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Abstract. We show that any closed hyperbolic surface admitting a conformal
automorphism with “many” fixed points is uniformly quasiconformally homo-

geneous, with constant uniformly bounded away from 1. In particular, there

is a uniform lower bound on the quasiconformal homogeneity constant for all
hyperelliptic surfaces. In addition, we introduce more restrictive notions of

quasiconformal homogeneity and bound the associated quasiconformal homo-

geneity constants uniformly away from 1 for all hyperbolic surfaces.

1. Introduction

An (orientable) hyperbolic manifold M is K-quasiconformally homogeneous if,
given any pair of points x, y ∈ M there is a K-quasiconformal homeomorphism
f : M →M such that f(x) = y. If there exists aK so thatM isK-quasiconformally
homogeneous then we say that M is uniformly quasiconformally homogeneous.

In [2], we established that for all dimensions n ≥ 3 there exists a uniform constant
Kn > 1 so that if M 6= Hn is K-quasiconformally homogeneous, then K ≥ Kn. The
proof of this fact depends crucially on rigidity phenomena that occur in dimensions
n ≥ 3, but that do not occur in dimension two. It is natural to ask whether there is
a similar constant in dimension 2. In this note we demonstrate the existence of such
a uniform constant for classes of closed hyperbolic surfaces which admit conformal
automorphism with “many” fixed points.

Main Theorem: For each c ∈ (0, 2], there exists Kc > 1, such that if S is a
K-quasiconformally homogeneous closed hyperbolic surface of genus g that admits a
non-trivial conformal automorphism with at least c(g+1) fixed points, then K ≥ Kc.

A classical family of examples satisfying the hypotheses of our main theorem
are the hyperelliptic surfaces, which admit conformal involutions with 2g + 2 fixed
points. Note that the set of hyperelliptic surfaces of genus g forms a (2g − 1)-
complex dimensional subvariety of the Moduli space Mg of all (isometry classes of)
closed hyperbolic surfaces of genus g, e.g. see [5].

Corollary: There exists a constant Khyp > 1, such that if S is a closed hyperellip-
tice surface, then K ≥ Khyp.
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We also investigate more restrictive definitions of quasiconformal homogeneity
in which it is possible to bound the associated homogeneity constants uniformly
away from 1 for all hyperbolic surfaces (other than H2).

2. Basic Facts

This paper continues a study of uniformly quasiconformally homogeneous hy-
perbolic manifolds that was initiated in [2]. The study of the quasiconformal ho-
mogeneity properties of planar sets was begun by Gehring and Palka in [6] (see also
[8] and [9].)

Let M be a uniformly quasiconformally homogenous hyperbolic manifold. We
define the quasiconformal homogeneity constant K(M) to be

K(M) = inf{K : M is K-quasiconformally homogeneous}.
One observes, see Lemma 2.1 in [2], that M is in fact K(M)-quasicomformally
homogeneous and that, see Proposition 2.2 in [2], K(M) > 1 unless M is the
hyperbolic space Hn.

We recall that if M is an orientable hyperbolic n-manifold then there exists a
discrete subgroup Γ of Isom+(Hn), called a Kleinian group, so that M is isometric
to Hn/Γ. The group Γ also acts as a group of conformal automorphisms of ∂∞Hn =
Sn−1. The domain of discontinuity Ω(Γ) is the largest open subset of Sn−1 on
which Γ acts properly discontinuously and the limit set Λ(Γ) = Sn−1 − Ω(Γ) is its
complement.

We recall that the assumption that M is uniformly quasiconformally homoge-
neous places strong geometric restrictions on M . We define l(M) to be the infimum
of the lengths of homotopically non-trivial curves in M , and we define d(M) to be
the supremum of the diameters of embedded hyperbolic balls in M .

Theorem 2.1. (Theorem 1.1 in [2]) For each dimension n ≥ 2 and each K ≥ 1,
there is a positive constant m(n,K) with the following property. Let M = Hn/Γ be
a K-quasiconformally homogeneous hyperbolic n-manifold, which is not Hn. Then

(1) d(M) ≤ Kl(M) + 2Klog4,
(2) l(M) ≥ m(n,K), i.e. there exists a lower bound on the injectivity radius of

M that depends only on n and K, and
(3) every non-trivial element of Γ is hyperbolic, and Λ(Γ) = ∂(Hn).

