough [20]), every toroidal component of
P is contained in a component of the characteristic submanifold. In this paper,
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FIGURE 1. Schematic of a typical JSJ decomposition. A and C
represent relatively acylindrical pieces. (M, P) consists of an I-
bundle B and a solid torus U. The window surface has six compo-
nents: wi,wy in doB, and four annuli w3—ws.

we use the convention of Jaco-Shalen [27], that a toroidal component T of P is
only contained in a component of X(M, P) if there is an essential annulus with one
boundary component in 7.

Thurston defines the window of (M, P), denoted window(M, P), to be the union
of the interval bundle components of (M, P) with a regular neighborhood of every
component of Fr(X(M,P)) which is not homotopic into an interval bundle com-
ponent. The window is an interval bundle over a surface wb(M, P), called the
window base, which contains a copy of the base surface of each interval bun-
dle component of X(M,P) and an annulus for each component of Fr(X(M,P))
which is not homotopic into an interval bundle component. The window surface
ws(M, P) = window (M, P) N dy(M, P) is a two-fold cover of the window base. We
then define

Opw(M,P) = dy(M,P) — ws(M,P)

to be the non-window portion of the boundary. Each component of d,,,(M, P) is
either an annulus homotopic to a component of Fr(X(M,P)) NdM or a subsurface
with negative Euler characteristic contained in a component of M — X(M, P).

Robust systems of annuli. We will see, in Section 2.5, that one may remark a
sequence in AHy(M, P) so that it converges on the complement of a collection of
essential annuli, in a sense to be defined in Section 2.3. It will be convenient to
always choose this collection of essential annuli so that each solid or thickened
torus of (M, P) is either cut out cleanly in one piece or does not participate at all in
the collection. This is part of a condition we call robustness, which we define and
study below.
We say that a collection .o/ of essential annuli in £(M, P) is robust if

(1) the components of <7 are disjoint and mutually non-parallel,
(2) o contains the frontier of any thickened torus component X of (M, P),
and contains no other annuli homotopic into X, and
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(3) if o/ has a component homotopic into a solid torus component V of (M, P),
then &7 contains the frontier of V and no other annuli homotopic into V.
Moreover, if V contains a component of P, then the frontier of V is con-
tained in <7

Any component of .27 which is not homotopic into a solid or thickened torus
component of X(M, P), must be isotopic into an interval bundle component X; of
X(M,P) and hence to the interval bundle over a two-sided curve in its base surface
F; (see [20, Thm. 2.7.2] for example). Hence, one may always isotope <7 so that it
is the /-bundle associated to a two-sided multi-curve a in the window base.

A robust collection of essential annuli </ in (M, P) naturally decomposes
(M, P) into a collection of solid and thickened tori and submanifolds which inherit
the structure of a pared manifold. Let .4 (<7) be a (pared) regular neighborhood
of the union of the components of <7. A solid or thickened torus component of
M — ¥ (<) is either a regular neighborhood of a solid or thickened torus com-
ponent of £(M,P) or a regular neighborhood of an essential Mbius band in an
interval bundle component of £(M, P). Let M, be obtained from M — .4 (/) by
deleting all components which are solid or thickened tori and let

Py =(MyNP)UFr(M,).

Lemma 2.2. If (M,P) is a pared manifold with pared incompressible boundary
and < is robust collection of essential annuli in (M, P), then each component of
(Mo, Py) is a pared manifold with pared incompressible boundary.

Proof. Let (M’,P") be acomponent of (M, P;). Every component of P’ is either a
component of P or isotopic to a component of .o, hence is either an incompressible
annulus or torus.

Any non-cyclic abelian subgroup H of ;1 (M') is also a non-cyclic abelian sub-
group of m; (M), since m (M) injects into m (M). Since (M,P) is pared, H is
conjugate in 7y (M) to a subgroup of m;(T) where T is a toroidal component of
P. Since the frontier of M’ is a collection of essential annuli, 7 must be a toroidal
component of dM’ and H is conjugate in 7; (M") to a subgroup of 7; (T").

We next claim that if 7] is a component of P’ then 7 (P}) is a maximal abelian
subgroup of m;(M"). If P} is a component of P, then it is a maximal abelian sub-
group of m;(M), see [20, Lemma 5.1.1], hence a maximal abelian subgroup of
mi(M') C mi(M). If 7 (B}) is not a maximal abelian subgroup of m; (M), then it is
a component of d.4"(Ag) where Ay is either a component of the frontier of a solid or
thickened torus or the boundary of a regular neighborhood of an essential Mobius
band, see Johannson [28, Lemma 32.1]. In all these cases, Pé is a component of the
frontier of a component Xy of M — M, so that m; (F}) is a proper subgroup of the
abelian group 7 (Xo). If 7; (7)) is not a maximal abelian subgroup of 7; (M'), then
there exists an element o of 7y (M’) \ m; (P}) which centralizes m; (F}). If B is an
element of m;(Xp) \ 7;(F)), then, by the Seifert-van Kampen Theorem, o and f3
both centralize 7; (F)) but do not themselves commute. However, this is impossible
in a torsion-free discrete subgroup of PSL(2,C).

Now consider a 7;-injective map f : (A,dA) — (M',P’) of an annulus A into
(M',P’). Notice that, by construction, no two distinct components of P’ contain
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homotopic curves, so f(dA) is contained in a single component B of P'. If B is
a torus then, since (M, P) is pared, f can be admissibly homotoped in (M, P) to
a map with image in B. Since the frontier of M’ consists of essential annuli, one
may alter the homotopy to lie entirely within (M’, P"). (One may see this by lifting
the homotopy to the cover of M associated to 7;(M’) and noticing that the cover
deformation-retracts onto M’.) If B is an annulus, note that both components of dA
map to homotopic curves in B: if not then the core of B would have two distinct
but conjugate powers, but this is impossible in a torsion-free discrete subgroup
of PSL(2,C) since the stabilizer of the fixed points of an element must commute
with it. A homotopy between these two curves, adjoined to f, gives a map f of
a torus into M’. Since, 7 (B) is a maximal abelian subgroup of m;(M’), the map
f, and hence f itself, lifts to the cover of M’ associated to 7;(B). Since this cover
deformation retracts to the lift of B, the lift of f admissibly homotopes into the lift
of B, which implies that f itself is admissibly homotopic into B. This completes
the proof that (M’, P) is a pared manifold.

Since every component of dyM’ — P’ is an incompressible subsurface of a com-
ponent of dyM and dyM is incompressible in M, (M, P') has pared incompressible
boundary. ([

2.3. Partial Convergence and Geometric Limits

We now recall standard notation for algebraic and geometric convergence, as
well as introducing terminology for sequences of representations which may not
converge, but converge (in various senses) on subgroups. We take care, in Lemmas
2.3 and 2.4, to keep track of basepoints, keeping in mind the situation where there
may be more than one geometric limit of interest.

Partial convergence and basepoints. Fix a group H. If p € D(H) and g € PSL,(C),
we let p¢ be the conjugate representation i+ gp (h)g~!. Forh € H weletl), : H — H
be conjugation by % and note that p o I;, = pP (k).

We call a group nonelementary if it is not virtually abelian. For a sequence {p, }
in D(H) and a nonelementary subgroup J < H, we need two distinct notions of
partial convergence of the sequence on J.

e We say {p,} converges up to conjugacy on J if there exists a sequence
{gn} in PSL,(C) such that {p;"|;} converges in D(J).

o We say {p,} converges up to inner automorphism on J if there exists a se-
quence {h, } in H such that {pn”(h”) |7} (equivalently {p, o1y, |,}) converges
in D(J).

Note that both of these definitions depend only on p,, and the conjugacy class of
J in H. The first definition also depends only on the conjugacy class of p,, i.e. on
[pa] € AH(H),

Note that, if both {p,|,} and {p;;"|;} converge, then g, must remain in a compact
subset of PSL,(C). This is a consequence of the assumption that J is nonelemen-
tary, and the fact that the action of PSL,(C) by conjugation on its nonelementary
discrete subgroups is proper. It follows from this that, if {p,} converges up to
conjugacy on J, then the limit representation is determined up to conjugacy.
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A representation p € D(H) determines a basepoint b, in N, = H?>/p (H ), namely
the image of the orbit p (H)0, where 0 is a fixed basepoint for H>. We note that this
basepoint is invariant under inner automorphisms since p and p o [, have the same
image for any 2 € H. We can now relate behavior of basepoints to these notions of
partial convergence.

Lemma 2.3. Suppose that a sequence {p,} in D(H) converges up to inner auto-
morphism on a nonelementary subgroup J of H. For a sequence {g,} in PSLy(C),

(1) if the sequence {d(bp,,byen)} is bounded, then a subsequence of {py"}
also converges up to inner automorphism on J.

(2) if {pu"} converges up to inner automorphism on J, then {d(bp,,bpm)} is
bounded.

Proof. To compare the basepoints of two conjugate representations p and pé, con-
sider the cover H? — N, = Ny« induced by the action of p(H). The lift of b, to this
cover is the orbit p(H )0, whereas the lift of bps to this cover is the orbit p(H)g~'0
(since it is the preimage by the conjugating map g of the orbit p8(H)0). Thus,
dy, (bp,bpe) is equal to the distance from 0 to p(H)g'0.

Now, after suitable conjugation we may assume that {p, } already converges on
J. If the distances d(by, , b, ) are bounded, then dyy (0, 0,(H)g,, '0) is bounded,
and so there is a sequence {/,} in H such that {p,(h,)g, '} remains in a compact

npn(h;

subset of PSL,(C). Hence a subsequence of {p; ) |7} converges.

For the second part, if { pg”p”(kn) |s} converges for some sequence k, € H, then

{gnpn(kn)} lies in a compact set as we argued above, and hence the distances
{d(bp,,bpgn)} are bounded. O

These observations allow us to analyze the situation where one sequence {p,}
converges up to inner automorphism on several subgroups, in terms of distances be-
tween their basepoints. Given {p, € D(H)} and a collection _# of nonelementary
subgroups of H, if {p,} converges up to conjugacy on each J € ¢, fix a conju-

gating sequence {g’ } for which {pn£ |7} converges, and let b’ denote the sequence
of associated basepoints. Lemma 2.3 implies that the property that d(b’,b%) is

bounded for J,L € _¢ is independent of the choice of conjugating sequences. We
now record the following consequence:

Lemma 2.4. Let ¢ be a collection of nonelementary subgroups of H and suppose
that a sequence {p,} in D(H) converges up to conjugacy on each J € 7. Suppose
that, with choice of basepoints as above, {d (b, b%)} is bounded for each J,L€ ¥ .
Then there is a single conjugating sequence {g,} such that, after possibly passing
1o a subsequence, {pi"} converges up to inner automorphism on each J € #.
Moreover; if by, is the basepoint associated to py", then the sequence {d(b,,b!)} is

bounded for each J € 7.

