THE CURIOUS MODULI SPACES OF UNMARKED
KLEINIAN SURFACE GROUPS
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ABSTRACT. Fixing a closed hyperbolic surface S, we define a moduli
space AZ(S) of unmarked hyperbolic 3-manifolds homotopy equivalent
to S. This 3-dimensional analogue of the moduli space M(S) of un-
marked hyperbolic surfaces homeomorphic to S has bizarre local topol-
ogy, possessing many points that are not closed. There is, however, a
natural embedding ¢ : M(S) — AZ(S) and compactification AZ(S) such
that ¢ extends to an embedding of the Deligne-Mumford compactifica-
tion M(S) — AZ(S).

For a closed oriented hyperbolic surface S, the moduli space M(S) of
hyperbolic (or Riemann) surfaces homeomorphic to S is a familiar and in-
teresting object. Hyperbolic 3-manifolds homotopy equivalent to S have
also been intensely studied since the foundational work of Ahlfors and Bers.
An analogous moduli space of (unmarked) hyperbolic 3-manifolds homo-
topy equivalent to S is rarely considered. Here we define such a topological
moduli space AZ(S), study a bit of its local topology, and define a natural
compactification AZ(.S).

Perhaps a reason for its anonymity, the local topology of AZ(S) is bizarre.
We can reinterpret interesting phenomena from the theory of Kleinian groups
as statements about AZ(S). There exist singly-degenerate Kleinian groups
whose ending lamination is fixed by a pseudo-Anosov homeomorphism. This
beautiful fact implies AZ(.S) is not well separated, possessing many points
that are not closed. Compactness of Bers slices implies that even the geo-
metrically finite points fail to form a Hausdorff space.

As penance for its local foibles, AZ(S) offers better global topological
behavior. Recall the Deligne-Mumford compactification M(S) is obtained
by adding Riemann surfaces with nodes. The space AZ(S) has an anal-
ogous compactification AZ(S) obtained by adding hyperbolic 3-manifolds
N homotopy equivalent to S cut along simple closed curves, such that the
corresponding “cut” homotopy classes in IV are parabolic. We begin by con-
structing an augmented deformation space AH(S), which is the analogue of
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the augmented Teichmiiller space, and then show that its quotient AZ(S)
is sequentially compact. Sequential compactness follows by combining the-
orems of Thurston [25, Thm.6.2] and Canary-Minsky-Taylor [10] to show
that, up to re-marking, a sequence in AH(.S) always converges on the com-
plement of a multicurve in S.

There is an embedding M(S) — AZ(S) with image the closed set of
Fuchsian manifolds. This embedding extends to an embedding M(S) —
AZ(S) of the Deligne-Mumford compactification. Hopefully connoisseurs
of the more familiar M(S) will find it interesting to see how the story
changes abruptly in 3-dimensions, with local structure suffering while global
compactness manages to survive.

Acknowledgements: The authors would like to thank the referee for a very
careful reading of the original manuscript and many helpful suggestions to
improve the exposition.

2. PRELIMINARIES

Let S be a compact oriented hyperbolizable surface with (possibly empty)
boundary. We do not assume S is connected. Denote the set of components
of S by ¢(S). For convenience, put a hyperbolic metric on S so that any
boundary curves are very short horocycles. In this case S embeds isometri-
cally into a complete finite area hyperbolic surface S homeomorphic to the
interior of S. By choosing the boundary curves to be sufficiently short, we
can assume the simple closed geodesics of S are contained in S. A multic-
urve b is a (necessarily finite) set of pairwise disjoint simple closed geodesics
on S. (As geodesics, no component of b is homotopic into 9S.) Let Nb C S
denote a small open collar neighborhood of b.

All hyperbolic 3-manifolds in this article are assumed to be oriented and
complete. Unless otherwise stated, they have no boundary. However, our
manifolds will not always be connected. Let ps > 0 be the Margulis constant
for hyperbolic 3-manifolds. Recall that s is a number with the following
property. If N is any hyperbolic 3-manifold then the subset of points in N
with injectivity radius at most ps is a disjoint union of two types of sets: an
embedded solid torus neighborhood of a simple closed geodesic with length
less than us, or a properly embedded product region T' x [0, c0) where T is
either a torus or a noncompact annulus without boundary [I]. Define the
cusps of N to be the components of the form 7" x [0, co).

