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ABSTRACT. We prove that the deformation space AH (M) of marked hy-
perbolic 3-manifolds homotopy equivalent to a fixed compact 3-manifold
M with incompressible boundary is locally connected at minimally par-
abolic points. Moreover, spaces of Kleinian surface groups are locally
connected at quasiconformally rigid points. Similar results are obtained
for deformation spaces of acylindrical 3-manifolds and Bers slices.
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1. Introduction

The conjectural picture for the topology of the deformation space AH (M)
of all (marked) hyperbolic 3-manifolds homotopy equivalent to a fixed com-
pact 3-manifold M has evolved from one of relative simplicity to one far
more complicated in recent years. Indeed, the interior of this space has been
well-understood since the late 1970’s. Roughly, components of AH (M) are
enumerated by (marked) homeomorphism types of compact 3-manifolds ho-
motopy equivalent to M, and each component is a manifold parameterized
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by natural conformal data. In the last decade, however, a string of results
has established that the topology of AH (M) itself is not well-behaved. In
particular, AH (M) fails to be locally connected when M is an untwisted
I-bundle over a closed surface ([22], [43]), and a new conjectural picture in
which such pathology is prevalent has replaced the old.

The present paper clarifies the role that the geometry and topology of
3-manifolds associated to points in the boundary of AH (M) plays in the
local topology at such points. In particular, we show that the topology of
AH (M) is well-behaved at many points; if M has incompressible boundary,
then AH (M) is locally connected at “generic” points in the boundary. When
M is acylindrical or an untwisted /-bundle we obtain finer results.

Central to the present discussion are recent fundamental improvements
in the understanding of the internal geometry and topology of ends of hy-
perbolic 3-manifolds. Via the Ending Lamination Theorem of [52, 18] and
the model manifold developed in its proof, the Tameness Theorem of [1, 26]
and the Density Theorem [18, 54, 58|, we develop a more complete picture
of the topological complexity at the boundary of deformation spaces.

Our first theorem extracts consequences for the local structure of defor-
mation spaces in terms of the topology of M and the presence of parabolic
elements for an element p in the boundary of AH (M).

Two components B and C of int(AH(M)) are said to bump at p €
OAH(M) if p € BNC. A component B of int(AH(M)) is said to self-
bump at p € OB if there exists a neighborhood W of p such that if V is a
neighborhood of p which is contained in W, then V N B is disconnected. A
point p € JAH (M) is said to be uniquely approachable if there is no bump-
ing or self-bumping at p. The Density Theorem [18, 54, 58] asserts that
AH (M) is the closure of its interior, so AH (M) is locally connected at all
uniquely approachable points.

Theorem 1.1. Let M be a compact 3-manifold with incompressible bound-
ary and p € OAH(M). If every parabolic element of p(mwi(M)) lies in a
rank-two free abelian subgroup, then p is uniquely approachable. In particu-
lar, AH (M) is locally connected at p.

Remark: Such points p are generic in the boundary of AH (M) in the sense
of Lemma 4.2 in [30].

Recall that if p € AH(M), then N, = H3/p(m1(M)) is a hyperbolic 3-
manifold homotopy equivalent to M. If ©(p) is the domain of discontinuity
for the action of p(m (M)) on C, then 0.N, = Q(p)/p(m1(M)) is a Riemann
surface called the conformal boundary of N,. In order to rule out bumping
in the presence of parabolics we place the additional restriction on p that
every component of its conformal boundary is a thrice-punctured sphere.
Such a p is called quasiconformally rigid. Notice that this includes the case
that the conformal boundary is empty.
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Theorem 1.2. Let M be a compact 3-manifold. If p is a quasiconformally
rigid point in 0AH (M), then there is no bumping at p.

In order to rule out self-bumping, we make additional restrictions on the
topology of M.

Theorem 1.3. Let M be a compact 3-manifold which is either acylindrical
or homeomorphic to S x I, for a closed surface S. If p is a quasiconformally
rigid point in OAH (M) then there is no self-bumping at p.

We may combine Theorems 1.2 and 1.3 to establish the following corollary.

Corollary 1.4. Let M be a compact 3-manifold which is either acylindrical
or homeomorphic to S x I, for a closed surface S. If p is a quasiconfor-
mally rigid point in OAH (M) then p is uniquely approachable. In particular,
AH (M) is locally connected at p.

If M =S x1I,then int(AH(S x I)) is the quasi-Fuchsian locus, denoted
QF(S), and is naturally identified with 7(S) x 7(S). Given Y € 7(S), the
Bers slice By of QF(S) is the slice 7(S) x {Y'} in the product structure.
If p lies in the boundary of a Bers slice B, then its conformal boundary
always has a component homeomorphic to S (see Bers [10, Theorem 8]). In
this setting, we say that p is quasiconformally rigid in 0B if every other
component of its conformal boundary is a thrice-punctured sphere. We say
a Bers slice self-bumps at a point p € 0B if there exists a neighborhood W of
p in the closure B of B (within AH (S x I)) such that if V is a neighborhood
of p in B which is contained in W, then V N B is disconnected.

Theorem 1.5. Let B be a Bers slice of QF(S) for some closed surface S.
If p € OB and p is quasiconformally rigid in OB, then B does not self-bump
at p. In particular, its closure B is locally connected at p.

History. The Ending Lamination Theorem [52, 18, 19] asserts that hy-
perbolic 3-manifolds in AH (M) are classified by their (marked) homeomor-
phism type and ending invariants which encode the asymptotic geometry
of their ends. As points in the interior are parametrized by Teichmiiller
space(s) and ending laminations are associated to points on the boundary, a
tenuous analogy between deformation spaces and Thurston’s compactifica-
tion of Teichmiiller spaces by the sphere of projective measured laminations
clouded the picture of the topological structure of deformation spaces for
many years. The non-continuity of the action of the mapping class group
on Bers compactification [40], illustrated some initial failings of this anal-
ogy, and elucidated a central example of Jorgenson (see [44]) concerning the
disparity between algebraic and geometric convergence that underlies the
present discussion.

Anderson and Canary [3] showed that the (marked) homeomorphism type
need not vary continuously over AH (M), while Brock [14] showed that end-
ing laminations do not vary continuously in any of the usual topologies, even
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in the closure of a Bers slice. These results make it clear that the parameter-
ization of AH (M) must be much more complicated than one might naively
hope.

Bumping phenomena in deformation spaces were first discovered by An-
derson and Canary [3]. Anderson, Canary and McCullough [6] character-
ized exactly which components of int(AH (M)) bump when M has incom-
pressible boundary. McMullen [49] showed that QF(S) self-bumps, while
Bromberg and Holt [23] showed that every component of int(AH (M)) self-
bumps whenever M contains a primitive essential annulus. For a more com-
plete overview of recent results on the pathology of the topology of AH (M)
see [29].

All known bumping and self-bumping results make use of the “wrapping”
construction from [3] which requires the presence of a primitive essential
annulus. It is not yet known whether self-bumping can occur in AH (M)
when M does not contain primitive essential annuli or in the closure of a
Bers slice. However, Bromberg [22] conjectures that if S is a closed surface
of genus at least 2, then the closure of every Bers Slice of QF(S) is not
locally connected. In the case of Bers slices of the space of punctured torus
groups, Minsky [50] showed that the closure of every Bers slice is a disk
and hence locally connected. We conjecture, similarly, that AH (M) is not
locally connected whenever M has a boundary component of genus at least
two.

Outline of the Argument

In section 3, we rule out bumping in the setting of Theorems 1.1 and 1.2.
In each case, the point is to rule out change of marked homeomorphism type
in a sequence approaching the point in question. The hypotheses allow for
the key use of the core embedding results of Anderson-Canary-Culler-Shalen
[5].

In section 4, we rule out self-bumping in the setting of Theorem 1.1. By
hypothesis, we consider a point p with no extra parabolics and some degen-
erate ends. To rule out self-bumping at p it suffices to consider two sequences
{pn} and {p},} in int(AH(M)) converging to p, and show that they can be
connected by a sequence of paths {7,}, also in int(AH (M)), which accumu-
late only on p. Non-bumping implies that p, and p), are quasiconformally
conjugate, so the paths can be chosen as Teichmiiller geodesics in the as-
sociated quasiconformal deformation space. We can control the behavior of
the ending invariants of these sequences, and use the Ending Lamination
Theorem to show that any accumulation point of these paths is p.

The proof of Theorem 1.5 (the Bers slice case) is given in Section 7, using
results from Sections 5 and 6. For clarity, consider first the case of a point
p € OB which is a mazimal cusp; that is, where a maximal curve system «
on the base surface S is represented by parabolics.
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There is a neighborhood basis of p in B consisting of sets of the form
U(d) ={p € B:lo;(p) <6 Voj€a}

where o, (p') is the translation distance in hyperbolic space of p’(c;), for a
component a; of a. To show no self-bumping occurs at p, then, we must
show that for any € > 0 there is a 6 > 0 such that any two points in U(J)
can be joined by a path in U (e).

To show this would be straightforward if all components of o were al-
ready short on the top conformal boundary of our group: Fenchel-Nielsen
coordinates for the Teichmiiller space of the varying conformal boundary
component in the Bers slice can be used directly to obtain a path in which
the lengths of components of a are controlled.

In general, however, curves in a can have very short geodesic represen-
tatives deep inside the convex core of the manifold, while on the boundary
they are extremely long. To obtain geometric control over the interior of
the convex core via boundary geometry requires tools from the solution of
the Ending Lamination Conjecture in [52] and [18]. Lemma 6.1 gives the
final statement needed, namely that when the geodesic representatives of a
are very short in the manifold, there is a continuous path in B terminating
at a point where « is short in the conformal boundary and the geodesic
representatives of v are short in all the corresponding hyperbolic manifolds
along the deformation.

We develop the necessary machinery for finding such a path in Sections
5 and 6. Recall first from [52] that short length for a curve v in a surface
group corresponds to large projection coefficients for some subsurface W with
~v C OW. That is, for each subsurface W we project the ending invariants
of the group to the curve complex C(W) and measure the distance between
them. Then a curve v € C(S) is short in the hyperbolic 3-manifold if and
only if it is short in the conformal boundary or one of these coefficients is
large for a subsurface with v in its boundary (see Theorem 2.2 for a precise
statement).

In section 5 we examine Fenchel-Nielsen coordinates and their effect on
subsurface projections. In particular we prove in Theorem 5.1 that, given
a curve system a and a point X in Teichmiller space, we can deform the
length and twist parameters of X as much as we want without changing by
more than a bounded amount projections to subsurfaces disjoint from c.

In Section 6 we perform the deformation. The trickiest issue is that we
must adjust the components of the curve system in an order reflecting their
arrangement in the manifold, with the curves “closest” to the top boundary
being adjusted first. In particular, to each component «; of o we associate a
subsurface W; with «; in its boundary, whose projection coefficient is large
enough to be responsible for «; being short. To each W; is associated a
certain geometric region in the manifold, and these regions are partially
ordered in terms of their separation properties in the manifold. In order not
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to disturb the projection coefficients of the other surfaces while adjusting
each «a;, we need to start with the highest ones.

In practice we detect this partial order in a combinatorial way, by looking
at the projections of the subsurface boundaries to each other’s curve com-
plexes. These ideas come from [46] and [18], and are also exploited in [§]
and elsewhere. The details of this are discussed in Section 2.4, and Lemma
2.3 in particular.

In the general case of Theorem 1.5, we must consider a representation p
with a mix of parabolics (a non-maximal system ) and degenerate ends.
By the Ending Lamination Theorem such representations are uniquely de-
termined by their ending invariants, and we can determine a neighborhood
system for p by considering constraints not just on the lengths of the curves
in a but on the projections of the ending data to the subsurfaces associated
to the degenerate ends. The appropriate statement is given in Lemma 7.1,
which relies on a Theorem 2.7, whose proof will appear in [17].

The acylindrical case of Theorem 1.3 is handled in Section 8. This is
quite similar to the Bers slice case, with Thurston’s Bounded Image Theo-
rem providing control on the lower conformal boundary of each boundary
subgroup.

Finally, the general surface group case of Theorem 1.3 is completed in
Section 9. In this case parabolics and degenerate ends can occur on both
top and bottom. We deform one end and then the other, taking care to
preserve the order of the ends (and, in particular, the order of the curves
becoming parabolic).

Acknowledgements. The authors gratefully acknowledge the support of
the National Science Foundation and the support of their NSF FRG grant
in particular. We also thank Francis Bonahon for suggesting an initial form
of the argument for Theorem 1.1.

2. Background

In this section, we recall some of the key tools and results which will be
used in the paper. (A few new technical lemmas will be derived in sections
2.4 and 2.5).

In section 2.1 we survey the Ending Lamination Theorem which provides
a classification of hyperbolic 3-manifolds with finitely generated fundamen-
tal group in terms of their ending invariants. In section 2.2, we recall basic
facts about deformation spaces of hyperbolic 3-manifolds, for example the
parameterization of the interior of AH (M) and Thurston’s Bounded Image
Theorem. In section 2.3, we recall results which explain how the internal ge-
ometry of hyperbolic 3-manifolds can be detected from its ending invariants,
via subsurface projections. In section 2.4, we introduce the partial order on
(certain) subsurfaces discussed in the outline of argument and relate it to
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the ordering of curves in the hyperbolic 3-manifold. In section 2.5, we re-
call basic facts about geometric limits and derive consequences of the core
embedding results of [5].

2.1. Ending invariants and the Ending Lamination Theorem

We recall (see [7] for example) that there exists a Margulis constant p > 0,
such that if € < g and

Nthin(e) = {ZL’ eN | ian(iL') < 6},

then every component of Ny, () is either a solid torus, metric neighborhood
of a closed geodesic in N or a “cusp”, i.e. a quotient of a horoball in H? by
a group of parabolic transformations, which is homeomorphic to 7" x (0, co)
where T is either a torus or an open annulus. We pick a uniform ey < p
which will be used throughout the paper.