Proof. Fixing one member Jy € 7 let g, = gl so that {p;s"|;,} converges. For
any other J € _#, we have a bound on d(b)°,b7), so by Lemma 2.3 we find that (a
subsequence of) {p;"} also converges up to inner automorphism on J. The final

statement follows since b, = b, ]



16 J. BROCK, K. BROMBERG, R. CANARY, AND Y. MINSKY

Geometric convergence. We say that a sequence {I',} of torsion-free discrete
subgroups of PSL,(C) converges geometrically to a discrete group T, if it con-
verges as a sequence of closed subsets in the sense of Gromov-Hausdorff conver-
gence. It follows that the sequence {H?/I",} of quotient manifolds converges ge-
ometrically to N = H3 /T (see Canary-Epstein-Green [19] for an extensive discus-
sion). The following lemma recalls standard properties of geometric convergence
which will be used throughout the paper.

Lemma 2.5. Suppose that a sequence {p,} in D(H) converges on a nonelemen-
tary subgroup J of H to some p € D(J). Then after possibly restricting to a sub-
sequence, {p,(H)} converges geometrically to a discrete nonelementary group L.
Let N = H3/f and let T : Ny — N be the natural covering map. Given € < &
there exists a nested sequence {Z,} of compact submanifolds exhausting N and
K,.-bilipschitz smooth embeddings W, : Z, — Np, such that:

1) K, — 1.

(2) Y, om carries the basepoint by of Ny to the basepoint by, of Np,.

(3) If Q is a compact subset of a component of 8]/\\/(078), then, for all large
enough n, ¥,(Q) is contained in d (N, ) (0,¢) and Y (Z, N (N — 1/\\/(078))) does
not intersect (Np, ) (0.¢) -

(4) If X is a finite complex and h : X — N, is continuous, then, for all large
enough n, (W, omwoh), is conjugate to py, o p*l o h,.

Remark: The existence of the exhausting sequence of submanifolds with proper-
ties (1) and (2) is discussed in [19, Cor. 1.3.2.11]. Property (3) is established in
[15, Lemma 2.8]. Property (4) is an immediate consequence of the proof of [21,
Prop. 3.3] which it generalizes.

2.4. Hierarchies, model manifolds, and topological order

We briefly review here some notation and definitions that arise in [36, 40, 15].
See also [14] for a summary. This machinery will play a central role in Section 3.

Markings, subsurface projections and hierarchies. A marking 1 on a surface
S, as in [36, Section 2.5], is a multicurve, denoted base (), together with at most
one transversal curve for each component 8 of base(ut) (i.e. a curve intersecting
B minimally which is disjoint from y — ). A generalized marking p, as in [40,
Section 5.1], is a geodesic lamination base(u ) which supports a measure, together
with at most one transversal curve for each closed curve component of base(u).

To an end invariant v on a surface S, as described in Section 2.1, we associate in
[40, Section 7.1] a generalized marking u as follows: base(it) consists of the par-
abolic locus of v, the ending laminations of geometrically infinite components of
the complement of the parabolic locus and a minimal length pants decomposition
of the hyperbolic structure on each geometrically finite component of v. To each
curve in base(u) which is non-peripheral in a geometrically finite component we
choose a minimal length transversal curve.

Recall the curve complex € (Y ) of a surface, whose vertices are homotopy classes
of essential simple curves (except when Y is an annulus and a special definition is
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needed), see [35]. If Y is an essential subsurface of S and a € %(S) essentially
intersects Y, one defines iy (@) € € (Y) by taking a component of & NY and com-
bining with arcs in dY to obtain a (coarsely well-defined) element of '(Y) (again a
special definition is needed when Y is an annulus). The curve complex and subsur-
face projections my : € (S) — € (Y) are studied in [35, 36] and elsewhere. We also
note that 7y (1) is well defined when p is a generalized marking, and by extension
so is 7y (v) for an end invariant v.

A hierarchy, as in [36] and [40], is a collection of tight geodesics in curve com-
plexes of subsurfaces of S, with certain interlocking properties. A tight geodesic in
¢ (W) is a sequence of simplices (w,) such that whenever v; € w; are vertices we
have d(v;,v;) = |i — j| for i # j, and such that w; is the boundary of the subsurface
filled by wi_1 Uwjy.

To a pair (U™, ™) of generalized markings (which share no infinite leaves), one
can associate a hierarchy H(u™, ™), see [40, Section 5.5]. Given a subsurface
W C S, we define

dyw (1", 1) = degwy (mw (1), 70w (1))

If dy (U™, 1) is sufficiently large (where the threshold depends only on S) then
¢ (W) supports a (unique) geodesic hy € H, whose initial vertex iy (respectively
terminal vertex fy) is uniformly close in € (W) to mmy (1 ™) (resp. @y (u™)), see
[36, Lemma 6.2] and [40, Lemma 5.9]. Let ¥H C %'(S) denote the set of all curves
appearing in geodesics in H.

Model manifolds. In [40, Section 8] we associate to the hierarchy H =H (u™, ™)
amodel manifold M(u™, ™) which is a copy of int(S) x R endowed with a certain
metric and a subdivision into blocks and tubes. We will mostly be concerned with
the tubes. There is a tube U(y) for each curve y in ¥H and each component of
dS. Each tube U(7y) has the form A x J where A is an open regular neighborhood
of yin S and J is an interval, where J = R if v is a component of dS. In partic-
ular, the complement M (™, ™) in M(ut, ™) of the tubes associated to 9 is
homeomorphic to S x R.
The following result is the main outcome of [40] and [15].

Bilipschitz Model Manifold Theorem: ([40, 15]) If S is a compact surface, there
exists Ly(S) > 1 and &,(S) > 0 such that if p € D(S) has end invariants (v*,v™)
and associated generalized markings (L™, L™, then there exists a L, (S)-bilipschitz
map

fo:Np = M(u",u)
such that if o € €(S) and £p () < &,(S), then oo € €H and f,(U()) = T(o).

By construction the core curves of the tubes of M have length at most 1, so L,
also bounds the length of their images in N,, i.e. if & € €H, then £, (&) < L;(S).

Ordering. If A and B are curves and/or subsurfaces of S and f: A — S xR and
g : B — S xR are maps which are homotopic to the inclusions of A and B into
S x {0}, then we say that f lies above g if f is homotopic to +ec in the complement
of g(B) (i.e. there is a proper map F : A X [0,00) — S X [r,00), for some r, such that
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f=F(-,0), whose image is disjoint from g(B)). We similarly say that f lies below
g if f is homotopic to —eo in the complement of g(B). (This topological ordering
is discussed extensively in [15, Section 3].)

We will often identify a curve & in § x R with a function whose image is .
Notice that a curve o@ may lie above a curve 8 without 3 lying below a. We say
that a curve o is unknotted if it is isotopic to & x {0} for some curve @ on S.

A level surface in S x R is an embedding f: (S,9dS) — (S x R, dS x R) which is
properly isotopic to the identification of S with S x {0}. Again, we often identify a
level surface with its image in § x R.

The following result records a special property of homotopy equivalences which
will be used in Section 3.

Lemma 2.6. ([14, Lemma 2.7]) Let o and B be simple closed curves on S that
intersect essentially. Let f : (S,9S) — (S x R,dS x R) be a homotopy equivalence
with image disjoint from 3 x {0}. Then f lies above (below) B x {0} if and only if
fla lies above (below) B x {0}.

We may apply this ordering to tubes in M (ut,u™). If vyw € €H, we say that
U (v) lies above (below) U(w) if a core curve of U(v) lies above (below) a core
curve of U(w) in M(u*, ™). By construction, if v and w both lie in simplices
of a geodesic hy in H(uu™,u™), then U(v) lies above (below) U (w) if and only if
the simplex containing v is not adjacent to and occurs after (before) the simplex
containing w on hy. (If W is a once-punctured torus or thrice-punctured sphere,
then tubes associated to adjacent vertices are also ordered consistently.)

2.5. Thurston’s Relative Compactness Theorem and its consequences

The goal of this section is Corollary 2.9, which shows that any sequence in
AH(M,P) may be remarked by homeomorphisms supported on window(M, P),
so that it converges, up to subsequence, on M, for some robust collection &7 of
essential annuli in (M, P). The core curves of the components of .7 have length 0
in the limit representations, and .7 can be chosen to be maximal in the sense that
the core curve of any essential annulus in a component of (M., P./) has positive
length in the associated limit representation.

Our major tool is Thurston’s Relative Compactness Theorem [49]' (see also
Morgan [41, Cor. 11.5]):

Theorem 2.7. (Thurston [49]) Suppose that (M, P) is a pared manifold with pared
incompressible boundary and R is a component of M ~. window (M, P). The restric-
tion mapping from AH(M,P) to AH (R) has bounded image.

If X is a submanifold of M whose frontier is a collection of essential annuli in
(M, P), then each component of X determines a conjugacy class of subgroups of

! Thurston’s Relative Compactness Theorem is a generalization of his earlier result that AH (M)
is compact if M is acylindrical, see Thurston [48]. The proof combines a uniform bound on lengths
of curves in the boundary of the window base, see Thurston [49, Thm. 1.3] or Morgan [42, Thm.
A.1], and a compactness theorem for representations of acylindrical pared 3-manifold groups, see
Thurston [49, Thm. 3.1] or Morgan-Shalen [43, Thm. 2.2].
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m (M). We say that a sequence {p,} C D(M,P) converges up to conjugacy on X
if {p,} converges up to conjugacy on 7;(R) (in the sense of Section 2.3) for each
component R of X. In this language, Theorem 2.7 implies that any sequence in
D(M, P) has a subsequence which converges up to conjugacy on M ~. window (M, P).

Canary, Minsky and Taylor [22, Thm. 5.5] observed that, if one allows oneself
to remark by pared homeomorphisms supported on (M, P), then one can find
a subsequence which converges up to conjugacy on the complement of a robust
collection of essential annuli.

We will adopt the following convenient notational convention throughout the
paper. If p € AH(M,P) and A is a collection of essential annuli in (M, P), then
{, (%) denotes the sum of the lengths of the geodesic representatives in N, of the
core curves of annuli in A.

Theorem 2.8. (Canary-Minsky-Taylor [22]) Let (M, P) be a pared 3-manifold with
pared incompressible boundary. If {p,} is a sequence in D(M, P), then, after pass-
ing to a subsequence, there is a robust collection A of essential annuli in (M, P)
and a sequence of pared homeomorphisms {¢, : (M,P) — (M, P)}, each supported
on window (M, P), such that

(1) lim£y o, (%) =0, and
(2) {pno(@n)s} converges up to conjugacy on M.

We provide a sketch of the proof of Theorem 2.8, since our statement is slightly
different and more general than the one given in [22], although the proof there goes
through directly to yield our statement.