Using quasiconformal rigidity results we showed in [2] that in dimension at least
3, a uniformly quasiconformally homogeneous hyperbolic manifold, other than hy-
perbolic space itself, has quasiconformal homogeneity constant uniformly bounded
away from 1.

Theorem 2.2. (Theorem 1.4 in [2]) For each n ≥ 3, there exists a constant Kn >
1, such that if M is any uniformly quasiconformally homogeneous hyperbolic n-
manifold, other than Hn, then K(M) ≥ Kn > 1.

This note is motivated by the following natural question:

Question 2.3. Does there exist a uniform lower bound K2 > 1 such that if S is
an uniformly K-quasiconformally homogenous surface and S 6= H2, then K ≥ K2?

Theorem 2.1 implies that a hyperbolic surface with finitely generated fundamen-
tal group is uniformly quasiconformally homogeneous if and only if it is closed,
see Corollary 1.2 in [2]. However it is easy to construct examples of non-finite
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type hyperbolic surfaces that are also uniformly quasiconformally homogeneous,
e.g. non-compact regular covers of closed surfaces.

3. Geometric convergence and quasiconformal homogeneity

We first recall the definition of geometric convergence. We say that a sequence
of Kleinian groups {Γi} converges geometrically to a Kleinian group Γ∞ if every
accumulation point of {Γi} is in Γ∞, and if γ ∈ Γ∞ then there exists a sequence
{γi ∈ Γi} which converges to γ.

We say that a sequence {Mi} of hyperbolic manifolds converges geometrically to
a hyperbolic manifold M∞ if M∞ = Hn/Γ∞ and there exists a sequence of Kleinian
groups {Γi} such that Mi = Hn/Γi (for all i) and {Γi} converges geometrically to
Γ∞. It is well-known that any sequence of hyperbolic n-manifolds has a geometri-
cally convergent subsequence (see, for example, Proposition 3.5 in [7] or Corollary
3.1.7 in [4]). Moreover, a single sequence of hyperbolic manifolds can have many
different geometric limits, exhibiting quite different behaviors. For example, one
limit could have trivial fundamental group while another limit could have infinitely
generated fundamental group.

We begin with an elementary observation about the behavior of the quasicon-
formal homogeneity constant under geometric convergence.

Lemma 3.1. Let {Mi} be a sequence of uniformly quasiconformally homogeneous
hyperbolic manifolds which converges geometrically to a hyperbolic manifold M∞.
Then

lim infK(Mi) ≥ K(M∞).

In particular, if lim infK(Mi) <∞ then the limit manifold M∞ is uniformly qua-
siconformally homogeneous.

Proof: Let {Γi} be a sequence of Kleinian groups such that Mi
∼= Hn/Γi (for all

i) and {Γi} converges geometrically to Γ∞ where M∞ = Hn/Γ∞. We first pass to
a subsequence, still called {Mi}, so that limK(Mi) exists and is equal to the limit
inferior of the original sequence.

Let x, y ∈ M∞. Let x̃ and ỹ be pre-images of x and y in Hn. Moreover,
let xi and yi be the images of x̃ and ỹ in Mi. For all i, there exists a K(Mi)-
quasiconformal homeomorphism fi : Mi → Mi such that fi(xi) = yi. There exists
a lift f̃i : Hn → Hn of fi such that f̃i(x̃) = ỹ. The collection {f̃i} is a normal
family and (possibly passing to a subsequence) it converges to a K-quasiconformal
map f̃∞ : Hn → Hn which descends to a K-quasiconformal map f∞ : M∞ →M∞
such that f∞(x) = y, and K = limK(Mi) (see e.g. Väsäilä [12] Theorem 19.2 and
Theorem 37.2). �

The following consequence of Lemma 3.1 is a crucial tool in the proof of the
Main Theorem.

Proposition 3.2. Let {Mi} be a sequence of uniformly quasiconformally homoge-
neous hyperbolic manifolds so that limK(Mi) = 1. Then lim l(Mi) = ∞.

