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1 Introduction

In this note we investigate the relationship between the conformal boundary at infinity
of a hyperbolic 3-manifold and the boundary of its convex core. In particular, we prove
that the length of a curve in the conformal boundary gives an upper bound on the
length of the corresponding curve in the boundary of the convex core.

A hyperbolic 3-manifold N is the quotient of hyperbolic 3-space H? by a group I'
of isometries. The “boundary at infinity” of H? may be identified with the Riemann
sphere C and T extends to act on C as a group of conformal automorphisms. The
domain of discontinuity (") of I is the largest I'-invariant open subset of C which T
acts on properly discontinuously. If I" is not abelian, then Q(I") inherits a hyperbolic
metric, called the Poincaré metric, which I' acts on as a group of isometries. One
may then consider J.N = Q(I")/T" to be the “conformal boundary at infinity” of the
hyperbolic 3-manifold N. The conformal boundary is the topological boundary of
N=H3uQI))/r.

The first important result concerning the relationship between the geometry of
the conformal boundary and the geometry of N is due to Bers [4] who proved that if
each component of Q(T") is simply connected and « is a closed curve in its conformal
boundary O0.N, then the geodesic a* in N in the homotopy class of « has length
Iny(a*) at most twice the length [5 ny(c) of v in the conformal boundary. (If « is
homotopic to arbitrarily short closed curves in N, then we say Iy(a*) = 0.) Canary
8] generalized this to the setting of arbitrary Kleinian groups, proving that given any
€ > 0 there exists K > 0 such that if Q(I") has injectivity radius bounded below by e
(at each point), then if « is a closed curve in 0.(INV), then

ZN(OA*) S KlaCN(Oé).
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(If T is finitely generated, then there always exists some lower bound for the injectivity
radius of (I').) Sugawa [15] proved that, with no assumptions on Q(I'), if « is a
closed curve in 0.N of length L, then

Sl

In(a*) < 2Lex.

The convex core C(N) of a hyperbolic 3-manifold is the smallest convex subman-
ifold such that the inclusion of C(V) into N is a homotopy equivalence. The convex
core is homeomorphic to N and N — C(N) is homeomorphic to 9.N x (0,00). The
intrinsic metric on the boundary OC(N) of the convex core is hyperbolic and the
nearest point retraction r : 9.N — 9C(N) gives a proper homotopy equivalence.

Sullivan was the first to extensively study the relationship between the geometry
of the conformal boundary and the geometry of the boundary of the convex core. He
showed that there exists a constant K > 0 such that if each component of 0. is
incompressible in N (equivalently, if each component of Q(I") is simply connected),
then the nearest point retraction is homotopic to a K-biLipschitz map (see Epstein-
Marden [11] for details.) As a corollary, one obtains linear upper bounds on the
length of a curve in the boundary of the convex core in terms of the length of the
corresponding curve on the conformal boundary.

The main result of this note asserts that even when the conformal boundary is not
incompressible, a bound on the length in the boundary of the conformal boundary
implies a bound on the length of the curve in the boundary of the convex core. Our
result may be thought of as a natural generalization or analogue of Sullivan’s result in
the spirit of the earlier work of Sugawa [15]. The main tool in the proofs of our results
will be the characterization of the Poincaré metric due to Beardon and Pommerenke

3]-

Main Theorem: Suppose that N is a hyperbolic 3-manifold andr : 0.N — OC(N) is
the nearest point retraction from its conformal boundary to the boundary of its convex
core. If a is a closed curve in the conformal boundary of length L, then

locov) (r(@)*) < 45L €7

where lopovy(r(a)*) denotes the length of the closed geodesic in the intrinsic metric
on OC(N) in the homotopy class of r(a).

We will give a more precise statement in section 5. In particular, we will see that
short compressible curves in the conformal boundary have “much shorter” representa-
tives in the boundary of the convex core. In a final section we will exhibit a sequence
of closed curves a,, in the conformal boundaries of hyperbolic 3-manifolds N, such
that L, = lg.n(cv,) goes to infinity, but

Ln
2

loc(n,) (Tn(am)™) > €
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where 7, : 9.N,, — OC(N,,) is the nearest point retraction. These examples illustrate
the necessity of the exponential term in our estimate.

