MODULI SPACES OF HYPERBOLIC 3-MANIFOLDS AND
DYNAMICS ON CHARACTER VARIETIES

RICHARD D. CANARY AND PETER A. STORM

ABSTRACT. The space AH (M) of marked hyperbolic 3-manifold homo-
topy equivalent to a compact 3-manifold with boundary M sits inside
the PSL2(C)-character variety X (M) of w1 (M). We study the dynamics
of the action of Out(m(M)) on both AH(M) and X (M). The nature
of the dynamics reflects the topology of M.
The quotient AI(M) = AH(M)/Out(n1(M)) may naturally be thought

of as the moduli space of unmarked hyperbolic 3-manifolds homotopy
equivalent to M and its topology reflects the dynamics of the action.

1. INTRODUCTION

For a compact, orientable, hyperbolizable 3-manifold M with boundary,
the deformation space AH (M) of marked hyperbolic 3-manifolds homotopy
equivalent to M is a familiar object of study. This deformation space sits
naturally inside the PSLa(C)-character variety X (M) and the outer auto-
morphism group Out(m;(M)) acts by homeomorphisms on both AH (M)
and X (M). The action of Out(m(M)) on AH(M) and X (M) has largely
been studied in the case when M is an interval bundle over a closed surface
(see, for example, [8, 22, 49, 18]) or a handlebody (see, for example, [43, 54]).
In this paper, we initiate a study of this action for general hyperbolizable
3-manifolds.

We also study the topological quotient

AI(M) = AH(M)/Out(m (M))

which we may think of as the moduli space of unmarked hyperbolic 3-
manifolds homotopy equivalent to M. The space AH (M) is a rather patho-
logical topological object itself, often failing to even be locally connected
(see Bromberg [12] and Magid [35]). However, since AH (M) is a closed
subset of an open submanifold of the character variety, it does retain many
nice topological properties. We will see that the topology of AI(M) can be
significantly more pathological.
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The first hint that the dynamics of Out(m(M)) on AH (M) are compli-
cated, was Thurston’s [51] proof that if M is homeomorphic to S x I, then
there are infinite order elements of Out(w;(M)) which have fixed points in
AH(M). (These elements are pseudo-Anosov mapping classes.) One may
further show that AI(S x I) is not even Tj, see [18] for a closely related
result. Recall that a topological space is T} if all its points are closed. On
the other hand, we show that in all other cases AI(M) is T}.

Theorem 1.1. Let M be a compact hyperbolizable 3-manifold with non-
abelian fundamental group. Then the moduli space AI(M) is Ty if and only
if M is not an untwisted interval bundle.

We next show that Out(m;(M)) does not act properly discontinuously on
AH(M) if M contains a primitive essential annulus. A properly embedded
annulus in M is a primitive essential annulus if it cannot be properly isotoped
into the boundary of M and its core curve generates a maximal abelian
subgroup of 7 (M). In particular, if M has compressible boundary and
no toroidal boundary components, then M contains a primitive essential
annulus (see Corollary 7.5).

Theorem 1.2. Let M be a compact hyperbolizable 3-manifold with non-
abelian fundamental group. If M contains a primitive essential annulus then
Out(m1(M)) does not act properly discontinuously on AH(M). Moreover, if
M contains a primitive essential annulus, then AI(M) is not Hausdorff.

On the other hand, if M is acylindrical, i.e. has incompressible boundary
and contains no essential annuli, then Out(m;(M)) is finite (see Johann-
son [29, Proposition 27.1]), so Out(m;(M)) acts properly discontinuously on
AH(M) and X(M). It is easy to see that Out(m(M)) fails to act prop-
erly discontinuously on X (M) if M is not acylindrical, since it will contain
infinite order elements with fixed points in X (M).

If M is a compact hyperbolizable 3-manifold which is not acylindrical, but
does not contain any primitive essential annuli, then Out (71 (M)) is infinite.
However, if, in addition, M has no toroidal boundary components, we show
that Out(71(M)) acts properly discontinuously on an open neighborhood of
AH(M) in X(M). In particular, we see that AI(M) is Hausdorff in this
case.

Theorem 1.3. If M is a compact hyperbolizable 3-manifold with no primi-
tive essential annuli whose boundary has no toroidal boundary components,
then there exists an open Out(mi(M))-invariant neighborhood W (M) of
AH(M) in X (M) such that Out(m(M)) acts properly discontinuously on
W(M). In particular, AI(M) is Hausdorff.

If M is a compact hyperbolizable 3-manifold with no primitive essen-
tial annuli whose boundary has no toroidal boundary components, then
Out(m1(M)) is virtually abelian (see the discussion in sections 5 and 9).
However, we note that the conclusion of Theorem 1.3 relies crucially on the
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topology of M, not just the group theory of Out(m(M)). In particular, if
M is a compact hyperbolizable 3-manifold M with incompressible bound-
ary, such that every component of its characteristic submanifold is a solid
torus, then Out(mi(M)) is always virtually abelian, but M may contain
primitive essential annuli, in which case Out(7;(M)) does not act properly
discontinuously on AH (M).

One may combine Theorems 1.2 and 1.3 to completely characterize when
Out(m (M)) acts properly discontinuously on AH (M) in the case that M
has no toroidal boundary components.

Corollary 1.4. Let M be a compact hyperbolizable 3-manifold with no
toroidal boundary components and mon-abelian fundamental group. The
group Out(m (M)) acts properly discontinuously on AH (M) if and only if
M contains no primitive essential annuli. Moreover, AI(M) is Hausdorff if
and only if M contains no primitive essential annuli.

It is a consequence of the classical deformation theory of Kleinian groups
(see Bers [5] or Canary-McCullough [17, Chapter 7] for a survey of this the-
ory) that Out (71 (M)) acts properly discontinuously on the interior int(AH (M))
of AH(M). If H,, is the handlebody of genus n > 2, Minsky [43] exhibited
an explicit Out (7 (H,,))-invariant open subset PS(H,,) of X (H,) such that
int(AH (H,)) is a proper subset of PS(H,,) and Out(7i(H,)) acts properly
discontinuously on AH(H,).

If M is a compact hyperbolizable 3-manifold with incompressible bound-
ary and no toroidal boundary components, which is not an interval bundle,
then we find an open set W(M) strictly bigger than int(AH(M)) which
Out(m (M)) acts properly discontinuosly on. See Theorem 9.1 and its proof
for a more precise description of W (M). We further observe, see Lemma 8.1,
that W(M)NOAH(M) is a dense open subset of 0AH (M) in this setting.

Theorem 1.5. Let M be a compact hyperbolizable 3-manifold with nonempty
incompressible boundary and no toroidal boundary components, which is not
an interval bundle. Then there exists an open Out(m (M ))-invariant sub-
set W(M) of X (M) such that Out(mi(M)) acts properly discontinuously on
W(M) and int(AH(M)) is a proper subset of W (M).

It is conjectured that if M is an untwisted interval bundle over a closed
surface S, then int(AH(M)) is the maximal open Out(7i(M))-invariant
subset of X (M) on which Out(71(M)) acts properly discontinuously. One
may show that no open domain of discontinuity can intersect 0AH (S x I)
(see [34]). Further evidence for this conjecture is provided by results of
Bowditch [8], Goldman [21], Souto-Storm [49], Tan-Wong-Zhang [54] and
Cantat [19].

Michelle Lee [34] has recently shown that if M is an twisted interval bun-
dle over a closed surface, then there exists an open Out(7i(M))-invariant
subset W of X (M) such that Out(m(M)) acts properly discontinuously on
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W and int(AH (M)) is a proper subset of W. Moreover, W contains points
in 0AH(M). As a corollary, she proves that if M has incompressible bound-
ary and no toroidal boundary components, then there is open Out(71(M))-
invariant subset W of X (M) such that Out(m;(M)) acts properly discontin-
uously on W, int(AH (M)) is a proper subset of W, and W N OAH (M) # ()
if and only if M is not an untwisted interval bundle.

Outline of paper: In section 2, we recall background material from topol-
ogy and hyperbolic geometry which will be used in the paper.

In section 3, we prove Theorem 1.1. The proof that AI(S x I) is not T}
follows the arguments in [18, Proposition 3.1] closely. We now sketch the
proof that AI(M) is T} otherwise. In this case, let N € AI(M) and let R be
a compact core for N. We show that N is a closed point, by showing that any
convergent sequence {p,} in the pre-image of N is eventually constant. For
all n, there exists a homotopy equivalence h,, : M — N such that (hy )« = pn.
If G is a graph in M carrying m1 (M), then, since {p,,} is convergent, we can
assume that the length of h,(G) is at most K, for all n and some K. But, we
observe that h,(G) cannot lie entirely in the complement of R, if R is not a
compression body. In this case, each h,,(G) lies in the compact neighborhood
of radius K of R, so there are only finitely many possible homotopy classes
of maps of G. Thus, there are only finitely many possibilities for p,, so {p,}
is eventually constant. The proof in the case that R is a compression body
is somewhat more complicated and uses the Covering Theorem.