Proof: Suppose that {l(Mi)} does not converge to infinity. Then there exists a
geometrically convergent subsequence of {Mi}, still denoted {Mi}, so that {l(Mi)}
is bounded. Since {l(Mi)} is bounded and limK(Mi) = 1, Theorem 2.1 implies
that {d(Mi)} is bounded. Let R be chosen so that d(Mi) ≤ R for all i.
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Let M∞ be a geometric limit of {Mi}. Lemma 3.1 implies that K(M∞) = 1,
so that M∞ = Hn. Let {Γi} be an associated sequence of Kleinian groups so
that Mi = Hn/Γi and so that {Γi} converges geometrically to Γ∞ = {1}. On the
other hand, since d(Mi) ≤ R, there exists γi ∈ Γi − {id} so that d(0, γi(0)) ≤ 2R.
We may further assume that d(0, γi(0)) ≥ R (by replacing γi by a power of γi if
necessary.) It follows that {γi} has an accumulation point γ∞ in Isom+(Hn) which
is non-trivial. This contradicts the fact that {Γi} converges to the trivial group. �

Remark 3.3. Under the assumptions of Lemma 3.1, it is possible that K(M∞) is
strictly smaller than lim infK(Mi). One may readily construct a sequence of closed
hyperbolic surfaces so that {l(Mi)} stays bounded but so that lim d(Mi) = ∞.
Theorem 2.1 then implies that limK(Mi) = ∞, but one may also see that {Mi}
converges to M∞ = H2, so K(M∞) = 1.

4. Bounds on the geometry of surfaces with many fixed points

In this section, we obtain bounds on the length l(S) of the shortest homotopically
non-trivial closed curve when S admits a conformal automorphism with many fixed
points. This result will be a key tool in the proof of the Main Theorem. As a
corollary, we obtain bounds on d(S) in terms of the quasiconformal homogeneity
constant K(S) and the number of fixed points.

Proposition 4.1. Let S be a closed hyperbolic surface of genus g and let φ be a
non-trivial conformal automorphism of S with q ≥ 2 fixed points. Then

cosh
(
l(S)
4

)
≤ 2g − 2

q
+ 1.

The key observation in the proof of Proposition 4.1 is that any two fixed points
of φ are separated by at least l(S)/2:

Lemma 4.2. Let S be a closed hyperbolic surface and let φ be a non-trivial con-
formal automorphism group of S. If x1 and x2 are distinct fixed points of φ and
[x1, x2] is a geodesic segment connecting x1 to x2, then [x1, x2] ∪ φ([x1, x2]) is a
homotopically non-trivial closed curve in S. In particular,

d(x1, x2) ≥
l(S)
2
.

Proof: It is clear, since both x1 and x2 are fixed, that [x1, x2]∪φ([x1, x2]) is a closed
curve. If φ([x1, x2]) = [x1, x2], then φ must fix every point on [x1, x2] which would
contradict the fact that any non-trivial conformal automorphism of a hyperbolic
surface has a finite set of fixed points. Therefore, φ([x1, x2]) 6= [x1, x2].

If [x1, x2] ∪ φ([x1, x2]) were homotopically trivial then [x1, x2] and φ([x1, x2])
would be distinct homotopic geodesics between the points x1 and x2, which is
impossible. Therefore, [x1, x2] ∪ φ([x1, x2]) must be homotopically non-trivial. �

Remark 4.3. If φ is an involution, e.g. a hyperelliptic involution, then one may
further conclude in Lemma 4.2 that [x1, x2] ∪ φ([x1, x2]) is a closed geodesic.

Proof of Proposition 4.1: Lemma 4.2 implies that the hyperbolic disks of radius
l(S)/4 about the fixed points of φ are disjoint. Since a hyperbolic disk of radius r
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has area 2π(cosh r−1) and S has area 2π(2g−2), the main estimate of Proposition
4.1 follows easily. �

We now combine Proposition 4.1 and Theorem 2.1 to give bounds on the diameter
d(S) of a maximally embedded ball.

Corollary 4.4. If S is a closed hyperbolic surface of genus g which admits a con-
formal automorphism with q ≥ 2 fixed points, then

d(S) ≤ 4K(S) cosh−1

(
2g − 2
q

+ 1
)

+ 2K(S) log 4.

5. Proof of the Main Theorem

We are now ready to establish our Main Theorem:

Main Theorem: For each c ∈ (0, 2], there exists Kc > 1, such that if S is a
K-quasiconformally homogeneous closed hyperbolic surface of genus g that admits a
non-trivial conformal automorphism with at least c(g+1) fixed points, then K ≥ Kc.