Our main theorem was developed as a tool for use in our work [9], in collaboration
with Culler, Hersonsky and Shalen, on approximation by maximal cusps in boundaries
of quasiconformal deformation spaces of Kleinian groups. In that paper, we will be
most interested in applying our main theorem in the case that ~ is compressible.
Recall that when + is a compressible curve, then it has no geodesic representative but
is homotopic to arbitrarily short curves, so one says that I (7*) = 0. In this case, the
earlier results yield no information.

The author would like to thank Sa’ar Hersonsky and Ed Taylor for very helpful
conversations concerning this work.

2 The Key Lemma

A Kleinian group I is a discrete subgroup of PSLy(C), which we regard as the group of
orientation-preserving isometries of hyperbolic 3-space H?. We will assume through-
out this paper that I' is non-abelian and torsion-free, in which case N = H?3/T" is
a hyperbolic 3-manifold. The limit set Ly of I' is the smallest, closed non-empty,
I-invariant subset of C, and its complement is the domain of discontinuity (T). For
simplicity we will always assume that oo € Lr. The domain of discontinuity inher-
its a unique Riemannian metric of constant curvature —1 which is conformal to the
Euclidean metric, called the Poincaré metric, which we denote by p(z)dz.

The convex core C(N) of N is the quotient of the convex hull CH(Lr) of the
limit set by I'. One may define the nearest point retraction 7 : H> — CH(Lr) to
be the map which takes a point in H? to the closest point in CH(Lr). The nearest
point retraction extends continuously to a map 7 : H*UQ(T') — CH(Lr) which is T'-
equivariant. Thus 7 descends to a map r : N — C(N) which we also call the nearest
point retraction. (See [10] and [11] for more details on the nearest point retracion
and the convex core.)

The following elementary lemma encodes the key observation underlying all the
other results. We recall that a closed curve v which is homotopically non-trivial in
0.N is said to be compressibleif it is homotopically trivial in N = .NUN. Otherwise,
it is said to be incompressible. If v is compressible, then it lifts to a closed curve 7 in
Q(T). If v is incompressible, we think of it as the image of a map f: S' — J.N. If
p: R — St is the universal covering map, then po f lifts to a map f: R — Q(T). In
an abuse of notation, we will refer to the image of f as a lift of 7. Any lift 5 of ~ is
an (open) arc with endpoints at the fixed points of an element of I" which stabilizes

.
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Lemma 2.1 Let N = H3/T be a hyperbolic 3-manifold. Let v be a closed curve in
its conformal boundary 0.N and let ¥ be a lift of v in QT"). Suppose that 5 has an

endpoint at oo if vy is incompressible. If p(z) > m for all z € 7, then

loov)(r(7)") < V2Klg,n(7)

where r(7)* is the geodesic representative of r(7y) in the intrinsic metric on OC(N).

Proof of 2.1: Let s : [0,a] — Q(I') be a parameterization by Euclidean arc length
of a fundamental domain for 7. Let g € I" be the group element such that g(s(0)) =
s(a). (If v is compressible, then g is the trivial element.) By our assumption, if g is
non-trivial, g has a fixed point at oo. Therefore, g(z) = Az + p for some A\, u € C.
Since Ly is I'-invariant, p(g(z)) = pl(/\z‘) and d(g(2), Lr) = |A|d(z, Lr) for all z € Q(I").

Let 5:[0,a] — H? be the curve given by 5(t) = (s(t),d(s(t), Lr)). Since CH(Lr)
does not intersect the open ball of Euclidean radius d(z, Lr) about z, §([0,a]) C
H? — CH(Lr). By our choice of normalization, ¢(s(0)) = $(a) so that $([0,a])
projects to a closed curve 74 in N. Moreover, the vertical region between s([0,al)
and 5([0, a]) projects to an annulus A in N — C(N) joining « and 7. Therefore, r(7)
and r(7) are homotopic within OC(N) (by the homotopy provided by 7(A).) Since
r is distance non-increasing on N, locwv)(r(7)*) < In(7). It now suffices to simply
estimate the length of 7.

Recall that

and that . ]
13 = [ N L

where |§'(t)] is simply the norm of the (Euclidean) derivative of s. But since d(z, Lr)
is 1-Lipschitz and s is parameterized by Euclidean arc length, |3'(t)] < v/2. Applying
our assumption that p(z) > m for all z € ¥ we see that

19) < [ VEKp(s(t)dt = VEKI(),

which completes the proof.
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3 The Poincaré metric and conformal modulus

In order to verify that our assumption on the Poincaré metric is satisfied we make use
of a characterization of the Poincaré metric which is due to Beardon and Pommerenke
[3]. They introduce a quantity

|2 = af

b —al

B(z) =inf { log

ca € 00,b€ 0, |z —a :d(z,aﬁ)}.