We now give two definitions of the set H(S,dS) of marked Kleinian sur-
face groups associated to S; one algebraic and one geometric. These two
perspectives are both useful. Many of the following definitions will have an
algebraic and a geometric formulation. We begin with the algebraic defini-
tion. Let P C 0S5 be a subset of boundary components. (We are interested
only in the two cases P = 9S and P = ().) When S is connected, the
set H(S, P) of marked Kleinian surface groups associated to S is the set of
conjugacy classes of discrete faithful representations p : m1(S) — PSL2(C)
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such that if v € m1(.S) can be represented by a curve freely homotopic into
P, then p(v) is parabolic. If S is disconnected, H(S, P) is the Cartesian
product of H(R, P N R) over the components R of S. The notation H(S) is
shorthand for H(S, ().

Abusing notation slightly, we will often simply use p to denote an ele-
ment of H(S, P). If necessary, we will distinguish the representations of the
components of S using the notation {pr} re(s), Where ¢(S) is the set of com-
ponents of S. An element p of H(S, P) determines a hyperbolic 3-manifold

No= 11 B/pn(m(R)),

Rec(S)

together with a homotopy equivalence m, : S — N,, known as the marking
of N,, induced by the isomorphism 71(S) — N, (with the obvious modifi-
cation for disconnected S). The marking sends P into the cusps of N,. The
phrase, “a hyperbolic manifold in H(S,0S5),” indicates such a pair (N,, m,).

With this pair of objects in mind, we may define H(S, P) more geometri-
cally as follows. For an oriented hyperbolic 3-manifold N and a homotopy
equivalence m : S — N, (N,m) € H(S, P) if m takes P into the cusps of
N. Two pairs (N1, m1) and (N2, ma) are equal in H(S, P) if there exists an
orientation preserving isometry ¢ : Ny — Ny such that ¢ o m; is homotopic
to mo.

By Bonahon’s tameness theorem, any hyperbolic manifold in H(S,95) is
homeomorphic to S x R [4]. We could “stiffen” the above geometric defini-
tions using homeomorphisms rather than homotopy equivalences. Nothing
is gained from this, and we will keep the above more traditional definitions.

An element {pr}reqs) of H(S,0S) is Fuchsian if each pg is conjugate
to a representation with image in the group PSLy(R) of isometries of the
hyperbolic plane. Equivalently, a hyperbolic manifold in H(S, 0S) is Fuch-
sian if it contains an embedded totally geodesic hyperbolic surface homotopy
equivalent to V.

Define a topology on H(.S, P) as follows. Assume first that S is connected.
Consider the subset Homp(m(S),PSL2(C)) € Hom(m(S), PSLa(C)) of
homomorphisms taking conjugacy classes of P to parabolic elements of
PSLy(C). Put the compact-open topology on Homp (7 (S), PSLa(C)). Let
D denote the subset of faithful homomorphisms with discrete image. (The
set D is closed [12, 14].) The isometry group PSLs(C) acts by conjugation
on Homp(m(S), PSL2(C)). There is a subset O of Homp(m1(S), PSL2(C))
containing D such that the quotient of O by this action is a smooth complex
manifold. (The set O is the set of nonradical representations. See [I5] Sec.
4.3].) The subset D is preserved by the PSLy(C)-action, and it makes sense
to define the topological quotient

DA Homp(m (S), PSLy(C))
AH(S, P) := PSL, (G .
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AH(S, P) is a subspace of the manifold O/PSLy(C), which in turn can be
algebraically “completed” to the character variety X(S,P), an algebraic
variety which is intuitively the quotient of Homp(71(S), PSL2(C)) by the
PSLs(C)-action. For more information on this construction see [13| [15]. If
S is not connected then topologize H(.S, P) as the topological product of the
H(R,PNR) for R € ¢(S). This topology on AH(S, P) is called the algebraic
topology.

More geometrically, we say that a sequence {(Ny,,my)} in H(S,9S) con-
verges algebraically to (N, m) if there exist homotopy equivalences h,, : N —
N, such that m,, is homotopic to h, o m for all n and {h,} C°°-converges
to a local isometry on every compact subset of N. (The equivalence of these
definitions is discussed in [20], Sec. 3.1].)

The interior QF(S) of AH(S,0S) (as a subset of X(S5,05)) consists of
the quasifuchsian hyperbolic 3-manifolds [19, 23]. We recall that if N =
H3/T then its conformal boundary d.N is the quotient of the domain of
discontinuity for the action of I" on the Riemann sphere. A hyperbolic 3-
manifold N in AH(S, 05) is quasifuchsian if the conformal bordification N U
9.N of N is homeomorphic to S x [0, 1]. Bers [2] showed that a quasifuchsian
hyperbolic 3-manifold is determined by the conformal structure on S x {0, 1}
and that any conformal structure arises. If (X,Y) € 7(S) x 7(S), then we
let Q(X,Y) € AH(S,0S) be the quasifuchsian hyperbolic 3-manifold with
conformal structure X on “top” and conformal structure Y on the “bottom.”
(Here S denotes S with the opposite orientation.)