In section 4, we prove Theorem 1.2. Let A be a primitive essential annulus
in M. If ais a core curve of A, then the complement M of a regular
neighborhood of « in M is hyperbolizable. We consider a geometrically
finite hyperbolic manifold N homeomorphic to the interior of M and use
the Hyperbolic Dehn Filling Theorem to produce a convergent sequence
{pn} in AH(M) and a sequence {p,} of distinct elements of Out(mi(M))
such that {p, o v} also converges. Therefore, Out(m(M)) does not act
properly discontinuously on AH (M). Moreover, we show that {p,} projects
to a sequence in AI (M) with two distinct limits, so AI(M) is not Hausdorff.

In section 5 we recall basic facts about the characteristic submanifold
and the mapping class group of compact hyperbolizable 3-manifolds with
incompressible boundary and no toroidal boundary components. We identify
a finite index subgroup J(M) of Out(m (M)) and a projection of J(M) onto
the direct product of mapping class groups of the base surfaces whose kernel
K(M) is the free abelian subgroup generated by Dehn twists in frontier
annuli of the characteristic submanifold.

In section 6, we organize the frontier annuli of the characteristic subman-
ifold into characteristic collections of annuli and describe free subgroups of
71 (M) which register the action of the subgroup of Out(w;(M)) generated
by Dehn twists in the annuli in such a collection.
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In section 7, we show that compact hyperbolizable 3-manifolds with com-
pressible boundary and no toroidal boundary components contain primitive
essential annuli.

In section 8, we introduce a subset AH,(M) of AH(M) which contains
all purely hyperbolic representations. We see that int(AH (M)) is a proper
subset of AH,, (M) and that AH, (M) = AH (M) if M does not contain any
primitive essential annuli.

In section 9, we prove that if M has incompressible boundary and no
toroidal boundary components, but is not an interval bundle, there is an
open neighborhood W (M) of AH, (M) in X(M) such that Out(m(M))
preserves and acts properly discontinuously on W (M). Theorems 1.3 and
1.5 are immediate corollaries. We finish the outline by sketching the proof
in a special case.

Let X be an acylindrical, compact hyperbolizable 3-manifold and let
A be an incompressible annulus in its boundary. Let V be a solid torus
and let {Bj,..., By} be a collection of disjoint parallel annuli in 9V whose
core curves are homotopic to the n'* power of the core curve of V where
|n| > 2. Let {My,...,M,} be copies of X and let {A1,...,A,} be copies
of Ain M;. We form M by attaching each M; to V by identifying A; and
B;. Then M contains no primitive essential annuli, is hyperbolizable, and
Out(m1(M)) has a finite index subgroup J(M) generated by Dehn twists
about {Ay,..., A, }. In particular, J(M) = Z" 1.

In this case, {A1,...,A,} is the only characteristic collection of annuli.
We say that a group H registers J(M) if it is freely generated by the core
curve of V' and, for each i, a curve contained in V' U M; which is not homo-
topic into V. So H = F,,41. There is a natural map rg : X(M) — X(H)
where X (H) is the PSLy(C)-character variety of the group H. Notice that
J(M) preserves H and injects into Out(H). Let

Sp1 = int(AH(H)) C X(H)

denote the space of Schottky representations (i.e. representations which are
purely hyperbolic and geometrically finite.) Since Out(H) acts properly
discontinuously on S, 11, we see that J(M) acts properly discontinuously on

WH = 7“[_{1 (Sn+1)

Let W (M) = |J Wg where the union is taken over all subgroups which reg-
ister J(M). Notice that W (M) is open and J(M) acts properly discon-
tinuously on W (M). One may use a ping pong argument to show that
AH(M) Cc W(M), see Lemma 8.3. Johannson’s Classification Theorem is
used to show that W(M) is invariant under Out(m;(M)), see Lemma 9.3.
(Actually, we define a somewhat larger set, in general, by using the space of
primitive-stable representations in place of Schottky space.)
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2. PRELIMINARIES

As a convention, the letter M will denote a compact connected oriented
hyperbolizable 3-manifold with boundary. We recall that M is said to be
hyperbolizable if the interior of M admits a complete hyperbolic metric. We
will use NV to denote a hyperbolic 3-manifold. All hyperbolic 3-manifolds
are assumed to be oriented, complete, and connected.

2.1. The deformation spaces. Recall that PSLy(C) is the group of orientation-
preserving isometries of H3. Given a 3-manifold M, a discrete, faithful
representation p : m (M) — PSLy(C) determines a hyperbolic 3-manifold

N, =H?3/p(m1(M)) and a homotopy equivalence m, : M — N, called the
marking of N,.

We let D(M) denote the set of discrete, faithful representations of 71 (M)
into PSLa(C). The group PSLs(C) acts by conjugation on D(M) and we
let

AH(M) = D(M)/PSLy(C).
Elements of AH (M) are hyperbolic 3-manifolds homotopy equivalent to M
equipped with (homotopy classes of) markings.

The space AH(M) is a closed subset of the character variety

X(M) = HOHlT(ﬂ'l (M), PSLQ(C))//PSLQ(C),
which is the Mumford quotient of the space Homy (71 (M), PSLa(C)) of rep-
resentations p : m (M) — PSLy(C) such that p(g) is parabolic if g # id lies
in a rank two free abelian subgroup of 71 (M ). If M has no toroidal boundary
components, then Homy(m (M), PSL2(C)) is simply Hom(71 (M), PSLy(C)).
Moreover, each point in AH (M) is a smooth point of X (M) (see Kapovich
[30, Sections 4.3 and 8.8] and Heusener-Porti [24] for more details on this

construction).
The group Aut(m;(M)) acts naturally on Homyp (7 (M), PSLy(C)) via

(- p)(7) == ple™ (7))
This descends to an action of Out(m1(M)) on AH(M) and X (M). This
action is not free, and it often has complex dynamics. Nonetheless, we can
define the topological quotient space
AI(M) = AH(M)/Out(m1(M)).

Elements of AI(M) are naturally oriented hyperbolic 3-manifolds homotopy
equivalent to M without a specified marking.
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2.2. Topological background. A compact 3-manifold M is said to have
incompressible boundary if whenever S is a component of 9M, the inclusion
map induces an injection of 71(S) into w1 (M). In our setting, this is equiv-
alent to m (M) being freely indecomposable. A properly embedded annulus
A in M is said to be essential if the inclusion map induces an injection of
m1(A) into m (M) and A cannot be properly homotoped into OM (i.e. there
does not exist a homotopy of pairs of the inclusion (A,0A4) — (M,0M) to
a map with image in OM). An essential annulus A is said to be primitive if
the image of m1(A) in 71 (M) is a maximal abelian subgroup.

If M does not have incompressible boundary, it is said to have compress-
ible boundary. The fundamental examples of 3-manifolds with compressible
boundary are compression bodies. A compression body is either a handle-
body or is formed by attaching 1-handles to disjoint disks on the boundary
surface R x {1} of a 3-manifold R x [0, 1] where R is a closed, but not nec-
essarily connected, surface (see, for example, Bonahon [6]). The resulting
3-manifold C (assumed to be connected) will have a single boundary com-
ponent 04 C' intersecting R x {1}, called the positive (or external) boundary
of C. If C is not an untwisted interval bundle over a closed surface, then
04+ C' is the unique compressible boundary component of C. Notice that the
induced homomorphism 71 (9+C) — m1(C) is surjective. In fact, a compact
irreducible 3-manifold M is a compression body if and only if there exists a
component S of M such that 7w1(S) — w1 (M) is surjective.

Every compact hyperbolizable 3-manifold can be constructed from com-
pression bodies and manifolds with incompressible boundary. Bonahon [6]
and McCullough-Miller [40] showed that there exists a neighborhood Cjy
of OM, called the characteristic compression body, such that each compo-
nent of Cp; is a compression body and each component of dCy; — OM is
incompressible in M.

Dehn filling will play a key role in the proof of Theorem 1.2. Let F' be
a toroidal boundary component of compact 3-manifold M and let (m,[) be
a choice of meridian and longitude for F'. Given a pair (p,q) of relatively
prime integers, we may form a new manifold M (p,q) by attaching a solid
torus V to M by an orientation-reversing homeomorphism g: 0V — F so
that, if ¢ is the meridian of V', then g(c) is a (p, q) curve on F with respect
to the chosen meridian-longitude system. We say that M (p,q) is obtained
from M by (p,q)-Dehn filling along F'.

2.3. Hyperbolic background. If N = H3?/T is a hyperbolic 3-manifold,
then I' C PSLy(C) acts on Casa group of conformal automorphisms. The
domain of discontinuity (") is the largest open I'-invariant subset of C on
which I' acts properly discontinuously. Note that Q(I') may be empty. Its
complement A(T') = C - Q(I) is called the limit set. The quotient 9.N =
Q(I')/T is naturally a Riemann surface called the conformal boundary.
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Thurston’s Hyperbolization theorem, see Morgan [44, Theorem B’], guar-
antees that if M is compact and hyperbolizable, then there exists a hyper-
bolic 3-manifold N and a homeomorphism

v:M—0rM — NUOJ.N

where OrM denotes the collection of toroidal boundary components of M.