If pe AH(M), let N, = H?/p(m1(M)) and let NJ be obtained from N,
by removing all the cusps of (N,)hin(e,)- A compact core for a hyperbolic 3-
manifold N is a compact submanifold C such that the inclusion of C' into N
is a homotopy equivalence. A relative compact core M, for N, is a compact
core for NS which intersects every component of 9N, B in a compact core
for that component. (The existence of a relative compact core is due to
Kulkarni-Shalen [42] and McCullough [48].) Let P, = M, N dN,. There
exists a well-defined, up to homotopy, homotopy equivalence h, : M — M,
in the homotopy class determined by p, and a well-defined identification of
the conformal boundary 0.N, with a collection of components of M, — P,.
The Tameness Theorem of Agol [1] and Calegari-Gabai [26] assures us that
we may choose M), so that NS — M, is homeomorphic to (OM,—P,) x (0, c0).

If a component S of M, — P, is identified with a component of 9.V,
it is called geometrically finite and inherits a natural conformal structure,
regarded as a point in 7(S). Otherwise, the component S is called geomet-
rically infinite and it bounds a neighborhood of a geometrically infinite end.
There exists a collection of simple closed curves {a;} on S, whose geodesic
representatives lie in the component of NS — M, bounded by S and leave
every compact set. Regarded as a sequence of projective measured lami-
nations, {a;} converges to u € PL(S). The support A of u, regarded as a
geodesic lamination, is called the ending lamination associated to S. The
ending lamination \ lies in the set EL£(S) of geodesic laminations admitting
measures of full support which fill the surface: every component of their
complement is a disk or a peripheral annulus. (See Thurston [62], Bonahon
[12] and Canary [28] for a discussion of geometrically infinite ends and their
ending laminations). The Ending Lamination Theorem (see Minsky [52] and
Brock-Canary-Minsky [18, 19]) tells us that this information determines the
manifold up to isometry.
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Ending Lamination Theorem Suppose that p1,ps € AH(M), then p1 =
p2 if and only if there exists an orientation-preserving homeomorphism of
pairs g : (Mp,, P,)) — (M,,, Py,) such that

(1) goh,, is homotopic to hy,,

(2) g is a conformal homeomorphism from the geometrically finite com-
ponents of OM, — P, to the geometrically finite components of
oM,, — P,,, and

(3) g takes the ending lamination of any geometrically infinite compo-
nent of OM,, — P,, to the ending lamination of the image geometri-
cally infinite component of OM,, — P,,.

2.2. Deformation spaces of hyperbolic 3-manifolds

We begin by reviewing the classical deformation theory of the interior of
AH(M). (See section 7 of Canary-McCullough [31] for a complete treatment
of this theory and its history.) Let A(M) denote the set of (marked) homeo-
morphism types of compact, oriented hyperbolisable 3-manifolds homotopy
equivalent to M. We recall that A(M) is the set of pairs (M’, h') where M’
is an oriented, hyperbolisable compact 3-manifold and h : M — M’ is a ho-
motopy equivalence, where (Mj, hi) and (Ma, hy) are said to be equivalent
if there exists an orientation-preserving homeomorphism j : My — Ms such
that j o hy is homotopic to hy. We get a well-defined map

O : AH(M) — A(M)

given by taking p to the equivalence class of (M), h,). This map is surjective
and the components of the interior of AH (M) are exactly the pre-images of
points in A(M).

If M has incompressible boundary, equivalently if 7; (M) is freely in-
decomposable, then points in ©~1(M’, ') Nint(AH (M)) give rise to well-
defined conformal structures on drM', where 7 M’ is the set of non-toroidal
boundary components of 9M’. Moreover, every possible conformal structure
arises and the conformal structure determines the manifold. Therefore, we
may identify the component ©~1(M’ h') Nint(AH (M)) with T (0rM").

The Density Theorem asserts that AH (M) is the closure of its interior.
If M has incompressible boundary, the Density Theorem follows from the
Ending Lamination Theorem [52, 18], Bonahon’s Tameness Theorem [13]
and convergence results of Thurston [65, 66]. (A discussion of the history
of this proof in the general case is contained in [29].) There is an alternate
approach, using cone-manifold deformation theory, pioneered by Bromberg
[21] and Brock-Bromberg [15] and completed by Bromberg-Souto [24].

The majority of this paper will be concerned with the case where M =
S x I and S is a closed surface. In this case, A(S x I) is a single point, and
the interior QF(S) of AH(S x I) (which is often abbreviated to AH(S))
is identified with 7°(S) x T(S). If p € AH(S), then M, is identified with
S x [0,1]. (Here we are implicitly identifying 7(S) with 7 (S) where S is S
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with the opposite orientation. Formally, the conformal structure on S x {0}
lies in 7(S).) The orientation on S allows us to identify one component 9y M,
as the top, or upward pointing component and the other component dy M), as
the bottom or downward pointing component. If p € QF(S) has conformal
structure X on 01 M, and Y on dyM,,, we will use the notation p = Q(X,Y).
In general, P N 01 M, may be identified with the regular neighborhood of a
collection e of simple closed curves on S and PNdyM, may also be identified
with the regular neighborhood of a collection 3 of simple closed curves on
S. We say that the components of a are associated to upward-pointing
cusps, while the components of 3 are associated to downward-pointing cusps.
Similarly the components of 1M, \. P are said to bound upward-pointing
ends, and the components of dyM, \ P are said to bound downward-pointing
ends. If p € AH(S) is quasiconformally rigid, a component of M, — P, is
geometrically finite if and only if it is a thrice-punctured sphere, while the
remaining components each bound neighborhoods of degenerate ends and
inherit an ending lamination.

We recall that a Bers slice By of QF'(S) is a set of the form 7(S) x {Y'}
where Y € T(S). If By is a Bers slice and p € By (the closure of By
in AH(S)), then the bottom boundary component of M), is geometrically
finite and has conformal structure Y (see Bers [10, Theorem 8]). If p is
quasiconformally rigid in By, one then obtains a collection « of curves on
the top boundary component whose regular neighborhood is P,, and an
ending lamination on every upward-pointing component of M, — P, which
is not a thrice-punctured sphere.

The other special case we will consider is when M is acylindrical. Jo-
hannson [36] showed that any homotopy equivalence from an acylindrical
manifold to a compact 3-manifold is homotopic to a homeomorphism, so
A(M) has two component (one associated to each possible orientation on
M). So, int(AH(M)) has two components and it follows from [6] that ©
is locally constant. Thurston [64] showed that AH (M) is compact if M is
acylindrical.

Our proof of Theorem 1.3 in the acylindrical case we will make crucial
use of Thurston’s Bounded Image Theorem (see Kent [38] for a proof.) If B
is a component of int(AH (M)) then B is identified with 7(9rM). If S is
a component of dpM, then there is a natural map rg : B — AH(S) given
by restriction, whose image lies in QF(S). If 7 € T(OM), then rg(7) is a
well-defined point (7|g,05(7)) where og(7) € T(S). Letting S vary over all
components of dr M, we get a well-defined map

o:T(0rM)— T(0rM)

called the skinning map. Thurston’s Bounded Image Theorem simply asserts
that o has bounded image in 7 (0M).
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2.3. The conformal boundary of a hyperbolic 3-manifold and its
internal geometry

In this section, we review a variety of results which relate the geometry
of the conformal boundary to the geometry of the hyperbolic 3-manifold.
Most classically, a result of Bers [10] shows that lengths of curves in the
conformal boundary provide upper bounds for lengths in the manifold. To
set notation, if p € AH(M) and « is a (homotopically non-trivial) closed
curve in M, then [,(«) is the length of the geodesic representative a* of h,(«)
in N, (with [,(a) = 0 if h,(a) is homotopic into a cusp of N,). Similarly,
if X € 7(S) and « is a closed curve on X, then Ix(«) is the length of the
geodesic representative of o on X.

Lemma 2.1. (Bers [10, Theorem 3]) If p = Q(X,Y) € QF(S), then
Ly(a) < 20x(a)
for any closed curve v on X.

Subsurface projections and the curve complex. The proof of the End-
ing Lamination Theorem develops more sophisticated information about the
relationship between the geometry of a hyperbolic 3-manifold and its ending
invariants. This information is typically expressed in terms of projections
onto curve complexes of subsurfaces of the boundary.

Recall from [47] the curve complexes C(W) where W C S is an essential
subsurface. When W is not an annulus, the vertices of C(WW') are homotopy
classes of simple closed nonperipheral curves in W. When W is an annulus,
vertices are homotopy classes rel endpoints of arcs connecting the boundaries
of the compactified annulus cover W — S associated to W. Edges in these
complexes correspond to pairs of vertices with representatives that intersect
in the minimal possible number of points allowed by W. C(W) is endowed
with the path metric de(yy) assigning length 1 to each edge. If W is a three-
holed sphere then C(W) is empty, and from now on we implicitly ignore this
case.

If C(S,W) denotes the set of curves in S which intersect W essentially,
we have, also as in [47], subsurface projection maps

mw : C(S, W) — C(W).

If W is not an annulus then 7y («) is obtained by selecting (any) arc of the
essential intersection of a with W, and doing surgery with W to obtain a
closed curve. When W is an annulus we take more care: we consider the
annular cover W of S associated to W and lift « to an arc connecting the
two boundaries. All the choices involved in these constructions differ by
bounded distance in the image, and in our applications this ambiguity will
not matter. Define, for «, 5 € C(S, W),

dw (v, B) = dewy (mw (), mw (B)).
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All of these notions can be applied to points in 7(S) as well, giving a

map

mw : T(S) — C(W)

defined as follows: Given X € 7(S5) let a be a curve of minimal length
in X intersecting W essentially and let my (X) = 7y (). Except when
W is an annulus (or a three-holed sphere, which we always exclude), the
length of o has a uniform upper bound known as the Bers constant of .S (see
[11]). Indeed the shortest maximal curve system has a uniform upper length
bound, and one of those curves must intersect W. Any non-uniqueness in
the choice of «r leads to values for my (X) that differ by a uniformly bounded
amount.

If W is an annulus whose core v has extremely short length in X, then
the shortest curve crossing ~ will be long; however, the ambiguity in the
definition of my will still be uniformly bounded. To see this, note that if
two curves 31 and 2 crossing v have projections with distance greater than
2 in C(7y), then there exists a pair of arcs by and by in 31 and (3 respectively
with common endpoints whose concatenation is homotopic into v. Exchange
of these arcs, and smoothing, will strictly shorten at least one of 3; or 32, so
they cannot both have minimal length in X. (The same argument actually
works for non-annular W as well).

Lengths in Kleinian surface groups. In the case of a quasifuchsian hy-
perbolic manifold Q(X,Y), a curve is short if and only if it is either short
in the conformal boundary or there is a subsurface with the curve in its
boundary such that dy (X,Y’) is large. To be more explicit, given a simple
closed curve v in S and X,Y € 7(95), we define

1 1
m/y(X, Y) = Imax <l7(){), W,yi%ﬁ)}[/dw(X,Y)) .

The supremum is over all essential subsurfaces in .S whose boundary contains
a curve parallel to 7. The following theorem is a re-statement (and special
case) of the Length Bound Theorem from Brock-Canary-Minsky [18].

Theorem 2.2. Given ¢ > 0 there exists M such that, for any Q(X,Y) €
QF(S), and simple closed curve  in S,

m,(X,Y)>M = [ (Q(X,Y)) <e
Conversely, given M' there ewists € > 0 such that

L(QX,)Y)) < = m,(X,Y)> M.

2.4. Partial orders
In view of Theorem 2.2, those subsurfaces W where dy (X, Y) is large are

important because their boundaries correspond to short curves in Q(X,Y).
If the curves are sufficiently short then Otal [60] shows that their associated

Margulis tubes are unlinked, meaning they are isotopic to level curves in a
product structure on Q(X,Y’), and hence admit a natural partial order.
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If a, 8 € C(S) and i(«, B) # 0, then we say that « lies above 3, and that 3
lies below o, in N, € AH(S) if their geodesic representatives o* and §* are
disjoint and o may be homotoped to +oco in the complement of 5* (that
is, there is a proper map F : S! x [0,00) — N, such that Flsixqoy = @
B* N F(S! x [0,00)) = 0, and F(S* x {t}) is a family of curves exiting
the upward-pointing end of N,). If [,(or) = 0, then « lies above g if « is
associated to an upward-pointing cusp. See Section 3.1 of [18] for further
discussion of this topological partial order.

There is a closely related combinatorial partial order, which originates in
the “hierarchy path” construction of [47].

For (X,Y) an ordered pair of points in Teichmiiller space and ¢ > 0,
define the following collection of (isotopy classes of) essential subsurfaces of
S:

L(X,)Y)={W CS:dw(X,Y) > c}.
We say two subsurfaces or curves in S overlap if they intersect essentially
and neither is contained in the other.

The lemma below can be extracted from Lemmas 4.18, 6.1 and 6.2 of [47]
(see also section 4.1 of Behrstock-Kleiner-Minsky-Mosher [8]).

Lemma 2.3. There is a constant my such that, if ¢ > mq then L. =
L(X,Y) admits a partial order <, such that any U,V € L. which over-
lap are ordered, and U <V implies that

(1) dy(9V, X) < my,

(2) dU(c‘?V, Y) >c—my,
(3) dv(Y,0U) <my, and
(4) dv(aU,X) >c—my.
Moreover, if U € L(X,Y), ¢ > 2mq, V overlaps U, and dy(X,0U) > my,
then

(5) dv(X,Y) >c—my
and
(6) U<V

with respect to the order on Lo_pm, (X,Y).

One way to make sense of these inequalities is to interpret a large value for
dy(0V, X) to mean that U is “between” V and X. In [47] this had a literal
meaning, because a large value for dy(0V, X) meant that any hierarchy
path connecting a bounded-length marking on X to a marking containing
AV would have to pass through markings containing 9U.

Thus, informally (2) says that U is between V and Y, but (1) says that
U is not between V and X, and so on. Together these inequalities say that,
in “traveling” from Y to X, we must first pass through U and then through
V.

Theorem 2.2 implies that subsurfaces in L.(X,Y), for suitable ¢, have
short boundary curves in Q(X,Y), and therefore are topologically ordered
as above. Lemmas 2.2 and 4.9 and the Bilipschitz Model Theorem from [18]
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combine to show that, indeed, the partial order < determines the topological
ordering of the boundary components of the subsurfaces when c is large. In
particular the combinatorial notion of “betweenness” translates to a topo-
logical statement, that in a suitable product structure on the manifold, one
level surface lies at a height between two others. The following statement
will suffice for us:

Lemma 2.4. There exists cp > my such that if ¢ > ¢o, U,V € L(X,Y),
and U <V, then if a boundary component « of U overlaps a boundary
component B of V', then « lies below 3 in Q(X,Y).