In the proof of Corollary 3.3, we will observe that z lies on the core curve of an
Euclidean annulus in Q(I") of modulus @ In fact, one could alternatively have
defined 5(z) as 7 times the minimal modulus of an Euclidean annulus in Q(I") which
has z on its core curve, is centered at a point a such that |z —a| = d(z, Lr) and whose
closure intersects Lr.

We recall that an annulus A is Fuclidean if it is bounded by two concentric circle.
The core curve of A is the unique curve invariant by a conformal involution which in-
terchanges the boundary components. The conformal modulus of a Fuclidean annulus

A bounded by circles of radius ro > r; is defined to be

1 9
mod(A) = —1lo (—) .
(4) = 5 Jog -
Any (open) topological annulus is conformally equivalent to a Euclidean annulus
and we define its modulus to be equal to the modulus of the conformally equivalent
Euclidean annulus.

Theorem 3.1 Let Q2 be a hyperbolic subdomain of C and p(z)dz be its Poincaré
metric. Then,
s

% < pl2)d(2, 0k + B(2)] < 2% +

where k = 4 + log(3 + 2v/2) < 5.763.

The core curve « of a Euclidean annulus A with large modulus is short. Moreover,
if we let r4 : A — CH(OA) denote the nearest point retraction from A to the convex
hull of its boundary, 74(«) is much shorter. Theorem 2.16.1 in Epstein-Marden [11]
makes these observations more precise.

Theorem 3.2 (Theorem 2.16.1 in [11]) Let A be a Euclidean annulus of modulus
mod(A). If a is the core curve of A and ry is the nearest point retraction from A to
the boundary of the convex core of A, then

laler) = mod(A)’
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where L4 is measured in the Poincaré metric on A, and

27T67rmod(A)
locm@ay(rala)) = e2rmod(A) _ 1

As a corollary, we see that if (z) is large, then there is a short homotopically
non-trivial curve in (") which passes through z. It is this corollary, in combination
with the Margulis lemma, that we will use to bound 3(z) in our applications.

Corollary 3.3 Let Q be a hyperbolic subdomain of C. If
B(z) = M

then there is a homotopically non-trivial curve through z whose length in the Poincaré
metric on ) is at most ’T—A;

Proof of 3.3: By definition, there exists a € 02 such that |z — a| = d(z,00) and
the annulus
A=A{w| Mz —a|l > |w—a|l > e M|z —al}

is entirely contained within 2. Let

a={w| jw—a|=|z—dl}

be the core curve of this annulus. The modulus mod(A) = 2. Theorem 3.2 then

implies that a has length ’T—A; in the Poincaré metric p4(z)dz on A. But pa(z) > pa(2)
for all z € A where pg(z)dz is the Poincaré metric on 2. Therefore, o has length at

most ’TMZ in 2.

Remarks: (1) One may also use Theorem 3.2 to show that rq(a)* has length at most
22 in OCH(99).
(2) Corollary 3.3 is an improvement on Lemma 2.3 in [8].

4 The case where the geometry of ((I') is bounded

It is particularly simple to consider the case where there is a uniform lower bound
on the injectivity radius in the domain of discontinuity. We recall that if I" is finitely
generated, then Ahlfors’ finiteness theorem [1] implies that every homotopically non-
trivial closed curve in Q(T") is homotopic to a closed geodesic and that there exists
some € > 0 such that no closed geodesic in (I') has length less than e.
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Proposition 4.1 Let N = H3/T" be a hyperbolic 3-manifold. Suppose that Q(T)
contains mo homotopically non-trival closed curves of length less than €. If a is a
closed curve in O.N, then

l(’)C(N) (T’(Oz)*) S DlacN(Oz).

2
D:2<k+£).
€

Proof of 4.1: We may assume that if a is incompressible, then one of its lifts a
has an endpoint at oco.

If Q(T") contains no homotopically non-trivial closed curves of length less than e,
then Corollary 3.3 implies that §(z) < %2 for all z € Q(I"). Therefore, p(z) >

where K = /2 (k + ”—52) . Lemma 2.1 then implies that

where

1
Kd(z,09)

2

e (r@)”) <2 (k4 = av(e

as claimed.