Sketch of proof of Theorem 2.8: We first apply Theorem 2.7 to pass to a subse-
quence so that {p,} converges up to conjugacy on M ~ window (M, P). We then
construct 4 and {¢, } piece by piece. We first include the frontier of any thickened
torus component of £(M, P) in A. If V is a solid torus component of £(M, P) with
core curve v, then we include Fr(V) in Z if and only if lim¢,, (v) = 0.

Let F be the collection of components of wb(M, P) which are base surfaces of
interval bundle components of X(M, P). For each n, let F, be obtained by remov-
ing any boundary component f so that ¢, (f) = 0. Consider a pleated surface
fn i (Fu,T) = Np, in the homotopy class of the inclusion map, where T, is a fi-
nite area hyperbolic metric on F,. (A pleated surface is a 1-Lipschitz map which
is totally geodesic on a geodesic lamination which includes the boundary, called
the pleating locus, and totally geodesic on the complement of the pleating locus.)
There exists a subsequence, still called {p, }, a two-sided multicurve b; on F, and a
sequence {{,} of homeomorphisms of int(F'), which extend to the identity on JF,
so that lim . ;) (b;) = 0 and if y is a curve on F which is disjoint from by, then
{€y:(z,)(v)} is bounded (see [22, Prop. 5.6] and its use in the proof of [22, Thm.
5.5] for more details.) We complete the construction of Z by adding the interval
bundle over b; to A.

We may extend each {, to a homeomorphism of window(M,P) which is the
identity on Fr(window(M, P)) and hence to a pared homeomorphism y,, of (M, P)
which is supported on window(M, P). One then checks that, up to subsequence,
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there exists a sequence D, of Dehn multitwists in Fr(window(M,P)) so that if
¢, = D,oy, !, then {p,o(¢,).} converges up to conjugacy on M, which verifies
property (2) (see [22, Lem. 5.7] and its use in the proof of [22, Thm. 5.5] for more
details). O

It will be useful to be able to choose the robust collection of annuli Z in The-
orem 2.8 to be maximal in the sense that the length of any essential annulus in
(M4, Pz) has positive length in its associated limit representation.

Corollary 2.9. Let (M, P) be a pared 3-manifold with pared incompressible bound-
ary. If {pn} is a sequence in D(M, P), then, after passing to a subsequence, there
is a robust collection <f of essential annuli in (M,P) and a sequence of pared
homeomorphisms {¢, : (M,P) — (M, P)}, each supported on window(M, P), such
that

(1) limgpno(%)* (527) =0

(2) {pno(@n).} converges up to conjugacy on M, and

(3) If B is an essential annulus in a component of (Mo, Py ), then
limgpno(‘pn)* (B) > 0.

Proof. Theorem 2.8 guarantees that there exists a subsequence, still called {p,},
a robust collection # of essential annuli with base multicurve b and sequence of
pared homeomorphisms {¢, : (M,P) — (M,P)} such that limZ,, . (b) = 0 and
{pno(¢,)«} converges up to conjugacy on M. We may further assume that if V is
a solid torus component of X(M, P) with core curve v, then Fr(V) C # if and only
if lim £y, (v) =0
Let ¢ be a maximal collection of disjoint, non-parallel essential annuli in (M, P)

such that lim#, ,4,),(¢’) = 0. (Alternatively, we may choose ¢ to be a maximal
two-sided multicurve in wb(M, P) — b such that lim £, .4, (c) = 0 and let ¢ be
the interval bundle over c¢.) Let < be the union of %8 and %. Properties (1) and (2)
hold for <7, since they held for the subcollection 4 of 7. Property (3) holds by
construction. O

3. Length bounds

Let S be a compact surface and [p] € AH(S) a Kleinian surface group. The goal
of this section is a criterion for bounding the length at infinity of a curve in N,, in
terms of the situation of a representative of the curve in the interior. That is, given a
simple curve o C S with a representative ¢ in N, of given length, we wish to know
when we can bound £, (). The key is to study the collection of bounded length
geodesics in N, that lie “between” @ and the bottom end of N,, in the following
precise sense.

Let (0,L) denote the set of curves on S which intersect ¢ essentially and
whose geodesic representatives in N, have length at most L and do not lie above &
(in the sense of Section 2.4). Parabolic curves have no geodesic representatives, but
we adopt the convention that 3 lies above every curve in N, if it is in the parabolic
locus of v, and below if it is in the parabolic locus of v~ .
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We will see that given an upper bound on the length of @, an upper bound on
the size of ¢’(,L) and a lower bound on the length of any curve in €'(&,L), one
obtains an upper bound on the length of & in the bottom ending invariant. In the
statement, L, (S) is the constant from the Bilipschitz Model Manifold Theorem in
Section 2.4.

Theorem 3.1. Let S be a compact surface. Given R, Ly ,€ € (0,u3) and L > L (S),
there exists Ly > 0 such that, if p € AH(S), o is a simple closed curve on S, and a
is a representative of o in Ny such that

(1) @ has length at most Lo,

(2) €(a,L) contains at most R elements,

(3) € (a,L) contains no curves of length less than €, and

(4) Q lies on a level surface F which does not intersect (Np)(0,6)s

then
lvf(p) (OC) < L.

The idea of the proof is the following: If o has large, or infinite, length in
v~ (p), then there must be a subsurface W in S so that the projection distance
dw(a,v~(p)) is large or infinite. This forces the hierarchy H(u™*(p),u (p)) to
have a long geodesic Ay associated to W, which corresponds to a large region in
the model manifold of N, containing a large number of bounded-length curves
(corresponding to hierarchy curves) isotopic into W. In the model manifold, the
topological placement of these curves corresponds to their location along the hier-
archy geodesic. Thus, using what we know about the projection of ¢ to Ay, we
conclude that a large number of the geodesic representatives of these curves must
not lie above @ in N, — hence must belong to €’ (c,L). The hypotheses bound the
number of such curves and therefore the size of dy (@, v~ (p)). The main technical
difficulties in the proof involve converting the relatively nice picture in the model
manifold to the slightly messier arrangement of true geodesic representatives in
Np.

Proof. We first observe that « lies in the thick part of a Riemann surface compo-
nent of v~ (p).

Lemma 3.2. With the same assumptions as Theorem 3.1, there exists € < € such
that the curve  is homotopic into the € -thick part Z' of a Riemann surface com-
ponent Z of v (p).

Proof. If a component p of the parabolic locus of v~ (p) crosses a essentially, then
the cusp associated to p is downward-pointing and hence p lies below o*. How-
ever, this contradicts the fact that €’ (o;,L) contains no curves of length less than
€. If o essentially intersects a subsurface W which supports an ending lamination
in v~ (p), then there exists a sequence {f3,} of hierarchy curves so that {f3;} exits
the downward-pointing simply degenerate end with base surface W. However, this
contradicts the fact that 4’ (a,L) contains only finitely many curves. Therefore,
v~ (p) has a Riemann-surface component supported on a subsurface Z containing
.
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Choose 8 = 6(Ly) > 0 so that, if a homotopically non-trivial curve ¥ in a hyper-
bolic 3-manifold is of length at most Ly and intersects Tg(f) for some primitive
curve f3, then ¥ is homotopic to a power of 3.

Suppose that f3 is a curve such that ¢z () < 2&’ where &’ = min(8(Lo), €). The-
orem 3.1 in Epstein-Marden-Markovic [25] implies that 3 has a representative [/3;
on the bottom boundary of the convex core which has length at most 2¢’ < € So, 3

lies inside T/ () and one may then connect B* to 8 by an annulus Ay in the convex
core which is entirely contained within T¢ (). We construct a homotopy A from

B* to —oo, by concatenating Ao with an annulus in #~!(B) where r is the nearest
point retraction of N, onto its convex core. Since (@) has length at most Lo, it
must be disjoint from T, (f) and hence from A. Therefore, §* lies below r().
Since r(A) = Ay, A is also disjoint from @, so §* also lies below o. However, this
contradicts assumption (3), so & must be homotopic into the &’-thick part of Z. [

Let u~ (p) be the generalized marking of S which we associate with v~ (p), and
let 1’ be the restriction of = (p) to Z'. Notice that, assuming €’ is small enough,
dZ' is contained in it~ (p), so base(u’) consists of the essential curves in Z' which
are contained in base(t~ (p)) and the transversals in (" are simply the transversals
in £~ (p) to the curves in base(u). Since Z' is €’-thick, both the base curves and
the transversals in ¢’ have uniformly bounded length. Therefore, Iz(ct) can be
bounded in terms of the complexity of its intersection with tt’, and this in turn is
controlled by the subsurface projections of o and u’, as in Theorem 6.12 of [36]
or Lemma 2.3 of [12]. In particular in order to bound Iz () it suffices to bound

sup d (o, ") = sup dw(a, v~ (p)) (3.1
W W

where W varies over all subsurfaces of Z’ intersecting a.

Theorem B of [39] tells us that when the diameter in ¢’ (W) of the projections
of curves in S with a given length bound is sufficiently large, W must be short. In
particular there exists ag, depending only on &’ and on the length bounds on o and
W', such that, if

dw (o, 1) > ag
then £, (dW) < €. Since if dw (o, ") < ap we are done, we may assume from now
on that £, (dW) < €' < e.

Suppose now that o essentially intersects a component 3 of JW (in particular
this must be the case if W is an annulus). By assumption, since £, () < &, B* lies
above Q. Since o lies on a level surface F disjoint from §*, it follows that o lies
below B*. Notice that one may homotope @ to o* through curves of length at most
Ly. None of the curves in the homotopy can intersect T¢/ (), since we can choose
e’ < 8(Lo) (see the proof of Lemma 3.2), so o* lies below B* as well.

Now Theorem 1.3 of [14] tells us that a geodesic of bounded length that lies
below B* (and overlaps it on S) must have projection in W close to the projection
of the bottom end invariant. That is, there is a constant a; (depending on Ly and §)
such that, if o* lies below B* then

dw(OC,Vi) <aj.
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Thus, we are done in this case.
The only remaining possibility is that & is a non-peripheral curve contained in
W. This case follows from the following lemma:

Lemma 3.3. Let S be a compact surface. Given Ly, L > Ly,(S), and K, there exists
D > 0 such that if & is a curve on S and O is a representative of o in N, with
length at most Ly, a is non-peripheral in an essential subsurface W of S, and
dw(o,v=(p)) > D, then € (0, L) contains at least K curves.

Proof. Let g : X — N, be a 1-Lipschitz surface that realizes & and JW, i.e. X is
a finite area hyperbolic surface homeomorphic to S, g is a 1-Lipschitz map in the
homotopy class of p and g takes the geodesic representatives of o and W in X to
their geodesic representatives in N, by an isometry. (For example, one may choose
a pleated surface, see [19, Chapter 1.5.3]). By Lemma 3.1 in [14] there exists a
multicurve A of hierarchy curves, each of which has length at most L, = L,(S,Lo)
on X such that there are no hierarchy curves supported on the complement of A.