It is a simple observation that a curve o which is short in the top conformal
boundary lies above any curve /3 which is short in the manifold, if i(«, 5) > 0.

Lemma 2.5. If[,(X) < € and Ig(Q(X,Y)) < ¢ and o and (3 overlap then
a lies above B in Q(X,Y). Similarly, if 15(Y) < €9 and 1o(Q(X,Y)) < €
and o and (B intersect, then « lies above 3 in Q(X,Y)

Proof. We give the proof in the case that [,(X) < €. A result of Epstein-
Marden-Markovic [33, Theorem 3.1] implies that a has length at most 2¢g
in the top boundary component of the convex core of Q(X,Y). Therefore,
one may isotope the geodesic representative of o onto the top boundary
component of the convex core entirely within the Margulis tube of a. One
may then isotope it to 400 in the complement of the convex core. The
geodesic representative 8* of § is contained in the convex core, and since
it has length less than ¢ it is contained in its own Margulis tube which

is disjoint from that of a. It follows that the homotopy does not intersect
B*. O

The lemma below will be used in the proof of Theorem 1.3 in the surface
group case to control the impact of changing the top conformal structure
on the ordering of the short curves and on related features. It is really just
a repackaging of the preceding sequence of lemmas. It says that, if « is
known to be short in Q(X,Y), and Z is “between” « and the top conformal
structure X in the combinatorial sense discussed above, then indeed 02
is also short in Q(X,Y), and each of its components that overlap « are
topologically ordered above it.

Lemma 2.6. There exists dy and 6 € (0,¢€q) such that, if l,(Q(X,Y)) < do,
a € C(S) overlaps Z and dz(X,«) > dy, then logz(Q(X,Y)) < do and each
component of 0Z which overlaps « lies above «.

Proof. Applying Theorem 2.2 we may choose dy € (0, €g) so that
l(Q(X,Y)) < by = my(X,Y) > max{co,2m; }.

Applying the other direction of Theorem 2.2, we choose dg > cg+m1 + 2 so
that if W C S, then

dw(X,Y) >dog—mi1 —2 — law(Q(X,Y)) < (50.
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We note that if [,(X) < dg, then dz(X,a) < 2 < dp, so we may assume
that I, (X) > 6.

If I,(Y) < dp, then Lemma 2.5 implies that each component of Z which
overlaps « lies above a. Moreover, dz (Y, a) < 2, so

dz(X,Y) > dz(X, Oé) — dz(Od,Y) >dy—2

50 lpz(Q(X,Y)) < do. This completes the proof in this case.

Hence we can now assume [,(Y) > §p. Now m,(X,Y) > 2m; implies
that there exists an essential subsurface W C S with a C OW such that
dw (X,Y) > 2my. Since dz(X,0W) > dp —1 > my and dw(X,Y) > 2my,
Lemma 2.3(6) implies that W < Z in L., (X,Y). Lemma 2.3(3) implies
that dz(Y,0W) < my. Therefore,

dz(X, Y) > dz(X, GW) — dz(QW,Y) > d() —1- my,

50 loz(Q(X,Y)) < dp. Lemma 2.4 then implies that each component of 07
which overlaps « lies above a. O

Predicting geometrically infinite ends in an algebraic limit. Geo-
metrically infinite surfaces in the algebraic limit can be detected by looking
at the limiting behavior of the ending invariants. Recall that Masur and
Minsky [46] proved that if W is an essential subsurface of S, then C(W)
is Gromov hyperbolic and Klarreich [41] (see also Hamenstadt [35]) proved
that if W is not an annulus or pair of pants, then its Gromov boundary
0ooC(W) is identified with EL(W).

Theorem 2.7. ([17]) Let {pn} be a sequence in AH(S) converging to p
such that the top ending invariant of py, is X, € T(S). If W is an essential
subsurface of S, the following statements are equivalent:

(1) NS has an upward-pointing end bounded by W with ending lamina-
tion A € EL(W).
(2) {mw(X,)} converges to \.
Moreover, if {pn, = Q(Xn,Yy)}, then mw(Y,) does not accumulate at X if
{mw(Xn)} converges to \.
Similarly, we obtain an equivalence if upward is replaced by downward and
the roles of X, and Y, are interchanged.

A key tool in the proof of Theorem 2.7 is the fact that for any non-annular
subsurface W the set of bounded length curves in Q(X,Y) project to a set of
curves in C(W) which are a bounded Hausdorff distance from any geodesic in
C(W) joining my (X) to my (Y'). This result will be itself used in the proof of
Lemma 9.2. We state the results in the special case of quasifuchsian groups.

Theorem 2.8. ([17]) Given S, there exists Ly > 0 such that for all L > Ly,
there exists Dy, such that, if XY € T(S), p = Q(X,Y), W C S is an
essential subsurface and

Clp, L) ={a € C(S) : la(p) < L},
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then mw (C(p, L) N C(S,W)) has Hausdorff distance at most Dy from any
geodesic in C(W) joining mw (X) to mw (Y). Moreover if dw(X,Y) > Dy
then
CW,p,L) ={aeC(W):la(p) < L}
is nonempty and also has Hausdorff distance at most Do from any geodesic
in C(W) joining mw (X) to my (Y).
2.5. Geometric limits

A sequence {I',,} of torsion-free Kleinian groups converges geometrically
to a torsion-free Kleinian group I' if I' is the set of all accumulation points of
sequences of elements {v, € I',} and every v € I is a limit of a sequence of
elements {7, € I',}; or in other words if {I',,} converges to I" in the sense of
Gromov-Hausdorff as subsets of Isom (H?). One may equivalently express
this in terms of Gromov convergence of the quotient hyperbolic 3-manifolds
(see [7] for example). If N,, = H3/T',, and N = H3/T" and z,, and x( denote
the projections of the origin in H?, then {I',,} converges geometrically to I'
if and only if there exists a nested sequence of compact submanifolds {X,,}
of N which exhaust N and K,-bilipschitz diffeomorphisms f, : X,, — Y,
onto submanifolds of NV, such that f,(z) = x,, lim K,, = 1 and f,, converges
uniformly on compact subsets of N to an isometry (in the C*°-topology).

Lemma 3.6 and Proposition 3.8 of Jorgensen-Marden [37] guarantee that
if {pyn} is a sequence in AH (M) converging to p, then there is a subsequence
of {pn(m1(M))} which converges geometrically to a torsion-free Kleinian
group I such that p(m(M)) c T,

We say that a sequence {p,, } in AH (M) converges strongly to p € AH(M)
if it converges in AH (M) and {p,, (71 (M))} converges geometrically to p(mi(M)).
One may combine work of Anderson and Canary with the recent resolution
of Marden’s Tameness Conjecture to show that in the absence of unneces-
sary parabolics, algebraic convergence implies strong convergence (see also
Theorem 1.2 of Brock-Souto [20]).

Theorem 2.9. Let M be a compact 3-manifold and let {p,} be a sequence in
AH (M) converging to p in AH(M). If every parabolic element of p(mw1(M))
lies in a rank two free abelian subgroup, then {p,} converges strongly to p.

Proof. Theorem 3.1 of Anderson-Canary [4] and Theorem 9.2 of [27] together
imply that if p is topologically tame, then {p,} converges strongly to p.
The Tameness Theorem of Agol [1] and Calegari-Gabai [26] assures that p
is topologically tame, so our convergence is indeed strong. [l

Proposition 3.2 of Anderson-Canary-Culler-Shalen [5] shows that when-
ever the algebraic limit is a maximal cusp (i.e. geometrically finite and
quasiconformally rigid), then the convex core of the algebraic limit embeds
in the geometric limit. Remark 3.3 points out that the same argument ap-
plies whenever the algebraic limit is topologically tame and its convex core
has totally geodesic boundary. In particular, the result holds when the limit
is quasiconformally rigid.
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Proposition 2.10. If p is a quasiconformally rigid point in OAH (M) and
{pn} converges algebraically to p and {pn(m1(M))} converges geometrically
to T, then the convex core of N, embeds in N = H3/F under the obuvious
covering map.

Proposition 2.10 will be used in section 3 to rule out bumping at quasi-
conformally rigid points. We will also use it to control the relative placement
of closed curves in manifolds algebraically near to a quasiconformally rigid
manifold. Lemma 2.11 will only be needed in the quasifuchsian case dis-
cussed in section 9.

Lemma 2.11. If p € AH(S) is quasiconformally rigid, o is an upward-
pointing cusp in N, and 3 is a downward-pointing cusp in N,, and o and 3
intersect in S, then there exists a neighborhood U of p in AH(S) such that
if p € U, then « lies above 3 € Ny .

Proof. Find an embedded surface F' in C(N,) which is a compact core for
C(N,). Let € < ¢y be a lower bound for the injectivity radius of N on F. Let
A be an embedded annulus in C(N,), intersecting F' only in one boundary
component and whose other boundary component is curve in the homotopy
class of o with length at most €/4. Let B be an embedded annulus in C'(N,),
intersecting F' only in one boundary component and whose other boundary
component is curve in the homotopy class of o with length at most €/4.

If the lemma fails we may produce a sequence {p,} converging to p such
that « does not lie above 3 in any N, . We may again pass to a subsequence
such that {p,(m1(M))} converges geometrlcally to T and p(m (M)) C I. Let
N =H?/T and let 7 : N, — N be the natural covering map.

By Proposition 2.10, m embeds C = F U AU B in N. Then, for all large
enough n, one can pull C back to C,, = F, U A, U B, by an orientation-
preserving 2-bilipschitz map and F), is a compact core for N, (as in the
proof of Proposition 3.3 in Canary-Minsky [32]). One may join the geodesic
representative of o in N, to 0A, — F, by an annulus contained entirely
within the e/2-Margulis tube associated to a. It follows that this annulus
cannot intersect F), (since F), is contained entirely in the €/2-thick part of
N,,,) so we see that the geodesic representative of a in N, lies above F,.
Similarly, the geodesic representative of 8 in N, lies below F;,. Therefore,
for sufficiently large n, « lies above 3 in N, . This contradiction establishes
the result. ]

3. Ruling out bumping

In this section, we will show that there is no bumping at points with no
unnecessary parabolics or at quasiconformally rigid points. The first case
gives the non-bumping portion of Theorem 1.1, while the second case is
Theorem 1.2. In each case, we do so by showing that the (marked) homeo-
morphism type is locally constant at p, which immediately implies that there
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is no bumping at p . Note that in this section it will never be necessary to
assume that M has incompressible boundary.

The case where p contains no unnecessary parabolics is especially easy,
since any sequence converging algebraically to p converges strongly.

Proposition 3.1. Let M be a compact 3-manifold and p € OAH(M). If
every parabolic element of p(mi(M)) lies in a rank two free abelian subgroup,
then © is locally constant at p. In particular, there is no bumping at p.

Proof. Let {p,} be a sequence in AH (M) which converges to p. Theorem
2.9 implies that {p,} converges strongly to p. Results of Canary-Minsky
[32] and Ohshika [57], then imply that for all large enough n there exists
a homeomorphism h,, : N, — N, in the homotopy class determined by
pnop~ L. Tt follows that ©(p,) = O(p) for all large enough n, which completes
the proof. O

Remark: If we assume that {p,} C int(AH(M)), then strong convergence
follows from Theorem 1.2 of Brock-Souto [20]. Consideration of this case
would suffice to establish that there is no bumping at p.

If p is a quasiconformally rigid point in 0AH (M), then sequences of
representations converging to p need not converge strongly. However, by
Proposition 2.10, the convex core of N, embeds in the geometric limit of
any sequence in AH (M) converging to p, which will suffice to complete the
proof. Proposition 3.2 immediately implies Theorem 1.2

Proposition 3.2. If M is a compact 3-manifold and p € OAH (M) is qua-
siconformally rigid, then © is locally constant at p. In particular, there is
no bumping at p.

Proof. If © is not locally constant, then there is a sequence {p,} such that
O(pn) # O(p) for all n. We may pass to a subsequence, still called {p,},
such that {p, (w1 (M))} converges geometrically to I and p(m (M)) C T. Let
N = H3/f and let 7 : N, — N be the natural covering map. Proposition
2.10 implies that 7 embeds the convex core C(N,) into N.

Let C be a compact core for C(N,). We recall that for all sufficiently
large n, there exists a K,-blipschitz diffeomorphism f, : X,, — N, from
a compact submanifold X,, of N which contains 7(C) onto a compact sub-
manifold of N,,. The arguments of Proposition 3.3 of Canary-Minsky [32]
go through directly to show that, again for large enough n, C,, = f,(7(C))
is a compact core for N, . Moreover, (f, om), : m(C) — m(Cy) is the
same isomorphism, up to conjugacy, induced by p, o p~1. It follows that

O(pn) = [(Cn, hyp,)] = [(C, hp)] = O(p). O
4. Ruling out self-bumping in the absence of parabolics

In this section we rule out self-bumping at points in 0AH (M) with no
unnecessary parabolics when M has incompressible boundary. Proposition
3.1 and 4.1 combine to establish Theorem 1.1.
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Proposition 4.1. Let M be a compact 3-manifold with incompressible bound-
ary and p € 0AH(M). If every parabolic element of p(m1(M)) lies in a rank
two free abelian subgroup, then there is no self-bumping at p.

Proof. Let M, be a relative compact core for N ;,) and let {S1,...,S,} de-
note the non-toroidal components of M,. We may order the boundary
components so that {Si,..., Sk} correspond to geometrically finite ends of
N g while {Sk41,...,S5,} correspond to geometrically infinite ends of Ng.
Let {m1,..., Tk, Ak+1, - - - A} be the end invariants of p where 7; € 7(5;) for
all i <k and \; € EL(9) for all i > k.

Let B be the component of int(AH(M)) corresponding to [(M,,h,)].
Since © is locally constant at p, by Proposition 3.1, B is the only com-
ponent of int(AH (M)) containing p in its closure. We may identify B with
T(S1) x---xT(Sy). Let {pp, = (7],..., 7))} be a sequence in B converging
to p. Theorem 2.7 implies that {mg, (7]*)} C C(S;) converges to A\, € 0cC(S;)
for all ¢ > k. Theorem 2.9 implies that {p,} converges strongly to p. Then,
a result of Ohshika [56] (see also Kerckhoff-Thurston [40, Corollary 2.2])
implies that {7]'} converges to 7; for all ¢ < k.