The convex core C'(N) of N is the smallest convex submanifold whose
inclusion into NV is a homotopy equivalence. More concretely, it is obtained
as the quotient, by I, of the convex hull, in H?, of the limit set A(I"). There is
a well-defined retraction r : N — C'(NN) obtained by taking x to the (unique)
point in C(N) closest to x. The nearest point retraction r is a homotopy

equivalence and is ﬁ—LipSChitZ on the complement of the neighborhood

of radius s of C(N).
There exists a universal constant p, called the Margulis constant, such
that if € < p, then each component of the e-thin part

Nthin(e) = {33 eEN ‘ anN(x) < 6}

(where injy(z) denotes the injectivity radius of N at x) is either a metric
regular neighborhood of a geodesic or is homeomorphic to T' x (0, 00) where
T is either a torus or an open annulus (see Benedetti-Petronio [4] for exam-
ple). The e-thick part of N is defined simply to be the complement of the
e-thin part
Ninick(ey = N — Ninin(e)-

It is also useful to consider the manifold N? obtained from N by removing
the non-compact components of Nypp(c)-

If N is a hyperbolic 3-manifold with finitely generated fundamental group,
then it admits a compact core, i.e. a compact submanifold whose inclusion
into M is a homotopy equivalence (see Scott [48]). More generally, if € < p,
then there exists a relative compact core R for N, i.e. a compact core
which intersects each component of N? in a compact core for that com-
ponent (see Kulkarni-Shalen [33] or McCullough [38]). Let P = OR — ON?
and let PY denote the interior of P. The Tameness Theorem of Agol [1]
and Calegari-Gabai [14] assures us that we may choose R so that N? — R
is homeomorphic to (OR — P°) x (0,00). In particular, the ends of N are
in one-to-one correspondence with the components of R — P%. (We will
blur this distinction and simply regard an end as a component of NE0 - R
once we have chosen € and a relative compact core R for N0.) We say that
an end U of N? is geometrically finite if the intersection of C(N) with U
is bounded (i.e. admits a compact closure). N is said to be geometrically
finite if all the ends of N are geometrically finite.

Thurston [53] showed that if M is a compact hyperbolizable 3-manifold
whose boundary is a torus F', then all but finitely many Dehn fillings of M
are hyperbolizable. Moreover, as the Dehn surgery coefficients approach oo,
the resulting hyperbolic manifolds “converge” to the hyperbolic 3-manifold
homeomorphic to int(M). If M has other boundary components, then there
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is a version of this theorem where one begins with a geometrically finite hy-
perbolic 3-manifold homeomorphic to int(M) and one is allowed to perform
the Dehn filling while fixing the conformal structure on the non-toroidal
boundary components of M. The proof uses the cone-manifold deformation
theory developed by Hodgson-Kerckhoff [25] in the finite volume case and
extended to the infinite volume case by Bromberg [11] and Brock-Bromberg
[9]. (The first statement of a Hyperbolic Dehn Filling Theorem in the infinite
volume setting was given by Bonahon-Otal [7], see also Comar [20].) For a
general statement of the Filling Theorem, and a discussion of its derivation
from the previously mentioned work, see Bromberg [12] or Magid [35].

Hyperbolic Dehn Filling Theorem: Let M be a compact, hyperbolizable
3-manifold and let F be a toroidal boundary component of M. Let N = H?3 /T’
be a hyperbolic 3-manifold admitting an orientation-preserving homeomor-
phism ¢ : M — 9pM — N UO.N. Let {(pn,qn)} be an infinite sequence of
distinct pairs of relatively prime integers.

Then, for all sufficiently large n, there exists a (non-faithful) representa-
tion By, : T' — PSLy(C) with discrete image such that

(1) {Bn} converges to the identity representation of ', and
(2) if in : M — M(pn,qn) denotes the inclusion map, then for each n,
there exists an orientation-preserving homeomorphism

wn : M(]?m%z) - 8TM(pn; Qn> - Nﬁn U acNBn

such that By, o ¥y is conjugate to (n)« © (in)«, and the restriction of
Yp 0in o™t to O.N is conformal.

3. POINTS ARE USUALLY CLOSED
If S is a closed orientable surface, we showed in [18] that
AZ(S) = AH(S x I)/Mod(S)

is not 77 where Mod(5) is the group of (isotopy classes of) orientation-
preserving homeomorphisms of S. We recall that a topological space is T}
if all points are closed sets. Since Mod (.9) is identified with an index two
subgroup of Out(m(.5)), one also expects that

AI(S x I) = AH(S x I)/Out(m1(S))

is not 1.

In this section, we show that if M is an untwisted interval bundle, which
also includes the case that M is a handlebody, then AI(M) is not 77, but
that AI(M) is T} for all other compact, hyperbolizable 3-manifolds.

Theorem 1.1. Let M be a compact hyperbolizable 3-manifold with non-
abelian fundamental group. Then the moduli space AI(M) is Ty if and only
if M is not an untwisted interval bundle.
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Proof. We first show that AI(M) is Ty if M is not an untwisted interval
bundle. Let p: AH(M) — AI(M) be the quotient map and let N be a
hyperbolic manifold in AI(M). We must show that p~!(V) is a closed subset
of AH(M). Since AH (M) is Hausdorff and second countable, it suffices to
show that if {p,} is a convergent sequence in p~(N), then lim p,, € p~1(N).

An element p € p~!(NN) is a representation such that N, is isometric to N.
Let {pn} be a convergent sequence of representations in p~!(N). Let G C M
be a finite graph such that the inclusion map induces a surjection of 71 (G)
onto m(M). Each p, gives rise to a homotopy equivalence h,, : M — N,
and hence to a map j, = hy|g : G — N, both of which are only well-defined
up to homotopy. Since {p,} is convergent, there exists K such that j,(G)
has length at most K for all n, after possibly altering h,, by a homotopy.

Let R be a compact core for N. Assume first that R is not a compression
body. In this case, if S is any component of OR, then the inclusion map
does not induce a surjection of m1(S) to m1(R) (see the discussion in section
2). Since j,(G) carries the fundamental group it cannot lie entirely outside
of R. Tt follows that j,(G) lies in the closed neighborhood N (R) of radius
K about R. By compactness, there are only finitely many homotopy classes
of maps of G into Nk (R) with total length at most K. Hence, there are
only finitely many different representations among the p,, up to conjugacy.
The deformation space AH (M) is Hausdorff, and the sequence {p,} con-
verges, implying that {p,} is eventually constant. Therefore lim p,, lies in
the preimage of IV, implying that the fiber p~(V) is closed and that N is
a closed point of AI(M).

Next we assume that R is a compression body. If R were an untwisted
interval bundle, then M would also have to be a untwisted interval bundle
(by Theorems 5.2 and 10.6 in Hempel [23]) which we have disallowed. So
R must have at least one incompressible boundary component and only one
compressible boundary component 0 R. We are free to assume that M
is homeomorphic to R, since the definition of AI(M) depends only on the
homotopy type of M. Let D denote the union of R and the component
of N — R bounded by d4R. Since the fundamental group of a component
of N — D never surjects onto 71 (), with respect to the map induced by
inclusion, we see as above that each j,(G) must intersect D, so is contained
in the neighborhood of radius K of D.

Recall that there exists ex > 0 so that the distance from the ex-thin part
of N to the u-thick part of N is greater than K (where p is the Margulis
constant). It follows that j,(G) must be contained in the ex-thick part of
N.

Let F' be an incompressible boundary component of M. Then hy,(F)
is homotopic to an incompressible boundary component of R (see, for ex-
ample, the proof of Proposition 9.2.1 in [17]). As there are finitely many
possibilities, we may pass to a subsequence so that h,(F') is homotopic to a
fixed boundary component F’. We may choose G so that there is a proper
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subgraph Gr C G such that the image of 71 (Gp) in 71 (M) (under the in-
clusion map) is conjugate to 71 (F). Let pp : Np — N be the covering map
associated to 71 (F”") C m1(N). Then j,|q, lifts to a map k,, of G into N.

Assume first that F' is a torus. Then k,(Gr) must lie in the portion X
of Np with injectivity radius between ex and K /2, which is compact. It
follows that j,(G) must lie in the closed neighborhood of radius K of pp(X).
Since pr(X) is compact, we may conclude, as in the general case, that {p,}
is eventually constant and hence that p~!(N) is closed.

We now suppose that F' has genus at least 2. We first establish that there
exists L such that &, (G r) must be contained in a neighborhood of radius L of
the convex core C(Np). It is a consequence of the thick-thin decomposition,
that if G’ is a graph in Np which carries the fundamental group then G’
must have length at least p. We also recall that the nearest point retraction
rr : Np — C(NF) is a homotopy equivalence which is _ Osth—Lipschitz on the
complement of the neighborhood of radius s of C(N). Therefore, if k,(GF)
lies outside of N5(C(Np)), then rp(k,(GF)) has length at most Cogls. It
follows that k,(Gp) must intersect the neighborhood of radius coshfl(%)
of C(NF), so we may choose L = K + cosh_l(%).