Thurston [16] has shown that if f : X — Y is a proper homotopy equivalence
between two finite area hyperbolic surfaces and

Iy (f(7)")
Ix(7) =P

for all simple closed geodesics v in X, then f is homotopic to a D-Lipschitz map. Re-
call that a hyperbolic 3-manifold is called analytically finite if its conformal boundary
has finite area. Ahlfors’ finiteness theorem [1] asserts that if a hyperbolic 3-manifold
has finitely generated fundamental group, then it is analytically finite. Combining
Thurston’s result with Proposition 4.1 we obtain the following

Corollary 4.2 Let N = H3/T be an analytically finite hyperbolic 3-manifold. Sup-
pose that Q(T') contains no homotopically non-trival closed curves of length less than
€. Thenr:0.N — OC(N) is homotopic to a D-Lipschitz map, where

2
D:2<k+ﬂ_).
€
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As another corollary we obtain a new proof of Theorem 2.1 from [8] with a some-
what better estimate.

Corollary 4.3 Let N = H3/T be a hyperbolic 3-manifold. Suppose that Q(T') con-
tains no homotopically non-trival closed curves of length less than €. If v 1s a closed
curve in ('), then

In(v") < Dla.n(7)

If every component of Q(T") is simply connected, then p(z) > m forall z € Lp
(see [3] for example). In this case, we may argue just as in the proof of Proposition

4.1 to show that if « is a closed curve in the conformal boundary of N, then
lac(N)(T(Oz)*) S 2\/5[561\7(@).
We may again apply Thurston’s result to conclude:

Corollary 4.4 Let N = H?/T be a hyperbolic 3-manifold. If each component of Q(T)
is simply connected, then v : O.N — OC(N) is homotopic to a 2v/2-Lipschitz map.

In section 2.3 of Epstein-Marden [11] they show that if each component of Q(I") is
simply connected, then r is 4-Lipschitz and that r is homotopic to a 66.3-biLipschitz
map. Bridgeman [6] has shown that r has a homotopy inverse which is 6.8-Lipschitz.
It is conjectured that r is homotopic to a 2-biLipschitz map.

One may combine the techniques of section 2.3 in Epstein-Marden [11] with the
observations in this section to show directly that, with the same assumptions as in
Corollary 4.2, the nearest point retraction is itself v/2D-Lipschitz. We have chosen
to keep our discussion more elementary, so we will not pursue this.

5 The general case

However, one often does not know, a priori, any uniform bounds on the geometry of
Q(I"), so the results of the last section will not suffice in general. Our main result
gives uniform bounds on the lengths of curves in the convex core boundary which are
independent of the geometry of Q(I'). We will say that a closed curve is primitive if
it is not homotopic to a non-trivial power of any other closed curve.

Theorem 5.1 Let N be a hyperbolic 3-manifold and let v be a (primitive) closed
geodesic of length L in O.N.

1. If L > 1, then

Sl

locaw (r(7)") < CiLe
where Cy = 2 (k + 7%) < 31.265.
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2. If v is incompressible in N and L < 1, then

locv)(r(7)") < C2L
where Cy = 2(k + y/en?) < 44.071.
3. If v is compressible and L < 1, then
4re(-502)m

locvy(r(7)") £ ——— < CsL
evek

(.502)7
where Cy = T —= < 153,
eve

Proof of 5.1: In order to be able to apply Lemma 2.1 we will always assume that
if v is incompressible, then one of its lifts ¥ has an endpoint at co.

We will make repeated use of the following quantitative form of the Margulis
lemma which appears as Theorem 8.3.1 in Beardon [2].

Theorem 5.2 Suppose that o and ~ are two (primitive) homotopically non-trivial
closed curves passing through a point x on a complete hyperbolic surface S. If o and
v are not homotopic, then

sinh <ZS(20‘)> sinh (lS(;)> > 1.

Therefore, if « is any closed curve in d,N passing through a point x € v which is
not homotopic to a multiple of v, then

sinh <M> sinh (E) > 1.
2 2

L 1
inj x) > min { —, sinh™*
mias(o) > min{ 0™ (i )|
where inj,_y () denotes the injectivity radius of 9.V at the point x.
It is easily checked that if L > 1, then

1 1
sinh™! [ — ~| > -z
sinh(5) 2¢3

So, if L >1and z € ¥ C ('), then

In particular,

1
2e

injor(2) >

Sl
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Applying Corollary 3.3, we see that this implies that

Sl

B(z) < me

for all z € 4, and hence, by Theorem 3.1, that p(z) >

1
= m where

sz/ﬁ(k+7r2e%) S\/ﬁ(k+7r2)e%.

