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1 Introduction

In this note we investigate the relationship between the conformal boundary at infinity
of a hyperbolic 3-manifold and the boundary of its convex core. In particular, we prove
that the length of a curve in the conformal boundary gives an upper bound on the
length of the corresponding curve in the boundary of the convex core.

A hyperbolic 3-manifold N is the quotient of hyperbolic 3-space H3 by a group Γ
of isometries. The “boundary at infinity” of H3 may be identified with the Riemann
sphere Ĉ and Γ extends to act on Ĉ as a group of conformal automorphisms. The
domain of discontinuity Ω(Γ) of Γ is the largest Γ-invariant open subset of Ĉ which Γ
acts on properly discontinuously. If Γ is not abelian, then Ω(Γ) inherits a hyperbolic
metric, called the Poincaré metric, which Γ acts on as a group of isometries. One
may then consider ∂cN = Ω(Γ)/Γ to be the “conformal boundary at infinity” of the
hyperbolic 3-manifold N . The conformal boundary is the topological boundary of
N̄ = (H3 ∪ Ω(Γ))/Γ.

The first important result concerning the relationship between the geometry of
the conformal boundary and the geometry of N is due to Bers [4] who proved that if
each component of Ω(Γ) is simply connected and α is a closed curve in its conformal
boundary ∂cN , then the geodesic α∗ in N in the homotopy class of α has length
lN(α

∗) at most twice the length l∂cN(α) of α in the conformal boundary. (If α is
homotopic to arbitrarily short closed curves in N , then we say lN (α

∗) = 0.) Canary
[8] generalized this to the setting of arbitrary Kleinian groups, proving that given any
ǫ > 0 there exists K > 0 such that if Ω(Γ) has injectivity radius bounded below by ǫ
(at each point), then if α is a closed curve in ∂c(N), then

lN(α
∗) ≤ Kl∂cN (α).
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(If Γ is finitely generated, then there always exists some lower bound for the injectivity
radius of Ω(Γ).) Sugawa [15] proved that, with no assumptions on Ω(Γ), if α is a
closed curve in ∂cN of length L, then

lN(α
∗) ≤ 2Le

L
2 .

The convex core C(N) of a hyperbolic 3-manifold is the smallest convex subman-
ifold such that the inclusion of C(N) into N is a homotopy equivalence. The convex
core is homeomorphic to N̄ and N − C(N) is homeomorphic to ∂cN × (0,∞). The
intrinsic metric on the boundary ∂C(N) of the convex core is hyperbolic and the
nearest point retraction r : ∂cN → ∂C(N) gives a proper homotopy equivalence.

Sullivan was the first to extensively study the relationship between the geometry
of the conformal boundary and the geometry of the boundary of the convex core. He
showed that there exists a constant K > 0 such that if each component of ∂cN is
incompressible in N̄ (equivalently, if each component of Ω(Γ) is simply connected),
then the nearest point retraction is homotopic to a K-biLipschitz map (see Epstein-
Marden [11] for details.) As a corollary, one obtains linear upper bounds on the
length of a curve in the boundary of the convex core in terms of the length of the
corresponding curve on the conformal boundary.

The main result of this note asserts that even when the conformal boundary is not
incompressible, a bound on the length in the boundary of the conformal boundary
implies a bound on the length of the curve in the boundary of the convex core. Our
result may be thought of as a natural generalization or analogue of Sullivan’s result in
the spirit of the earlier work of Sugawa [15]. The main tool in the proofs of our results
will be the characterization of the Poincaré metric due to Beardon and Pommerenke
[3].

Main Theorem: Suppose that N is a hyperbolic 3-manifold and r : ∂cN → ∂C(N) is
the nearest point retraction from its conformal boundary to the boundary of its convex
core. If α is a closed curve in the conformal boundary of length L, then

l∂C(N)(r(α)
∗) < 45L e

L
2

where l∂C(N)(r(α)
∗) denotes the length of the closed geodesic in the intrinsic metric

on ∂C(N) in the homotopy class of r(α).

We will give a more precise statement in section 5. In particular, we will see that
short compressible curves in the conformal boundary have “much shorter” representa-
tives in the boundary of the convex core. In a final section we will exhibit a sequence
of closed curves αn in the conformal boundaries of hyperbolic 3-manifolds Nn such
that Ln = l∂cN(αn) goes to infinity, but

l∂C(Nn)(rn(αn)
∗) ≥ e

Ln
2
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where rn : ∂cNn → ∂C(Nn) is the nearest point retraction. These examples illustrate
the necessity of the exponential term in our estimate.