Let {pp = (7{,...,7")} and {p}, = ((7]"),..., (7))} be two sequences
in B converging to p. In order to rule out self-bumping at p, it suffices to
construct paths ~, in B joining p, to p| such that if v, € v,, then {v,}
converges to p. We choose 7, to be the Teichmiiller geodesic in 7 (S7) x - - - X
7 (Sy) joining py, to pl. If {vn = (U, ..., ") € Y} is a sequence, then, for
all i < k, since both {7"} and {(7]")'} converge to 7;, {ul'} also converges
to 7. In [46] (see Theorems 2.3 and 2.6), it is shown that a Teichmiiller
geodesic in 7(S;) projects into a cg-neighborhood of a geodesic in C(.S;)
(for some uniform choice of ¢3). Therefore, since {rg,(7*)} and {mg, ((77")")}
both converge to A\; € 0-C(S;) for all i > k, we see that {mg,(1]")} converges
to \; for all 7 > k.

If M =5 x I for a closed surface S, then Thurston’s Double Limit The-
orem [65] implies that every subsequence of {v,} has a convergent subse-
quence. If M is not homeomorphic to S x I, then the main result of Ohshika
[55] (which is itself derived by combining results of Thurston [65, 66]) implies
that every subsequence of {v,} has a convergent subsequence.

Let v be a limit of a subsequence of {v,}, still denoted {v,}, in AH(M).
In order to complete the proof, it suffices to show that v = p. We do so by
invoking the Ending Lamination Theorem. The main difficulty here is that
we do not know that v does not contain any unnecessary parabolics, so we
cannot immediately conclude that {v,,} converges strongly to v.

Let h : M, — M, be a homotopy equivalence such that hoh, is homotopic
to h,. Consider the sequence {v;, = (T1,..., Tk, i1, -, #y)}. There exists
a sequence of K,-quasiconformal map conjugating v, to v/, with K, — 1.
It follows that {v/} also converges to v. Theorem 5 in Bers [10] implies
that, for all ¢ < k, the sequence of components {Q7'} of Q(v],) associated to
Un(m1(S;i)) (where we have chosen a fixed subgroup in the conjugacy class
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of subgroups associated to m1(S;)) converges in the sense of Caratheodory
to a component €; of Q(v(71(S;))) such that Q;/v(71(S;)) is homeomorphic
to S; with conformal structure 7;. It then follows (again from Ohshika [56])
that €2; is a component of the domain of discontinuity of any geometric limit
of {v] (m1(M))}. Therefore, Q; is a component of (v) and the stabilizer of
; in v(m(M)) contains v(m1(S;)) as a finite index subgroup. Therefore,
we may homotope h so that, for all ¢ < k, hlg, is an orientation-preserving
covering map of a component of dM,, which is locally conformal.

If ¢ > k, Theorem 2.7 implies that the cover (N,); of N, assocated to
71(S;) has a geometrically infinite end E; with ending lamination A;. More-
over, if the orientation on S; is chosen so that the geometrically infinite
end in M, is upward-pointing, then E; is also upward-pointing in (NL);.
The Covering Theorem (see [62] or [27]) then implies that the covering map
pi : (N,)i — N, is finite-to-one on a neighborhood of E;. Therefore, we
may homotope h so that h|g, is an orientation-preserving covering map with
image a component of OM,. If T} is a toroidal component of 9M,, then,
since all incompressible tori are peripheral in M, h|7, can again be homo-
toped to a covering map onto a toroidal component of OM,,. Therefore, we
may assume that h is a covering map on each component of M, and is
orientation-preserving on each non-toroidal component.

Waldhausen’s Theorem [67] now implies that A is homotopic to an orientation-
preserving homeomorphism A’ : M, — M, by a homotopy keeping hlan,
constant. It follows that (M, h, ) is equivalent to (M,, h,) and that the end-
ing invariants are identified. The Ending Lamination Theorem then implies
that v = p. It follows that {v,} converges to p as desired.

O

5. Fenchel-Nielsen coordinates and projection coefficients

In this section we discuss and compare length-twist parameters for 7T (S).
For traditional Fenchel-Nielsen twist parameters based on a maximal curve
system a (also known as a pants decomposition), we will see how the twist
parameters compare with coarse twist parameters coming from projections
to the annulus complexes associated to each curve in a. More generally
for a curve system « that may not be maximal, Theorem 5.1 allows us to
vary arbitrarily the length and twist parameters of a curve system a, while
(coarsely) fixing all subsurface projections in the complement of a.

To state the main theorem of this section we fix notation for the parameter
spaces as follows. Given a curve system o = a3 U - - - U iy, define T, = R™,
Lo = R, and Vo = Ty X Lo. For each component a; of a we have a
geodesic length function l,; : 7(S) — R4, and we let

la:T(S) = L

denote (layy- -y lay,)-
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Theorem 5.1. Let o be a curve system in S. For any X € T(S) there is
a continuous map

O Vo — T(S)
such that X € ®(Vy,), and such that
(1) lao@(t,A) =X
(2) [twa(X,®(t,A)) — t| < ma and
(3) for any essential subsurface W C S disjoint from o (except annuli
parallel to components of a),

diame ) (P(Va)) < ma
where my depends only on S.

We will precisely define twq, below but roughly speaking it is an m-tuple of
signed distances between the projections to the annular complexes associated
to the curve system a.

Throughout this section an inequality of the form [t| < K for an m-tuple
t refers to the sup norm on t, so that we are just bounding each component
individually.

Theorem 5.7 will state the special case of Theorem 5.1 when « is a max-
imal curve system, namely that Fenchel-Nielsen coordinates can be chosen
so that their twist parameters agree roughly with the parameters given by
tWa.

At the end of the section we will prove Lemma 5.11, which is a connectivity
result for a region in 7 (S) given by bounding the lengths of a curve system
and restricting the structures in the complementary subsurfaces to certain
neighborhoods of points at infinity. This lemma will be used in the last steps
of the proofs of Theorems 1.5, 8.1, and 9.1.

5.1. Coarse twist parameters

An annulus complex is quasi-isometric to Z. This allows us to define a
signed version of distance. If « is the core curve of an annulus W we denote
Cla) =C(W), mq = mw, do = dw, and C(S, ) = C(S, W).

Given two elements a and b in C(«) we let iy (a,b) be the algebraic inter-
ersection of a and b. We then define

twy : C(S,a) x C(S,a) = Z

by twa(7,8) = ia(ma(y), 7a(B)). (If a and b have endpoints in common
then algebraic intersection number is not w-defined. We correct this, in this
special case, by taking the algebraic intersection of arcs in the homotopy
class of a and b with minimal geometric intersection.)

There are two important properties of tw, that we will use repeatedly:

(1) da(7v,B) = [twa(y,B)| +1if v # B, and
(2) ‘tWOé(%ﬂ) +tWa(ﬂ,C) - tWoa(’YvC” <1l
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(see [52] §4 for closely related properties).

Recall, that in Section 2.3, we defined 7, (X), for X € 7(S), by setting
To(X) = 7o (B) where (3 is a shortest curve in X that intersects «. Abusing
notation, we define

two : T(S)xT(S)—Z

by letting two (X,Y) = twa(ma(X), 70 (Y)). As we saw in Section 2.3 if
and (3 are both shortest length curves in X that cross a then

[twa(B,0)|+1=dua(8,5) < 2.

Therefore tw,, is w defined up to a uniform bound.

Furthermore since length functions are continuous on 7 (S) the function
on 7(S) which gives back the length of the shortest curve that crosses «
is continuous. We also note that that the length spectrum on a hyperbolic
surface X, the values of lengths of curves on a X, is discrete. These two facts
allow us to find a neighborhood U of X in 7 (S) such that for every Y € U
any shortest length curve in Y that crosses « is also a shortest length curve
in X which crosses a. It follows that tw, is coarsely continuous: there is a
constant C' such that every pair (X,Y) € 7(S) x 7(S) has a neighborhood
U such that diam(tw,(U)) < C.

If a =a;U...a, is a curve system then tw, takes values in Z™.

5.2. Earthquakes and Fenchel-Nielsen coordinates

For a curve a, s € R and X € 7(95), a right earthquake of magnitude
s along « is obtained by cutting X along the geodesic representative of «
and shearing to the right by signed distance s before regluing (so negative
s corresponds to left shearing). See [63, 39]. Let ey (X) denote the result
of a right earthquake of magnitude tl,(X), so that in particular

ea,1(X) = 0,(X)

where 0, is a left Dehn-twist on X. The equivalence of left twists with
right shears corresponds to the fact that a mapping class f acts on 7 (S) by
precomposing the marking with f=!.

For a curve system a and t € Ty, with components t,, = ¢;, note that
the shears €q;,t; commute and define

Ca,t = €ay,ty SR Com tim

This earthquake map defines a free action of T, on 7 (S) which fixes the
fibers of the length map l4.

Now suppose that « is a maximal curve system. Then the action on the
fibers is also transitive and gives 7 (S) the structure of principal R™-bundle
over Lo. A choice of section of this bundle determines Fenchel-Nielsen
coordinates for T (S). More explicitly if

0: Lo — T(S)
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is a section then we can define a Fenchel-Nielsen map
F:Va—T(5)
by
F(t,A) =eat(o(N)).

This map will be a homeomorphism and give Fenchel-Nielsen coordinates
for 7(S). There are a number of concrete constructions for sections and
Fenchel-Nielsen coordinates, but none are particularly canonical.

5.3. Proof of Theorem 5.1

In this subsection we reduce the proof of Theorem 5.1 to three lemmas.
We will prove these lemmas in the sections that follow.

It is not hard to measure how the twist parameter changes under powers
of Dehn twists. In particular,

[ twa (X, 05(X)) — 7|

is uniformly bounded. Rather than prove this directly we replace the Dehn
twist with the earthquake map which allows us to replace the integer n with
a real number t. The first lemma generalizes the above bound for Dehn
twists and is considerably more subtle to prove.

Lemma 5.2. There exists a constant ms such that
| twea (X, eat(X)) — t] < ms.

Next we see that projections to subsurfaces disjoint from o remain coarsely
constant when we earthquake along a.

Lemma 5.3. There exists an my such that for any essential subsurface
W C S disjoint from o (except annuli parallel to components of o), and
any t € Ty

dw(X, €a’t(X)) < Mmy

where my only depends on S.

Finally we will construct a section of the bundle Iy : 7(S) — Lg such
the projection of all subsurfaces disjoint from « is coarsely constant.

Lemma 5.4. There exists an ms depending only on S such that the following
holds. For any X € T(S) there exists a section

0: Lo — T(S)

such that X € 0(La) and if W C S is an essential subsurface disjoint from
«, then

diameyy (0 (Le)) < ms.

Assuming these three lemmas it is easy to prove Theorem 5.1.
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Proof of Theorem 5.1. We define the map & by
O(t,A) = eqt(a(N))

where o is the section given by Lemma 5.4. In particular I 0 0(A) =
Since the earthquake maps fix the lengths of a we also have o0 ®(t, A) =
and (1) holds.

Let mg = max{mg + ms, mq + ms}. Note that

| twe (X, B(t, A)) — twa(X, 0(X)) — twa(o(A), B(t, X)) < 1.

Lemma 5.4 implies that [twa(X,0(X))| + 1 < ms and Lemma 5.2 implies
that | twg(a(X), @(t, X)) — t| < ms. Therefore

|tWa(X, (I)(t,)\)) - t| <mg+ms < mg

proving (2).
Let W C S be an essential subsurface in S disjoint from a which is not
an annulus parallel to a component of ae. By Lemma 5.4,

dw (X, 0(X)) < ms,
and Lemma 5.3 implies that
dw (c(A), (t, A)) < my.

Therefore
dW(Xv q)(ta )‘)) <myg+ms < my
proving (3). O

5.4. Comparing twist coefficients

To prove Lemma 5.2 we need an effective method of calculating twe,.
The map twq can be difficult to compute because, unlike other subsurface
projections, it is defined by lifting curves to a cover rather than restricting
them to a subsurface. We now describe a method for approximating tw, by
restricting the curves to an annular neighborhood of a (See Minsky [52] for
a similar discussion.)

First, recall there is a uniform way to choose a regular neighborhood of a
geodesic in a hyperbolic surface. Namely there is a function w : RT — R*
such that, for a simple closed geodesic 7y of length [ in any hyperbolic surface,
the neighborhood of radius w(l), which we call collar(vy), is an embedded
annulus, and moreover

(1) collar(y) Ncollar() = 0 whenever yN 5 =0,
(2) The length I” of each component of J collar(vy) satisfies
max(ag, (7)) <" <1(y) + a1
where ag, a1 are universal positive constants.

See e.g. [25]. We can also define collar(y) for a boundary component
of a surface, and extend the definition to give horocyclic neighborhoods
of cusps (here | = 0 and w = o0) by requiring that the boundary length
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of the neighborhood be fixed. If a is a curve system then collar(a) =
Ua,ea collar(a;).

If o is a single curve and a and b are properly embedded arcs in collar(«)
let i¢(a,b) be their algebraic intersection. (When a and b have common
endpoints we modify the definition just as we did for i,(a,b).) If v and
[ are simple closed curves on S that intersect collar(«) essentially and
minimally in their homotopy class define tw¢, (v, 3) = i$(a,b) where a and
b are components of v N collar(«) and 5N collar(«a), respectively. As usual
this definition depends on the choice of component but only up to a bounded
amount. Note that while twq/(7,3) only depends on the homotopy classes
of v and 3, tw€ (v, ) depends strongly on the choice of curves. However, as
we will see in the next lemma if v and 3 satisfy certain geometric conditions
then tw¢ (v, 3) is a good approximation for tweq/(y, 3).

Notation. To prevent a proliferation of constants throughout the remain-
der of this section we will use the following notation. The expression z ~ y
means that |z — y| < ¢ for some constant ¢ that depends only on S. We

write z ~ y if the constant depends on S and some other constant K. For
example, if f ~ 0 then the quantity |f| is uniformly bounded.

Lemma 5.5. Let a be a curve in a curve system o on S and X € T(5).
Let v and [ be simple closed curves which intersect collar(a) nontriv-
ially, so that all components of their intersections with collar(a) and with
S \ collar(a) are essential.