Proof: We will argue by contradiction. Fix c ∈ (0, 2]. If the result is false, there
exists a sequence {Si} of closed hyperbolic surfaces so that Si has genus gi , admits
a conformal automorphism with at least c(gi + 1) fixed points, and limK(Si) = 1.
Proposition 3.2 implies that lim l(Si) = ∞ (and hence that gi →∞.) On the other
hand, Proposition 4.1 implies that, for all large enough i,

l(Si) ≤ 4 cosh−1

(
2gi − 2
c(gi + 1)

+ 1
)
≤ 4 cosh−1

(
2
c

+ 1
)

which establishes our desired contradiction. �

Remark 5.1. Recall that any non-trivial conformal automorphism of a closed hy-
perbolic surface of genus g has at most 2g + 2 fixed points, so we limit c to the
interval (0, 2].

Remark 5.2. It is easy to construct hyperelliptic surfaces (of any genus) with ar-
bitrarily large quasiconformal homogeneity constant, so there is no possible upper
bound in the setting of our Main Theorem. One may do so, for example, by con-
structing a sequence {Sn} of hyperelliptic surfaces such that {l(Sn)} converges to
0, and then applying part (2) of Theorem 2.1.

6. More restrictive forms of quasiconformal homogeneity

In this section we will consider more restrictive notions of quasiconformal ho-
mogeneity. In particular, we will look at situations where one requires that the
quasiconformal homeomorphisms are homotopic to either the identity or to a con-
formal automorphism. In these cases, one can bound the associated quasiconformal
homogeneity constants uniformly away from 1.

We will say that S is strongly K-quasiconformally homogeneous if for any two
points x, y ∈ S, there is a K-quasiconformal homeomorphism of S taking x to
y which is homotopic to a conformal automorphism of S. If S is strongly K-
quasiconformally homogeneous for some K then we simply say that S is strongly
quasiconformally homogeneous.

Similarly, we will say that S is extremely K-quasiconformally homogeneous if for
any two points x, y ∈ S, there is a K-quasiconformal homeomorphism of S taking
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x to y which is homotopic to the identity. If S is extremely K-quasiconformally
homogeneous for some K then we simply say that S is extremely quasiconformally
homogeneous. Note that a surface that is extremely quasiconformally homogeneous
is strongly quasiconformally homogeneous.

We now introduce some convenient notation. If S is a hyperbolic surface and
f : S → S is a quasiconformal automorphism of S, we let k(f) be the quasiconformal
dilatation of f . If x, y ∈ S, we define

k(x, y) = min
f
{k(f) | f : S → S is quasiconformal and f(x) = y} ,

kaut(x, y) = min
f
{k(f) | f(x) = y, f ' f ′, f ′ : S → S is conformal} ,

and

k0(x, y) = min
f
{k(f) | f : S → S is quasiconformal and f(x) = y, f ' id}

where we use the symbol “'” to denote the homotopy relation.
Notice that it is clear that each of these quantities is defined since one may easily

construct a diffeomorphism homotopic to the identity such that f(x) = y and f is
equal to the identity off of a compact set. It is also easy to see that k, kaut, and k0

are all continuous on S × S for any Riemann surface S.
If S is uniformly quasiconformally homogeneous, then

K(S) = sup
(x,y)∈S×S

k(x, y).

If S is strongly quasiconformally homogeneous, we may similarly define

Kaut(S) = sup
(x,y)∈S×S

kaut(x, y)

and, if S is extremely quasiconformally homogeneous, we define

K0(S) = sup
(x,y)∈S×S

k0(x, y).

Since, by definition, ko(x, y) ≥ kaut(x, y) ≥ k(x, y), we immediately see that:

Lemma 6.1. (1) If S is extremely quasiconformally homogeneous, then

K0(S) ≥ Kaut(S) ≥ K(S).

(2) If S is strongly quasiconformally homogeneous, then

Kaut(S) ≥ K(S).

We next completely characterize extremely and strongly quasiconformally ho-
mogeneous hyperbolic surfaces and show that K0 and Kaut can both be bounded
uniformly away from 1. We will make central use of the following estimate:

Proposition 6.2. Let f : H2 → H2 be a quasiconformal map which extends to the
identity on ∂∞H2 and let x ∈ H2. Then k(f) ≥ ψ(d(x, f(x))), where ψ : [0,∞) →
[1,∞) is the increasing homeomorphism given by the function

ψ(d) = coth2

(
π2

4µ(e−d)

)
= coth2 µ

(√
1− e−2d

)
,
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where µ(r) is the modulus of the Grötsch ring whose complementary components
are B2 and [1/r,∞] for 0 < r < 1. In particular,

ψ(d) ∼ 16d2

π4
as d→∞

and ψ(d) ∼ 1 +
d

2
as d→ 0.