We then simply apply Lemma 2.1 to complete the proof of case 1.

In case (2), v is incompressible and has length L < 1. Suppose that « is the
shortest homotopically non-trivial curve through a point z € 5. Let p : Q(I") — 0.N
be the usual covering map. Since 7 is incompressible, v and p(«) are not homotopic.

Theorem 5.2 implies that
[
sinh <%@> sinh(.5) > 1.

1 1
>92%inh ™' [ ——— | > —
lor)(a) 2 2sin <smh(.5)> = /e

SO z'njg(p)( z) > 1 . Therefore, by Corollary 3.3 and Theorem 3.1, 3(z) < 72y/e and
p(z) > Kd( = where K = \2(k++/en?), for all z € 7. Again, case 2 follows directly
from Lemma 2 1.

We now suppose that v is compressible and L < 1. Let 7 be a lift of v. Theorem

5.2 of Sugawa [14] implies that 4 is homotopic to the core curve of a topological
annulus R C (I') with modulus

Thus

™

Le* \/_L

(See also Corollary 3 of Maskit [13] where it is shown that mod(R) > Lz% ) We

make use of a result of Herron, Liu and Minda [12], to guarantee that A contains an
Euclidean annulus of modulus close to mod(R).

mod(R) >

Theorem 5.3 (Corollary 3.5 of [12]) Suppose that R is a topological annulus in C
which separates 0 from oo. If R has modulus mod(R) > .5, then R contains a
separating Euclidean annulus, centered at the origin with modulus

mod(A) > mod(R) — %log 201+ V3) > mod(R) — 502.
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Therefore, since mod(R) > % > .5, 4 is homotopic to the core curve ' of a
Euclidean annulus A C Q(I") of modulus
d(A) > = — 502
mo —.

Let CH(OA) denote the convex core of 0A and let r4 : A — OCH(0A) denote the
nearest point retraction of A onto the boundary of the convex core of A. Theorem
3.2 implies that 7 = r4(7') has length

l ( ) 97 emmod(A) A Agre(-502)m 4gre(-502)m .
H? ;}7 S Tmo S TTIMO:! S 72 S 2 .
e2mmod(4) _ q emmod(A) = e

But since the component of H®* —C' H(A) bounded by A is contained in H*—~CH (Lr),
4 is homotopic to 5 within (H* U Q(T")) — CH(Lr). Therefore,

* o\ . 4Ameld0)m
loc(n)(r(7)") = locr @) (T(Y)") < las () £ ——=—
evek

which completes the proof of case (3).

In order to recover our main result from Theorem 5.1 it only remains to check
that if 7 is not homotopic to a closed geodesic, which implies that ly n(7*) = 0, then

loc(nvy(r(7)*) = 0 as well.

Lemma 5.4 Let N = H3/T be a hyperbolic S-manifold. If v is a homotopically
non-trivial closed curve in J.N and lo,n(v*) = 0, then ~ is incompressible and

laC(N)(T(V)*) =0.

Proof of 5.4: Suppose that ls n(7*) = 0. If 7 is compressible, then 7 is a closed
curve which is homotopic to arbitrarily short curves in Q(I"). This would imply that
there is an isolated point of Lr, which does not occur for torsion-free nonabelian
Kleinian groups. Thus, ~ is incompressible.

Let {7,} be a sequence of curves homotopic to v such that Iy, y(7,) < 2 for all
n. The arguments in case (2) of the proof of theorem 5.1, applied to 7, then imply

that loc(v) (r(7)*) < £ for all n. Therefore, loc(y)(r(7)*) = 0.
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Combining Theorem 5.1 and Lemma 5.4 we obtain the following version of our
main result:

Corollary 5.5 Let v be a closed curve of length L in 0.N, then

looa) (r(7)*) < CaL €.

where Cy = 2(k + \/en?) < 44.071. In particular, given A > 0 there exists B > 0,
such that if v has length less than A in O.N, then r(v)* has length less than B in
OC(N).

Since In(7*) < locv)(r(7)*) we obtain a version of Sugawa’s result from [15],
although our constant is larger. In fact, Sugawa’s result bounds the complex length
of v*, so when L is small his result gives much more information.