Our main theorem was developed as a tool for use in our work [9], in collaboration
with Culler, Hersonsky and Shalen, on approximation by maximal cusps in boundaries
of quasiconformal deformation spaces of Kleinian groups. In that paper, we will be
most interested in applying our main theorem in the case that γ is compressible.
Recall that when γ is a compressible curve, then it has no geodesic representative but
is homotopic to arbitrarily short curves, so one says that lN(γ

∗) = 0. In this case, the
earlier results yield no information.

The author would like to thank Sa’ar Hersonsky and Ed Taylor for very helpful
conversations concerning this work.

2 The Key Lemma

A Kleinian group Γ is a discrete subgroup of PSL2(C), which we regard as the group of
orientation-preserving isometries of hyperbolic 3-space H3. We will assume through-
out this paper that Γ is non-abelian and torsion-free, in which case N = H3/Γ is
a hyperbolic 3-manifold. The limit set LΓ of Γ is the smallest, closed non-empty,
Γ-invariant subset of Ĉ, and its complement is the domain of discontinuity Ω(Γ). For
simplicity we will always assume that ∞ ∈ LΓ. The domain of discontinuity inher-
its a unique Riemannian metric of constant curvature −1 which is conformal to the
Euclidean metric, called the Poincaré metric, which we denote by ρ(z)dz.

The convex core C(N) of N is the quotient of the convex hull CH(LΓ) of the
limit set by Γ. One may define the nearest point retraction r̃ : H3 → CH(LΓ) to
be the map which takes a point in H3 to the closest point in CH(LΓ). The nearest
point retraction extends continuously to a map r̃ : H3 ∪Ω(Γ) → CH(LΓ) which is Γ-
equivariant. Thus r̃ descends to a map r : N̄ → C(N) which we also call the nearest
point retraction. (See [10] and [11] for more details on the nearest point retracion
and the convex core.)

The following elementary lemma encodes the key observation underlying all the
other results. We recall that a closed curve γ which is homotopically non-trivial in
∂cN is said to be compressible if it is homotopically trivial in N̄ = ∂cN∪N . Otherwise,
it is said to be incompressible. If γ is compressible, then it lifts to a closed curve γ̃ in
Ω(Γ). If γ is incompressible, we think of it as the image of a map f : S1 → ∂cN . If
p : R → S1 is the universal covering map, then p ◦ f lifts to a map f̃ : R → Ω(Γ). In
an abuse of notation, we will refer to the image of f̃ as a lift of γ. Any lift γ̃ of γ is
an (open) arc with endpoints at the fixed points of an element of Γ which stabilizes
γ̃.
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Lemma 2.1 Let N = H3/Γ be a hyperbolic 3-manifold. Let γ be a closed curve in
its conformal boundary ∂cN and let γ̃ be a lift of γ in Ω(Γ). Suppose that γ̃ has an
endpoint at ∞ if γ is incompressible. If ρ(z) ≥ 1

Kd(z,LΓ)
for all z ∈ γ̃, then

l∂C(N)(r(γ)
∗) ≤

√
2Kl∂cN(γ)

where r(γ)∗ is the geodesic representative of r(γ) in the intrinsic metric on ∂C(N).

Proof of 2.1: Let s : [0, a] → Ω(Γ) be a parameterization by Euclidean arc length
of a fundamental domain for γ̃. Let g ∈ Γ be the group element such that g(s(0)) =
s(a). (If γ is compressible, then g is the trivial element.) By our assumption, if g is
non-trivial, g has a fixed point at ∞. Therefore, g(z) = λz + µ for some λ, µ ∈ C.

Since LΓ is Γ-invariant, ρ(g(z)) = ρ(z)
|λ| and d(g(z), LΓ) = |λ|d(z, LΓ) for all z ∈ Ω(Γ).

Let ŝ : [0, a] → H3 be the curve given by ŝ(t) = (s(t), d(s(t), LΓ)). Since CH(LΓ)
does not intersect the open ball of Euclidean radius d(z, LΓ) about z, ŝ([0, a]) ⊂
H3 − CH(LΓ). By our choice of normalization, g(ŝ(0)) = ŝ(a) so that ŝ([0, a])
projects to a closed curve γ̂ in N . Moreover, the vertical region between s([0, a])
and ŝ([0, a]) projects to an annulus A in N̄ − C(N) joining γ and γ̂. Therefore, r(γ)
and r(γ̂) are homotopic within ∂C(N) (by the homotopy provided by r(A).) Since
r is distance non-increasing on N , l∂C(N)(r(γ)

∗) ≤ lN(γ̂). It now suffices to simply
estimate the length of γ̂.