Theorem 1.2 in [14] tells us that the projection to W of the set of curves of
length at most Ly in N, lies in a uniformly bounded Hausdorff distance of a € (W )-
geodesic joining my (VT (p)) to ww (v (p)). So, there exists a constant a = a(S, Lo)
so that

dw (v (p),v(p)) > dw(a,v_(p)) —a

Choose & > 0 small enough that every curve on S whose geodesic representative
in N, has length at most & lies in the hierarchy and such that any geodesic of length
less than & on a hyperbolic surface cannot intersect another geodesic of length
at most L. If dw (vt (p),v~(p)) is sufficiently large, then W is a domain in the
hierarchy, see [40, Lemma 5.9]. So, combining this fact with Theorem B from [39],
we see that there exists D; = D;(S, &) so that if dw (v (p),v~(p)) > Dy, then
£,(dW) < & and W is a domain in the hierarchy. We may assume that D > D1 +a,
so that this is the case.

Since g is 1-Lipschitz and realizes dW, no curve in A can intersect dW and JW
must be contained in A. Moreover, since W is a domain in the hierarchy, there
exists Y € ANE(W). Let y¥ be a representative of y on g(X) of length at most L,.

Let M, =M(u™(p),u~(p)) and let f, : M, — N, be the model map. If f is
a hierarchy curve, let B be the image in N, of the core curve of U(f). Since
Ix(a*) < Lo and Lx(yX) < Ly, dw(o,y) < c=c(S,Lo,Ly). Therefore, see [14,
Lemma 2.6], there exists b = b(S, Ly, L,), so that there are at least dy (@, v—(p)) — b
curves f3 on Ay so that U(f) lies below U(y) in M. (In the simple situation when
v lies on Ay, we may take b = ¢+ 1 and the curves are simply curves in the ver-
tices of hy which precede but are not adjacent to the vertex containing v.) If U(f)
lies below U(Y) in M,, then B lies below ¥ in N,. In order to complete the
proof, it suffices to bound from above the number of such curves whose geodesic
representatives lie above @.

Let Y be a ruled homotopy from a* = a* to &, and let Y’ be a ruled homotopy
from y¥ to Y (see Figure 3). We claim that if 8 is a curve in Ay so that  overlaps
a, BM lies below y¥, and there is a homotopy H of ¥ to B* that is disjoint from
g(X)UY UY’, then B* does not lie above &. We can prove this in a few steps.
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FIGURE 2. When f lies in the indicated range, on the part of hy
to the left of v, U () lies below U () in the model M.

FIGURE 3. If H avoids g(X)UY UY’ then the ordering of @ and
B* is consistent with that of Y and M.

(1) Since B is disjoint from Y’, ¥* lies above BM. One concatenates Y’ with
the homotopy of ¥ to 4o, to obtain a homotopy of y* to +oo disjoint
from M.

(2) Since B is disjoint from g(X), a* lies above B¥. Using Lemma 2.6, the
fact that 7¥ lies above B implies that g lies above B, and therefore that
aX does as well.

(3) Since B is disjoint from Y, & lies above BM. As in (1), one concatenates
Y with the homotopy of aX to +oo, to obtain a homotopy of aX to +oo
disjoint from BM.

(4) Since « lies above BM and o overlaps 8, B does not lie above @. Since
H is disjoint from &, B* also does not lie above d.

We next observe that there is an upper bound m(L;) on the number of homotopy
classes of primitive curves of length at most L, that intersect g(X)UY UY’. Let
& > 0 be chosen so that an &;-Margulis tube cannot meet a curve of length L,
which is not homotopic to a power of its core curve. So, if a curve of length L,
intersects g(X) it must do so in the image of the &3-thick part of X, which consists
of a bounded number of pieces of bounded diameter. Similarly, each of ¥ and
Y’ is a union of a bounded diameter neighborhood of its boundary and possibly
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an annulus inside an &-Margulis tube. Since a uniformly bounded number of
homotopy classes of primitive curves of length at most L, can intersect a set of
uniformly bounded diameter, we obtain the desired bound m(Ly,).

Now, if 8 is a curve such that B lies below ¥, but B* lies above @, then either
a does not overlap B or there exists a homotopy Hg from f3 M to B* through curves
of length at most L, which intersects g(X)UY UY’. Since at most three simplices of
hw contain curves which do not overlap @, and we have the above bound m(Ly,), we
conclude that there at most d = d(S, Lo) such curves. Therefore, ¢’ (@, L) contains
atleast dy (o, v~ (p)) — b —d curves. If we also choose D > K + b+ d the proof is
complete. ([

O

4. Uniform cores

In this section we show that all of the marked hyperbolic manifolds in AHy (M, P)
can be given compact cores whose geometry is controlled by a finite family of
“models”, in a suitable sense. These are quite different from the bilipschitz mod-
els for entire manifolds that are constructed in [40, 15], in that they give a model
only for a compact subset of the manifold and not for its ends. Because a sequence
of elements of AHy(M,P) can degenerate along annuli in £(M, P), our notion of
control must allow this kind of degeneration. Similarly the possibility of changes
of marking inside the characteristic submanifold must be taken into account. We
make this precise with the following definition.

If (M, P) is a pared manifold with pared incompressible boundary, a model core
is given by a triple (&7,m,€) where </ is a robust collection of annuli in M, m is
a metric on M., and € € (0,u3/2). If p € AHy(M,P) we say that a model core
(m, </ ,€) controls p if there exists an embedding

f:(M,P)— (Np \T¢(P),dTe(P))
such that
(1) (f(M), f(P)) is arelative compact core for N \ T¢(P),
(2) there is a homeomorphism ¢ : (M,P) — (M,P) which is the identity on
the complement of X(M, P), such that f o ¢ is in the homotopy class deter-

mined by p,
(3) the restriction of f to M, is 2-bilipschitz with respect to m,
(4) f(My) CNp\Tae(f()),
(5) f(IM) C Ny \ (Np)(o.e)-
Here T¢(f(<)) denotes the union of Margulis tubes T¢(f(A)) for annuli A € <.
We call f a model core map for (< ,m,€).

Theorem 4.1. If (M, P) is a pared 3-manifold with pared incompressible boundary
then, for any € < 3 /2, there exists a finite collection of model cores (7 ,m, €) such
that every [p] € AHy(M, P) is controlled by one of them.

Theorem 4.1 will follow directly from the following statement:
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FIGURE 4. A model core and its controlling map. Here .7 has 5
components (indicated by thick segments) whose associated solid
tori map to three Margulis tubes.

Theorem 4.2. If (M, P) is a pared 3-manifold with pared incompressible boundary
and € € (0,u3/2), then any sequence in AHy(M,P) has a subsequence which is
controlled by a single model core (< ,m,€).

Indeed, if Theorem 4.1 were to fail, there would be a sequence {[p,] } in AHy(M, P)
such that no two elements can be controlled by the same model core. This would
contradict Theorem 4.2.

The proof of Theorem 4.2 can be briefly sketched as follows. Starting with a
sequence {[p,]} in AHy (M, P), we will identify a robust system of annuli .7 which
breaks M into pieces on which a subsequence converges, embed these pieces into
corresponding geometric limits of the subsequence, and then push those embedded
pieces into the approximating manifolds N,, and join them along Margulis tubes
to obtain the desired compact cores.

Corollary 2.9 gives the basic convergence result, identifying a robust collection
of annuli &7 such that some subsequence of {[p,]} converges on the pieces of the
cut-up manifold M, after appropriate remarking on the characteristic submanifold.
Our basic embedding result is Proposition 4.4 in Section 4.2, which shows that, if
we consider a collection of pieces of M, which live in the same geometric limit,
then they admit disjoint embeddings into that geometric limit. The machinery
for these embedding theorems is a variation on results of Anderson-Canary [4]
and Anderson-Canary-McCullough [6], and Section 4.1 contains some background
material and notation for these results.
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In Section 4.3 we put these ingredients together to finish the proof. Pieces of
M, which live in one geometric limit can be mapped, via the approximating maps
of the geometric limiting process, into the manifolds N,, . Pieces that live in differ-
ent geometric limits are easy to embed disjointly since their distance in N, goes to
0. Thus we can eventually disjointly embed all the pieces of M, in Np,. (Some-
thing similar was done in the surface-group case in Brock-Canary-Minsky [15].)
Note that these embeddings in the geometric limit are pared manifolds, where the
frontier annuli Fr(M ), as well as the annuli of the original pared locus P, map to
the boundaries of their associated cusps.

The next step will be to attach the pieces along the Margulis tubes in N, that
approximate the cusps, using solid or thickened tori (whose diameter can be grow-
ing as n grows) and obtain compact cores C,,. The identification of M with C, is at
this point on the level of homotopy, and it will require an additional step to obtain
a homeomorphism that respects the subdivision into pieces. The geometry of the
geometric limits gives us the metric on the pieces which defines the core model m
for the subsequence.

4.1. Relative compact carriers

In this section, we recall a criterion from Anderson-Canary-McCullough [6]
which guarantees that a collection of subgroups of a Kleinian group is associated
to a collection of disjoint submanifolds of the quotient manifold.

We first recall some terminology from Kleinian groups. Let I" be a finitely gener-
ated, torsion-free, non-elementary Kleinian group. We say that I' is quasifuchsian
if its domain of discontinuity Q(I") has 2 components, each of which is invariant
under the entire group, and is degenerate if Q(T") is connected and simply con-
nected. A component subgroup of I is the stabilizer of a component of its domain
of discontinuity. We say that I is a generalized web group if all of its component
subgroups are quasifuchsian. (This includes the case where the domain of discon-
tinuity is empty.) An accidental parabolic for I" is a non-peripheral curve ¢ in
Q(I")/T" which is associated to a parabolic element of I".

We say that a -invariant collection .57 of disjoint horoballs in H? is an invariant
system of horoballs for a torsion-free Kleinian group I"if every element of 7 is in-
variant under a non-trivial parabolic subgroup of I" and every non-trivial parabolic
subgroup of I" fixes some element of 7. If € € (0, u3), then the set of pre-images
of the non-compact components of N(q ), where N = H3 /T, is an invariant system
of horoballs for I". If ' € T and . is an invariant system of horoballs for I', then
the collection .7 of elements of . based at fixed points of non-trivial parabolic
subgroups of [ is an invariant system of horoballs for T, which we call the induced
sub-collection of invariant horoballs for T. Ngiice that if 7 is the pre-image of
the non-compact components of N(g¢), then 7 need not be the pre-image of the
non-compact components of IT/(O’S). It is this unpleasant fact which necessitates
the introduction of this cumbersome terminology. However, for most purposes
one can simply imagine that our invariant system of horoballs is associated to the
non-compact components of the &-thin part.
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If JZ is an invariant system of horoballs for a finitely generated, torsion-free
Kleinian group I', let

N7 = <H3 - U H) JT.
Hex
For example, if .77 is the pre-image of the non-compact components of N(O’ €)> then
NO = N7 If (M, P) is a relative compact core for N7, then I has an accidental
parabolic if and only if there is an essential annulus in (M, P) joining a geomet-
rically finite component of dy(M,P) to a component of P. If every geometrically
finite component of dy(M, P) is incompressible and I has no accidental parabolics,
then it is either a generalized web group or degenerate (see [6, Lemma 3.2]).