3. THE TOPOLOGY OF THE MODULI SPACE

We will assume throughout this section that S is not a thrice-punctured
sphere, since in that case H(S,05) is a point. The moduli set Z(.5,95)
of unmarked Kleinian surface groups is simply the quotient of H(S,0S5) by
the natural action of the mapping class group Mod(S) of isotopy classes
of orientation-preserving homeomorphisms of S. We recall that if ¢ is a
(representative of a) mapping class in Mod(.S), then ¢ acts on AH(SS,9S) by
taking p to po¢; !. An element of Z(S, S) is simply an oriented hyperbolic 3-
manifold N which is homotopy equivalent to S (by a homotopy equivalence
which takes 0S into the cusps of N), where we do not keep track of the
specific homotopy equivalence.

The moduli space Z(S,0S) inherits an algebraic topology which we de-
note by AZ(S,0S). In the algebraic topology, this moduli space is rather
badly behaved topologically. A first hint that this should be the case is the
observation, first due to Thurston [25] (see also McMullen [20]), that there
are points in H(S, 0S) which are fixed by infinite order elements of Mod(S5).
These points arise naturally as the covers associated to the fibers of finite
volume hyperbolic 3-manifolds which fiber over the circle. We recall the out-
line of Thurston’s construction. If ¢ : § — S is a pseudo-Anosov element of

Mod(S) and (X,Y) € T(S) x 7(S), then Thurston considers the sequence
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of quasifuchsian Kleinian groups p, = Q(¢"(X), ¢ "(Y)) in AH(S,0S5). He
shows that {p,} converges to a Kleinian group p with empty domain of
discontinuity which is a fixed point of the action of ¢ on AH(S,dS).

A minor variation on Thurston’s construction allows us to construct points

in AZ(S,0S) that are not closed.
Proposition 3.1. There are points of AZ(S,0S) that are not closed.

Proof. 1t suffices to consider the case when S is connected. Pick a pseudo-
Anosov homeomorphism ¢ : S — S and (X,Y) € 7(S) x T(S). If we let
pn = Q(X, ¢ "(Y)), then Bers [3, Thm.3] proved that {p,} has a convergent
subsequence with limit p € H(S, 05) which has non-empty domain of discon-
tinuity. Consider the sequence po ¢ C H(S,9S). Using Thurston’s Double
Limit Theorem [25], one can prove that up to subsequence this converges to
a manifold with an empty domain of discontinuity [20), 3.11]. Therefore the
fiber in AH(S, 0S) over the image of p in AZ(S,095) is not closed, implying
that the image of p is not a closed point. O

Remark: One may further show that if N is a degenerate hyperbolic 3-
manifold in AZ(S,9S) with a lower bound on its injectivity radius, then N
is not a closed point in AZ(S,0S). (More generally, one need only assume
that there is a lower bound on the injectivity radius of N outside of cusps
associated to 0S.) We recall that N is degenerate if its domain of discon-
tinuity has exactly one component and every cusp in IV is associated to a
component of 95. In this case, N has one geometrically infinite end and
there exists a sequence {h,, : S — N} of pleated surfaces, each of which is
a homotopy equivalence, exiting the geometrically infinite end of N. Since
h,(S) has bounded geometry (away from the cusps), one may re-mark the
maps h, so that the associated sequence of representations p, = (hy,). in
AH(S,0S5) has a convergent subsequence with limit p such that the domain
of discontinuity of p(71(S)) is empty. Again, it follows that NNV is not a closed
point of AZ(S,dS).

One can show that at least the geometrically finite points in AZ(.S,dS5)
are closed.

Proposition 3.2. If N € Z(S,0S) is geometrically finite then N is a closed
point in AZ(S,0S).

Proof. Let G be a graph in .S which is a bouquet of circles associated to a
minimal generating set of m1(.5). Given an element (NN, m) in the pre-image
of N under the quotient map H(S,0S) — Z(S,0S) one obtains a graph
m(G) in N, and the element (N, m) is determined by the homotopy class
of this marked graph. If {(N,m,)} is an algebraically convergent sequence
of elements of the fiber then one may assume that m,(G) has length less
than K for some K (perhaps after homotoping the maps m,). It follows
that there exist constants 0 < g9 < €1 so that if x € m,(G) (for any n),
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then injy(x) € [e0,€1]. (The existence of €1 is obvious. If curves penetrate
arbitrarily deeply into the thin part, but are not contained entirely within
the thin part, then they must be growing arbitrarily long, hence the lower
bound €¢.) Let C be the set of points in N with injectivity radius in [gg, €1].
Since N is geometrically finite, C' is compact. Therefore, there exists at
most finitely many homotopy classes of immersions of G into C' with total
length at most K. It follows that there are at most finitely many distinct
elements in the sequence {(N,m,)}, so the sequence is eventually constant.
It follows that the pre-image of N is closed, and hence that N is a closed
point. O

Surprisingly, the set of geometrically finite points in AZ(S,dS) is not
Hausdorff.