Further assume that every component of yN(S\collar(ax)) that is adjacent
to collar(«) has length < L, and similarly for 3. Then

twa (7, B) ~ twS(7, B).

Proof. We consider another measure of twisting. For two intersecting simple
closed curves o and (8 and a hyperbolic structure X, we define a geometric
shear of § about v in X, so x(8) € R, as follows. Let A be a lift of the
geodesic representative of o to H?, let B be a lift of 3 which crosses A, and
let sq, x(B) denote 1/1,(X) times the signed distance along A between the
orthogonal projections to A of the endpoints of B. The sign is chosen so
that a left-earthquake of X along o will increase sq x (f3).

Since any two lifts of 3 are disjoint, the values they give for s, x differ
by at most 1 (see Farb-Lubotzky-Minsky [34] for a discussion along these
lines). Moreover, s, x measures roughly the (signed) number of fundamen-
tal domains of « crossed by the lift of 3, and this means that a difference of
shears sq x(7) — Sa,x () coarsely measures the algebraic intersection num-
bers of lifts of v and 3 to the annulus cover associated to «. In other words,
comparing this with the definition of two we can see that, for any X, «, and
v, 8 both crossing «,

tWa(% /6) ~ Sa,X(ﬁ) - Sa,X(’Y)' (51)
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We now make a similar definition using only collar(a). Let C be a
neighborhood of A in H? that is a lift of collar(a) and consider the arc
BN C. Let s x(8) denote 1/lo(X) times the signed distance along A
between the orthogonal projections to A of the endpoints of BN C. As for
Sq,x () the signs are chosen so that a left-earthquake of X along o will
increase s;, y(3). Using the same reasoning as above we see that

twe (7, 8) ~ sa,x(8) = sa,x(7)-

Note that s, x () only depends on the homotopy class of 5 and the
choice of lift. On the other hand, sf, v (8) depends strongly on the curve g.
However, given the restrictions we have put on § we claim

sax(8) £ 55 x (9). (5.2)

The lemma follows from this estimate.

To establish claim 5.2 we further examine the lift B of 3. Let € be an
endpoint of BN C. After leaving C at ¢, B must continue to another lift
D of a component of collar(a), and terminate at infinity at a point = on
the other side of D. The distance in dC between ¢ and the orthogonal
projection of z to C will be bounded by L plus the diameter of the pro-
jection of D. The latter projects to at most one fundamental domain of C
because the collars of a are embedded. The arc of length L projects, on the
boundary of C, to at most L/ap fundamental domains because the length
of each of them is at least ag. The bound of 1+ L/ag fundamental domains
therefore applies to the projection to the axis A as well. Applying the same
estimate to the other endpoints, (5.2) follows. (]

We can now prove Lemma 5.2.

Proof of Lemma 5.2. We first assume that a is a maximal curve system.
Let o be a curve in o and let 3 be a shortest curve in X that crosses a;,
chosen so that 74, () = 74, (X). Note that collar(c) has a canonical affine
structure given by the orthogonal foliations consisting of vertical geodesics
orthogonal to core geodesics and horizontal curves equidistant to the core
curve. There is then a canonical map from X to eq(X) that is an isometry
on X \ collar(a) and is an affine shear on each component of collar(c).
Let 3" be the image of # under this map and let v = 74, (X) be a shortest
curve in eq ¢(X) that crosses aj. Then twa, (X, eat(X)) = twa, (3,7)-

Since a is maximal and 3 is a shortest curve that crosses a;, the length
of every component of 3\ collar(a) in X is uniformly bounded. It follows
that every arc in 3"\ collar(a) is uniformly bounded in eq (X). Similarly
every component of « \ collar(a) has uniformly bounded length in eq +(X).
Therefore we can apply Lemma 5.5 to 3’ and ~.

Since (3 is a shortest curve crossing a; in X there is a vertical arc b in
collar(a;) that is disjoint from a component of 3N collar(a;). Let &' be
the image of b under the affine shear determined by eq¢. In particular ¢’
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will be disjoint from a component of 3. Similarly there is a vertical arc a
disjoint from a component of v N collar(c;). Therefore

‘ thJ (5/7 7) - /Lg] (b/7 a’)’ S 2
From the construction of the earthquake map we also see that
ig, (¥,0) — )] <1

and it follows that
[twS, (@,7) — ;] < 3

Lemma 5.5 then gives us our desired estimate for twq, (X, eq,t(X)) and
applying this estimate to each component of a gives us the lemma when a
is maximal.

If @ is not maximal we extend it to a maximal system &. Given t € Tq,
we extend it to t € T} by letting all the coordinates corresponding to com-
ponents of & — a be 0. We then have

[ twa (X, ea (X)) —t] = [twa(X,eq3(X)) - t]

o,

< Jtwa(X, eq 3 (X)) — .

&t
The desired bound then follows from the bound in the maximal case since
€d7g(X):€a,t(X)- O

We can now prove a special case of Lemma 5.4 when « is a maximal curve
system. This special case is required to prove the more general version of
the lemma.

Lemma 5.6. Let a be a maximal curve system on S and let X € T(S5).
Then there exists a section

0: Lo — T(S)
such that X € 0(Lq) and

[twa(X,Y)| ~0
for allY € o(Lq).
Proof. Let

G: Lo — T(S)

be an arbitrary choice of section. We will use Lemma 5.2 to “twist” & to
our desired section o.
Define a function g : Lo — T by

9(A) = twa(X,6(N)).

Since & is continuous and twg is coarsely continuous, the function g is
coarsely continuous. Recall this means there exists a constant C' > 0 such
that any A € Lo has a neighborhood U with diam(g(U)) < C.

In particular, there exists a continuous function ¢ : Lo — Tg, such that
lg — g] < 2C: Simply triangulate Ly sufficiently finely, set § = g on the
0-skeleton, and extend by affine maps to each simplex.
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We now define o by setting
0(A) = a5 (G(A)).

Lemma 5.2 then implies that

[ tWa(G(A),0(A)) + G(A)] < ms.
Using the fact that

[ twa(X, (X)) + twa(G(A),0(A)) — twa (X, o(A))] <1

and the bound on the difference between g and § we have

| twa (X, 0(A))| < mg+2C + 1.

O

Note that if « is a maximal curve system then Lemma 5.3 is vacuous. In
particular we have already proven Theorem 5.1 in this special case. As it
may be of independent interest we state it as a theorem here.

Theorem 5.7. Let o be a mazximal curve system for S. For any X € T(5)
there exist Fenchel-Nielsen coordinates

F:Vo—T(S)
such that
twa (X, F(t,A)) ~ t
for allt € Ty and all X € Lg,.

5.5. Proof of Lemma 5.3

To prove Lemmas 5.3 and 5.4 we need to control subsurface projections
along subsurfaces in the complement of the curve system o as we twist
along a and as we vary the length of . The difficulty is that as we vary
the lengths of @ we can not hope to control the behavior of the collection of
shortest curves, especially when all components of a are very long. What we
will do instead is control the lengths of arcs on complementary subsurfaces
and we will see that this is sufficient. The following lemma contains a more
precise statement. It will be used in the proofs of both Lemmas 5.3 and 5.4.

If R C S is an essential non-anular subsurface and X is a given hyperbolic
structure on S, let R® denote the component of S\ collar(9R) which is
isotopic to R.

Lemma 5.8. Let R C S be a non-annular essential subsurface and W C R
an essential (possibly annular) subsurface nested in R. Let k be an essential
simple closed curve or properly embedded arc in R that intersects W essen-
tially and let L > 0 be a constant. If X and Y are hyperbolic structures in
T(S) such that the length of k N R® is bounded by L in both X and Y then

dw(X,Y) ~ 0.
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Proof. We first extend « to an essential simple closed . If both endpoints of
k lie on components of OR that are on the boundary of the same component
of S\ R then we choose 7 such that v N R = k. If the endpoints are on the
boundary of different components then we construct + such that vy N R is
the union of x and an arc parallel to x. If k is a simple closed curve then
v = k. In all cases each component of the restriction of v to R® has length
bounded by L.

We first assume that W is non-annular. Let 8 be a shortest curve in X
that intersects W essentially, such that my (8) = mw (X). The restriction
of both v and g to W€ will have uniformly bounded length and hence uni-
formly bounded intersection. Therefore 7y () and my (5) have bounded
intersection giving a uniform bound on dew (7w (7), 7w (3))-

If 3’ is a shortest curve in Y that intersects W essentially such that
mw(8') = 7w (Y), the same argument shows that de(mw (), 7w (3')) is
uniformly bounded. The triangle inequality then implies that

deqwy(mw (8), 7w (8')) = dw (X, Y)

is uniformly bounded which completes the proof in the non-annular case.

We now assume that W is an annulus with core curve . Since each arc of
v N collar(¢) has length at most L, the width of the collar is bounded from
above, which gives a bound from below on [¢(X). Together these bounds
imply a bound on the number of times a component of v N collar(¢) winds
around collar(¢). (More concretely, it gives an upper bound on the absolute
value of the algebraic intersection number of the component with a geodesic
arc in collar(¢) which is orthogonal to £.) Let (3 be a shortest curve in
X crossing ¢, such that m:(8) = m¢(X). Since [(X) is bounded below,
(X)) is uniformly bounded above. Since 3 is a shortest curve each arc in
BNcollar(¢) intersects each geodesic arc in collar(¢) which is orthogonal to ¢
at most once. Therefore, there is a uniform bound on [tw¢ (83, ~)| (measured
with respect to X).

If a = OR U ( then every component of v N collar(a) that is adjacent to
collar(¢) has length bounded by L so we can apply Lemma 5.5 to conclude
that

twe(8,7) < twg(8,7) ~ 0.

Repeating the argument with a curve (' that is shortest in Y, such that
7 (Y) = me(4'), we get a bound on tw¢(4',7), and the desired bound on
twe (B3, ') = twe(X,Y) follows. O

Lemma 5.3 now follows easily. The proof of Lemma 5.4 is more involved.

Proof of Lemma 5.3. Let W be a non-annular subsurface in the complement
of a. Let k be a shortest curve on X that intersects W, so that there is
a uniform length bound on k. Since the earthquake map is an isometry
on W we have the same length bound on the intersection of x with W€ in
the metric eq t(X). Therefore by Lemma 5.8, dyw (X, eq,t(X)) is uniformly
bounded.
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Now let W be an annulus with core curve (. Add ¢ to a to make a
new curve system & and let ¢ € Lg be equal to t on the original o-
coordinates and 0 on the (-coordinate. Then ey ;(X) = eqt(X). The
bound on |tw¢ (X, eqt(X))| now follows from Lemma 5.2. O

5.6. Geometry of pants

Before we begin the proof of Lemma 5.4, we need to make some geometric
observations about pairs of pants. These are fairly basic but we will take
some care because we need statements that will hold uniformly for curves
of all lengths.

Let Y be a hyperbolic pair of pants with geodesic boundary, and let
l1,12,13 denote its boundary lengths (we allow 0 for a cusp). Recall that Y©
denotes Y \ collar(0Y'). Now for each permutation (4, j, k) of (1,2,3), call
a properly embedded essential arc in Y'¢ of type ii if both its endpoints lie
on the i*" boundary component, and of type jk if its endpoints lie in the j*
and k' boundary components. Define:

e 1; to be the length of the shortest arc of type i,
e y; to be the length of the shortest arc of type jk, and
o A, = %(lj + 1l —1p).

The following lemma encodes the fact that y; is estimated by A; when
A; > 0, and z; is estimated by —A; when A; < 0 — and that min(z;,y;) is
always bounded above. This is because Y € retracts uniformly to a 1-complex
whose combinatorial type and geometry are (approximately) dictated by the
numbers A;.

a) b)

L) @

FIGURE 1. The two types of thick hyperbolic pants Y¢. In
type (a), the edges of the 1-complex have lengths A, Al and
Af. In type (b), the edge lengths are —Af, 15 and 5.

Lemma 5.9. There exists a > 0 such that, for a hyperbolic pair of pants
labeled as above,

max(A;,0) —a < z; < 2max(A;,0) +a
and

max(—A;,0) —a < y; < max(—A;,0) + a.
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Proof. (Sketch) There is a subdivision (Voronoi diagram) of Y into three
convex annuli, of width bounded by a uniform w1, each containing the points
closest to one of the boundary components. The annuli meet in a geodesic 1-
complex to which Y€ retracts. The i-th annulus is attached to the 1-complex
along a curve whose length we denote by I}; note that l; < I} < l; + ap for a
uniform as.

Now defining A} = %(Z; +1; — 1)), it is easy to see that the signs of the A}
(either all non-negative or exactly one negative) determine the combinatorial
type of this 1-complex: If all A} are nonnegative then the l-complex is a
“theta”, three arcs attached along endpoints so any two make a loop, and
each A is the length of the arc which, when deleted, leaves a loop homotopic
into the i-th annulus (see Figure 1 case (a)). If one A} < 0 then the 1-
complex is a “pair of glasses”, i.e. two disjoint loops homotopic into annuli
j and k respectively and attached to the endpoints of an arc, whose length
is —A/ (Figure 1 case (b)). Consider for example the theta case: each z; is
bounded above by 2w;, and each y; is between —A} and —A] + 2w;. The
pair of glasses case is similar with a bit less symmetry, accounting for the
factor of 2 in the inequality. Finally, the fact that |A; — Al| < 3ag finishes
the proof. O

Let P be a pair of pants and 7 (P) the Teichmiiller space of hyperbolic
structures with geodesic boundary on P. We also allow the possibility that
one or more of the boundary components is a cusp. The I;, x;,y; and A; are
now functions on 7 (P). We also let I;; = (I;,1;) be the function which gives
back the lengths of the ith and jth boundary component.

The following lemma should be thought of as a version of Lemma 5.4 for
pairs of pants.

Lemma 5.10. Given s > 0 there exists an s’ such that the following holds.
Let Y be a hyperbolic structure in T (P).

(1) If 21(Y) < s then there exists a section o : [0,00) — T (P) such that
lioo=id, Y =o(l1(Y)) and z1(Z) < &' for all Z € o([0,0)).

(2) If y1(Y) < s there exists a section o : [0,00)?> — T(P) such that
losoo =id, Y = o(la3(Y)) and y1(Z) < &' for all Z € o([0,00)?).