Proof: We may assume that H2 is modelled by the Poincaré disc B2 and that x = 0.
In dimension 2 the extremal problem of finding the smallest possible dilatation K
of a quasiconformal mapping f : B2 → B2 that extends to the identity on ∂B2

and maps the origin 0 to the point −σ ∈ B2 where 0 < σ < 1 was considered by
Teichmüller in [11]. In particular, Teichmüller shows that the dilatation K of this
extremal mapping satisfies

K =
(
R+ 1

R

R− 1
R

)2

,

where logR is the conformal modulus of the ring domain given by the unit disk B2

minus the slit on the imaginary axis from −i
√
σ to i

√
σ.

Observe that the ring domain B2 \ [−i
√
σ, i
√
σ] can be mapped conformally onto

the Grötsch ring RG,2(s), where

(6.1)
√
σ = s−

√
s2 − 1.

Here, we denote by RG,2(s) the Grötsch ring whose complementary components
are B2 and [s,∞], where s > 1. Following Anderson, Vamanamurthy and Vuorinen
[1, 8.35], we define

µ(r) := mod RG,2

(
1
r

)
, 0 < r < 1.

Since B2 \ [−i
√
σ, i
√
σ] and RG,2(s) are conformally equivalent, their conformal

moduli agree. Thus we see that

logR = mod RG,2(s) = µ

(
1
s

)
.

But (6.1) implies that s = 1+σ
2
√

σ
. Furthermore, if d denotes the hyperbolic distance

between 0 and −σ then σ = (ed − 1)/(ed + 1). Thus

1
s

=
2
√
σ

1 + σ
=

2
√

ed−1
ed+1

1 + ed−1
ed+1

=
2
√
e2d − 1
2ed

=
√

1− e−2d.

Hence the conformal radius logR is given by

logR = µ
(√

1− e−2d
)
,

and thus the dilatation K is

K =
(
R+ 1

R

R− 1
R

)2

=

(
eµ(
√

1−e−2d) + e−µ(
√

1−e−2d)

eµ(
√

1−e−2d) − e−µ(
√

1−e−2d)

)2

= coth2 µ
(√

1− e−2d
)

= coth2

(
π2

4µ(e−d)

)
,
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where the last equality follows from the first equality in [1, (5.2)].
The asymptotic estimates for ψ can be found using the fact ([1, 5.13(2)]) that

lim
r→0+

(µ(r) + log r) = log 4.

�

Remark 6.3. This proposition, without the explicit estimate, follows easily from
the compactness of the family of all K–quasiconformal mappings f : Bn → Bn with
f |∂Bn = id (see Lemma 3.1 in [3] or Lemma 4.1 in [2]). A proof of a more general
version of this lemma in the case of quasiisometries between manifolds of strictly
negative curvature can be found for example in [10, 16.11].

Proposition 6.2 allows us to bound K0 uniformly away from 1 and to obtain a
complete characterization of extremely quasiconformally homogeneous hyperbolic
surfaces.

Theorem 6.4. A hyperbolic surface, other than H2, is extremely quasiconformally
homogeneous if and only if it is closed. If S is a closed hyperbolic surface, then

K0(S) ≥ ψ(diam(S)) ≥ ψ

(
sinh−1

(
2√
3

))
= 1.626 . . . > 1.

Moreover,

K0(S) ≤
(
e

l(S)
4 + 1

)2( 4diam(S)
l(S) +1)

.

Proof: Let S be an extremely quasiconformally homogeneous hyperbolic surface.
Let x, y ∈ S and let f be a quasiconformal automorphism of S so that f(x) =
y and f is homotopic to the identity. Let f̃ : H2 → H2 be a lift of f which
extends to the identity map on ∂∞H2. Proposition 6.2 then immediately implies
that k(f̃) = k(f) ≥ ψ(d(x, y)), so k0(x, y) ≥ ψ(d(x, y)). Since ψ is proper and
increasing, we immediately conclude that S must have finite diameter and that
K0(S) ≥ ψ(diam(S)). The main result of Yamada [14] implies that any closed
hyperbolic surface has diameter at least sinh−1

(
2√
3

)
, so

K0(S) ≥ ψ(diam(S)) ≥ ψ

(
sinh−1

(
2√
3

))
= 1.626 . . . > 1.