Proposition 3.3. The geometrically finite points of AZ(S,dS) do not form
a Hausdorff space in the subspace topology.

Proof. Let D € Mod(S) be a Dehn twist about a non-peripheral simple
closed curve on S. Pick (X,Y) € 7(S) x 7(S) such that X and Y are
not isometric. Let p, = Q(X,D™(Y)) for all n. By [3] and [16, Sec.3],
{pn} converges algebraically to a manifold whose “top” conformal bound-
ary component is isometric to X, and whose “bottom” conformal bound-
ary has developed a rank one cusp. Similarly, p, o D;" = Q(D"(X),Y)
converges algebraically to a manifold whose “bottom” conformal boundary
component is isometric to Y. In particular, the two limiting manifolds can-
not be isometric, thus building a sequence in AZ(S,dS) with two distinct
limits. (]

Historical Remarks. It follows from Bers’ simultaneous uniformization
[2] that the mapping class group Mod(.S) acts properly discontinuously, but
not freely, on the interior QF(S) of AH(S,0S). If we parameterize QF(S)
as 7(S) x 7T(S), then the action is just the diagonal action where Mod(.S)
acts on each factor in the usual manner. Its quotient is thus naturally a
bundle, in the orbifold sense, over the moduli space M (S) with generic fiber
homeomorphic to 7 (S). It has recently been shown [7] that AH(S, 9S) is the
closure of QF(S) (see also [0, [6]). The examples above (based on the cited
work of others) show that Mod(.S) does not act properly discontinuously on
AH(S,0S) and hence does not act properly discontinuously on X (S, d5S).
Moreover, Souto and Storm [2I] showed that Mod(S) acts topologically
transitively on the closure of the set of points in the frontier of QF(.S) whose
conformal boundary does not contain a component homeomorphic to .S. One
can further show that any open, Mod(S)-invariant open subset of X (.S, 0S)
on which Mod(S) acts properly discontinuously is disjoint from 9QF(S)
(see Lee [17]). It is conjectured that every Mod(S)-invariant open subset
of X(S,0S5) on which Mod(S) acts properly discontinuously is a subset of

QF(S).
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In the case that S is a once-punctured torus, Bowditch [5] studied the
subset ®g of X (5,0S) consisting of representations p such that if 2 is the
set of simple closed curves on S, then p(v) is hyperbolic for all v € 2 and
there are only finitely many elements of € such that |tr?(p(vy))| < 4. He
conjectured that &g = QF(S). Tan, Wong and Zhang [24] showed that ®¢ is
an open subset of X (.5, 0S5) on which Mod(.S) acts properly discontinuously.
Cantat [I1] has used techniques from holomorphic dynamics to investigate
the action of the mapping class group on the character variety associated to
the once-punctured torus.

4. THE AUGMENTED DEFORMATION SET

The goal of this section is to enlarge H(S, 95) into an augmented deforma-
tion set H(S,S). The action of Mod(S) will extend to an action on H(S, d.5)
and its quotient will give a compactification of AZ(S,dS). The augmenta-
tion described here is analogous to the augmentation of Teichmiiller space
by adding noded Riemann surfaces.

We again give two definitions of our augmented deformation set, with
algebraic and geometric flavors. We begin with the algebraic definition.
If a is a multicurve on S, let ¢(a) denote the collection of components of
S — Na where Na is an open collar neighborhood of a in S. An element
({PR} Rec(a)> @) € H(S,DS) is a multicurve a together with an element pr €
H(R,OR) for each R € ¢(A). An element of H(S, d9) is geometrically finite
(resp. Fuchsian) if each pg is geometrically finite (resp. Fuchsian). Elements
of H(S,dS) using the multicurve a define the stratum corresponding to a.

The geometric definition is somewhat more difficult to formulate, but it
gives more insight into the nature of elements of the set. Let U be the set
of triples (N, a, m) where:

(1) N is a (possibly disconnected) oriented hyperbolic 3-manifold.