Proof. We first prove (2). By Lemma 5.9 we need to find a section such that
the function max(—A1,0) is bounded on the image of o. The Teichmiiller
space 7 (P) is parameterized by the lengths of the boundary curves. This
gives 7 (P) a linear structure on which max(—Aj,0) is a convex. Triangulate
[0, 00)2 with linear triangles and such that la3(Y) is a vertex in the triangu-
lation. Define o(l23(Y)) =Y and for any other vertex v in the triangulation
we define o(v) such that Aj(o(v)) = 0. We then extend o linearly across
each triangle. By Lemma 5.9, max(—A;(Y),0) is bounded by a constant
only depending on s. On all other vertices max(—A(co(v)),0) = 0. There-
fore, by convexity, max(—Aj,0) < max(—A;(Y),0) on the image of o as
desired.
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We can follow the same strategy to prove (1) except that now the tri-
angulation of [0,00) is just a partition into countably many compact seg-
ments. U

Proof of Lemma 5.4. We will enlarge « to a suitably chosen maximal curve
system & and write Lg = La X Lg\o- We will then define the section o by
taking the section
o0& La— T(S)
given by Lemma 5.6 and pre-composing it with a suitable section
Y Lo — Lg.

That is we set 0 = g4 0 .
We will select & satisfying the following geometric properties:

(1) We can write X \ ac as
X\a:ZlDZ23~~DZk

such that, for 1 < i < k, Z;1 is obtained from Z; by cutting along
a properly embedded arc ;. More precisely, we will let Y; be a pair
of pants component of a regular neighborhood of k; U 0Z;, and let
Zi—i—l = znt(Z, \ }/z)

(2) The boundary components of Y; that are incident to k; are exactly
those that are parallel to 0Z;.

(3) The length of x; NY,® will be bounded by a uniform constant b.

(4) Zy will be a disjoint union of pairs of pants.

See Figure 2 for an illustration of condition (2).
The maximal curve system & will then be the union of @ with represen-
tatives of the isotopy classes of the boundaries of the Y;.

O

FIGURE 2. The two configurations of x; in Y; allowed by con-
dition (2). Heavily shaded boundary components are parallel
to 8ZZ

We proceed by induction. Let Z; = X \ «, and let U be a component
of Zy which is not a 3-holed sphere. Because each component of JU€ has
length uniformly bounded below, area considerations give a uniform 71, such
that the neighborhood of 0U® of radius r; cannot be an embedded collar,
and hence there is an essential properly embedded arc k) C U€® of length
bounded by b = 2r; (so we let k1 be properly embedded in U so that its
intersection with U® is k}). Now let Y7 be the pair of pants obtained from a
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regular neighborhood of k1 U907y, and let Zy = int(Z; \ Y1). Hence k1 C Y3
satisfies conditions (1) and (3) above.

Since by construction both ends of k1 are on OU and 0Y; must have at
least one boundary component not parallel to U, the only way condition
(2) can fail is if (numbering Y] appropriately and using the notation of
Lemma 5.9), k1 is of type 11 in Y3, while boundary component number 2 is
(isotopic to) a boundary component of U. In this case, we can replace the
11 arc by a 12 arc, whose length we can also bound. Indeed, note that the
bound on k1 gives a bound on A; by Lemma 5.9, and from the definition
of the A; we have that —Ag < Ay, so that again by Lemma 5.9 we obtain
a bound on the length of the 12 arc in Y|°. We therefore replace x1 by the
12 arc (keeping the name k1), noting that conditions (1), (2), and (3) now
hold.

Now repeat inductively in Z; until we have reduced to a disjoint union of
pairs of pants.

Having found & using this construction, we construct the section ¢ : Lo — Lg,
— that is, we build a continuous function h : Lo — Lgo. We will do this in-
ductively, using Lemma 5.10. For Y7, a point in L determines the boundary
lengths of the components of 3Y; that are adjacent to k1, and the map given
by Lemma 5.10 gives lengths for the remaining components. For each suc-
cessive Y;, then, the already-defined coordinates of h determine the lengths
for the components of 9Y; that are adjacent to x; (here we use property (2)
of the curve system &), and the lemma again determines the rest. We then
let ¢ be the section ¥(A) = (A, h(A)).

It remains to verify that diamg(y)(0(Le)) is uniformly bounded for all
subsurfaces W C S that are disjoint from a.

If W is an annulus whose core curve is a component of & then the bound
follows from Lemma 5.6 as the image of o lies in the image of 4.

If W is an annulus whose core curve is not in & or W is non-annular,
choose Z; such that W C Z; but W € Z;1 1. This implies that k; intersects
W essentially and we can apply Lemma 5.8 to W and a component of k; "W
to obtain the bound. O

5.7. Connectivity near infinity

The following lemma will be used in the final steps of the proofs of Theo-
rems 1.5, 8.1, and 9.1. It is a connectivity result for subsets of Teichmiiller
space of the following type. Given a multicurve «, let {Si,..., S5} be
the components of S \ « that are not 3-holed spheres, select laminations
Ai € EL(S;), and let U; be neighborhoods of A; in C(5;) (recalling that
EL(S;) is the Gromov boundary of C(S;) by Klarreich’s theorem). Let U
denote the tuple (U;). Then define for € < ¢

T(e,U)={Xe€T(S)|ns,(X)€U; Vi=1,...,1,
lo;(X) <€ Ya; € a}.



LOCAL TOPOLOGY IN DEFORMATION SPACES 33

Lemma 5.11. Given a multicurve o on S, let {S1,...,S;} be the compo-
nents of S\ @ which are not thrice-punctured spheres. Given \; € EL(S;)
and neighborhoods U; of \; for all i and € < €, there exist neighborhoods
Ul C Ui of \i in C(S;), such that any two points in T (e, U’) are connected
by a path in T (¢, U).

Proof. Let Tc(cx) denote the region of 7 (S) where l,, < € for all a; € a.

Recall that the Deligne-Mumford compactification of the Moduli space of
S lifts to an “augmentation” of the Teichmiiller space in which a stratum
To(7y) is added for each curve system -, corresponding to “noded” Riemann
surfaces where exactly the elements of v are pinched, and parameterized by
T(S\ 7). The topology of this bordification is the smallest one for which
the length functions of simple closed curves, extended to allow the value 0,
are continuous (see e.g. Bers [9]).

Extended Fenchel-Nielsen coordinates give us an explicit description of the
local topology at a stratum: enlarge o to a maximal curve system & and let
lg and tg be associated Fenchel-Nielsen length and twist parameters as in
Section 5.2. Adding 7p(ax) to 7(S) corresponds to enlarging the parameter
spaces Vg = Ty x Lg to allow points where [, = 0 exactly for o € a, and
then taking a quotient by identifying points which agree on all coordinates
except possibly those t; for which l,; = 0 (in other words shearing around a
pinched curve is ignored). Let Vg denote this augmented parameter space,
which gives a homeomorphic model for 7% = 7(S) U To(a). The map
Vg — Vs that forgets the a coordinates extends to a map of Vg, and gives
us a retraction 7 — To(a), which on 7(S) is a fibration with contractible
fibres.

Because length functions are continuous in this topology, there is a neigh-
borhood V4 of 7p(ex) in 7(S) for which the fibration, which we write
Y Vo — To(a) = T (S \ ), changes the lengths of, say, the set of shortest
curves in the complement of v by a ratio arbitrarily close to 1. Shrinking
Ve if necessary we may also assume Vy C 7c(ax). The small perturbation of
lengths implies a distance bound in C(.S;), namely

de(s,) (X, ¥(X)) < ey, (5.3)

for a uniform c¢q, when X € V,.

Using Theorem 5.1, for each X € 7.(ax) one can find a path {X;} in
T.(a) connecting X to a point X’ € Vg, such that projections to each C(.S;)
remain uniformly bounded. (In fact this is just a pinching deformation and
the full power of Theorem 5.1 is not needed.) Hence we can and do choose
c1 sufficiently large that

diamg, ({X:}) < c1. (5.4)

In [46], it is shown that a Teichmiiller geodesic in 7(S;) projects to a
co-neighborhood of a C(.S;)-geodesic, with ¢y uniform.
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Now by the definition of the Gromov boundary, there is a neighborhood
U? of each \; € 05C(S;) in C(S;) such that any C(S;)-geodesic with end-
points in UZ-0 has the property that its co-neighborhood is in U;.

Let U] be a neighborhood of A; in C(S;) whose 2¢j-neighborhood is in
U?. Now suppose X1, Xs € 7.(ax), and 7g,(X;) € U/ (j = 1,2). Using (5.4)
we can deform X to X} (j = 1,2) within 7¢(S;) so that X} € Vo and the
ms,-image of the path stays in a cj-neighborhood of U;. Then, by (5.3),
ms, (Y(X])) € U?. Let G be a Teichmiiller geodesic in 7 (S \ a) connecting
¥(X1) to (X)). Then 7g, (G) C U, so a lift of G back to Ve, with endpoints
X7 and X/} will, again by (5.3), give us the desired continuous family. O

6. Deformations with controlled projections

In this section, we establish Lemma 6.1 which is a key technical tool in the
paper. We begin with a system of curves on the top conformal boundary
which are short in the manifold. Lemma 6.1 allows us to to shrink the
lengths of the curves on the top conformal boundary, without disrupting
the subsurface projections on complementary subsurfaces and keeping the
curves short in the manifold throughout the process.

Lemma 6.1. Given S and K > 1/ey, there exists ¢ = ¢(S), depending
only on S, and h = h(K,S), which depends on both K and S, such that if
X,Y € T(S) and « is a curve system on S, such that

m,, (X,Y)>h

or
lo,(X) <1/K
for each component «; of o, then there exists a path {X; : t € [0,T]} in
T(S) with Xo = X such that
(1) lo,(X7) < 1/K for each a,
(2) m,, (X, Y) > K for each «; and each t € [0,T],
(3) diam(mw ({X¢:t € [0,T1})) < ¢, for any W disjoint from cx.

Recall that, by Theorem 2.2, m,(X,Y) is large if and only if + is short
in Q(X,Y). Lemma 6.1 will follow from Theorem 5.1, which allows us to
change lengths and maintain control on subsurface projections, and Lemma

2.3, which records key estimates concerning the partial order on subsurfaces
of S.

Proof. Let e = 1/K. Write a = a® UaY Ua®, where o consists of those
components a; with /,,(X) < €, @ consists of the components a; of a— ™
such that l,,(Y) < ¢, and a® consists of the remaining components.

We argue by induction on the cardinality n of o’ (which we note is
bounded from above in terms of S). We will iteratively construct h,, (which
implicitly depends on K and S) and show that the lemma holds if a” has n
components and m,, (X,Y) > h, for all a; in a” with a constant ¢, in (3),
which only depends on S.
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If n =0, we let hp = K and ¢y = mq (the constant from Theorem 5.1).
If a¥ = ) then the deformation is trivial, i.e. T = 0.

If ¥ #0, let ®: Vo — T(S) be the map given by Theorem 5.1, such
that X € ®(Vg) — in fact we must have X = ®((t,1o(X))) for some t € Ty,
Let {X; : t € [0,71]} be the ®-image of the path in V, that begins at
(t,1(X)), shrinks the length of each a; in a¥ monotonically to /2, fixes
the length of every component of a® and fixes each twist coordinate. In
particular, Ix.,.(a;) < € for all a; in a. Since Ly, (a;) < € for all o; in @™
and ly (a;) < € if ; lies in Y, we see immediately m,, (X;,Y) > K for all
1 and t. Theorem 5.1 also implies that if W is a subsurface disjoint from «,
then

diam(mw ({X; : t € [0,T]})) < ma = co.

The base case follows.

For n > 0, set h,, = hp_1 + 2m1 +mo and ¢, = ¢,_1 + Mo, where m; and
me are the constants from Lemma 2.3 and Theorem 5.1.

For each «; in aO, there must be some subsurface W; with a; C OW;,
such that

dw,(X,Y) > hn, (6.1)

since m,, (X,Y) > h, > K but [,,(X) > € and l,,(Y) > e. (Note that
possibly W; = collar(q;)). Fix one such W; for each a; € aP.

Since hy, > mj, Lemma 2.3 implies that the set of domains £ (X,Y),
which contains all the W;, is partially ordered by the relation <.

Reordering « if necessary, we may assume that oy € o, and Wy is <-
maximal among the W;, as well as maximal with respect to inclusion among
the <-maximal elements (Lemma 2.3 implies that any two maximal elements
are either disjoint or nested). In particular, the curves in 9Wj all lie above
any curves they intersect in OW;, so, intuitively, W7 is the closest surface,
among all the W;, to the top of the manifold. Let 8 = o™ U {a1}.

Now let @ : Vg — 7(S) be the map given by Theorem 5.1 such that
X = ®(t,lg(X)) for some t € Tg. Let {X; : t € [0,71]} then be the ®-
image of the path in Vg that begins at (t,lg(X)), shrinks the length of oy
monotonically to €, keeps the lengths of each element of a* fixed, and fixes
each twist coordinate of an element of 3. Theorem 5.1 guarantees that

diam(ww({Xt 1t e [O,Tl]})) < mgo (62)

if W is disjoint from B (including the case when W is an annulus with core
a component of ). If W intersects one of the curves of o, then since their
lengths are bounded by € over the family X;, we again have a bound on
diamyy ({X:}), by a constant which we may assume is smaller than mgo. It
follows, for any W; disjoint from «;, that for all ¢ € [0, 7]

dyw, (X4, Y) > hy — mg = hy_1 + 2my. (6.3)

In particular, dy, (X, Y) > hy — mq for all t. More generally, we see that
mg, (X, Y) > hp—q for all ¢, whenever W; is disjoint from «;.
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If W; intersects a; then, by the choice of W7, we see that W; and Wy
overlap and W; < Wy, with respect to the order < on L, (Xo,Y). Lemma
2.3(2) implies that

dWi(Y, an) > hy, —mq > my.

Then, since dy, (X, Y) > hy, — mg > 2my for all t, Wy overlaps W;, and
dw,(Y,0W71) > my, Lemma 2.3(5) implies that

dw, (X, Y) > hy —ma — my.

In particular this implies that m,, (X¢,Y) > h,_1 for all ¢ and all ; in .