If Np is geometrically finite, then X = C(Np) N Nypicr(e,) 18 compact
and j,(G) must be contained in the neighborhood of radius L+ K of pr(X)
which allows us to complete the proof as before.

If N is not geometrically finite, we will need to invoke the Covering The-
orem to complete the proof. Let E denote the lift of F’ to Np. Then F
divides Ng into two components, one of which, say A_, is mapped homeo-
morphically to the component of N — R bounded by F’. Let A, = Np — A_.
We may choose a a relative compact core Rp for (Np)? (for some € < ef)
so that F' is contained in the interior of Rp. Since pr is infinite-to-one on
each end of (Nx)? which is contained in A, the Covering Theorem (see [15]
or [53]) implies that all such ends are geometrically finite. Therefore,

Y = AL NC(NE) N (NF)thick(

€x)

is compact. If we let Z = A_ UY, then we see that k,(Gp) is contained in
the closed neighborhood of radius L about Z (since C(Nr) N Nipick(ee) C Z)-
Therefore, j,(G) is contained in the closed (L + K)-neighborhood of

Dnpr(Z)=DNpp(Y).

Since D Npp(Y') is compact, we conclude, exactly as in the previous cases,
that p~!(N) is closed. This case completes the proof that AI(M) is Ty if
M is not an untwisted interval bundle.

We now deal with the case where M = .5 x [ is an untwisted interval
bundle over a compact surface S. (In the special case that M is a handle-
body of genus 2, we choose S to be the punctured torus.) In our previous
paper [18], we consider the space AH(S) of (conjugacy classes of) discrete



12 RICHARD D. CANARY AND PETER A. STORM

faithful representations p : w1(S) — PSLy(C) such that if g € m1(5) is pe-
ripheral, then p(g) is parabolic. In Proposition 3.1, we use work of Thurston
[51] and McMullen [41] to exhibit a sequence {p,} in AH(S) which con-
verges to p € AH(S) such that A(p) =C, A(p1) # C and for all n there
exists ¢, € Mod(S) such that p, = p1 o p,. Since AH(S) C AH(S x I)
and Mod (.9) is identified with a subgroup of Out(71(S)), we see that {p,}
is a sequence in p~!(NN,,) which converges to a point outside of p~(N,,).
Therefore, N,, is a point in AI(S x I) which is not closed. O

Remark: One may further show, as in the remark after Proposition 3.1
n [18], that if N € AI(S x I) is a degenerate hyperbolic 3-manifold with
a lower bound on its injectivity radius, then NV is not a closed point in
AI(S x I). We recall that N = H?/T is degenerate if Q(T") is connected and
simply connected and I is finitely generated.

4. PRIMITIVE ESSENTIAL ANNULI AND THE FAILURE OF PROPER
DISCONTINUITY

In this section, we show that if M contains a primitive essential annulus,
then Out(m(M)) does not act properly discontinuously on AH(M). We
do so by using the Hyperbolic Dehn Filling Theorem to produce a conver-
gent sequence {p,} in AH(M) and a sequence {¢,} of distinct element of
Out(m1(M)) such that {p, o ¢,} is also convergent. The construction is a
generalization of a construction of Kerckhoff-Thurston [31]. One may also
think of the argument as a simple version of the “wrapping” construction
(see Anderson-Canary [2]) which was also used to show that components of
int(AH(M)) self-bump whenever M contains a primitive essential annulus
(see McMullen [42] and Bromberg-Holt [13]).

Theorem 1.2. Let M be a compact hyperbolizable 3-manifold with non-
abelian fundamental group. If M contains a primitive essential annulus then
Out(m1(M)) does not act properly discontinuously on AH(M). Moreover, if
M contains a primitive essential annulus, then AI(M) is not Hausdorff.

Proof. Let A be a primitive essential annulus in M with core curve . Let
M = M — N(a) where N (a) is an open regular neighborhood of a. Lemma
10.2 in [3] observes that M is hyperbolizable. Since M is hyperbolizable,
Thurston’s Hyperbolization Theorem implies that there exists a hyperbolic
manifold N and a homeomorphism v : M — 8rM — N U8.N. The classical
deformation theory of Kleinian groups (see Bers [5] or [17]) implies that we
may choose any conformal structure on d:N.

Let Ay and Ay denote the components of AN M. Let M; be the comple-
ment in M of a regular neighborhood of A;. Let h; : M — M be an embed-
ding with image M; which agrees with the identity map off of a (somewhat
larger) regular neighborhood of A.



MODULI SPACES OF HYPERBOLIC 3-MANIFOLDS 13

Let F' be the toroidal boundary component of M which is the bound-
ary of N(a) in M. Choose a meridian-longitude system for F' so that the
meridian for F' bounds a disk in M and the longitude is isotopic to A; N F.
Lemma 10.3 in [3] implies that if 3, : M — M(1,n) is the inclusion map, then
inohy: M — M(l,n) is homotopic to a homeomorphism for each ¢ = 0,1
and all n € Z. Moreover, we may similarly check that ,, o h; is homotopic to
in © hg o D7 for all n, where D4 denotes a Dehn twist along A. Notice first
that j, = D7 takes a (1,0)-curve on F' to a (1,n)-curve on F, so extends
to a homeomorphism j, : M = M(l, 0) — M(l, n). Therefore, since ig o hg
and i o hy are homotopic, so are j, o 79 o hg and j, o ig o hy. But, 5, oig o hg
is homotopic to iy o hg o D’} and j,, 0ig o h1 = iy © h1, which completes the
proof that i,, o hy is homotopic to i, o hg o D} for all n.

Let po = (¢ o hg)« and p1 = (¢ o hy)«. Since (h;), induces an injection of
m1(M) into (M), p; € AH(M). We next observe that one can choose N
so that N,, and N,, are not isometric. Let a; = A; N (OM — drM) and let
a’ denote the geodesic representative of ¥(a;) in 9:.N. Notice that for each
1 = 0, 1 there is a conformal embedding of 9.N — a; into 9., such that each
component of the complement of the image of 9. N — a; is a neighborhood
of a cusp. One may therefore choose the conformal structure on 8. N so that
there is not a conformal homeomorphism from 9.N,, to 0.N,,. Therefore,
Ny, and N, are not isometric.

Let {N,, = Ng,} be the sequence of hyperbolic 3-manifolds provided by
the Hyperbolic Dehn Filling Theorem applied to the sequence {(1,7n)}nez,
and let {1, : M(1,n) — &M (1,n) — N,, Ud.N,} be the homeomorphisms
such that 1, 04, o1~! is conformal on J.N. Let

Pn,i = Bn o Pi

for all n large enough that N, and 1, exist. Since (G, o ¥, is conjugate to
(1n, 0in)s« (by applying part (2) of the Hyperbolic Dehn Filling Theorem)
and i, o h; is homotopic to a homeomorphism, we see that py, ; = (¥ 0 in, 0 hj)«
lies in AH (M) for all n and each . It follows from part (1) of the Hyper-
bolic Dehn Filling Theorem that {p, ;} converges to p; for each i. Moreover,
Pn.1 = pno© (Da)} for all n, since 4,, o hy is homotopic to 4, o hg o D7, for all
n. Therefore, Out (w1 (M)) does not act properly discontinuously on AH (M).
Moreover, {pn 0} and {p,,1} project to the same sequence in AI(M) and
both N,, and N, are limits of this sequence. Since N,, and NN, are distinct
manifolds in AI(M), it follows that AI(M) is not Hausdorff. O

Remark: One can also establish Theorem 1.2 using deformation theory of
Kleinian groups and convergence results of Thurston [52]. This version of
the argument follows the same outline as the proof of Proposition 3.3 in [18].

We provide a brief sketch of this argument. The classical deformation
theory of Kleinian groups (in combination with Thurston’s Hyperbolization
Theorem) guarantees that there exists a component B of int(AH (M)) such
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that if p € B, then there exists a homeomorphism l_zp :M —0rM — N,U0.N,
and the point p is determined by the induced conformal structure on M — dp M.

Moreover, every possible conformal structure on M — dpM arises in this
manner.

Let ap and a; denote the components of JA and let ¢,, and ¢,, denote
Dehn twists about ag and a; respectively. We choose orientations so that
D 4 induces tq, o ty, on OM. We then let p, o € B have associated conformal
structure ¢, (X) and let p,1 have associated conformal structure ¢;"(X)
for some conformal structure X on M. Thurston’s convergence results
[51, 52] can be used to show that there exists a subsequence {n;} of Z
such that {pn; 0} and {pn; 1} both converge. One can guarantee, roughly as
above, that the limiting hyperbolic manifolds are not isometric. Moreover,
Pn1 = pno© (Da)} for all n, so we are the same situation as in the proof
above.

5. THE CHARACTERISTIC SUBMANIFOLD AND MAPPING CLASS GROUPS

In order to further analyze the case where M has incompressible bound-
ary we will make use of the characteristic submanifold (developed by Jaco-
Shalen [27] and Johannson [29]) and the theory of mapping class groups of
3-manifolds developed by Johannson [29] and extended by McCullough and
his co-authors [39, 26, 17].