Recall that
l(γ) =

∫ a

0
ρ(s(t))dt

and that

l(γ̂) =
∫ a

0

1

d(s(t), LΓ)
|ŝ′(t)|dt

where |ŝ′(t)| is simply the norm of the (Euclidean) derivative of ŝ. But since d(z, LΓ)
is 1-Lipschitz and s is parameterized by Euclidean arc length, |ŝ′(t)| ≤

√
2. Applying

our assumption that ρ(z) ≥ 1
Kd(z,LΓ)

for all z ∈ γ̃ we see that

l(γ̂) ≤
∫ a

0

√
2Kρ(s(t))dt =

√
2Kl(γ),

which completes the proof.

2.1
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3 The Poincaré metric and conformal modulus

In order to verify that our assumption on the Poincaré metric is satisfied we make use
of a characterization of the Poincaré metric which is due to Beardon and Pommerenke
[3]. They introduce a quantity

β(z) = inf

{∣∣∣∣∣log
|z − a|
|b− a|

∣∣∣∣∣ : a ∈ ∂Ω, b ∈ ∂Ω, |z − a| = d(z, ∂Ω)

}
.

In the proof of Corollary 3.3, we will observe that z lies on the core curve of an
Euclidean annulus in Ω(Γ) of modulus β(z)

π
. In fact, one could alternatively have

defined β(z) as π times the minimal modulus of an Euclidean annulus in Ω(Γ) which
has z on its core curve, is centered at a point a such that |z−a| = d(z, LΓ) and whose
closure intersects LΓ.

We recall that an annulus A is Euclidean if it is bounded by two concentric circle.
The core curve of A is the unique curve invariant by a conformal involution which in-
terchanges the boundary components. The conformal modulus of a Euclidean annulus
A bounded by circles of radius r2 > r1 is defined to be

mod(A) =
1

2π
log

(
r2
r1

)
.

Any (open) topological annulus is conformally equivalent to a Euclidean annulus
and we define its modulus to be equal to the modulus of the conformally equivalent
Euclidean annulus.

Theorem 3.1 Let Ω be a hyperbolic subdomain of C and ρ(z)dz be its Poincaré
metric. Then,

1√
2
≤ ρ(z)d(z, ∂Ω)[k + β(z)] ≤ 2k +

π

2

where k = 4 + log(3 + 2
√
2) ≤ 5.763.

The core curve α of a Euclidean annulus A with large modulus is short. Moreover,
if we let rA : A → CH(∂A) denote the nearest point retraction from A to the convex
hull of its boundary, rA(α) is much shorter. Theorem 2.16.1 in Epstein-Marden [11]
makes these observations more precise.

Theorem 3.2 (Theorem 2.16.1 in [11]) Let A be a Euclidean annulus of modulus
mod(A). If α is the core curve of A and rA is the nearest point retraction from A to
the boundary of the convex core of ∂A, then

lA(α) =
π

mod(A)
,
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where lA is measured in the Poincaré metric on A, and

l∂CH(∂A)(rA(α)) =
2πeπmod(A)

e2πmod(A) − 1
.

As a corollary, we see that if β(z) is large, then there is a short homotopically
non-trivial curve in Ω(Γ) which passes through z. It is this corollary, in combination
with the Margulis lemma, that we will use to bound β(z) in our applications.

Corollary 3.3 Let Ω be a hyperbolic subdomain of C. If

β(z) ≥ M

then there is a homotopically non-trivial curve through z whose length in the Poincaré
metric on Ω is at most π2

M
.

Proof of 3.3: By definition, there exists a ∈ ∂Ω such that |z − a| = d(z, ∂Ω) and
the annulus

A = {w| eM |z − a| > |w − a| > e−M |z − a|}
is entirely contained within Ω. Let

α = {w| |w − a| = |z − a|}

be the core curve of this annulus. The modulus mod(A) = M
π
. Theorem 3.2 then

implies that α has length π2

M
in the Poincaré metric ρA(z)dz on A. But ρA(z) ≥ ρΩ(z)

for all z ∈ A where ρΩ(z)dz is the Poincaré metric on Ω. Therefore, α has length at
most π2

M
in Ω.