(2) a C S is a multicurve with open collar neighborhood Na.
(3) m is a homotopy equivalence

m:(S—Na)— N
taking 9(S — Na) into the cusps of N.

A triple (N, a,m) is geometrically finite if each component of N is geomet-
rically finite. Similarly, it is Fuchsian if every component of N is Fuchsian.

Of course this set U is too large. Form an equivalence relation by declaring
two elements (L, a, ) and (N,b,m) of U to be equivalent if a« = b and there
exists an orientation preserving isometry ¢ : L — N such that

m_IOLofi(S—NU,)—)(S—NCL)

is homotopic to the identity. (The map m~! is a homotopy inverse of m.)

The augmented deformation set H(S, 85) is U modulo the above equivalence
relation.
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5. THE ALGEBRAIC TOPOLOGY ON THE AUGMENTED DEFORMATION SET

We now define the algebraic topology for H(S,dS), which extends the
algebraic topology on H(S,0S). Its definition is motivated by Thurston’s
notion of a maximal subsurface of convergence.

Theorem 5.1. [25, Thm. 6.2] Given any sequence {p,} C AH(S,9S) there
exists a subsequence {p;} and a (possibly empty, possibly disconnected) sub-
surface R of S with incompressible boundary such that:
(1) For each component F' of R the sequence of restrictions {pj|r} con-
verges in AH(F).
(2) IfT is a nontrivial subgroup of m1(S) such that the restrictions {p;|r}
converge (up to conjugacy) on a subsequence of {p;} then I' is con-
Jugate to a subgroup of w1 (F) for some component F of R.

We will be particularly interested in the special case of this theorem where
the subsequence is the entire sequence and R is the complement of an open
collar neighborhood of a multicurve.

Let C be the set of conjugacy classes of 71 (5). For an element ({pr} pec(a), @) €
H(S,0S) and v € C we will define the square of the trace of an element
in ({PR}Rec(a)) s an element of the Riemann sphere CP!. If for some R’ €
¢(a), v can be realized by a closed curve in R', then define tr?({pr} rec(a)s @), 7)
to be the square of the trace of pr/(7y). (Note that the trace of an element
of PSL2(C) is not well-defined but the square of its trace is well-defined.)
Otherwise, define tr*(({pr} rec(a), @), ) to be co. This case occurs if and
only if v essentially intersects the multicurve a. Using this extended length
function we define the set map

t. : H(S,05) — (CPL)¢
({pR}Rec(a)v CL) = {’Y = tr2(({pR}R€c(a)’ CL),’)/)} s

where (CP1)C is the space of functions from C to CP! in the product topol-
ogy (which is equivalent to pointwise convergence).

Lemma 5.2. The set map t, is injective.

Proof. If ({pr}rec(a), @) € H(S,0S), then a is the unique multicurve such
that t.(({Pr} Rec(a); @))(7) = oo if and only if + intersects a essentially (for
all v € C). Therefore, the image of t, determines the multicurve. Theorem
1.3 in [I3] implies that for each component R € c(a), pr € H(R,JR) is
determined by the restriction of .(({pr}rec(a), @) to the set of conjugacy
classes of elements of 71(R). Therefore, ({pr}rec(),a) is entirely deter-

mined by t*(({pR}Rec(a)7 a)). -

Topologize H(S, dS) using t. as a subspace of (CP1)C. Let us temporarily
call the resulting topological space t,(H(S,0S5)). As a subspace of a metric
space, t,(H(S,0S5)) is Hausdorff and second countable. To understand this
topology better, we now give a more intrinsic formulation of its convergence.
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Definition 5.3. A sequence {p,} C AH(S,05S) is a shattering sequence with
shattering multicurve a if:

(1) For each component F' of S — Na the restrictions {pn|r} converge
in AH(F).

(2) IfT is a nontrivial subgroup of w1 (S) such that the restrictions {pn|r}
converge (up to conjugacy) on a subsequence of {p,} then T is con-
Jugate to a subgroup of w (F) for some component F of S — Na.

In other words, in Theorem there is no need to pass to a subsequence,
and R is the complement of a multicurve.

A sequence ({p}}rec(an), an) in H(S,0S) is a stable sequence if the mul-
ticurve a, is constant, i.e. there exists a multicurve ags e, called the stable
multicurve, such that a, = agtapie for all n.

Definition 5.4. A stable sequence {({p%}rec(aymm.)> @stable) ) 0 H(S,09)
converges algebraically to ({pr}rec(a),a) if
(1) Astable S @-
(2) If F' € c(a), then {pRlx(r)} converges to prp in AH(F) (where R is
the element of c(astape) containing F).
(3) For all R € c(astapic), 1P} is a shattering sequence in AH(R,OR)
with shattering multicurve a N R.