We begin by recalling the definition of the characteristic submanifold, spe-
cialized to the hyperbolic setting. In the general setting, the components of
the characteristic submanifold are interval bundles and Seifert fibred spaces.
In the hyperbolic setting, the only Seifert fibred spaces which occur are the
solid torus and the thickened torus (see Morgan [44, Sec. 11] or Canary-
McCullough [17, Chap. 5]).

Theorem 5.1. Let M be a compact oriented hyperbolizable 3-manifold with

incompressible boundary. There exists a codimension zero submanifold X(M) C

with frontier Fr(X(M)) = 0X(M) — OM satisfying the following properties:
(1) Each component ¥; of X(M) is either
(i) an interval bundle over a compact surface with negative Eu-
ler characteristic which intersects OM in its associated OI-bundle,
(ii) a thickened torus such that OM N'Y; contains a torus, or
(#i) a solid torus.

(2) The frontier Fr(X(M)) is a collection of essential annuli.

(3) Any essential annulus or incompressible torus in M is properly iso-
topic into X(M).

(4) If X is a component of M — X(M), then either w1 (X) is non-abelian
or (X, Fr(X)) = (S x[0,1] x [0,1],S* x [0,1] x {0,1}) and X lies
between an interval bundle component of X(M) and a thickened or
solid torus component of 3 (M).

Moreover, such a X(M) is unique up to isotopy, and is called the character-
istic submanifold of M.
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The existence and the uniqueness of the characteristic submanifold in
general follows from The Characteristic Pair Theorem in [27] or Proposition
9.4 and Corollary 10.9 in [29]. Theorem 5.1(1) follows from [17, Theorem
5.3.4], part (2) follows from (1) and the definition of the characteristic sub-
manifold, part (3) follows from [29, Theorem 12.5], and part (4) follows from
[17, Theorem 2.9.3].

Johannson’s Classification Theorem [29] asserts that every homotopy equiv-
alence between compact, irreducible 3-manifolds with incompressible bound-
ary may be homotoped so that it preserves the characteristic submani-
fold and is a homeomorphism on its complement. Therefore, the study of
Out(m (M)) often reduces to the study of mapping class groups of interval
bundles and Seifert-fibered spaces.

Johannson’s Classification Theorem [29, Theorem 24.2]. Let M and Q
be irreducible 3-manifolds with incompressible boundary and let h : M — @

be a homotopy equivalence. Then h is homotopic to a map g : M — Q such
that

(1) g1 (2(Q)) = %(M),
(2) glsn : (M) — X(Q) is a homotopy equivalence, and

(3) 9|W(M) M —3(M) — Q —X(Q) is a homeomorphism.

Moreover, if h is a homeomorphism, then g is a homeomorphim.

We let the mapping class group Mod(M) denote the group of isotopy
classes of self-homeomorphisms of M. Since M is irreducible and has (non-
empty) incompressible boundary, any two homotopic homeomorphisms are
isotopic (see Waldhausen [55, Theorem 7.1]), so Mod(M) is naturally a
subgroup of Out (71 (M)). For simplicity, we will assume that M is a compact
hyperbolizable 3-manifold with incompressible boundary and no toroidal
boundary components. Notice that this implies that (M) contains no
thickened torus components. Let ¥ be the characteristic submanifold of M
and denote its components by {¥1,...,3;}.

Following McCullough [39], we let Mod(X;, Fr(3;)) denote the group of
homotopy classes of homeomorphisms h : ¥; — ¥; such that h(F) = F for
each component F' of Fr(¥;). We let G(3;, Fr(¥;)) denote the subgroup
consisting of (homotopy classes of) homeomorphisms which have represen-
tatives which are the identity on F'r(%;). Define

G(Z, Fr(®) = F_,G(Zi, Fr(%)).

Notice that using these definitions, the restriction of a Dehn twist along a
component of Fr(X) is trivial in G(X, F'r(X)).

In our case, each 3; is either an interval bundle over a compact surface F;
with negative Euler characteristic or a solid torus. If 3; is a solid torus, then
G(Z;, Fr(%;)) is finite (see Lemma 10.3.2 in [17]). If ¥; is an interval bundle
over a compact surface Fj, then G(X;, Fr(X%;)) is isomorphic to the group
G(F;,0F;) of proper isotopy classes of self-homeomorphisms of F' which
are the identity on OF (see Proposition 3.2.1 in [39] and Lemma 6.1 in
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[26]). Moreover, G(X;, Fr(%;)) injects into Out(71(%;)) (see Proposition
5.2.3 in [17] for example). We say that %; is tiny if its base surface F;
is either a thrice-punctured sphere or a twice-punctured projective plane.
If 3; is not tiny, then F; contains a 2-sided, non-peripheral homotopically
non-trivial simple closed curve, so G(¥;, Fr(X;)) is infinite. If ¥; is tiny,
then G(3;, F'r(¥;)) is finite (see Korkmaz [32] for the case when F; is a
twice-punctured projective plane).

Let J(M) be the subgroup of Mod(M) consisting of classes represented
by homeomorphisms fixing M — ¥ pointwise. Lemma 4.2.1 of McCullough
[39] implies that J(M) has finite index in Mod(M). (Instead of J(M),
McCullough writes (M, X1, X9, ..., Xg).) Lemma 4.2.2 of McCullough [39]
implies that the kernel K (M) of the natural surjective homomorphism

ps: J(M) — G(Z, Fr(X))

is abelian and is generated by Dehn twists about the annuli in Fr(X).
We summarize the discussion above in the following statement.

Theorem 5.2. Let M be a compact hyperbolizable 3-manifold with incom-
pressible boundary and no toroidal boundary components. Then there is a
finite index subgroup J(M) of Mod(M) and an exact sequence

1— K(M) — JM) 2 G2, Fr(z) — 1

such that K (M) is an abelian group generated by Dehn twists about essential
annuli in Fr(X).

Suppose that ¥; is a component of X(M). If ¥; is a solid torus or a tiny
interval bundle, then G(X;, Fr(X;)) is finite. Otherwise, G(X;, Fr(%;)) is
infinite and injects into Out(my(%;)).

6. CHARACTERISTIC COLLECTIONS OF ANNULI

We continue to assume that M has incompressible boundary and no
toroidal boundary components and that (M) is its characteristic submani-
fold. In this section, we organize K (M) into subgroups generated by collec-
tions of annuli with homotopic core curves, called characteristic collection of
annuli, and define a class of free subgroups of 7 (M) which “register” these
subgroups of K(M).

A characteristic collection of annuli for M is either a) the collection of
all frontier annuli in a solid torus component of ¥(M), or b) an annulus in
the frontier of an interval bundle component of ¥(M) which is not properly
isotopic to a frontier annulus of a solid torus component of ¥(M).

If C; is a characteristic collection of annuli for M, let K; be the subgroup
of K(M) generated by Dehn twists about the annuli in C;. Notice that
K; N K; = {id} for i # j, since each element of K; fixes any curve disjoint
from Cj. Then K(M) = @}, K}, since every frontier annulus of %(M) is
properly isotopic to a component of some characteristic collection of annuli.
Let ¢; : K(M) — Kj be the projection map.
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We next introduce free subgroups of 7 (M), called Cj-registering sub-
groups, which are preserved by K; and such that K; acts effectively on the
subgroup.

We first suppose that C; = Fr(T}) where T; is a solid torus component
of 3(M). Let {Ai,...,A;} denote the components of Fr(T};). For each
i=1,...,1,let X; be the component of M — (T; UC1 U Cy U...UCy,) abut-
ting A;. (Notice that each X; is either a component of M — ¥(M) or prop-
erly isotopic to the interior of an interval bundle component of ¥ (M).) Let
a be a core curve for T and let z¢ be a point on a. We say that a subgroup
H of (M, ) is Cj-registering if it is freely (and minimally) generated by
a and, for each t =1,...,1, a loop g; in T; U X; based at zg intersecting A;
exactly twice. In particular, every Cj-registering subgroup of (M, ) is
isomorphic to Fjy.

Notice that a Dehn twist D4, along any A; preserves H in 7y (M, xo). It
acts on H by the map t; which fixes a and g,, for m # i, and conjugates g; by
a" (where the core curve of A; is homotopic to a”). Let sy : Kj — Out(H)
be the homomorphism which takes each D4, to ¢;. Simultaneously twisting
along all [ annuli induces conjugation by a™, which is an inner automorphism
of H. Moreover, it is easily checked that sy (k) is isomorphic to Z'=1 and
is generated by {t1,...,t;—1}. The set {a,¢g1,...,q;} may be extended to
a generating set for 71 (M, zg) by appending curves which intersect Fr(7})
exactly twice, so D4, o--- Dy, acts as conjugation by a™ on all of 71 (M, zp).
Therefore, K itself is isomorphic to Z'~! and sy is injective. (In particular,
if C} is a single annulus in the boundary of a solid torus component of ¥(M),
then K is trivial and we could have omitted Cj.)