3.3

Remarks: (1) One may also use Theorem 3.2 to show that rΩ(α)
∗ has length at most

2πeM

e2M−1
in ∂CH(∂Ω).

(2) Corollary 3.3 is an improvement on Lemma 2.3 in [8].

4 The case where the geometry of Ω(Γ) is bounded

It is particularly simple to consider the case where there is a uniform lower bound
on the injectivity radius in the domain of discontinuity. We recall that if Γ is finitely
generated, then Ahlfors’ finiteness theorem [1] implies that every homotopically non-
trivial closed curve in Ω(Γ) is homotopic to a closed geodesic and that there exists
some ǫ > 0 such that no closed geodesic in Ω(Γ) has length less than ǫ.
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Proposition 4.1 Let N = H3/Γ be a hyperbolic 3-manifold. Suppose that Ω(Γ)
contains no homotopically non-trival closed curves of length less than ǫ. If α is a
closed curve in ∂cN , then

l∂C(N)(r(α)
∗) ≤ Dl∂cN(α).

where

D = 2

(
k +

π2

ǫ

)
.

Proof of 4.1: We may assume that if α is incompressible, then one of its lifts α̃
has an endpoint at ∞.

If Ω(Γ) contains no homotopically non-trivial closed curves of length less than ǫ,
then Corollary 3.3 implies that β(z) ≤ π2

ǫ
for all z ∈ Ω(Γ). Therefore, ρ(z) ≥ 1

Kd(z,∂Ω)

where K =
√
2
(
k + π2

ǫ

)
. Lemma 2.1 then implies that

l∂C(N)(r(α)
∗) ≤ 2

(
k +

π2

ǫ

)
l∂cN(α)

as claimed.

4.1

Thurston [16] has shown that if f : X → Y is a proper homotopy equivalence
between two finite area hyperbolic surfaces and

lY (f(γ)
∗)

lX(γ)
≤ D

for all simple closed geodesics γ in X , then f is homotopic to a D-Lipschitz map. Re-
call that a hyperbolic 3-manifold is called analytically finite if its conformal boundary
has finite area. Ahlfors’ finiteness theorem [1] asserts that if a hyperbolic 3-manifold
has finitely generated fundamental group, then it is analytically finite. Combining
Thurston’s result with Proposition 4.1 we obtain the following

Corollary 4.2 Let N = H3/Γ be an analytically finite hyperbolic 3-manifold. Sup-
pose that Ω(Γ) contains no homotopically non-trival closed curves of length less than
ǫ. Then r : ∂cN → ∂C(N) is homotopic to a D-Lipschitz map, where

D = 2

(
k +

π2

ǫ

)
.
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As another corollary we obtain a new proof of Theorem 2.1 from [8] with a some-
what better estimate.

Corollary 4.3 Let N = H3/Γ be a hyperbolic 3-manifold. Suppose that Ω(Γ) con-
tains no homotopically non-trival closed curves of length less than ǫ. If γ is a closed
curve in Ω(Γ), then

lN (γ
∗) ≤ Dl∂cN(γ)

If every component of Ω(Γ) is simply connected, then ρ(z) ≥ 1
2d(z,LΓ)

for all z ∈ LΓ

(see [3] for example). In this case, we may argue just as in the proof of Proposition
4.1 to show that if α is a closed curve in the conformal boundary of N , then

l∂C(N)(r(α)
∗) ≤ 2

√
2l∂cN (α).

We may again apply Thurston’s result to conclude:

Corollary 4.4 Let N = H3/Γ be a hyperbolic 3-manifold. If each component of Ω(Γ)
is simply connected, then r : ∂cN → ∂C(N) is homotopic to a 2

√
2-Lipschitz map.

In section 2.3 of Epstein-Marden [11] they show that if each component of Ω(Γ) is
simply connected, then r is 4-Lipschitz and that r is homotopic to a 66.3-biLipschitz
map. Bridgeman [6] has shown that r has a homotopy inverse which is 6.8-Lipschitz.
It is conjectured that r is homotopic to a 2-biLipschitz map.

One may combine the techniques of section 2.3 in Epstein-Marden [11] with the
observations in this section to show directly that, with the same assumptions as in
Corollary 4.2, the nearest point retraction is itself

√
2D-Lipschitz. We have chosen

to keep our discussion more elementary, so we will not pursue this.