We now have a family {X; : ¢ € [0,71]} such that the number of compo-
nents «; of a with l,,(X7,) > € and l,,(Y) > € is at most n — 1. Moreover,
for each «; either, my, (X7,,Y) > hp_1, lo,(X1,) < € 0r l,,(Y) < € and if
W is disjoint from a, then

diam(mw ({X; : t € [0,T1]})) < ma.

Now applying the inductive hypothesis to X7,, we can concatenate this
family with one that shrinks the remaining components of « to have length
at most €, so that m,, (X;,Y) > K for each «o; and each ¢, and

diam(mw ({ X : t € [0,T]})) < cn,

for any W disjoint from a.

7. Bers slices

In this section, we prove Theorem 1.5 which we re-state here for the
reader’s convenience.

Theorem 1.5. Let B be a Bers slice of QF(S) for some closed surface S.
If p € OB and p is quasiconformally rigid in OB, then B does not self-bump
at p. In particular, its closure B is locally connected at p.

We will begin by proving that there is no self-bumping at a maximal cusp
in the boundary of a Bers slice. The proof in this case is much simpler but
follows the same outline as the proof of the general case.

7.1. The maximal cusp case

We first assume that p is a maximal cusp in the boundary of a Bers slice
B = By in AH(S). Let a be the maximal curve system on S which is
cusped in N,.

If {p,} is a sequence in By, then {p,} converges to p if and only if
liml,,(a;) = 0 for all a; € a. (Theorem 5 of Bers [10] implies that By has
compact closure in AH (S x I) while Theorem 1 in Maskit [45] implies that
a maximal cusp in 0By is determined by its parabolic elements.) Therefore
the sets

U(6) ={p € By : lo,(p)) <0 Va; € a}.
for § > 0 give a neighborhood system for p in By
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We will show that for each § > 0 there exists a neighborhood V' of p such
that any two points in V N By are connected by a path in Us N By . It then
follows that there is no self-bumping at p.

First, let

Wi(e) ={Q(X,Y) € By : lo;(X) <€ Vo; € a}.

W (e€) is path-connected for any € > 0, because it is parametrized by a convex
set in the Fenchel-Nielsen coordinates for 7(S5). Bers’ Lemma 2.1 implies
that W(e) C U(2¢). Hence it suffices to choose V' so that any point in V'
can be connected to W (d/2) by a path in U(J).

Given 6 > 0, Theorem 2.2 allows us to choose K such that, for any
X, Y € T(5),

m,(X,Y)>K = [,(Q(X,Y)) <.

We may moreover require that K > 2/§. Let h = h(K, S) be the constant
given by Lemma 6.1. Theorem 2.2 then gives ¢’ > 0 such that

LQX,)Y)<d = my(X,Y)>h

Now consider V. = U(¢). If Q(X,Y) € V, then m,,(X,Y) > h for all
a;j € a, so Lemma 6.1 gives a family {X; | t € [0,T]} C T(S) with Xo = X
such that, for each a; € a,

(1) mg, (X4, Y) > K for all t € [0,T7], and

(2) lo,(X7) < £ < 3.
It follows, from (1), that Q(X:, Y) € U(d) for all ¢t and, from (2), that
Q(Xr,Y) is contained in W (0/2).

This completes the proof of Theorem 1.5 for maximal cusps.

7.2. General quasiconformally rigid points on the Bers boundary

In order to prove that there is no self-bumping at quasiconformally rigid
points we must also allow for geometrically infinite ends. Theorem 2.7 and
the Ending Lamination Theorem allow us to use subsurface projections to
construct a neighborhood system about a general quasiconformally rigid
point. Once we have constructed this neighborhood system the control we
obtained on subsurface projections in Lemma 6.1 allows us to proceed much
as in the proof of the maximal cusp case.

If p € OBy is quasiconformally rigid, then its geometrically infinite ends
are associated with a disjoint collection of subsurfaces {S1,...,S5;} of S and
the cusps are associated with a collection a of disjoint simple closed curves
such that the components of S \ « are precisely the S; together with a
(possibly empty) collection of thrice-punctured spheres. Let {A1,...,\;} be
the ending laminations supported on {S1,...,S;}.

Let U; be a neighborhood of \; € 0,,C(S;) in C(S;) for each i =1,...,1.
We denote by U the tuple (U, ...,U;), and for 6 > 0 we let U(J, U) be the
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set
UGG U)={QX,Y) :ns,(X) € U; Vi=1,...,1,
lo;(Q(X,Y)) <6 Vaj € a}.

Theorem 2.7 and the Ending Lamination Theorem allow us to show that
the U(9, U) give a neighborhood system for p in By. However, we should
note that the sets (J, U) will not in general be open in By.

Lemma 7.1. The setsU (0, U), where ¢ varies in (0, o) and the U; vary over
neighborhoods of \; in C(S;), are the intersections with By of a neighborhood
system for p.

Proof. 1t suffices to show that a sequence {p, = Q(X,,Y )} converges to p
if and only if it is eventually contained in any U(9, U).

Let {p,} be a sequence eventually contained in any U(§, U). Since By
is compact, it suffices to show that any accumulation point of {p,} is p.
Therefore we may assume {p,} converges to p’. By hypothesis, for each
Si, {ms;(Xn)} converges to A\;. Theorem 2.7 now implies that S; faces an
upward-pointing end of p’ with ending lamination )\;, for each . Since
lim [y (pn) = 0, each a; corresponds to a cusp of p/. Since p’ € By, it has
a downward pointing end associated to the full surface S, with conformal
structure Y (see Bers [10, Theorem 8]). Thus, each cusp of p’ is upward-
pointing. Therefore, the end invariants of p’ are the same as those of p. By
the Ending Lamination Theorem, p’ = p.

In the other direction, suppose {p; } converges to p. Then liml,,(p,) = 0
for all o € o, by continuity of length, and {7g, (X,)} converges to \; for all
i, by Theorem 2.7. Hence {p,} is eventually contained in any (4, U). O

Let W(e, U) denote a similarly-defined set where the length bounds on a
take place in the boundary structure X, i.e.
W(e,U) ={Q(X,Y) :7ms,(X) € U; Vi=1,...,1,
lo;(X) <€ Vaj € a}.
Notice that W(e, U) = {Q(X,Y) : X € T(¢,U)}, where 7 (¢,U) is as in
§5.7. By Bers’ Lemma 2.1, W(6/2,U) C U(4, U).

Theorem 1.5 follows from the following lemma:

Lemma 7.2. Given § > 0 and neighborhoods U; of \;, there exists € > 0 and
neighborhoods V; of A\; such that any two points in U(e, V) can be connected
by a path that remains in U(0, U).

Proof. By Theorem 2.2, choose K such that
m,(X,Y)>K = [(Q(X,Y)) <

and also suppose K > 2/§. Let h = h(K,S) be the constant given by
Lemma 6.1, and let ¢ = ¢(S) be the constant in part (3) of Lemma 6.1.
Lemma 5.11 allows us to choose neighborhoods W; of A; such that any two
points in W(d/2, W) are connected by a path in W(§/2,U).
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Choose € > 0 small enough that (again by Theorem 2.2)
LQX,)Y) <e = m,(X,Y)>h.

Finally, choose neighborhoods V; of A; such that a c-neighborhood of V; in
C(S;) is contained in W;.

Let Q(X,Y) be in U(e, V). Then, by our choice of €, m,,(X,Y) > h
for each component of a, and so Lemma 6.1 can be applied to give a path
{X;:t€]0,T]} such that

(1) lo;(XT) <1/K < §/2 for all ; € c,
(2) mgy, (X, Y) > K for all aj € e and all £ € [0, T, and
(3) diameg,)(ms; ({X¢})) < ¢ for all i.

It follows immediately from (1) and (3), that Q(X7,Y) € W(d/2, W).
Moreover, (2) implies that /o, (Q(X¢,Y)) < 6 for all ¢ and all o; € e, so,
again applying (3), we see that the entire path {Q(X;,Y)} lies in U(5, W).

This shows that any point in (e, V) can be connected to W(d/2, W) by a
path in U(5, W). Now since any two points in W(d/2, W) can be connected
by a path in W(4/2,U), and since W(4/2,U) C U(J, U), we conclude that
any two points in U (e, V) can be connected by a path in (4, U). O

8. Acylindrical manifolds

In this section, we rule out self-bumping at quasiconformally rigid points
in boundaries of deformation spaces of acylindrical 3-manifolds. Thurston’s
Bounded Image Theorem allows us to use essentially the same argument as
in the Bers Slice case. Theorem 8.1 is the special case of Theorem 1.3 where
M is acylindrical.

Theorem 8.1. Let M be an acylindrical compact 3-manifold. If p is a
quasiconformally rigid point in OAH (M), then there is no self-bumping at

p.

Proof. If B is a component of int(AH (M)) then we may identify B with
7 (S) where S = 0rM is the non-toroidal portion of OM . Explicitly, we iden-
tify v € B with 9.N,, regarded as a point in 7 (S). Thurston’s Bounded Im-
age Theorem asserts that the skinning map o : 7(S) — 7(S) has bounded
image. Let L be the diameter of o(7(S5)).

We again begin by constructing a neighborhood system about p. Suppose
that B is the component of int(AH (M)) such that p € 9B. Let (M,, P,)
be a relative compact core for N,. Let {Si,...5;} be the components of
M, — P, which are not thrice-punctured spheres. Each S; may be thought
of as a subsurface of S and comes equipped with an ending lamination \;.
The annular components of P, are associated with a disjoint collection o of
simple closed curves on S. Since M is acylindrical, © is locally constant (see
[6]), so our identification of B with 7 (.5) is consistent with our identification
of OM, with S.
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Let U; be a neighborhood of \; € 05,C(S;) in C(S;) for each i = 1,... 1.
We denote by U the tuple (U, ...,U;), and for 6 > 0 we let U(J, U) be the
set

U(5,U) = {V € B: TFSi(({')CNl,) elU; YVi=1,...,1,
lo;(v) <6 Vay € af.

Since AH(M) is compact (see [64]) if M is acylindrical, the proof of
Lemma 7.1 generalizes directly to give:

Lemma 8.2. The setsU (9, U), where 6 varies in (0, €g) and the U; vary over
neighborhoods of \; in C(S;), are the intersections with B of a neighborhood
system for p.

We again define a related set W(e, U) where the length bounds on o take
place in the conformal boundary:

W(E,U) = {I/ €B: ﬂ'gi(ach) ev; Yi=1,...,1,
la;(0:Ny) < € Vaj € aj.

Again Bers’ Lemma 2.1 implies that W(6/2,U) C U(6, U).

The proof of Theorem 8.1 is completed by Lemma 8.3 whose proof mimics
that of Lemma 7.2 but must be adapted to account for the fact that o is
bounded rather than constant.

Lemma 8.3. Given § > 0 and neighborhoods U; of A;, there exists € > 0 and
neighborhoods V; of A\; such that any two points in U(e, V) can be connected
by a path that remains in U(0, U).

Proof. We will assume that S is connected for simplicity, but the general
case is handled easily one component at a time.

Notice that if v € C(S) and X = 9.N,, € T(5), then l,(v) = I,(Q(X, 0(X))),
since Q(X,0(X)) is the cover of N, associated to 7T1( ). Let do > 0 be a
lower bound for [,,(Y) for all a; € e and Y € o(7(S5)). (The existence
of &g follows from Thurston s Bounded Image Theorem.) We may assume,
without loss of generality, that § < dg.

By Theorem 2.2, we may choose K such that

m,(X,0(X))>K = I,(v)<d

and also suppose that K > 2/9. There exists R and C such that my : 7(S) — C(W)
is coarsely (R, C)-Lipschitz for all essential subsurfaces W C S (see Lemma
2.3 in [47]), i.e. degn)(X,Y) < Rdy(s)(X,Y) +C for all X,Y € T(S). Let
h =h(K+ RL+C,S) be the constant given by Lemma 6.1, and let ¢ = ¢(5)
be the constant in part (3) of Lemma 6.1.
Lemma 5.11 allows us to choose neighborhoods W; of A; such that any
two points in W(0/2, W) are connected by a path in W(é/2, U).
Choose € small enough that (again by Theorem 2.2)

LQX,0(X) <e = m,(X,Y)>h,
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and choose neighborhoods V; of A; such that a c-neighborhood of V; in C(S;)
is contained in W;.
If v € U(e, V) and X = 9.N, € T7(S), then Lemma 6.1 gives a path
{X; :t €10,T]} beginning at X = X, such that
(1) laj(XT) < 1/(K—|—RL+C) < 5/2 for all Q; € o,
(2) mg;(X¢,0(X)) > K+ RL+C for all aj € e and all ¢ € [0, 7], and
(3) diame(s,) (s, ({X¢})) < e.
Let {v; | t € [0,T]} be the associated path in B. Then, (1) and (3) imply
that v € W(§/2, W). The facts that my is coarsely (R, C)-Lipschitz for
all W, dr(g)(0(X),0(Xt)) < L, la,;(0(Xy)) > 0o > 0 (for all a; € o) and
(2), imply that mg, (X, 0(Xy)) > K for all ¢, so I, (1) < & for all ¢ and
all @;j € a. Combining this again with (3), we see that the entire path
{Q(X:,Y)} lies in U(5, W).
We can now complete the argument exactly as in the proof of Lemma
7.2. U

O

9. Surface groups

In this section we prove that quasifuchsian space doesn’t self-bump at
quasiconformally rigid points in its boundary. The proof is closely modeled
on the Bers slice case (§7), with the main complication being that we need
to keep track of the ordering of the ends, and of the relevant Margulis tubes,
during the deformation. Theorem 2.7 allows us to keep track of the ordering
of the ends, while Proposition 2.11 will be used to control the ordering of
the Margulis tubes.

Theorem 9.1. If S is a closed surface and p is a quasiconformally rigid
point in OAH (S x I), then there is no self-bumping at p.

Theorem 1.3 follows from Theorems 8.1 and 9.1.