We will make crucial use of a criterion which guarantees that a collection of
subgroups of a Kleinian group is associated to a collection of disjoint submanifolds.
A finitely generated subgroup ® of a Kleinian group I' is precisely embedded if it
is the stabilizer, in I, of its limit set and if ¥ € I' — @, then there is a component of
Q(®) whose closure contains Y(A(®)) (here A denotes the limit set of a Kleinian
group). More generally, a collection {I'},...,I’,} of precisely embedded subgroups
of T is a precisely embedded system if whenever y € " and i # j, then there is a
component of Q(I';) whose closure contains y(A(I;)).

We now give a strong pared version of what it means for a subgroup to be associ-
ated to a submanifold of the quotient manifold. If Tisa subgroup of a torsion-free,
finitely generated Kleinian group I w1th invariant system of horoballs .7, then
(Y,Z) is a relative compact carrier for T if Y € N, Z =Y NN, and (Y Z)

lifts to a relative compact core for Nﬁ” where N = H? / [,N=H /T and H is the
induced subcollection of invariant horoballs for I'.
The following result combines Lemma 4.1 and Proposition 4.2 in [6].

Proposition 4.3. Let I" be a torsion-free Kleinian group with invariant system of
horoballs 7 and let {T',...,I',} be a collection of non-conjugate generalized
web subgroups of I'. Then {T'y,..., Ty} is a precisely embedded system if and only
if there exists a disjoint collection {Ry,...,R,} of compact submanifolds of N7
such that, for all j, R; is a relative compact carrier for I';j and no component of
N” —R j is a compact twisted I-bundle whose associated dI-bundles lies in JR).

4.2. Partial Cores

In this section we establish our basic embedding result for partially convergent
sequences in D(M, P). In our setting we have a robust collection .o/ of essential an-
nuli and a sequence {p, € D(M, P)} which is convergent up to inner automorphism
on some subset of components of M, (this situation will arise, in Section 4.3, us-
ing Corollary 2.9). Assuming also that the sequence has a geometric limit, and
with additional assumptions on parabolics, we will obtain a collection of disjoint
relative compact carriers in the geometric limit for the convergent components.

The following convention will be used from now on: Given a component R of
M, on which {p,} converges up to inner automorphism, there exists a sequence

{gn} C m (M) such that {pn”(g”) |z (r) } converges in D(m; (R)). We take p® € D(R)
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to be the limit of such a sequence. Notice that p¥ is well-defined up to conjugacy
in the geometric limit group.

Proposition 4.4. Let (M,P) be a pared 3-manifold with pared incompressible
boundary and let </ be a robust collection of essential annuli in (M, P). Suppose
that {p,} is a sequence in D(M,P) which is convergent up to inner automorphism
on a collection % of components of (M, Py ) so that

(1) £p, (o) =0,

(2) {pu(m (M))} converges geometrically to T', and

(3) if Bis an essential annulus in a component of (M, Py ), then lim ¢ o (B) > 0.

If € € (0,&), then there exists a disjoint collection {(Yg,Zg)}r,0)c of rela-
tive compact carriers for {p® (i (R))} 0y in N® where N = H? /T and N* is
obtained from N by removing the non-compact components of N(g ¢).

We begin by showing that if (R,Q),(T,X) € Z, then any conjugate of the limit
set of pR(m;(R)) intersects p7 (7;(T)) in at most one point. We next show that
each p®(m(R)) is either a generalized web group or a degenerate group without
accidental parabolics. We can then use Proposition 4.3 and the Covering Theorem
[18, 46] to complete the proof of Proposition 4.4, as in the proof of [15, Prop 6.4].

Our first lemma is a common generalization of Proposition 2.7 from [5] and
Proposition 6.7 from [15].

Lemma 4.5. Let (M, P) be a pared 3-manifold with pared incompressible bound-
ary and let </ be a robust collection of essential annuli in (M,P). Suppose that
{pn} is a sequence in D(M, P) which is convergent up to inner automorphism on a
collection Z of components of (M.s,P.) so that

(1) Lp, () =0, and

(2) {pn(m (M))} converges geometrically to T.

If (i) (R,Q) and (T,X) are distinct elements of % and y € I or (ii) R =T and

y & pR(m1(R)), then the intersection of limit sets

A(ypR(m (R)y )N A(p (m (T)))
contains at most one point.

Proof. A result of Anderson [2] and Soma [45] implies that if &, and &, are non-
elementary, finitely generated subgroups of a torsion-free Kleinian group I, then

A(q)l) ﬂA(d>2) = A(q)l ﬁcbz) UP(‘b] ,‘bz)

where P(®;,d,) is the set of points p € A(I') such that the stabilizers of p in
@, and P, are rank one parabolic subgroups which generate a rank two parabolic
subgroup of I'. (Anderson and Soma’s results require that the subgroups are topo-
logically tame, but it is now known, by work of Agol [1] and Calegari-Gabai [17],
that all finitely generated, torsion-free Kleinian groups are topologically tame.)
Without loss of generality we can assume that {p,|,z)} converges to p* and

there exists g, € m;(M) so that {pn”(g”)|m(7)} converges to p7. Let {h,} be a
sequence in 7 (M) so that limp,,(h,) = 7.
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One may show that yp® (7 (R))y ' np” (7;(T)) is purely parabolic, i.e. con-
sists entirely of parabolic and trivial elements, exactly as in the proofs of [5, Lemma
2.4] and [15, Lemma 6.7]. Therefore, A(yp® (71 (R))y~ ' Np” (7 (T))) contains at
most one point. Thus, it only remains to prove that

P(yp®(m(R)y~ ", p" (m(T))) =0.

Suppose that p € P(ypR(m1(R))y !, pT (m1(T))). The stabilizer stab, 7z, (1)) (P)
is generated by p” (), and staby,r(z, (r))y-1 () is generated by yp®(r)y~! where
r and ¢ are primitive elements of 7 (R) and 7;(T), respectively. Since these two
elements must commute, /,rh, | commutes with g,tg;, ! for sufficiently large n, see
[15, Prop. 2.7].

If h,rh, ! and gutg,! lie in a cyclic subgroup of m; (M), then, since they are
primitive, they agree, up to taking inverses, so their limits cannot generate a rank
two abelian group. Otherwise, h,rh, ! and g,tg, ' are primitive elements generat-
ing a rank two abelian subgroup H, of m; (M) for all sufficiently large n. This can
only occur if R = T, and the rank two abelian subgroup H, = g,Hg, ' where H is
the maximal rank two abelian subgroup of 7; (R) containing ¢. In this case, the sta-
bilizer of p in p7 (7;(T)) contains p” (H), so is not a rank one parabolic subgroup.
We have achieved a contradiction, in either case, so P(yp®(m(R))y !, pT (m1(T)))
is empty, which completes the proof. (]

The following lemma is the main new ingredient in our proof.

Lemma 4.6. If we are in the setting of Proposition 4.4 and (R, Q) is a component
of #, then pR(m (R)) is either a generalized web group or a degenerate group
without accidental parabolics.

Proof. Let 7 be the invariant system of horoballs for I" obtained by considering
the pre-images of the non-compact components of N(g,) where N = H3/T. If
(R,Q) € %, let % be the induced subcollection of .77 associated to the subgroup
pR(m (R)) and let Ng¥' = Nl‘f,if‘.

We first show that a relative compact core (Mg, Pg) of N,‘Q%& has pared incom-
pressible boundary. Recall that Lemma 2.2 implies that (R, Q) is a pared manifold
with pared incompressible boundary. Let PRQ denote the collection of components
of Pz whose fundamental groups are in the conjugacy class of p® (7 (Qy)) for some
component Qp of Q. Since there is a pared homotopy equivalence

j: (R.Q) = (Mg, FF).
every component of 80(MR,PRQ) is incompressible (see Bonahon [10, Prop. 1.2]
or [20, Lemma 5.2.1]). Since dyo(Mg, Pg) is obtained from dy (MR,PRQ) by remov-
ing incompressible annuli, dy(Mg, Pg) is also incompressible, so (Mg, Pg) also has
pared incompressible boundary.

We next show that p®(7;(R)) has no accidental parabolics. If p® (7 (R))) has
an accidental parabolic, there exists an essential annulus E in (Mg, Pg) so that one
component of JE is contained in P and the other is contained in dy(Mpg, Pr). No-
tice that E is also an essential annulus in (MR,PRQ). Thus, there is a component



WINDOWS, CORES AND SKINNING MAPS 31

Yy of the characteristic submanifold Z(XR,PRQ), so that E is isotopic into Xy. Jo-
hannson’s Classification Theorem [28, Thm. 24.2] implies that we may assume
that the pared homotopy equivalence j between (R, Q) and (MR,PRQ ) has the prop-
erty that j(X(R,Q)) = Z(MR,PRQ ) and j is a homeomorphism from the (closure of
the) complement of L(R, Q) to the (closure of the) complement of Z(MR,P,%2 ). If
¥y is a solid or thickened torus component of Z(MR,PRQ), then £; = j1(Xo) is a
solid or thickened torus component of £(R,Q). It follows that any annulus B in
the frontier of X; would be an essential annulus in (R,Q) with the property that
Lor(B) = 0, which is disallowed by our assumptions. If ¥y is an interval bundle

component of Z(MR,PRQ), then £; = j~!(Xy) is an interval bundle component of
X(R,Q). However, by [20, Lemma 2.11.3], the restriction of j to (£;,Fr(X;)) is
pared homotopic to a pared homeomorphism % : (£1,Fr(X)) — (X0, Fr(Xo)). Then,
B = h~'(E) would again be an essential annulus in (R, Q) with the property that
{pr(B) = 0, which is again disallowed by our assumptions. Therefore, p* (7 (R))
has no accidental parabolics.