In particular, a sequence {(p%,0)} in H(S,dS) converges algebraically
to ({pF}recia), @) if and only if it is a shattering sequence with shattering
multicurve a and {p%|. (r)} converges algebraically to pp for all F' € c(a).

A (not necessarily stable) sequence in H(S,dS) converges algebraically
to ({pF}Feca) @) € H(S,0S5) if, after possibly discarding finitely many el-
ements, it can be partitioned into stable subsequences, with distinct stable
multicurves, all converging algebraically to ({pr}rec(a);@). (Since the sta-
ble multicurve for any stable subsequence lies in a, this partition must be
finite.)

Proposition 5.5. A sequence in H(S,0S) converges in t.(H(S,dS)) if and
only if it converges algebraically.

Proof. Suppose a sequence in H(S, dS) converges algebraically to ({pr} rec(a), @)-
Without loss of generality, we can assume the sequence is stable. Then con-
dition of Definition guarantees that any curve essentially intersecting
a has trace going to co. Condition (2) of Deﬁnition guarantees the other
traces converge, establishing convergence in t,(H(S, 05)).

Next suppose a sequence ({p%}REC(an),an) converges to ({pRr}rec(a)s @)
in ¢, (H(S,0S)). We must first check that, after possibly discarding finitely
many terms, the sequence can be partitioned into stable sequences. To begin,
suppose there is a subsequence (denoted without subscripts) such that a,, al-
ways essentially intersects a. Then, up to subsequence, i(a,, a’) > 0 for some
component a” of a, s0 t.({pr} rec(a), @) (a°) = 00, since t.({pP}} rec(an)> an) (@) =
oo for all n, which is a contradiction. Therefore i(ay,,a) = 0 for all n > 0.
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We next claim that a, C a for all n > 0. If not, we may pass to a
subsequence and choose a component al) of a,, —a such that {a%}, viewed as a
sequence of projective measured laminations, converges to a (projective class
of a) measured lamination A on S. See [4, Sec. 4] for a discussion of measured
laminations and intersection number. Since each al is a simple closed curve
in § —a, A is disjoint from a. Pick an essential simple closed curve b in
S — Na such that i(b, \) > 0. Then by continuity of intersection number,
for all n > 0 we have i(b, a,) > 0, implying that t.({pr} rec(a), @)(b) = oo
This is a contradiction, proving that a, C a for n > 0.

After discarding finitely many terms the sequence can therefore be par-
titioned into a finite set of stable sequences. Suppose that F' € c(a).
On any stable subsequence, with associated multicurve agiapie, there ex-
ists R € c(astable) such that F' C R. Since tr?(p(c)) converges to tr*(pp(c))
for any conjugacy class c of an element of 71 (F), it follows that {p%|, (#}
converges to pp in AH(F') (see Corollary 2.3 in [I3]). From here the defi-
nition of our extended trace function implies condition of Definition
for each stable subsequence. O

With their equivalence established, we refer to the topology on ¢, (H(S, 85))
as the algebraic topology and denote it by AH(S,dS). This topology is
closely related to the notion of algebraic convergence on subsurfaces which
played a role in the proof of the Ending Lamination Conjecture [7, Sec,
6]. One expects the augmented space to be at least as topologically compli-
cated as AH(SS, 0S), which is known, for example, not to be locally connected
8, [18].

6. THE AUGMENTED MODULI SPACE

The goal of this section is to define the quotient augmented moduli space
and establish that it is sequentially compact.

If ¢ € Mod(S) and ({pr}pec(a);a) € AH(S,8S), then we can choose
a representative, also called ¢, so that ¢(a) is a (geodesic) multicurve.
The mapping class ¢ takes ({pr}rec(a) @) t0 ({pr o &L Yo(r)ecoa), 2(a)}).
Stated geometrically, ¢ takes (N,a,m) to (N,¢(a),m o ¢*1]57N¢(a)). It
is easy to check that the each mapping class induces a homeomorphism
of AH(S,0S5) and that we obtain a continuous extension of the action of
Mod(S) on AH(S,05S).

We then define the natural quotient space, with its induced quotient al-
gebraic topology by

AT(S,08) := ATI(S,dS)/ Mod(S).

The key feature of our augmented moduli space is that it is sequentially
compact.

Theorem 6.1. AZ(S,0S) is a sequentially compact topological space.
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This compactness result is essentially a corollary of a result of Canary-
Minsky-Taylor, together with Theorem We restate the result of Canary-
Minsky-Taylor in the setting of AH(S, 95S).