5 The general case

However, one often does not know, a priori, any uniform bounds on the geometry of
Ω(Γ), so the results of the last section will not suffice in general. Our main result
gives uniform bounds on the lengths of curves in the convex core boundary which are
independent of the geometry of Ω(Γ). We will say that a closed curve is primitive if
it is not homotopic to a non-trivial power of any other closed curve.

Theorem 5.1 Let N be a hyperbolic 3-manifold and let γ be a (primitive) closed
geodesic of length L in ∂cN .

1. If L ≥ 1, then

l∂C(N)(r(γ)
∗) ≤ C1Le

L
2

where C1 = 2 (k + π2) ≤ 31.265.
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2. If γ is incompressible in N̄ and L ≤ 1, then

l∂C(N)(r(γ)
∗) ≤ C2L

where C2 = 2(k +
√
eπ2) ≤ 44.071.

3. If γ is compressible and L ≤ 1, then

l∂C(N)(r(γ)
∗) ≤ 4πe(.502)π

e
π2
√

eL

≤ C3L

where C3 =
4πe(.502)π

e
π2
√

e

≤ .153.

Proof of 5.1: In order to be able to apply Lemma 2.1 we will always assume that
if γ is incompressible, then one of its lifts γ̃ has an endpoint at ∞.

We will make repeated use of the following quantitative form of the Margulis
lemma which appears as Theorem 8.3.1 in Beardon [2].

Theorem 5.2 Suppose that α and γ are two (primitive) homotopically non-trivial
closed curves passing through a point x on a complete hyperbolic surface S. If α and
γ are not homotopic, then

sinh

(
lS(α)

2

)
sinh

(
lS(γ)

2

)
≥ 1.

Therefore, if α is any closed curve in ∂cN passing through a point x ∈ γ which is
not homotopic to a multiple of γ, then

sinh

(
l∂cN (α)

2

)
sinh

(
L

2

)
≥ 1.

In particular,

inj∂cN(x) ≥ min

{
L

2
, sinh−1

(
1

sinh(L
2
)

)}

where inj∂cN(x) denotes the injectivity radius of ∂cN at the point x.
It is easily checked that if L ≥ 1, then

sinh−1

(
1

sinh(L
2
)

)
≥ 1

2e
L
2

.

So, if L ≥ 1 and z ∈ γ̃ ⊂ Ω(Γ), then

injΩ(Γ)(z) ≥
1

2e
L
2

.
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Applying Corollary 3.3, we see that this implies that

β(z) ≤ π2e
L
2

for all z ∈ γ̃, and hence, by Theorem 3.1, that ρ(z) ≥ 1
Kd(z,LΓ)

where

K =
√
2
(
k + π2e

L
2

)
≤

√
2
(
k + π2

)
e

L
2 .

We then simply apply Lemma 2.1 to complete the proof of case 1.
In case (2), γ is incompressible and has length L ≤ 1. Suppose that α is the

shortest homotopically non-trivial curve through a point z ∈ γ̃. Let p : Ω(Γ) → ∂cN
be the usual covering map. Since γ is incompressible, γ and p(α) are not homotopic.
Theorem 5.2 implies that

sinh

(
lΩ(Γ)(α)

2

)
sinh(.5) ≥ 1.

Thus

lΩ(Γ)(α) ≥ 2sinh−1

(
1

sinh(.5)

)
≥ 1√

e
,

so injΩ(Γ)(z) ≥ 1
2
√
e
. Therefore, by Corollary 3.3 and Theorem 3.1, β(z) ≤ π2

√
e and

ρ(z) ≥ 1
Kd(z,LΓ)

, where K =
√
2(k+

√
eπ2), for all z ∈ γ̃. Again, case 2 follows directly

from Lemma 2.1.
We now suppose that γ is compressible and L ≤ 1. Let γ̃ be a lift of γ. Theorem

5.2 of Sugawa [14] implies that γ̃ is homotopic to the core curve of a topological
annulus R ⊂ Ω(Γ) with modulus

mod(R) ≥ π

Le
L
2

≥ π√
eL

.

(See also Corollary 3 of Maskit [13] where it is shown that mod(R) ≥ 2

Le
L
2
.) We

make use of a result of Herron, Liu and Minda [12], to guarantee that A contains an
Euclidean annulus of modulus close to mod(R).