Now suppose that C; = {A} is a frontier annulus of an interval bun-
dle component ¥; of ¥ which is not properly isotopic into a solid torus
component of . Let a be a core curve for A and let xy be a point on
a. We say that a subgroup H of m(M,xzg) is Cj-registering if it is freely
(and minimally) generated by a and two loops g1 and g2 based at xy each
of whose interiors misses A, and which lie in the two distinct components
of M — (C1UCyU...UCy,) abutting A. In this case, H is isomorphic to
F3. Arguing as above, it follows that K; is an infinite cyclic subgroup of
Out(m;(M)) and there is an injection sy : K; — Out(H).

In either situation, if H is a Cj-registering group for a characteristic
collection of annuli C}, then we may consider the map

ri s X(M) — X (H)

simply obtained by taking p to p|g. (Here, X(H) is the PSLy(C)-character
variety of the abstract group H.) One easily checks from the description
above that if o € Kj, then rg(poa)=ru(p)osy(a) for all pe X(M).
Notice that if ¢ € K; and j # [, then K; acts trivially on H, since each
generating curve of H is disjoint from Cj. Therefore,

ru(poa) =ru(p)osu(g(a))
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for all p € X(M) and o € K(M).
We summarize the key points of this discussion for use later:

Lemma 6.1. Let M be a compact hyperbolizable 3-manifold with incom-
pressible boundary and no toroidal boundary components. If C; is a char-
acteristic collection of annuli for M and H is a Cj-registering subgroup of
w1 (M), then H is preserved by each element of K; and there is a natural
injective homomorphism sy : Kj — Out(H). Moreover, if o € K(M), then
ri(po a) = ra(p) o silas()) for all p € X(M),

7. PRIMITIVE ESSENTIAL ANNULI AND MANIFOLDS WITH COMPRESSIBLE
BOUNDARY

In this section we use a result of Johannson [29] to show that every com-
pact hyperbolizable 3-manifolds with compressible boundary and no toroidal
boundary components contains a primitive essential annulus. It then follows
from Theorem 1.2 that if M has compressible boundary and no toroidal
boundary components, then Out(m(M)) fails to act properly discontinu-
ously on AH(M) and AI(M) is not Hausdorff.

We first find indivisible curves in the boundary of compact hyperboliz-
able 3-manifolds with incompressible boundary and no toroidal boundary
components. We call a curve a in M indivisible if it generates a maximal
cyclic subgroup of 1 (M).

Lemma 7.1. Let M be a compact hyperbolizable 3-manifold with (non-
empty) incompressible boundary. Then, if F' is a component of OM, there
exists an indivisible simple closed curve in F'.

Proof. We use a special case of a result of Johannson [29] (see also Jaco-
Shalen [28]) which characterizes divisible simple closed curves in 9M.

Lemma 7.2. ([29, Lemma 32.1]) Let M be a compact hyperbolizable 3-
manifold with incompressible boundary. An essential simple closed curve
in OM which is not indivisible is either isotopic into a solid torus component
of X(M) or is isotopic to a boundary component of an essential Mobius band
in an interval bundle component of L(M).

Therefore, if ¥(M) is not all of M, then any simple closed curve in F
which cannot be isotoped into a solid torus or interval bundle component of
(M) is indivisible.

If ¥(M)= M, then M is an interval bundle over a closed surface with
negative Fuler characteristic and the proof is completed by the following
lemma, whose full statement will be used later in the paper.

Lemma 7.3. Let M be a compact hyperbolizable 3-manifold with no toroidal
boundary components. Let ¥; be an interval bundle component of (M)
which is not tiny, then there is a primitive essential annulus (for M) con-
tained in ;.
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Proof. Let F; be the base surface of 3;. Since ¥; is not tiny, F; contains a
non-peripheral simple closed curve a which is two-sided and homotopically
non-trivial. Then a is an indivisible curve in F; and hence in M. The
sub-interval bundle A over a is thus a primitive essential annulus. O

(]

We are now prepared to prove the main result of the section.

Proposition 7.4. If M is a compact hyperbolizable 3-manifold with com-
pressible boundary and no toroidal boundary components, then M contains
a primitive essential annulus.

Proof. We first observe that under our assumptions every maximal abelian
subgroup of 71 (M) is cyclic (since every non-cyclic abelian subgroup of the
fundamental group of a compact hyperbolizable 3-manifold is conjugate into
the fundamental group of a toroidal component of OM, see [44, Corollary
6.10]). Therefore, in our case an essential annulus is primitive if and only if
its core curve is indivisible.

We first suppose that M is a compression body. If M is a handlebody,
then it is an interval bundle, so contains a primitive essential annulus by
Lemma 7.3. Otherwise, M is formed from R x I by appending 1-handles
to R x {1}, where R is a closed, but not necessarily connected, orientable
surface. Let o be an essential simple closed curve in R x {1} which lies in
OM. Let D be a disk in R x {1} — M. We may assume that « intersects
0D in exactly one point. Let 5 C (O0M N R x {1}) be a simple closed curve
homotopic to a* 9D (in OM) and disjoint from «. Then « and § bound
an embedded annulus in R x {1}, which may be homotoped to a primitive
essential annulus in M (by pushing the interior of the annulus into the
interior of R x I).

If M is not a compression body, let Cjs be a characteristic compression
body neighborhood of 9M (as discussed in Section 2). Let C' be a component
of Cyy which has a compressible boundary component 0, C and an incom-
pressible boundary component F. Let X be the component of M — Cjy
which contains F' in its boundary and let o be an essential simple closed
curve in F which is indivisible in X (which exists by Lemma 7.1). Let o/ be
a curve in 0;C C M which is homotopic to a. One may then construct as
above a primitive essential annulus A in C' with o’ as one boundary compo-
nent. It is clear that A remains essential in M. Since 71 (M) = m(X) *« H
for some group H, the core curve of A, which is homotopic to «, is indivisible
in 7 (M). Therefore, A is our desired primitive essential annulus in M. O

Remark: The above argument is easily extended to the case where M is
allowed to have toroidal boundary components (but is still hyperbolizable),
unless M is a compression body all of whose boundary components are tori.
In fact, the only counterexamples in this situation occur when M is obtained
from one or two untwisted interval bundles over tori by attaching exactly
one 1-handle.
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We have thus already established Corollary 1.4 in the case that M has
compressible boundary.

Corollary 7.5. If M is a compact hyperbolizable 3-manifold with compress-
ible boundary, no toroidal boundary components, and non-abelian funda-
mental group, then Out(mi(M)) does not act properly discontinuously on
AH(M). Moreover, the moduli space AI(M) is not Hausdorff.

8. THE SPACE AH, (M)

In this section, we assume that M has incompressible boundary and no
toroidal boundary components. We identify a subset AH,, (M) of AH(M)
which contains all purely hyperbolic representations in AH (M). We will see
later that Out(71(M)) acts properly discontinuously on an open neighbor-
hood of AH,, (M) in X (M) if M is not an interval bundle.

We define AH,,(M) to be the set of (conjugacy classes of ) representations
p € AH(M) such that

(1) If ¥; is a component of the characteristic submanifold which is not a
tiny interval bundle, then p(m1(%;)) is purely hyperbolic (i.e. if g is
a non-trivial element of 71 (M) which is conjugate into m1(%;), then

p(g) is hyperbolic), and
(2) if X; is a tiny interval bundle, then p(m;(F'r(%;))) is purely hyper-

bolic.

We observe that int(AH(M)) is a proper subset of AH,(M) and that
AH(M) = AH,(M) if and only if M contains no primitive essential annuli.

Lemma 8.1. Let M be a compact hyperbolizable 3-manifold with non-empty
incompressible boundary and no toroidal boundary components. Then
(1) the interior of AH(M) is a proper subset of AH, (M),
(2) AH, (M) contains a dense subset of 0AH (M), and
(3) AH,(M) = AH(M) if and only if M contains no primitive essential
annuli.

Proof. Sullivan [50] proved that all representations in int(AH (M)) are purely
hyperbolic (if M has no toroidal boundary components), so clearly int(AH (M))
is contained in AH, (M). On the other hand, 0AH (M) is non-empty (see
Lemma 4.1 in Canary-Hersonsky [16]) and purely hyperbolic representations
are dense in 0AH (M) (which follows from Lemma 4.2 in [16] and the Density
Theorem [9, 10, 45, 47]). This establishes claims (1) and (2).

If M contains a primitive essential annulus A, then there exist p € AH (M)
such that p(«) is parabolic (where « is the core curve of A), so AH, (M) is
not all of AH (M) in this case (see Ohshika [46]).

Now suppose that M contains no primitive essential annuli. We first note
that every component of ¥(M) is a solid torus or tiny interval bundle (by
Lemma 7.3). Moreover, if ¥; is a tiny interval bundle component of ¥ (M),
then any component A of its frontier must be isotopic to a component of
the frontier of a solid torus component of ¥(M). Otherwise, A would be a
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primitive essential annulus (by Lemma 7.2). Therefore, it suffices to prove
that p(X;) is purely hyperbolic whenever ¥; is a solid torus component of
S(M).

Let T be a solid torus component of X(M). A frontier annulus A of T' is
an essential annulus in M, so it must not be primitive. It follows that the
core curve a of T is not peripheral in M (see [29, Theorem 32.1]).