Proof. We begin by constructing a neighborhood system for p in QF(.S). Let
the upward-pointing end invariants of p be denoted by a collection a of sim-
ple closed curves on S associated to upward-pointing cusps and subsurfaces
{S;} with laminations {\;}, and let its downward-pointing end invariants
be denoted by a collection B of simple closed curves on S associated to
downward-pointing cusps, and subsurfaces {1} } with laminations {yuy}. For
all i and k, let U; be a neighborhood of \; € 0-C(S;) of C(S;) and let Vj
be a neighborhood of pu in C(T}). Let U and V denote the corresponding
tuples of neighborhoods. Define U(§, U, V) to be the set of all quasifuchsian
groups Q(X,Y) such that

(1) ms,(X) € U; for all i,

(2) la ( (X,Y)) <6 for all o € e,

(3) 7TTk( ) 6 Vj, for all k,

(4) 15, (Q(X ))<6forallﬂl€,3, and
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(5) if oj € acand 3 € B intersect on S, then «; lies above 3 in Q(X,Y).

Lemma 9.2. The sets U(0,U, V) are the intersections with QF(S) of a
neighborhood system for p.

Proof. As in the proof of Lemma 7.1, it suffices to show that a sequence
{pn = Q(X,,Y,)} converges to p if and only if it is eventually contained in
any U(5, U, V).

Suppose {pn, = Q(Xn, Yn)} C QF(S) converges to p. Then, by continuity
of length, liml,,(Q(Xp,Yy)) = 0 for all @; € a and lim g, (Q(Xy,Yn)) =0
for all 5; € B. Theorem 2.7 implies that {mg, (X,)} converges to A; for all i
and {77, (Y5)} converges to py, for all k. If o; € o and §; € B intersect, then
Lemma 2.11 ensures that, for all large n, «; lies above 3 in IN,,,. Therefore,
{pn} is eventually contained in any U (9, U, V).

Now suppose that {p,} is eventually contained in any U(J, U, V). We
must first show that any such {p,} has a convergent subsequence in AH (S).
If not, then some subsequence, still denoted {p,}, converges to a small ac-
tion, by isometries, of 7 (.S) on an R-tree T', i.e. there exists {¢,} converging
to 0, such that {e,ly(pn)} converges to the translation distance l7(y) of the
action of v on T for any closed curve v on S (see Morgan-Shalen [53]).
Skora’s theorem [61] implies that there exists a measured lamination v on S
dual to the tree such that I7(y) = i(v,~) for all 4. If any o € v or 3} € B
intersects v, then we obtain an immediate contradiction since lim [, (pn) = 0
and lim g, (pn) = 0. Therefore, ¥ must be contained both in some S; and in
some T. The support of v cannot agree with both A; and ug, since A; and
i do not agree, so v must intersect either \; or uy transversely.

Suppose without loss of generality that v intersects A; transversely. We
will now show that the geodesics [rg, (X, ), 7s,(Y5)] come uniformly close to
a fixed point in C(S;) as n — oo. (Recall that [a,d] refers to any geodesic
connecting the points a and b). Suppose first that some [; intersects S;
essentially. Then since lg (py) is bounded (in fact goes to 0), Theorem 2.8
gives a Dg such that g, () stays within Dy of [rg,(X,,),ms,(Y,)]. Now
suppose that .S; is disjoint from B, and hence is contained in Tj. Since
up fills Ty, it intersects S; essentially. Let 7, be a shortest curve on Y,
intersecting T}, essentially, such that w7, (7,) = 71, (Y,). Since 77, (V) —
1, the Hausdorff limit of 7, N7y, must contain ug. Since uy intersects .S;, so
must 7, for high enough n, and moreover eventually dg, (7, px) < 1. Since
I+, (pn) is bounded, Theorem 2.8 again tells us that 7g,(7,), and hence the
fixed point 7g, (pr), lie within bounded distance of [rg, (X,), 7s, (Y)].

Now, since 7g, (X,,) converges to A\; € 055C(5;), we see that dg, (X, Ys) —
oo. Thus for large enough n Theorem 2.8 tells us that C(S;, pn, Lo) is
nonempty and within bounded Hausdorff distance of [7g,(X,,), s, (Yn)]. In
particular there exists a sequence {v,} C C(S;) with {l,, (pn)} bounded, and
ds, (7n, Xpn) bounded. The last bound implies that v, — A;.

However, the fact that \; intersects v essentially implies, by Corollary
3.1.3 in Otal [59], that \; is realizable in the tree T'. Since v, — A;, Theorem
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4.0.1 in Otal [59] then implies that I, (p,) — o0, so we have achieved a
contradiction. We conclude that in fact {p,} has a convergent subsequence.

Consider any accumulation point p’ of {p,}. Each a;; € a and ; € B is
associated to a cusp of N,. Proposition 2.7 implies that each S; is associated
to an upward pointing geometrically infinite end with ending lamination \;
and each T}, is associated to a downward pointing end with ending lamination
fii. So, there exists a pared homotopy equivalence h : (M,, P,) — (M, Py)
which can be taken to be an orientation-preserving homeomorphism on each
S; and Tj,. Proposition 8.1 in Canary-Hersonsky [30] implies that there exists
a pared homeomorphism b’ : (M,, P,) — (M, Py) which agrees with h on
each S; and Tj. In particular, this implies that p’ is quasiconformally rigid.

In order to apply the Ending Lamination Theorem it remains to check
that our pared homeomorphism A’ is orientation-preserving. If N, has a
geometrically infinite end associated to some S; or T}, then i’ is orientation-
preserving on that surface, so it is orientation-preserving. If IV, has no
geometrically infinite ends, then it is a maximal cusp. So, each o; € a
intersects some 3. As p’ is quasiconformally rigid and «; lies above [ in
N,, for all large enough n, Lemma 2.11 implies that «; is associated to
an upward-pointing cusp of N,. Similarly, each 3 € B is associated to a
downward-pointing cusp in N, so h’ must be orientation-preserving. The
Ending Lamination Theorem then allows us to conclude that p’ = p. U

Remark: The convergence portion of the above argument can also be
derived from the main result of Brock-Bromberg-Canary-Lecuire [16] or by
using efficiency of pleated surfaces as in Thurston’s proof of the Double
Limit Theorem [65].

If > 0, U and V are as above, then we define W(§, U, V) to be the set
of all quasifuchsian groups Q(X,Y’) such that
(1) ms,(X) € U; for all i,
(2) la,;(X) <0 for all o; € e,
(3) w1, (Y) € Vj, for all k, and
(4) lﬁl (Y) < ¢ for all g; € B.

Lemma 2.5 and Bers’ Lemma 2.1 give:
Lemma 9.3. If 6 < ey, then W(6/2,U, V) CU(5,U, V).

Lemma 2.5 also allows us to restrict to neighborhoods where the a; € a
are not short on the bottom conformal boundary component and the 3; € 3
are not short on the top conformal boundary component.

Lemma 9.4. There exist neighborhoods (U;)g of A; in C(S;) and (Vi)o of
pi in C(T;) such that if Q(X,Y) € U(ep, Ug, Vo), then lg(X) > e and
lo;(Y) > € for all B € B and a; € cu.

Proof. Suppose that [, (X) < ¢ for some 5 € B. If § intersects some
aj € o, then Lemma 2.5 would imply that 3 lies above «; which is a
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contradiction. If 3 does not intersect any c, then it lies in some S;. Then
ds, (X, 0;) < 2. So, if we choose the neighborhood (U;) to have the property
that 7g,(5;) does not lie in the 2-neighborhood of (U;)g, we again have a
contradiction.

The proof that I, (Y) > € for all a; € o is similar. O

Theorem 9.1 now follows from:

Lemma 9.5. Given § > 0 and neighborhoods U; of \; and V; of u;, there
exists € > 0 and neighborhoods U;' of \; in C(S;) and V) of py in C(Ty) such
that any two points in U(e, U", V") can be connected by a path that remains
in U0, U, V).

Proof. Without loss of generality, we may assume 6 < Jy (from Lemma
2.6) and U C Uy, V C Vy (from Lemma 9.4). By Theorem 2.8, we may
further assume that if W is an essential subsurface of S, v € C(S, W) and
1, (Q(X,Y)) < 4, then my (7y) lies within Dy of any geodesic joining my (X)
to mw (V).

By Theorem 2.2, we may choose K such that

m,(X,Y)>K = [ (Q(X,Y)) <

and also suppose K > 2/6. Let h = h(K,S) be the constant given by
Lemma 6.1, and let ¢ = ¢(S) be the constant in part (3) of Lemma 6.1. Let
do be the constant from Lemma 2.6.

Lemma 5.11 implies that we may choose neighborhoods U] of \; in C(S;)
and neighborhoods V}/ of 1, in C(T}) such that any two points in W(4/2,U’, V')
are connected by a path in W(4/2, U, V). Moreover, we may further assume
that if 8; € B is contained in .S;, then

ds,(B1,7) > R=m1+ Do+ 1

for all v € U].
Choose € small enough that (again by Theorem 2.2)

LQX,)Y)<e = my(X,Y)>h'=h+2dy+ Dy+m +c.

Finally, choose neighborhoods U/ of A; in C(S;) and V}/ of py in C(T%)
such that a c-neighborhood of U/ in C(S;) is contained in U], and a c-
neighborhood of V} in C(T},) is contained in V.

Suppose that Q(X,Y’) € U(e, U”, V"). Then, by our choice of ¢, m,;(X,Y) > h
for each o € o, and so Lemma 6.1 can be applied to give a path {X; | t € [0, T}
beginning at X = X such that

(1) la;(X7) <1/K < 6/2 for all a; € a,

(2) my, (X¢,Y) > K for all aj € a and ¢ € [0, 7], and

(3) diame(g,)({ms,(X¢) | t € [0,T]}) < c for all 4.
Condition (2), Bers’ Lemma 2.1 and our choice of K, give that l,; (Q(Xt,Y)) <
for all @; € o and all t € [0,7]. Condition (3) and our choice of U/ give
that mg,(X;) € U/ for all ¢ and all ¢ € [0, 7.
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In order to guarantee that Q(X;,Y) € U(5,U’, V') for all ¢, it remains
to check that I5,(Q(X:,Y)) < 6 for all §; € B and that each [ remains
correctly ordered with respect to relevant a; € a. Recall that, again by our
choice of ¢,

mg, (X,Y) > K
for all §; € B. We will additionally need to establish that
mﬁl(XT,Y) > h. (91)

Condition 9.1 is necessary to invoke Lemma 6.1 to construct the deformation
of the bottom conformal structure Y.

If ig,(Y) < 1/W < §/2 then mg (X;,Y) > h and, by Bers’ Lemma 2.1,
l3,(Q(Xt,Y)) < 6 for all t. Lemma 2.5 then implies that if §; intersects
a; € ain S, then G lies below o in Q(Xy,Y) for all .

Ifig,(Y) > 1/1/, then, since lg (X) > ¢y (by Lemma 9.4) and mg, (X,Y) > I/,
there must be a subsurface Z; with §; C 0Z; such that

dz,(X,Y) > 1.
If Z; does not intersect o, then, by Lemma 6.1(3),
diame ) ({mz,(X¢) [ t € [0, T]}) <,

so dz,(X¢,Y) > h' —c > h for all t and (; does not intersect . Therefore,
g, (Q(X¢,Y)) < 6 for all t and condition (9.1) holds.

Suppose f3; intersects a; € a on S. For each ¢ < T, we know that
lo; (Q(X¢,Y)) < do. Lemma 2.6 asserts that if dz, (Xy, o) > do, then f3; lies
above «; in Q(X;,Y). Since 3 lies below a; in Q(X,Y’), we have that
le (Xv Oék;) < dp, so

le(aj,Y) > dZZ(X,Y) — le(Xaaj) > h —dy > h+do.

It then follows, again from Lemma 2.6 (this time with the roles of X and
Y reversed), that o lies above §; in Q(X4,Y") for all t. So, one must have
dz, (X, o) < dp for all t and hence

dz, (X2, Y) = dz (e, Y) = dz, (X¢, 05) > b

which in turn implies that /g, (Q(X¢,Y)) < ¢ for all . In particular, we have
established condition (9.1).

It remains to consider the case where Z; intersects some «a; € a, but
0; does not intersect a. In this case, we do not need to worry about the
ordering of 3, but only need to check that lg(Q(X,Y)) < ¢ for all ¢ € [0,T]
and verify condition (9.1). Notice that [ is contained in some S;. We see
that dg, (6, X) > R, since mg,(X) € U/. Since I3, (Q(X,Y)) < 9, § lies
within Dy of any geodesic joining mg, (X) to 7g,(Y"). Therefore,

ds,(X,Y) > R — Doy > mj.

Since dz,(X,Y) > b’ > my, Lemma 2.3 implies that S; and Z; are <-ordered
in £,(X,Y) where b = min{R — Dy, h'} > my. Since

ds,(X,0Z)) > ds,(X,0) —1>R—1>my,
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Lemma 2.3(3) implies that Z; < S;. Therefore, Lemma 2.3(2) shows that
dz,(0Si, X) < mq, which implies that dz (9S;,Y) > h' — m;. But, since
lo; (Q(Xt,Y)) <4 if a; is a component of 95;, we conclude, as above, that

le (Xt,Y) > le (651,}/) — Do > - mi — Dg > h

for all ¢ € [0,T]. Therefore, lg (Q(X¢,Y)) < 6 for all ¢t and condition (9.1)
holds.

We have considered all cases, so have completed the proof that Q(X;,Y) €
UG, U, V') for all t € [0,T].

Now we can fix X7 and apply Lemma 6.1 to the bottom side, obtaining
a path {Y; | t € [0,7']} beginning at Y = Y} such that

(1) 15(Q(X7,Y;)) < d for all t <T" and f; € B,
(2) 71, (Y;) € V) for all k and ¢t < T, and
(3) lﬁl (Yrr) < §/2 for all g € 3.

Recall that 7s,(X7) € U; for all i and Ix,(aj) < § < ¢ for all a; €
a. Therefore, Lemma 2.5 implies that o; lies above 5 in Q(Xr,Y;) for
all t € [0,7'] whenever «; and [ intersect on S. Therefore, the path
{Q(X7,Y:) | t € [0,7']} lies entirely in U(,U’, V'). The concatenation
of the paths {Q(X:,Y) | t € [0,T]} and {Q(X7,Y:) | t € [0,7"]} remains in
U6, U, V'), and joins Q(X,Y) to a point Q(Xr,Yr) € W(§/2,U’, V').
Now since any two points in W(4/2,U’, V') can be connected by a path
in W(§/2,U,V), and since W(6/2,U, V) C U(6,U, V), by Lemma 9.3, we
conclude that any two points in U(e, U”, V") can be connected by a path in
U, U, V). O

O
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