Theorem 6.2. [10, Thm.5.5] Let {p,} be a sequence in AH(S,0S). Then
there exists a subsequence {p;}, a sequence {¢;} in Mod(S), and a multic-
urve a in S, such that if R is a component of S—Na then {p;o(¢;); | (m)}
converges in AH(R) to an element of AH(R,OR).

If we combine the above result with Theorem we see that we may
always re-mark a subsequence to find a shattering subsequence. The proof
consists simply of applying Theorem to the sequence produced by The-
orem The multicurve b in the statement of Corollary is always con-
tained in the multicurve associated to the subsequence produced by Theorem
0.2

Corollary 6.3. Let {p,} be a sequence in AH(S,0S). Then there exists
a subsequence {p;}, a sequence {¢;} in Mod(S), and a multicurve b in S,
such that {pj o (¢;);1} is a shattering sequence with shattering multicurve

b.

Proof of Theorem[6.1. Let {({p} }r,cc(an)> an)} be asequence in AH(S, 85).
Since there exists only a finite number of multicurves, up to homeomorphism,
on a compact surface, we may pass to a subsequence ({pﬁj }Rjec(ay)> aj) and
find a sequence {¢;} in Mod(S) so that ¢;(a;) is the same multicurve, say a,
for all j. Then each %({p%}RjEC(aj), a;) can be rewritten as ({J{;}FEC(Q), a).
We then apply Corollary to the sequence {aiﬂ} successively for each com-
ponent F' of ¢(a), possibly further remarking the surface F' in the process,
to find an algebraically convergent subsequence of { ({a}} Fec(a), @)} Since
every sequence in AH(.S,S) has a subsequence which can be re-marked by
elements of Mod(S) so that it converges in AH(S,S), we conclude that
AZ(S,09) is sequentially compact. O

Remark. Geometrically finite points in AZ(S,0S) are not necessarily
closed. (Recall Proposition proved that geometrically finite points are
closed in AZ(S,05).) To see this, consider the following example. Let b C S
be a simple closed separating geodesic. Let p € H(S,0S) be geometrically
finite with exactly one rank one parabolic corresponding to the curve b C S.
Let D : S — S indicate a Dehn twist along b. Consider the two component
element ({p|r}recp),b) € H(S,05). Clearly p and ({p|r}rec(m),b) project
to distinct points in AZ(S,0S). Nonetheless, the sequence {p o D"} con-
verges algebraically to ({p|r}rec(),b). This shows the projection of p to

AZ(S,059) is not a closed point.
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7. THE FUCHSIAN LOCUS AND THE DELIGNE-MUMFORD
COMPACTIFICATION

One forms the augmented Teichmiiller space 7 (S) by appending the Te-
ichmiiller space 7 (S—Na) associated to the complement of every multicurve
a on S. Notice that one may associate to any point in 7 (S — Na) a unique
Fuchsian element ({pr}gec(a), @) of H(S,S). Therefore one may identify
T (S) with the set F(S,05) C H(S,dS) of Fuchsian elements of H(S, ).
We call F(S,0S) the Fuchsian locus. One may check that F(S, 95) (with the
algebraic topology) is actually homeomorphic to 7(S). Since the Deligne-
Mumford compactification M(S) of M(S) arises as the quotient of the aug-
mented Teichmiiller space 7 (S) under the action of Mod(S), we may iden-
tify M(S) with the quotient of the Fuchsian locus F(S,dS) in Z(S,d5S).
We refer the reader to Wolpert’s survey article [27] for a discussion of the
basic properties of augmented Teichmiiller space and its relationship to the
Deligne-Mumford compactification.

It is easy to check that the Fuchsian locus is closed in AH(S,dS) and
invariant under the action of Mod(S), implying that M(S) is identified
with a closed subset of AZ(S,d5).

Proposition 7.1. The natural embedding v : M(S) — AZ(S,0S), sending
a hyperbolic surface to its corresponding Fuchsian 3-manifold, extends to
an embedding of the Deligne-Mumford compactification M(S) — AZ(S,0S)

with image the set of Fuchsian 3-manifolds.

Remark: We recall that if the augmented Teichmiiller space is not a point,
then it fails to be locally compact. Since 7 (S) is homeomorphic to a closed
subset of AH(S,0S), it follows that AH(S, 0S) also fails to be locally com-
pact.

8. OTHER TOPOLOGIES

In [26], Thurston discusses two other topologies on H(.S,dS), the strong
topology and the quasi-isometric topology. Both extend naturally to topolo-
gies on H(S,0S).