On the other hand, if S is a closed surface, then Lemma 2.6 in [2] may be used
to show, exactly as in the proof of Proposition 2.4 in [2], that S is K-extremely
quasiconformally homogeneous where

K ≤
(
e

l(S)
4 + 1

)2( 4diam(S)
l(S) +1)

.

�

With a little more effort, we can characterize strongly quasiconformally homoge-
neous hyperbolic surfaces and obtain uniform lower bounds on Kaut. Theorem 6.5
is a direct 2-dimensional analogue of the main results, Theorems 1.3 and 1.4, of
[2]. The key difference in dimensions 3 and above is that every quasiconformal au-
tomorphism of a uniformly quasiconformally homogeneous hyperbolic manifold is
homotopic to a conformal automorphism, see Proposition 4.2 in [2]. In particular,
in dimensions 3 and above, uniformly quasiconformally homogeneous hyperbolic
manifolds are strongly quasiconformally homogeneous and K = Kaut.
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Theorem 6.5. A hyperbolic surface is strongly quasiconformally homogeneous if
and only if it is a regular cover of a closed hyperbolic orbifold. If S is a strongly
quasiconformally homogeneous surface, other than H2, then

Kaut(S) ≥ ψ(τ) > 1.05951... > 1.

where

τ = sinh−1

(
4 cos2(π/7)− 3
8 cos(π/7) + 7

)
≈ 0.131467.

Moreover, if S is a regular cover of a closed hyperbolic 2-orbifold Q = H2/G, then

Kaut(S) ≤
(
e

l′(Q)
4 + 1

)2
“

4diam(Q)
l′(Q) +1

”

where l′(Q) denotes the minimal translation length of a hyperbolic element of G.

Proof: Let S be a strongly quasiconformally homogeneous hyperbolic surface and
let Aut(S) denote its group of conformal automorphisms. Let Q = S/Aut(S)
be the (orientable) hyperbolic orbifold obtained by quotienting by the conformal
automorphisms of S and let p : S → Q be the associated covering map. Let x and y
be two points in S and let f : S → S be a quasiconformal automorphism such that
f(x) = y and f is homotopic to a conformal automorphism g of S. Then h = g−1◦f
is homotopic to the identity and k(h) = k(f). Moreover, d(x, h(x)) ≥ d(p(x), p(y)).
Let h̃ : H2 → H2 be a lift of h so that h̃ extends to the identity map on ∂∞H2.
Proposition 6.2 then implies that k(h) = k(h̃) ≥ ψ(d(x, h(x)) ≥ ψ(d(p(x), p(y))).
It follows that kaut(x, y) ≥ ψ(d(p(x), p(y))). Since ψ is proper and increasing we
can conclude that Q has finite diameter, so is a closed hyperbolic orbifold, and that
Kaut(S) ≥ ψ(diam(Q)). A result of Yamada [13] implies that the diameter of any
(orientable) hyperbolic 2-orbifold is at least τ . Therefore, Kaut(S) ≥ ψ(τ). By
Proposition 6.2

ψ(d) = coth2 µ
(√

1− e−2d
)
.

Therefore using the fact (see [1, (5.3)]) that

log
1
r
< µ(r) < log

4
r
,

we have that

ψ(τ) = coth2 µ
(√

1− e−2τ
)
> coth2 log

(
1√

1− e−2τ

)
= 1.05951....

On the other hand if a hyperbolic surface S is a regular cover of a closed hyper-
bolic 2-orbifold Q = H2/G, then one may argue just as in the proof of Proposition
2.7 in [2] to show that S is K-strongly quasiconformally homogeneous where

K ≤
(
e

l′(Q)
4 + 1

)2
“

4diam(Q)
l′(Q) +1

”
.

�

Remark 6.6. If S is a closed hyperbolic surface and X is an infinite degree regular
cover of S, then X is strongly quasiconformally homogeneous, but not extremely
quasiconformally homogeneous.