Since the relative compact core of N;f has pared incompressible boundary and
p® (7 (R)) has no accidental parabolics, Lemma 3.2 in [6] implies that p® (7 (R))
is either a generalized web group or degenerate group without accidental parabol-
ics. U

Proof of Proposition 4.4: Let {I'',....I*} = {p®(m1(R))}(r 0)cr- We re-order
so that {T'!,... T"} are generalized web groups and {I"*!,... T*} are degenerate
groups without accidental parabolics. Let (R;,Q;) be the component of %, so that
I';= pRi(ﬂl (Rl))

For i,j € {1,...,r}, Lemma 4.5 implies that if y € " and i # j or if i = j
and y € ' — T, then the limit sets of yT"y~! and IV intersect in at most one
point. Since each component of Q(I") is bounded by a quasi-circle, we immedi-
ately conclude that ¥(A(T'/)) is contained in the closure of a component of Q(I™).
Therefore, {I'!,...,I"} is a precisely embedded collection of generalized web sub-
groups of I'. Proposition 4.3 then implies that there is an associated collection
{(11,2)),...,(Y",Z,)} of disjoint relative compact carriers for {T"',...,.I"} in N7 .

Since I'"*! is a degenerate group without accidental parabolics, the Covering
Theorem [18, 46] may be used, exactly as in the proof of [15, Prop. 6.10], to show
that there exists a neighborhood U of an end of N, ,‘{i | = Fr41 X R, for some compact
surface F,; 1, which is identified with F, | x (k,11,%0) and 7g, ., (U) embeds in N,
under the obvious covering map p,1 : Nl‘fi , — N. One may then choose a relative
compact carrier (Y,41,Z,+1) for Iy of the form

Yrt1,Zr41) = (Pre1(Frp1 X [5,5+1]), prs1 (OF, X [s,5+ 1]))

for some s > k.11 so that Y, is disjoint from Y; U---UY,. One similarly uses
the Covering Theorem to iteratively choose a relative compact carrier (Y, ;,Z, ;)
for I';, ; which is disjoint from ¥; U---UY,; ;. One finally arrives at a disjoint
collection {(Yz,Zr) }(r 0)c of relative compact carriers for {I"}7_,. O
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4.3. Proof of the uniform cores theorem

We now complete the proof of Theorem 4.2 (and hence Theorem 4.1). The proof
breaks into several steps which we briefly summarize.

The first step is to use the convergence theorems we have been developing to
identify a robust system of annuli .2 so that (a subsequence of) our given sequence
{pn} converges on the pieces of M,,. We then find an embedded submanifold ¥ in
the union of geometric limits of {N,, }, and a homotopy equivalence h: M, — Y.
In Step 1 we do this for each geometric limit separately. In Step 2 we combine the
geometric limits and produce an embedding y;, : Y — N, for each large enough n.
Attaching the pieces of ¥, = y,(Y) along Margulis tubes, we obtain the submani-
fold C, C N,, which will be our compact core. In Step 3, we combine & and , to
get amap s, : M — C, in the correct homotopy class.

Note that, at this point, s, is not known to be a homeomorphism even on the
components of M. Indeed, even in the case of a convergent sequence of represen-
tations the homeomorphism type of the limit may differ from that of the approxi-
mates, as discovered by Anderson-Canary [3], and this phenomenon accounts for
many of the difficulties in this proof.

In Step 4 we show that s, is a homotopy equivalence and conclude that C, is in
fact a (relative) compact core of Ny, . In Step 5 we show that s, is indeed homotopic
to a homeomorphism 5,. Note that here the assumption that [p,] € AHy(M, P) is
crucial: it means that an embedding from M to N,, in the right homotopy class actu-
ally exists. It requires some extra work to ensure that 5, respects the decomposition
induced by the annuli <. Finally in Step 6 we use the geometry of the geometric
limits to choose a metric m on M., which makes our final maps 2-bilipschitz.

Step 1: Embedding the partial cores. Consider a sequence {p,} in D(M, P) of
representatives of the sequence {[p,]}. We may apply Corollary 2.9 to remark,
subdivide by annuli and obtain a subsequence that converges on the pieces. That
is, let {¢, : (M,P) — (M, P)} be the sequence of homeomorphisms which are the
identity on the complement of X(M, P), and 7 the robust collection of annuli for
which the conclusions of Corollary 2.9 hold. To lighten the notation we can as-
sume, without loss of generality, that each ¢, is the identity and that {p,} is the
subsequence. Hence we have

(1) limfp, (o) =0,

(2) {pn} converges on M., up to conjugacy, and

(3) if B is an essential annulus in (M, P,/ ), then

lim£, (B) > 0.

For each component (R,Q) of M., we have a sequence {p,"} of conjugates
which converge on 71 (R) to p¥, and a corresponding sequence {bX € N, } of base-
points, which are the projections of a fixed basepoint 0 € H? as in the setup of
Lemma 2.4. We may pass to a subsequence so that if (R, Q) and (S,7) are com-
ponents of M., then d(R,S) = limd(bR,b3) exists and lives in [0,00]. We say
two components (R,Q) and (S,T) are nearby if d(R,S) is finite. This defines an
equivalence relation on the set of components of M,,. For an equivalence class %
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of components, Lemma 2.4 implies that there is a single sequence of conjugates
{pi"} which converges up to inner automorphisms on Z, and (again passing to a
subsequence) shares a geometric limit ' with quotient Ny;.

We can then apply Proposition 4.4 to obtain, for each equivalence class %, a col-
lection { (Y&, Zg) } (r,0)cz of disjoint relative compact carriers for {p® (71 (R)) } (r,0)c

in N7£. Let Yo = U g g)cz Y& and Zzz = U (g 0)c2 ZR-
For each (R, Q) € Z, let Zlg be the collection of components of Zg which lie in
the homotopy class of p® (7 (Q)). There exists a map of pairs

hg : (R,Q) — (YR7ZI§€2)

which is a homotopy equivalence from R to Yk and restricts to an orientation-
preserving embedding on Q.

The following elementary lemma from [20] implies that /g is a homotopy equiv-
alence of pairs.

Lemma 4.7. (Canary-McCullough [20, Prop. 5.2.3]) If (M}, P)) and (M>,P,) are
pared manifolds and h: (My,P) — (My, Py) is a map of pairs, so that h is a homo-
topy equivalence from M\ to My, then h is a pared homotopy equivalence.

We may combine the maps on each component to obtain a map

he=Jhe: |J (R.Q)— (Yo.Zz).
(R,Q)e%

Step 2: Building the core C,. A crucial step in the proof is the construction of a
compact core C, in the approximate N, for all large enough n. Using elementary
facts about geometric limits we will pull back the carriers Y5 to submanifolds
of Np,, and then attach them along the thin parts associated to the annuli .27 to
obtain C, together with maps from M to C, which we will then show are homotopy
equivalences, and eventually promote to homeomorphisms.

We first make a small adjustment to (Y4,Z), caused by a technical need to
assure that C,, may be pared so that it is a relative compact core for Ny, \. T¢ ,(P),
whereas the annuli of Z5 have been chosen to lie in dT2¢(Zs). Thus, for each
annulus Py of P which lies in a component (R, Q) of M, let Zy = hg(Py) be the
associated component of Zg. We “push” Zj into dT¢(Zy) by adding to Y a radial
collar of Zy in Tre(Zp) \ Te(Zp). To simplify notation we continue to call the
resulting pared manifolds (Y, Zg), and the homotopy equivalences /.

For all large enough n, Lemma 2.5 provides a 2-bilipschitz map

W Y — Np,
such that for each (R, Q) € Z,

(1) W,ly, is in the homotopy class determined by p, o (hg); !,
(2) If Zy = hg(Ry) and Py is a component of QN P, then

Ilfn(YR) C an N Tgﬁ(P()) and WH(ZO) C aTng(PO)
(3) If Zp = hg(Qo) and Qy is a component of Q \ P, then
Vn(Yr) C Np, T2 »(Qo) and Vn(Zo) C dT2e.1(Qo).



34 J. BROCK, K. BROMBERG, R. CANARY, AND Y. MINSKY

(Here, T¢ ,(Fy) denotes the component of (N, )(g.¢) in the homotopy class of A.)
If # and %' are distinct equivalence classes of components of M/, the fact
that d(R,R') = oo for all (R,Q) € Z and (R',Q') € %' implies that ¥ (Y) and
w7 (Yq) are disjoint for all large enough values of n. To see this, note first that
Lemma 2.4 tells us that the basepoints b% for (R, Q) € % remain a bounded distance
from the basepoints b’? for the common sequence of conjugates that converges for
all R € #. Now the maps w7 take the limiting basepoint 5% to b7 (see Lemma
2.5) so we may conclude that y”(Y;) remain at bounded distance from 5% for
each (R,Q) € %, and similarly for %’. Hence the distance between w7 (Y;) and

!

w7 (Yy) goes to oo, so they are eventually disjoint. Now let

Y=U¥Ys, h=Uhs, w=Uw' ad Y,=y()

noting that y,, : ¥ — Y, is an embedding for large n.

We now construct a submanifold C,, as the union of ¥, with solid or thickened
tori in Toe (%) — Ten(7), each of which is attached to one or more annuli in
W, (h(Fr(M.))). Let Toe ,(A;) be a Margulis tube for a component (possibly sev-
eral) A; of &7. If £, (A;) > 0, we append Taen(A;) to Y,. If not, we choose an
annulus (if T2¢ ,(A;) is a rank one cusp) or torus (if To¢ ,(A;) is a rank two cusp)
B; in 0Ty ,(A;) which contains Y, N d Ty ,(A;) in its interior, and append to Y, the
set of points in T2 ,(A;) \ T¢ »(A;) Which project radially to B;.

To give C, a pared structure, note first that each annulus Py C P in a compo-
nent (R, Q) of M, is already taken by hg to an annulus in dT¢ ,(Py). If Py is a
component of P lying in a component U of M\ M, then U corresponds to a cusp
T2¢ »(U) and the intersection of C, with dT¢ ,(U) is an annulus or torus. Putting
all these components together we obtain a pared locus P, = C, N dT¢ ,(P).

Step 3: Mapping M to C,. Next we define a map s, : (M,P) — (Cy,P,), such that

e s, is in the homotopy class of p,, viewed as a map from M to N,

i Sn|M&/ = Wn Oh’
e s, maps P to P, homeomorphically.

Since [p,] € AHy(M, P), there exists an orientation-preserving embedding

K. : (M,P) — (N5, ,ONy )

in the homotopy class of p,. After an isotopy along the boundary, we may assume
that x;,(P) is the pared locus P, of C, and that k;, agrees with y, oh on M, NP.

Since W, o h is homotopic to |y, and each element of </ U P is collared in
M, there exists an extension s/, of ¥, o h to all of M, which is homotopic to k;, as a
map of pairs and equals k, on P. If U is a component of M \ M, then it is a solid
or thickened torus, and Fr(U) is mapped by s/, into the boundary of the associated
Margulis tube Ty ,(U). Since m; (U) is a maximal abelian subgroup of 7; (M) and
71 (U) is its own centralizer in 7 (M), the restriction s}, |y is homotopic, relative to
Fr(U)U (dUNP), into C, NTae ,(U). After performing such a homotopy for each
U we obtain the desired map s,.
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Step 4: Showing C, is a core. We now claim that (C,,B,) is a relative compact
core for N, — T¢ ,(P). To prove this we first note the following lemma proved in

[6].