Let p € AH(M) and let R be a relative compact core for (N,)? (for some
e <p). Let h: M — R be a homotopy equivalence in the homotopy class
determined by p. By Johannson’s Classification Theorem [29, Thm.24.2],
h may be homotoped so that h(T') is a component 7" of X(R), h|p, ) is
an embedding with image Fr(T') and h|p : (T, Fr(T)) — (T', Fr(T")) is a
homotopy equivalence of pairs. It follows that h(a) is homotopic to the core
curve of T” which is not peripheral in R.

If p(a) were parabolic, then h(a) would be homotopic into a non-compact
component of (N,)pin(e) and hence into P = RNA(N,)? C OR, so h(a)
would be peripheral in R. It follows that p(a) is hyperbolic. Since a gener-
ates m1(T'), we see that p(m1 (7)) is purely hyperbolic. Since T is an arbitrary
solid torus component of (M), we see that p € AH,(M). O

We next check that the restriction of p € AH,(M) to the fundamental
group of an interval bundle component of (M) (which is not tiny) is Schot-
tky. By definition, a Schottky group is a free, geometrically finite, purely
hyperbolic subgroup of PSL2(C) (see Maskit [36] for a discussion of the
equivalence of this definition with more classical definitions).

Lemma 8.2. Let M be a compact hyperbolizable 3-manifold with incom-
pressible boundary with no toroidal boundary components which is not an
interval bundle. If ¥; is an interval bundle component of ¥(M) which is not
tiny and p € AH, (M), then p(m1(X;)) is a Schottky group.

Proof. By definition p(m(%;)) is purely hyperbolic, so it suffices to prove it
is free and geometrically finite. Since ¥; is an interval bundle whose base sur-
face F; has non-empty boundary, m(3;) = 7 (F;) is free. Let m; : N; — N,
be the cover of N, associated to p(m1(X;)). Since m1(%;) has infinite index in
w1 (M), m; : N; — N is a covering with infinite degree. Let R; be a compact
core for N;. Since m(R;) is free and R; is irreducible, R; is a handlebody
([23, Theorem 5.2]). Therefore, N; = (N;)? has one end and m; is infinite-
to-one on this end, so the Covering Theorem (see [15]) implies that this end
is geometrically finite, and hence that INV; is geometrically finite. Therefore,
p(m1(%;)) is geometrically finite, completing the proof that it is a Schottky
group. ([l

Finally, we check that if p € AH, (M) and C} is a characteristic collection
of annuli, then there exists a Cj-registering subgroup whose image under p
is Schottky.

Lemma 8.3. Suppose that M is a compact hyperbolizable 3-manifold with
incompressible boundary and no toroidal boundary components and C; is a
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characteristic collection of frontier annuli for M. If p € AH,(M), then there
exists a Cj-registering subgroup H of (M) such that p(H) is a Schottky
group.

Proof. We first suppose that C; = {A} is a frontier annulus of an interval
bundle component of 3(M) (and that A is not properly isotopic to a frontier
annulus of a solid torus component of ¥(M)) and let o € A. We identify
w1 (M) with 71 (M, x¢). Let X; and Xo be the (distinct) components of
M — Fr(X) abutting A. Notice that each X; must have non-abelian fun-
damental group, since it either contains (the interior of) an interval bundle
component of 3(M) or (the interior of) a component of M — ¥ (M) which is
not a solid torus lying between an interval bundle component of ¥ (M) and
a solid torus component of ¥(M).

Let a be the core curve of A (based at x(). By assumption, p(a) is a hyper-
bolic element. Let F' be a fundamental domain for the action of < p(a) > on
Q(< p(a) >) which is an annulus in C. Since each p(m1(X;, o)) is discrete,
torsion-free and non-abelian, hence non-elementary, we may choose hyper-
bolic elements 7; € p(m1(X;, z0)) whose fixed points lie in the interior of
F. There exists s > 0 such that one may choose (round) disks D" C int(F)
about the fixed points of v;, such that v/ (int(D;)) = C- D}, and D}, D,
D; and D, are disjoint. Then, the Klein Combination Theorem (commonly
referred to as the ping pong lemma), guarantees that p(a), 7§ and 35 freely
generate a Schottky group, see, for example, Theorem C.2 in Maskit [37].
Then each p_l(’yf ) is represented by a curve g; in X; based at zo and a, g1
and g2 generate a Cj-registering subgroup H such that p(H) is Schottky.

Now suppose that C; = {Aq,..., A4;} is the collection of frontier annuli
of a solid torus component Tj of X(M). Let X; be the component of
M — (T UC1U...UC,y,) abutting A;. Pick zo in T} and let a be a core
curve of T} passing through xy. Again each X; must have non-abelian fun-
damental group.

Let F be an annular fundamental domain for the action of < p(a) > on the
complement in C of the fixed points of p(a). For eachi, letY; = X; U A; U int(Tj{)
and pick a hyperbolic element ~; in p(m (Y, z9)) both of whose fixed points
lie in the interior of F'. (Notice that even though it could be the case that
X; = Xy, for i # k, we still have that 7;(Y;, zo) intersects w1 (Y%, o) only
in the subgroup generated by a, so these hyperbolic elements are all dis-
tinct.) Then, just as in the previous case, there exists s > 0 such that the
elements {p(a),";,...,7;} freely generate a Schottky group. Each p~1(v;)
can be represented by a loop g; based at xg which lies in Y; and intersects
A; exactly twice. Therefore, the group H generated by {a,gi,...,q} is
Cj-registering and p(H) is Schottky. O
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9. PROPER DISCONTINUITY ON AH, (M)

We are finally prepared to prove that Out (71 (M)) acts properly discontin-
uously on an open neighborhood of AH,, (M) if M is a compact hyperboliz-
able 3-manifold with incompressible boundary and no toroidal boundary
components which is not an interval bundle.

Theorem 9.1. Let M be a compact hyperbolizable 3-manifold with nonempty
incompressible boundary and no toroidal boundary components which is not
an interval bundle. Then there exists an open Out(mi(M))-invariant neigh-
borhood W (M) of AH,(M) in X(M) such that Out(m(M)) acts properly

discontinuously on W (M).

Notice that Theorem 1.3 is an immediate consequence of Proposition 7.4,
Lemma 8.1 and Theorem 9.1. Moreover, Theorem 1.5 is an immediate corol-
lary of Lemma 8.1 and Theorem 9.1.

We now provide a brief outline of the section. In section 9.1 we recall
Minsky’s work which shows that Out(m(H,)) acts properly discontinu-
ously on the open set PS(H,,) of primitive-stable representations in X (H,,)
where H,, is the handlebody of genus g. In section 9.2, we consider the
set Z(M) C X (M) such that if p € Z(M) and C; is a characteristic collec-
tion of annuli, then there exists a Cj-registering subgroup H of w1 (M) such
that p|g is primitive stable. We use Minsky’s work to show that K (M) acts
properly discontinuously on Z(M). In section 9.3, we consider the set V(M)
of all representation such that p|., (x,) is primitive-stable whenever X; is an
interval bundle component of (M) which is not tiny. We show that if {c, }
is a sequence in J(M) such that {ps(a,)} is a sequence of distinct elements
and K is compact subset of V (M), then {a,(K)} leaves every compact
set. In section 9.4, we let W(M) = Z(M) NV (M) and combine the work in
the previous sections to show that J(M) acts properly discontinuously on
W(M). Since J(M) has finite index in Out(m(M)) (see [17]), this imme-
diately implies Theorem 9.1. Johannson’s Classification Theorem is used to
show that J(M) is invariant under Out(m;(M)).

9.1. Schottky groups and primitive-stable groups. In this section,
we recall Minsky’s work [43] on primitive-stable representations of the free
group Fj,, where n > 2. An element of F}, is called primitive if it is an
element of a minimal free generating set for F),. Let X be a bouquet of n
circles with base point b and fix a specific identification of w1 (X, b) with F,.
To a conjugacy class [w] in F,, one can associated an infinite geodesic in
X which is obtained by concatenating infinitely many copies of a cyclically
reduced representative of w (here the cyclic reduction is in the generating
set associated to the natural generators of 71 (X, b)). Let P denote the set of
infinite geodesics in the universal cover X of X which project to geodesics
associated to primitive words of F,.
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Given a representation p : F,, — PSLy(C), x € H® and a lift b of b, one
obtains a unique p-equivariant map 7, : X — H3 which takes b to z and
maps each edge of X to a geodesic. A representation p : F, — PSLy(C) is
primitive-stable if there are constants K,J > 0 such that 7,, takes all the
geodesics in P to (K, §)-quasi-geodesics in H3. We let PS(H,,) denote the
set of (conjugacy classes) of primitive-stable representations in X (H,,) where
H,, is the handlebody of genus n.

We summarize the key points of Minsky’s work which we use in the re-
mainder of the section. We recall that Schottky space S,, C X(H,) is the
space of discrete faithful representations whose image is a Schottky group
and that S, is the interior of AH (H,,).