Theorem 5.3 (Corollary 3.5 of [12]) Suppose that R is a topological annulus in Ĉ
which separates 0 from ∞. If R has modulus mod(R) > .5, then R contains a
separating Euclidean annulus, centered at the origin with modulus

mod(A) ≥ mod(R)− 1

π
log 2(1 +

√
2) ≥ mod(R)− .502.
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Therefore, since mod(R) ≥ π√
e
> .5, γ̃ is homotopic to the core curve γ′ of a

Euclidean annulus A ⊂ Ω(Γ) of modulus

mod(A) ≥ π√
eL

− .502

Let CH(∂A) denote the convex core of ∂A and let rA : A → ∂CH(∂A) denote the
nearest point retraction of A onto the boundary of the convex core of A. Theorem
3.2 implies that γ̂ = rA(γ

′) has length

lH3(γ̂) ≤ 2πeπmod(A)

e2πmod(A) − 1
≤ 4π

eπmod(A)
≤ 4πe(.502)π

e
π2

√

eL

≤ 4πe(.502)π

e
π2
√

e

L.

But since the component of H3−CH(A) bounded by A is contained in H3−CH(LΓ),
γ̂ is homotopic to γ̃ within (H3 ∪ Ω(Γ))− CH(LΓ). Therefore,

l∂C(N)(r(γ)
∗) = l∂CH(LΓ)(r̃(γ̃)

∗) ≤ lH3(γ̂) ≤ 4πe(.502)π

e
π2
√

eL

which completes the proof of case (3).

5.1

In order to recover our main result from Theorem 5.1 it only remains to check
that if γ is not homotopic to a closed geodesic, which implies that l∂cN(γ

∗) = 0, then
l∂C(N)(r(γ)

∗) = 0 as well.

Lemma 5.4 Let N = H3/Γ be a hyperbolic 3-manifold. If γ is a homotopically
non-trivial closed curve in ∂cN and l∂cN(γ

∗) = 0, then γ is incompressible and
l∂C(N)(r(γ)

∗) = 0.

Proof of 5.4: Suppose that l∂cN(γ
∗) = 0. If γ is compressible, then γ̃ is a closed

curve which is homotopic to arbitrarily short curves in Ω(Γ). This would imply that
there is an isolated point of LΓ, which does not occur for torsion-free nonabelian
Kleinian groups. Thus, γ is incompressible.

Let {γn} be a sequence of curves homotopic to γ such that l∂cN(γn) ≤ 1
n
for all

n. The arguments in case (2) of the proof of theorem 5.1, applied to γn, then imply
that l∂C(N)(r(γ)

∗) ≤ C2

n
for all n. Therefore, l∂C(N)(r(γ)

∗) = 0.

5.4
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Combining Theorem 5.1 and Lemma 5.4 we obtain the following version of our
main result:

Corollary 5.5 Let γ be a closed curve of length L in ∂cN , then

l∂C(N)(r(γ)
∗) ≤ C2L e

L
2 .

where C2 = 2(k +
√
eπ2) ≤ 44.071. In particular, given A > 0 there exists B > 0,

such that if γ has length less than A in ∂cN , then r(γ)∗ has length less than B in
∂C(N).

Since lN(γ
∗) ≤ l∂C(N)(r(γ)

∗) we obtain a version of Sugawa’s result from [15],
although our constant is larger. In fact, Sugawa’s result bounds the complex length
of γ∗, so when L is small his result gives much more information.

Corollary 5.6 Let γ be a closed geodesic of length L in ∂cN , then

lN(γ
∗) < 45L e

L
2 .

6 Examples

In this section, we exhibit a sequence {µn} of curves in the conformal boundaries of
hyperbolic manifolds Nn such that l∂cNn(µn) goes to infinity and

l∂C(Nn)(rn(µn)
∗) ≥ e

l∂cNn
(µn)

2

where rn : ∂cNn → ∂C(Nn) is the nearest point retraction. These examples demon-
strate that the exponential term is necessary in the statement of our main theorem.

Let Sn be a hyperbolic surface of genus 2 which is built from 2 pairs of pants P1

and P2, such that the boundary components of P1 all have length 1 and the boundary
components of P2 have lengths 1, 1

n
and 1

n
. We glue the two boundary components

of P2 which have length 1
n
to each other in such a way that the endpoints of the

unique common perpendicular joining the two boundary components are identified.
Let αn be the resulting curve of length 1

n
and let µn be the closed geodesic obtained

by identifying the endpoints of the common perpendicular. We glue the remaining
boundary components together in such a way that a hyperbolic surface of genus 2
results.