Lemma 4.8. ([6, Lemma 5.2]) For i = 1,2, let M; be a compact, orientable, ir-
reducible 3-manifold with incompressible boundary and let V; be a 3-dimensional
submanifold whose frontier Fr(V;) is non-empty and incompressible. If g : My — M,
is a continuous map such that

() g7 () =W,
(2) g restricts to a homeomorphism from V| to V,, and
(3) g restricts to a homotopy equivalence from M|\ V| to M \ V3,

then g is a homotopy equivalence.

We can apply this lemma with M} = M and M, = C,,, where V] is a collar neigh-
borhood .#"(.27). Since s, by construction is an embedding on 7 and takes M ~ .o/
to the complement of s, (%), we can assume after a small homotopy that s, is an
embedding on Vj, and setting V> = s,(V}), that s, ' (V3) = Vi as well. The com-
ponents of M \. &/ are isotopic to components of M., or to the solid or thickened
tori of M ~ M., and s, is a homotopy equivalence from each of these to the corre-
sponding component of C, \ s,(.%7), again by construction. Moreover we note that
sy 1s bijective on the components of M ~\ 7 since no two components have conju-
gate fundamental groups, and that it is surjective to the components of C, \ s,,(%)
by definition of C,,. We conclude that s, is a homotopy equivalence of M| \. V] to
M, \\ V. Lemma 4.8 therefore implies that s, : M — C,, is a homotopy equivalence.

Since s, is in the homotopy class of p,, as a map into N, , the inclusion of
1 (C,) into 7; (Np, ) is an isomorphism, so C,, is a compact core for N,. Then, by
construction, (C,, P,) is a relative compact core for N;;‘n. Lemma 4.7 implies that

sn: (M,P) — (Cp,By)

is a homotopy equivalence of pairs. It follows from this that (C,, P,) is a relative
compact core for Ny, \ T¢ ,(P).

Step 5: Homotopy to the final embedding. We next show thats, : (M,P) — (C,,P,)

is pared homotopic to a homeomorphism. Recall that relative compact cores are

unique up to admissible isotopy and their complements have product structures.

(See section 2.1.) Therefore, there exists a pared homeomorphism g, : (C,, P,) — (x,(M), P,)
in the isotopy class of the inclusion map. Then s, = g, ' o &, is a pared homeomor-

phism in the homotopy class of p,, and hence homotopic to s,. Since NSH deforma-

tion retracts onto C,, the homotopy between s, and §, can be presumed to remain

in C,.

We wish to show that 5, can be admissibly isotoped so that it preserves the
decomposition of .o/ That is, it takes any component R of M, to y,(Yz) and any
component U of M — M, to To¢ ,(U) NC,. To do this, we first show that 5, can be
admissibly isotoped so that 5, (Fr(M,/)) = s,(Fr(M)).
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Let % denote the collection of components of Fr(M.,). If B € B, let B =

5, (s2(B)) and
B = {B}Beﬂ/;?-

Notice that if B € 4, then s,,(B) is an essential annulus in (C,, P,), since otherwise
it would bound a solid torus V in C,, such that dV — B C dC,,. So, since 5, is a pared
homeomorphism, B is an essential annulus in (M, P). The enclosing property for
characteristic submanifolds, see Johannson [28, Prop. 10.7], implies that B is
admissibly isotopic into £(M,P), so we may assume that 2 is contained in the
interior of £(M, P).

If a component B of B is homotopic into a solid or thickened torus component
X of £(M, P) but is not contained in X, it must be contained in an adjacent interval
bundle component, and cobound a solid torus with a component of Fr(X). Since 7
is embedded, all these solid tori are disjoint or nested. Thus, after adjusting §, by
an isotopy supported on a regular neighborhood of the union of such solid tori, we
may assume that each component of P that is homotopic to a solid or thickened
torus component of (M, P) is already contained in it.

Solid/thickened torus components: Consider a component V of M \. M, which is
a regular neighborhood of a solid or thickened torus component X of (M, P). Let
Py C A be the components of Fr(V) and let «@v denote the corresponding subset
of Z. By the previous paragraph we know that the components of %y lie in the
interior of X.

The pair (X,Fr(X)) admits a Seifert-fibration over (E,d), where E is either a
disk with d a collection of arcs in dE, or an annulus with d a collection of arcs in
one component of JE. There is at most one singular point in E if it is a disk, and
none if it is an annulus. Since @V is a collection of essential annuli in X, it may be
isotoped, by an isotopy supported on X, to the S!-bundle over a collection e of arcs
in E with the end points of each arc in distinct components of the complement of
d (see Johannson [28, Prop. 5.6]). Since s,,(ZAy ) bounds a solid or thickened torus
in C, whose fundamental group is a maximal abelian subgroup, the same is true
for ,@Zv. It follows that the arcs e are the boundary in E of a connected region W
which is either an essential subannulus when E is an annulus, or a disk when E is a
disk. Moreover if E has a singular point then it must lie in W, since otherwise the
preimage of W would be a solid torus whose core is homotopic to a proper power
of the core of X, and hence generates a non-maximal subgroup of m;(M). Since
the cardinalities of e and d are equal, it follows that each component of e must be
parallel to a component of d across a region that does not contain a singular point.
It follows that @V is isotopic to the frontier of X, and hence to %y, by an isotopy
supported on V.

Interval bundle components: If ¥ is an interval bundle component of £(M, P) with
base surface F, let £ be obtained from X by appending the closure of ./"(A) when-
ever A is a component of Fr(X) contained in 7. Then Y. is an interval bundle with
base surface F (which is obtained from F by appending collar neighborhoods of
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certain components of dF). Let %Ay denote the components of % which are con-
tained in £ and not isotopic into a solid or thickened torus component of X(M, P).
By construction, the corresponding subset @g of % is contained in the interior of
Y. In an interval bundle, every system of disjoint essential annuli is admissibly
isotopic to the subbundle over a multicurve in the base (again see Johannson [28,
Prop. 5.6]), and two such multicurves are isotopic if and only if they are homotopic.
Since %y and @z are homotopic, they are isotopic to sub-bundles over homotopic
collections of curves, so they are isotopic. Therefore, we - may adm1551b1y isotope
Sn, by an isotopy supported on a regular neighborhood of %, so that 932 = Py

Since the supports of all the resulting isotopies may be chosen to be disjoint,
they can be performed simultaneously. Therefore, we have isotoped s, so that

Since §,, is a homeomorphism, s, (Fr(M.,)) = s,(Fr(M.,)) and s, takes compo-
nents of M \ Fr(M,) to components of C, \ s,(Fr(M,,)), we see that 5, also takes
components of M \ Fr(M,) homeomorphically to components of C,, \ s,,(Fr(M,)).
Notice that every component of M, has non-abelian fundamental group, while ev-
ery component of M — M, has abelian fundamental group. Since 5, is homotopic
to s,, and no two components of M, are homotopic, we see that 5,(R) = s,(R) =
v, (Yg) if R is a component of M,,. Similarly, if U is a component of M ~\ M,
then 5,,(U) = s5,(U) = C, N T2 »(U). In short, our decomposition is preserved by
Sn.

Step 6: The metric. Let g be large enough that our constructions work and let
g: (M, Pey) — (Y,0Te(Py NP)UIT2e(Py \ P))

be the diffeomorphism given by the restriction of 1//,;)1 0 8p, t0 M. Let m be the
metric given by pulling back, by g, the metric on Y to a metric on M, . For all large
enough n, define

fu: (M, Poy) — (Y,,0Te y(Py NP)UAToe (Pey \ P))

to be given by y,, o g. Notice that f;, is then 2-bilipschitz with respect to m on M.
Since f, is isotopic to 5, on Fr(.</) (and pared homotopic on (M., P.,)) and $,
extends to a pared homeomorphism between (M, P) and (C,,P,), f, also extends
to a pared homeomorphism from (M, P) to (C,, P,) which is homotopic to s, and
hence in the homotopy class of p,. The remaining properties hold by construction
and are easily checked. Thus f,, is a model core map for (<7, m, €). This concludes
the proof of Theorem 4.2. ([

4.4. The algebraically convergent case

One can improve on the statement of Theorem 4.2 in the case when the sequence
{pn} is algebraically convergent. Specifically, after passing to a subsequence so
that {N,, } converges geometrically to a hyperbolic 3-manifold N, one may assume
that there is a single model core for all large enough #n, the model core isometrically
embeds in N, the partial core lifts to N, (where p = limp,), and the model core
map is globally 2-bilipschitz for all large enough n. This improvement will not
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be used in this paper, but we expect this strengthened form to have applications in
future work.

Theorem 4.9. Suppose that (M, P) is a pared manifold with pared incompressible
boundary, € € (0,us/2), and {p,} is a sequence in D(M,P), representing points
in AHy(M,P), and converging to p € D(M,P). Moreover suppose {p,(m1(M))}
converges geometrically toI"and T : Ny — N = H3 /T is the covering map.

Then, there is a metric m on M and, for all large enough n, a 2-bilipschitz
embedding

fu: (M.P) = (Np, \ Ten(P),9Te.n(P)).

and a homeomorphism ¢, : (M,P) — (M, P) supported on (M, P), so that

Ju(9OM) C Np, \ (Np, ) 0.¢)

and f, o ¢y is in the homotopy class of p,.
Moreover, there exists a robust collection <7 of essential annuli for (M, P), such
that

(1) £p(«/) =0 and if B is an essential annulus in (M, P.), then £,(B) > 0.

(2) IfA € o, then mi(A) is a maximal cyclic subgroup of w1 (M).

(3) There exists an embedding g : M — N, isometric with respect to m, such
that if R is a component of M, then g|g lies in the homotopy class of
7. 0 p|7r1(R))-

@) If A/J 7 s obtained from M ; by appending all components of M\ M,y which
contain a component of P, then ¢, is supported on M \]\//} o« and the restric-
tion of g to M, lifts to an embedding in Np.

The proof of Theorem 4.9 is simpler than that of Theorem 4.2 and is essentially
contained in section 8 of Anderson-Canary-McCullough [6], but we will explain
how to modify our proof of Theorem 4.2 to obtain Theorem 4.9.

Sketch of proof of Theorem 4.9: Choose </ to be a maximal robust collection of
essential annuli so that ¢, (/) = 0, so &7 satisfies (1).
Property (2) will follow quickly from the following topological lemma.

Lemma 4.10. Suppose that (M, P) is a pared 3-manifold with pared incompress-
ible boundary and h : (M,P) — (Mo, Py) is a pared homotopy equivalence. If A is
an essential annulus in (M,P) and m(A) is not a maximal cyclic subgroup of M,
then there exists a root o, of the generator of mi(A) so that h(@) is not homotopic
into the boundary of M.