Theorem 9.2. (Minsky [43]) If n > 2, then

(1) Out(Fy,) acts properly discontinuously on PS(Hy),

(2) PS(Hy,) is an open subset of X (H,), and

(3) Schottky space S, is a proper subset of PS(Hy).
Moreover, if K is any compact subset of PS(Hy,), and {ay} is a sequence
of distinct elements of Out(F,,), then {an(K)} exits every compact subset
of X(Hy) (i-e. for any compact subset C of X(H,,) there exists N such that
if n> N, then ap,(K)NC =10).

Remark: In order to prove our main theorem it would suffice to use Schot-
tky space S, in place of PS(H,). However, the subset W (M) we obtain
using PS(H,,) is larger than we would obtain using simply S,,.

9.2. Characteristic collection of annuli. We will assume for the remain-
der of the section that M is a compact hyperbolizable 3-manifold with in-
compressible boundary and no toroidal boundary components which is not
an interval bundle. Main Topological Theorem 2 in Canary and McCullough
[17] (which is itself an exercise in applying Johannson’s theory) implies that
that if M has incompressible boundary and no toroidal boundary compo-
nents, then Mod(M) has finite index in Out(m;(M)). Therefore, applying
Theorem 5.2, we see that J(M) has finite index in Out(71(M)). In particu-
lar, if M is acylindrical, then J(M) is trivial and Out(m (M )) acts properly
discontinuously on X (M).

Let C; be a characteristic collection of annuli in M. If H is a Cj-
registering subgroup of 71 (M), then the inclusion of H in 71 (M) induces a
natural injection sy : Kj — Out(H) such that if « € K(M), then

ra(poa) =ru(p)osu(gi())
where r(p) = p|u (see Lemma 6.1). Let
Zn =ry (PS(H))

where PS(H) C X(H) is the set of (conjugacy classes of) primitive-stable
representations of H. Let

Z(Cy) = Zu
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where the union is taken over all Cj-registering subgroups H of m(M).
If {C1,...,Cp} is the set of all characteristic collections of annuli for M,
then we define

Z(M) = () 2(Cy).
i=1

If there are no characteristic collection of annuli, then M is acylindrical and
we set Z(M) = X (M).

We use Lemma 8.3, Theorem 9.2, and Johannson’s Classification Theorem
to prove:

Lemma 9.3. Let M be a compact hyperbolizable 3-manifold with nonempty
incompressible boundary and no toroidal boundary components. Then
(1) Z(M) is an Out(mi(M))-invariant open neighborhood of AH, (M)
in X(M), and
(2) if K C Z(M) is compact and {c, } is a sequence of distinct elements
of K(M), then {a,(K)} exits every compact set of X(M).

Proof. Lemma 8.3 implies that AH, (M) C Z(C}) for each j,so AH,, (M) C Z(H).
Moreover, since g is continuous for all H, each Z(C};) is open, and hence
Z(M) is open.

Johannson’s Classification Theorem implies that if C; is a characteristic
collection of annuli for M and ¢ € Out(m(M)), then there exists a homo-
topy equivalence h : M — M such that h, = ¢ and h(C}) is also a character-
istic collection of annuli for M. Moreover, if H is a Cj-registering subgroup
of w1 (M), then ¢(H) is a h(C}j)-registering subgroup of m1(M). Therefore,
Z(M) is Out(my(M))-invariant, completing the proof of claim (1).

If (2) fails to hold, then there is a compact subset K of Z(M), a compact
subset C' of X (M) and a sequence {a,} of distinct elements of K (M) such
that «,(K)NC is non-empty for all n. We may pass to a subsequence,
still called {ay,}, so that there exists j such that {g;(a,)} is a sequence of
distinct elements. Since X (M) is locally compact, for each z € K, there
exists an open neighborhood U, of x and a Cj-registering subgroup H, such
that the closure U, is a compact subset of Zp, . Since K is compact, there
exists a finite collection of points {z1, ..., z,} such that K C Uy, U--- U U, .
Therefore, again passing to subsequence if necessary, there must exists z;
such that ay,(Uy,) N C is non-empty for all n. Let U’ = U,, and H' = H,,.
Lemma 6.1 implies that {sg/(g;(ay))} is a sequence of distinct elements of
Out(H') and that sy (gj(cn))(ru (U') = rpr(an(U’)). Theorem 9.2 then
implies that {sg(g;(cn))(re (U")} = {ra/(an(U'))} exits every compact
subset of X (H’). Therefore, {a,(U’)} exits every compact subset of X (M)
which is a contradiction. We have thus established (2). O

9.3. Interval bundle components of ¥(M). Let ¥; be an interval bundle
component of (M) with base surface F; and let X (3;) be its associated
character variety. There exists a natural restriction map r; : X (M) — X (%;)
taking p to plr (x,)- Recall that G(¥;, F'r(%;)) injects into Out(m1(3;)) (by
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Lemma 5.2), so acts effectively on X (X;). Moreover, if o € J(M), then
ri(poa) =ri(p) o pi(«) where p; is the projection of J(M) onto G(3;, F'r(%;)).
If ¥; is not tiny, we define

V() =7 1 (PS(%)).

If {31,...,%,} denotes the collection of all interval bundle components
of ¥(M) which are not tiny, then we let

V(M) = V()
=1

If every interval bundle component of ¥ () is tiny, then we let V(M) = X (M).
We use Lemma 8.2, Theorem 9.2, and Johannson’s Classification Theorem
to prove:

Lemma 9.4. Let M be a compact hyperbolizable 3-manifold with nonempty
incompressible boundary and no toroidal boundary components which is not
an interval bundle. Then
(1) V(M) is an Out(mi(M))-invariant open neighborhood of AH,(M)
in X(M), and
(2) if K is a compact subset of V(M) and {an} is a sequence in J(M)
such that {px.(an)} is a sequence of distinct elements of G(2, Fr(X)),
then {a,(K)} ezits every compact subset of X (M).

Proof. Lemma 8.2 implies that AH,, (M) C V(%;), for each i, and each V' (X%;)
is open since ; is continuous. Therefore, V(M) is an open neighborhood of
AH,(M).

Johannson’s Classification Theorem implies that if ¢ € Out(m;(M)), then
there exists a homotopy equivalence h : M — M such that h(3(M)) C X(M),
h|pr(s) is a self-homeomorphism of F'r(%) and h induces ¢. Therefore, if %;
is an interval bundle component of ¥(M), then ¢(m(%;)) is conjugate to
m1(2;) where ¥; is also an interval bundle component of ¥(M). Moreover,
if 3; is not tiny, then 71(X;) is also not tiny (since h|y, : ¥; — X; is a ho-
motopy equivalence which is a homeomorphism on the frontier). It follows
that V(M) is invariant under Out(m (M )), completing the proof of claim
(1).

If (2) fails to hold, then there is a compact subset K of Z(M), a compact
subset C' of X (M) and a sequence {a,} of elements of J(M) such that
{p=(an)} is a sequence of distinct elements of G(3, F'r(X)) and a,(K)NC
is non-empty for all n. If a component ¥; of (M) is a tiny interval bundle
or a solid torus, then G(%;, Fr(X;)) is finite, by Lemma 5.2. So, we may
pass to a subsequence, so that there exists an interval bundle ¥; which is not
tiny such that {p;(ay,)} is a sequence of distinct elements of G(X;, F'r(%;)).
Theorem 9.2 then implies that {p;(a,,)(ri(K))} leaves every compact subset
of X(X;). Therefore, since r;(a,(K)) = pi(an)(ri(K)) for all n, {a,(K)}
leaves every compact subset of X (M). This contradiction establishes claim
(2). O
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9.4. Assembly. Let W(M) =V (M)NZ(M). Since V(M) and Z(M) are
open Out(my(M))-invariant neighborhoods of AH, (M), so is W(M). It
remains to prove that Out(m(M)) acts properly discontinuously on W (M).
Since J (M) is a finite index subgroup of Out(m;(M)), it suffices to prove that
J(M) acts properly discontinuously on W(M). We will actually establish
the following stronger fact, which will complete the proof of Theorem 9.1.

Lemma 9.5. If K is a compact subset of W(M) and {a,} is a sequence
of distinct elements of J(M), then {an(K)} leaves every compact subset of
X(M).

Proof. If our claim fails, then there exists a compact subset K of W (M),
a compact subset C' of X (M) and a sequence {a,} of distinct elements
of J(M) such that a,(K)NC is non-empty. We may pass to an infinite
subsequence, still called {a,}, such that either {ps(a,)} is a sequence of
distinct elements or {px(ay)} is constant.

If {px(an)} is a sequence of distinct elements, Lemma 9.4 immediately
implies that {a,(K)} leaves every compact subset of X (M) and we obtain
the desired contradiction.

If {ps(cn)} is constant, then, by Theorem 5.2, there exists a sequence
{Bn} of distinct elements of K (M) such that a,, = a3 o 3, for all n. Lemma
9.3 implies that {3,(K)} exits every compact subset of X (M). Since oy

induces a homeomorphism of X (M), it follows that {a,(K) = a1(8.(K))}
also leaves every compact subset of X (M). This contradiction completes

the proof. O
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