Corollary 5.6 Let v be a closed geodesic of length L in O.N, then

In(v") < 45L €%

6 Examples

In this section, we exhibit a sequence {y,} of curves in the conformal boundaries of
hyperbolic manifolds N,, such that ls n, (1) goes to infinity and

Lo Ny (Hn)

l@C(Nn)(Tn(Mn)*) 2 € 2

where 7, : 0.N,, — 0C(N,,) is the nearest point retraction. These examples demon-
strate that the exponential term is necessary in the statement of our main theorem.

Let S,, be a hyperbolic surface of genus 2 which is built from 2 pairs of pants P;
and P, such that the boundary components of P; all have length 1 and the boundary
components of P, have lengths 1, % and % We glue the two boundary components
of P, which have length % to each other in such a way that the endpoints of the
unique common perpendicular joining the two boundary components are identified.
Let «,, be the resulting curve of length % and let u, be the closed geodesic obtained
by identifying the endpoints of the common perpendicular. We glue the remaining
boundary components together in such a way that a hyperbolic surface of genus 2
results.

Theorem 7.19.2 in Beardon [2] may be used to show that p, has length

cosh(.5) + cosh®(%)
sinh?(5)

L, =g, (jtn) = cosh™ <
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Since sinh(z) > z and cosh™! is increasing on [0, 00),

1
L, < cosh™ <4n2 (cosh(.5) + cosh2(2—))> :

n

But

1
h(. h?(—
cosh(.5) + cos (2n)<3,

for all n, so
L, < cosh™(12n?).

Since cosh™!(x) < log(2x),
L, <log(24n?) < 2log(5n).

The quasiconformal deformation theory of Kleinian groups, see for example Bers
5], assures us that there exist Kleinian groups T, such that if N, = H?/T,,, then
0.N,, is isometric to S,, N, = N,, Ud.N,, is homeomorphic to a handlebody of genus
two and a,, is compressible in N,,.

Let @, denote the lift of a, to Q(I",). Theorem 5.2 of Sugawa [14] implies that &,
is homotopic to the core curve of a separating topological annulus R,, in (T',,) with

modulus
™

mod(R,) > — > 2n

€2n

if n > 2. Corollary 3.5 of [12] (stated above as Theorem 5.3), then guarantees that &,
is homotopic to the core curve @, of an Euclidean annulus A, C Q(T',,) of modulus
mod(A4,) > 2n — 1.

Theorem 3.2 gives that r4, (&},) has length

B 27T€7r(2n—1) A7
laCH(aAn)(TAn(a;z)) = en(en-1) _ | < em(2n—1)

if n > 2, where rn, : A, — 0CH(JA,) is the nearest point retraction of A,, onto the
convex hull of JA,. Therefore, since r4,(a;,) is homotopic to a,, (in the closure of
N, — C(N,)),
. 4m
loc(n,) (ralam)”) < P

Since 7, (a,,)* must intersect r,(,)*, Theorem 8.3.1 of Beardon (stated here as The-
orem 5.2) gives that if

M, = l@C’(Nn)(Tn(,un)*> ’

: M\ 27
sinh (7) sinh (ew(%_l)) > 1.

then
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Therefore, since sinh(z) < 2z if # < 2 and sinh™! is an increasing function,

1 w(2n—1)
M, > 2sinh™! s | > 2sinh~! ¢
sinh(—zi=7) A

if n > 2. Since sinh ™ (z) > log(2z), we see that

M, > 2(2mn — 7 —log(27)) > 5n

if n > 2. 5
We then see that M,, > e= if n > 2 which says that

s, (Bn)

loc (N, (Tn(pin)*) > €72

as promised.

With a little more work one can also show that Iy, (p) > c¢;n for some constant
c1, which demonstrates the necessity of the exponential term in Sugawa’s result from
[15] as well. The basic idea is that the Margulis lemma provides an annular collar
X, on OC(N,,) with r(a,)* as its core curve, such that its two boundary components,
01 X, and 0, .X,,, have length at most 1 and dy, (1 X,,, 9:X,,) > byn for some constant
by > 0 (see, for example, Theorem 4.1.1 in Buser [7].) The boundary components of
X, bound disks, D! and D? in C(N,) of diameter at most 1. Then D! U D? U X,
bounds a ball B, in C'(N,) and one can show that dg, (0 X,,:X,) > cin for some
c1 > 0. The geodesic u must pass though B, and intersect both D! and D2, which
guarantees that [y, (1)) > cin. Therefore,

1 ls,, (bn)

In, (1,) > ¢ °
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