Proof. Up to isotopy, the annulus A is either (a) the regular neighborhood of an
essential Mobius band in an interval bundle component Xy of £(M,P) or (b) a
component of the frontier of a solid torus component V of X(M,P) and m;(A) is
a proper subgroup of 7;(V), see Johannson [28, Lemma 32.1]. Since (M, P) has
pared incompressible boundary, (M, Py) also has pared incompressible boundary,
see [10, Prop. 1.2] or [20, Lemma 5.2.1]. Johannson’s Classification Theorem [28,
Thm. 24.2] implies that 4 may be admissibly homotoped so that 2~ (£(My, Fy)) =
Y(M,P) and h is a homeomorphism on M —X(M,P). In case (a), one may apply
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[20, Lemma 2.11.3] to admissibly homotope /4 so that it is a homeomorphism of
Y, to an interval bundle component Xy of X(My, Py), while in case (b), h(A) is a
frontier annulus of a solid torus component V, of (Mo, Py) so that m;(h(A)) is a
proper subgroup of 7 (Vp). In either case, the core curve of A has a root ¢ in 7y (M)
so that A, () is not represented by a simple closed curve on dM. O

Now suppose A is an essential annulus in 27, so p(m;(A)) is parabolic, since
p(A) =0. Let (Mp,Q,) be a relative compact core for Ny and let P, be the col-
lection of components of Q, lying in dT(P). Then there exists a pared homotopy
equivalence h, : (M,P) — (M,,P,) in the homotopy class of p. If m;(A) is not a
maximal cyclic subgroup, then, by Lemma 4.10, there exists a root ¢ of 7 (A) so
that () is not homotopic into dM,. Since p(m;(A)) is parabolic, p(a) is also
parabolic. However, this contradicts the fact that (M,,Q,) is a relative compact
core for Ng. Therefore, (2) holds.

Let Z be the collection of components of (M, P./). Proposition 4.4 provides a
disjoint collection {(Y,Zg)} (r g)ez of relative compact carriers for {p®(m; (R))}
in N%¢. Let hg : (R, Q) — (Yg,Zg) be the associated pared homotopy equivalence.

We may adjust {(Yg,Zg)} and the maps {hg}, exactly as in the proof of Theorem
4.2, so that if Py is a component of P contained in a component (R, Q) of %, then
hg(Py) CONE. LetY =Yg, Z=UZrand h=hg:Y — N®. Letn :Y — N, be
the section of 7 over Y.

Let T,¢(%7) denote the components of N(0,2¢) associated to the components of
</ . For each such component T, let B(T) be an incompressible annulus (if T has
rank 1) or torus (if not) containing the intersection of dT with Z. Let B(</) be
the union of these annuli and tori. We then append to Y the set of all points in
Toe (/) \ Te(o/) which project radially to B(.2/). The resulting submanifold of
NE will be called C. (Notice that property (2) implies that CN'T,.(A) is always a
compact core for Tp¢(A). This fact is what allows us to use a simplified and uni-
form construction of C in the algebraically convergent case.) We construct a pared
locus P¢ for C by first including A(PNM,,). If Py is a component of P contained in
a solid or thickened torus component X of X(M, P) and A is a component of Fr(X),
then we add dT¢(A) NC to Pc. In particular, Pc = N NC.

For all large enough n, there exist 2-bilipschitz maps y;, : C — N, so that y,
takes CNIN® to INj , Y, takes CN (N\N?¢) to (N, \Ngf) and y,y, lies in the
homotopy class of p,op~! o (n|y,)« for all components Yz of Y. Let (Cy,P,) =
(¥ (C), y,,(Pc)). One may then, just as in the proof of Theorem 4.2, construct, for
all large enough n, a homeomorphism s, : (M, P) — (C,, P,) in the homotopy class
of p, such that 5,(R) = y,(Yg) for all (R,Q) € Z.

Let g: (M,P) — (C,Pc) be given by (y,,|c) ! o5y, (for a fixed large enough
np) and pull back the metric on C to obtain a metric m on M. Then f, = y,0g
is a 2-bilipschitz homeomorphism, for all large enough n. (Notice that the pres-
ence of an embedded copy of M in the geometric limit allows for a more concrete
construction of f, in the algebraically convergent case.) Let

—1 _~ ~1 -1 _~
¢n:fn 08y =S8y, OWYngOW, O3y
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and notice that f, o ¢, = 5, is in the homotopy class of p, as desired. By the choice
of y, in the previous paragraph, the restriction of ,, o ¥, ! to each component
of 5,(M./) is in the homotopy class of p,, o p, . In particular, the restriction of
Wi, 0 W, ! 10 5, (M) is homotopic to 5, 05, !, so ¢, is homotopic, hence admissi-
bly homotopic (see Lemma 4.7), to the identity on (M., P,y). Therefore, we may
assume that ¢, is the identity on M., and thus on M \ X(M,P) C M. It follows
that f;, is a model core map. Property (3) is immediate from the construction.
Notice that 1 o g is a lift of the restriction of g to M,. Suppose that V is a compo-
nent of M \ M, which contains a component Py of P. It follows from [15, Prop. 2.7]
and the fact that m; (F) is a maximal abelian subgroup of m; (M), that 7; (T (P))
is the geometric limit of {p, (7;(Py))}. However, one may assume, after conjugat-
ing by a compact family of elements of PSL(2,C), that p, (7 (Py)) all lie in the
parabolic subgroup stabilizing co. Within this subgroup, which is a planar transla-
tion group, algebraic limits equal geometric limits, and so 7 (T(R)) = p(m1 (R)).
Therefore Ta¢ (Po) lifts homeomorphically to a component of (N ) g 2¢), Which im-
plies that 11 o g can be extended over V. Lemma 2.5(4) then implies that the re-
striction of W, oy, ! to each component of 52(M.7) is in the homotopy class of
Pny © P, ' We may thus assume, by the argument in the previous paragraph, that
¢, restricts to the identity on M. So property (4) holds as well. (]

5. Proof of the main theorem

We are now ready to prove the main theorem, which we state here in the pared
setting:

Theorem 5.1. Let (M, P) be a compact, orientable, pared 3-manifold with incom-
pressible pared boundary. For each curve o in dp,,(M,P), there exists K = K()
such that

lo

(M.P

o) (@) <K
forall p € AHy(M, P).

Proof of Theorem 5.1: Let & be a curve in d,,, (M, P), and let S be the component
of do(M, P) containing . Fix r < u3/2 such that any curve of length L, intersect-
ing T,(f) is homotopic to a power of . Applying Theorem 4.1 with € = r we see
that, given p € AHy(M, P), there is a model core (.7, m,r), chosen from a finite
list, with an associated model core map f.

Noting that ¢ can be made disjoint from .27, choose a minimal length represen-
tative of ¢ in dy(M, P) "M, and let oty be its f-image in N,. Its length is bounded
by some Ly depending on & and the finitely many possibilities for m. The curve
o is contained in F = f(S) which, by the properties of a model map, is contained
in the r-thick part of N,.

Let 7w : Ns — N, be the cover associated to 71 (S) and let F be the homeomorphic
lift of F to this cover. Let @ be the lift of oty to F. By definition, 6(SM7 P) (p) is the
bottom ending invariant of Ns.
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Let 7 be the invariant system of horoballs for p(m;(M)) which is the pre-

image of the non-compact components of N, and let 7 denote the induced
subcollection of invariant horoballs for p (7, (S)). If C = f(M) and D = f(P), then

(C,D) is arelative compact core for Np‘” . Moreover, F is a level surface for NS% .

Let C be the component of 7~ (C) which contains F in its boundary. Then C
lies below F. Suppose that 3 is a curve in S which intersects o essentially with
length £,(B) < Ly. By our choice of r, B* lies in Ng’. We claim that either B* lies
above F or B* intersects C.

Suppose B* does not lie above F. If B* does not intersect C it must be con-
tained in a component U of Ng \ C which lies below F. The component U shares
a boundary component E with C. A homotopy of B* to F, intersected with C and
surgered, gives rise to an immersed essential annulus in c joining the lift of f(B)
to a curve in E, and hence to an immersed essential annulus in C joining f(f) to
a curve in dC. Therefore, by Theorem 2.1(4), 8 is homotopic into the window of
M, so cannot have essential intersection with . This contradiction implies that *
must intersect C.

FIGURE 5. In N, B intersects o so B; must meet C if it doesn’t
lie above F. But f3; is in the window so 3 is not constrained.

Any curve that does not lie above o also does not lie above F. We conclude that
the geodesic representative of every curve in 4(@, Ly,) intersects C.

Notice that if two (homotopically) distinct curves in § are in the same homotopy
class in M, then there is an immersed essential annulus in M joining them, so both
curves are homotopic into the window (again by Theorem 2.1(4)). It follows that
neither curve could intersect o. Therefore, any two distinct curves in €(,Ly,)
project to (homotopically) distinct curves in N,.
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So, the geodesic representatives of curves in €(&, Ly,) project to distinct curves
which intersect C. Our choice of r guarantees that the geodesic representative of
any curve in ¢ (@, L) cannot intersect T,(f (7)) (if it did it would be homotopic
into (M, P), again by Theorem 2.1(4), so would not intersect o essentially), so it
must intersect f(M,,). Since each component of f(M,,) has uniformly bounded
diameter, there exists a uniform bound on the number of geodesics of length at most
L;, which can intersect f(M,/). This bounds the number of elements of €' (&, Ly,).
Moreover, there is a lower bound on the length of the geodesic representative of
any curve in 4 (a,Ly,), since if the closed geodesic is very short, its Margulis tube
would have very large radius and would thus be forced to contain an entire com-
ponent of f(M,,), which is impossible. Finally, note that since F is in the r-thick
part, so is F. This establishes all the hypotheses of Theorem 3.1, which therefore
gives a uniform upper bound on £, (,)(@) and completes the proof. ]

The generalization of Corollary 1.2 to the pared setting is the following:

Corollary 5.2. Let (M, P) be a compact, orientable, pared 3-manifold with incom-
pressible pared boundary. If W is a component of 0, (M,P), then the image of
G(VX/I’P) is bounded in F(W).
Proof. If W is an annulus then .7 (W) = [0,0) and G(VX,[ p) is the map that records
the length of the core of W in the skinning image. Hence the bound follows imme-
diately from Theorem 5.1.

For any non-annular W we note that, since fc(Mp) (p)(@) < oo for each ot in W,

W must be contained in a geometrically finite component of 6y p)(p) (in fact this
statement is explicitly demonstrated in the first step of the proof of Theorem 3.1).
Thus, lifting to the cover associated to W we are able to define G(VXL P) (p)e F(W).

Now for any X € .% (W) an upper bound on the lengths in X of a filling system of
non-peripheral curves in W restricts X to a compact subset of .% (W). Thus again
Theorem 5.1 implies our statement. ([
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