Theorem 7.19.2 in Beardon [2] may be used to show that µn has length

Ln = lSn(µn) = cosh−1

(
cosh(.5) + cosh2( 1

2n
)

sinh2( 1
2n
)

)
.
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Since sinh(x) > x and cosh−1 is increasing on [0,∞),

Ln ≤ cosh−1
(
4n2

(
cosh(.5) + cosh2(

1

2n
)
))

.

But

cosh(.5) + cosh2(
1

2n
) < 3 ,

for all n, so
Ln ≤ cosh−1(12n2).

Since cosh−1(x) < log(2x),

Ln ≤ log(24n2) < 2log(5n).

The quasiconformal deformation theory of Kleinian groups, see for example Bers
[5], assures us that there exist Kleinian groups Γn such that if Nn = H3/Γn, then
∂cNn is isometric to Sn, N̄n = Nn ∪ ∂cNn is homeomorphic to a handlebody of genus
two and αn is compressible in N̄n.

Let α̃n denote the lift of αn to Ω(Γn). Theorem 5.2 of Sugawa [14] implies that α̃n

is homotopic to the core curve of a separating topological annulus Rn in Ω(Γn) with
modulus

mod(Rn) ≥
πn

e
1
2n

≥ 2n

if n ≥ 2. Corollary 3.5 of [12] (stated above as Theorem 5.3), then guarantees that α̃n

is homotopic to the core curve α̃′
n of an Euclidean annulus An ⊂ Ω(Γn) of modulus

mod(An) ≥ 2n− 1.
Theorem 3.2 gives that rAn(α̃

′
n) has length

l∂CH(∂An)(rAn(α̃
′
n)) =

2πeπ(2n−1)

e2π(2n−1) − 1
≤ 4π

eπ(2n−1)

if n ≥ 2, where rAn : An → ∂CH(∂An) is the nearest point retraction of An onto the
convex hull of ∂An. Therefore, since rAn(α̃

′
n) is homotopic to αn (in the closure of

N̄n − C(Nn)),

l∂C(Nn)(rn(αn)
∗) ≤ 4π

eπ(2n−1)
.

Since rn(αn)
∗ must intersect rn(µn)

∗, Theorem 8.3.1 of Beardon (stated here as The-
orem 5.2) gives that if

Mn = l∂C(Nn)(rn(µn)
∗) ,

then

sinh
(
Mn

2

)
sinh

(
2π

eπ(2n−1)

)
≥ 1.
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Therefore, since sinh(x) < 2x if x ≤ 2 and sinh−1 is an increasing function,

Mn ≥ 2sinh−1

(
1

sinh( 2π
eπ(2n−1) )

)
≥ 2sinh−1

(
eπ(2n−1)

4π

)

if n ≥ 2. Since sinh−1(x) > log(2x), we see that

Mn ≥ 2(2πn− π − log(2π)) ≥ 5n

if n ≥ 2.
We then see that Mn ≥ e

Ln
2 if n ≥ 2 which says that

l∂C(Nn)(rn(µn)
∗) ≥ e

lSn
(µn)

2

as promised.
With a little more work one can also show that lNn(µ

∗
n) > c1n for some constant

c1, which demonstrates the necessity of the exponential term in Sugawa’s result from
[15] as well. The basic idea is that the Margulis lemma provides an annular collar
Xn on ∂C(Nn) with r(αn)

∗ as its core curve, such that its two boundary components,
∂1Xn and ∂2Xn, have length at most 1 and dXn(∂1Xn, ∂2Xn) ≥ b1n for some constant
b1 > 0 (see, for example, Theorem 4.1.1 in Buser [7].) The boundary components of
Xn bound disks, D1

n and D2
n in C(Nn) of diameter at most 1. Then D1

n ∪ D2
n ∪ Xn

bounds a ball Bn in C(Nn) and one can show that dBn(∂1Xn, ∂2Xn) > c1n for some
c1 > 0. The geodesic µ∗

n must pass though Bn and intersect both D1
n and D2

n, which
guarantees that lNn(µ

∗
n) > c1n. Therefore,

lNn(µ
∗
n) ≥

c1
5
e

lSn
(µn)

2 .
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