A sequence {(N,, m,)} in H(S, 0S) converges strongly to (N, m) € H(S, 0S5)
if there exists a sequence {h,, : N — N,} of homotopy equivalences which
C*°-converge to an isometry on every compact subset of N such that h,, om
is homotopic to m,, for all n. The key difference with the definition of al-
gebraic convergence is that {h,} converges to an isometry, rather than just
a local isometry. The deformation space H(S,dS) equipped with the strong
topology is denoted GH(S,0S). The “G” is due to Thurston, who called
this the geometric topology.

We may readily generalize this to the setting of the augmented deforma-
tion space H(S,dS). We say that a sequence {(Ny,an, m;)} in H(S,d9)
converges strongly to (N, a,m) if {(Ny,a,, my,)} converges algebraically to
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(N,a,m) and there exists a sequence of continuous maps {h, : N — N,}
such that h, o m is homotopic to my,|r, for all n, on every component F' of
S — Na, and {h,} C*-converges to an isometry on every compact subset
of N. The deformation space H(S,dS) equipped with the strong topology
is denoted GH(S, d5S).

A sequence {(N,, my,)} in H(S, 05) converges in the quasi-isometric topol-
ogy to (N,m) € H(S,08) if, for all large enough n, there exists a K-
bilipschitz diffeomorphism h,, : N — N, such that h, o m is homotopic
to my, with lim K,, = 1. The deformation space H(S,dS) equipped with
the quasi-isometric topology is denoted QH(S,0S). More generally, a se-
quence {(N,,a,,my,)} in H(S,dS) converges in the quasi-isometric topol-
ogy to (N,a,m) if, for all large enough n, a, = a and there exists a K-
bilipschitz diffeomorphism h,, : N — N, such that h, o m is homotopic to
my and lim K,, = 1. The deformation space H(S,dS) equipped with the
quasi-isometric topology is denoted QH(S, 9.5).

One may readily check that Mod(S) acts on both GH(S, 8S) and QH(S, 95)
as a group of homeomorphisms. So one obtains strong and quasi-isometric
topologies on the quotient space Z(.9,95).

GZ(S,S) := GH(S,0S5)/ Mod(S),
QZ(S,S) = QH(S,dS)/ Mod(S).
It follows from the analogous fact for H(S,dS) that the identity maps
QZ(S,dS) — GZ(S,8S) — AZ(S,0S)

are continuous, but the inverse maps are not (see [26]).

The space QZ(S,S) is locally nice and globally terrible. If S is not a
thrice-punctured sphere, it is a disjoint union of an uncountable collection
of noncompact orbifolds of various dimensions and an uncountable number
of isolated points. (This follows from Sullivan’s extension of the Quasicon-
formal Parametrization Theorem, also known as Sullivan rigidity [22].) In
particular, QZ(.S,9S) is Hausdorff and noncompact.

Proposition 8.1. The space GZ(S,dS) is not sequentially compact.

Proof. Consider the sequence {p,} from the proof of Proposition It
determines a sequence of hyperbolic manifolds IV,, whose geometric limit X
is homeomorphic to S x (0,1) minus b x {1/2}, where b is a simple closed
curve of S [16]. The manifold X is not homotopy equivalent to S. No matter
how the sequence N, is marked, this geometric limit will not change. This
implies that no subsequence converges in GZ(.9,95). O

Finally, the examples in Proposition also converge strongly, see The-
orem 3.12 in [20], so we see that there are points in GZ(S,dS) that are not
closed.
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One may define a refinement of the algebraic topology on H(S, dS), which
is still coarser than the strong topology, so that geometrically finite points
are closed in the resulting quotient topology on Z(S,05S), yet the resulting
quotient topology on the augmented moduli space is still sequentially com-
pact. We say that a stable sequence {({p%} Rec(aqupe)s @stable) } converges
maximally algebraically to ({pr}pec(a), @) if it converges algebraically and

there does not exist a subsequence {({07%} Rec(agane)» Gstable) } and a sequence
{¢;} in Mod(SS), each of which is a product of Dehn twists about elements of

@ — Ggtable, Such that {qﬁj({pfq} Rec(asianie)? astable) } converges algebraically to
({pB}Fec(p), b) where b is a proper subset of a. We denote H(S,dS) with the

topology of maximally algebraic convergence by BH(S, 05). Its quotient by
the action of Mod(S) is denoted by BZ(S,dS). (Note that this topology is
designed specifically to disallow examples like those described in the remark
terminating Section @) The proof of Theorem can be easily modified to
verify the sequential compactness of BZ(S, d5).
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