One may construct a hyperbolic surface X ′ and a quasiconformal automorphism
f : X → X ′ such that X ′ is not a regular cover of any closed hyperbolic surface
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(see Lemma 5.1 in [2]). Then X ′ will be uniformly quasiconformally homogeneous,
but not strongly quasiconformally homogeneous.

7. Quasiconformal homogeneity constants on Moduli space

It is natural to consider how our quasiconformal homogeneity constants vary over
the Moduli spaceMg of all (isometry classes of) closed hyperbolic surfaces of a fixed
genus g. The constants K, K0 and Kaut all give rise to functions defined on Mg.
We finish the section with a few basic observations about these functions. We first
observe that K and K0 are continuous on Mg, while Kaut is lower semi-continuous.

Lemma 7.1. The functions K : Mg → (1,∞) and K0 : Mg → (1,∞) are contin-
uous, while Kaut : Mg → (1,∞) is lower semi-continuous.

Proof: We first prove that Kaut is lower semi-continuous. The proofs that K
and K0 are lower semicontinuous are direct generalizations. Let {Sn} be a se-
quence of (equivalence classes of) hyperbolic surfaces in Mg converging to S. Then
there exists a sequence of quasiconformal homeomorphisms fn : Sn → S such that
lim k(fn) = 1. If x, y ∈ S, let xn = f−1

n (x) and yn = f−1
n (y) for all n. For

all n there exists a Kaut(Sn)-quasiconformal automorphism gn of Sn such that
gn(xn) = yn and gn is homotopic to a conformal automorphism hn. We may
pass to a subsequence {Snj

} such that limKaut(Snj
) = lim infKaut(Sn). Since

lim k(fnj
hnj

f−1
nj

) = 1, we may pass to a subsequence, again called fnj
hnj

f−1
nj

,
which converges to a conformal automorphism h of S. Moreover, fnjhnjf

−1
nj

is
homotopic to h for all large enough j. Thus, for all large enough j, fnj

gnj
f−1

nj
is a

quasiconformal automorphism of S which is homotopic to h. Since k(fnj
gnj

f−1
nj

) ≤
k(fnj )

2k(gnj ), lim k(fnj ) = 1, and fnj (gnj (f
−1
nj

(x))) = y we may conclude that

kaut(x, y) ≤ lim inf k(gnj
) ≤ limKaut(Snj

) = lim infKaut(Sn).

Since x and y may be chosen arbitrarily, it follows that Kaut(S) ≤ lim infKaut(Sn),
so Kaut is lower semicontinuous.

We next show that K0 is upper semi-continuous. The proof that K is upper
semi-continuous is much the same, so our result follows. Again, let {Sn} be a
sequence of (equivalence classes of) hyperbolic surfaces in Mg converging to S.
There exists a sequence of quasiconformal homeomorphisms fn : Sn → S such that
lim k(fn) = 1. Fixing n for a moment, if xn, yn ∈ Sn, let x = fn(xn) and y = fn(yn)
and let g be a quasiconformal automorphism such that g(x) = y, k(g) ≤ K0(S)
and g is homotopic to the identity map. Then hn = f−1

n gfn is a quasiconformal
automorphism of Sn so that hn(xn) = yn and hn is homotopic to the identity.
Therefore, k0(xn, yn) ≤ k(hn) ≤ k(fn)2K0(S). Since xn and yn can be chosen
arbitrarily, K0(Sn) ≤ k(fn)2K0(S). Since lim k(fn) = 1, lim supK0(Sn) ≤ K0(S)
and we have shown that K0 is upper semi-continuous. �

Notice that there is no reason to assume that, in the last paragraph, if g is
homotopic to a conformal automorphism then hn will be homotopic to a conformal
automorphism, so one does not expect Kaut to be upper semicontinuous. In fact,
one expects that, if g 6= 2, then Kaut is discontinuous at any hyperbolic surface with
a non-trivial automorphism group and that if g = 2, then Kaut is discontinuous at
any hyperbolic surface whose conformal automorphism group consists of more than
the canonical hyperelliptic involution. It is easy to show the discontinuity in high
enough genus.
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Lemma 7.2. If g is sufficiently large, then Kaut is not continuous on Mg.

Proof: Let S be a closed hyperbolic surface of genus 2. Let α be a non-separating
simple closed geodesic on S and let S′ be the surface with geodesic boundary
obtained from S by cutting along α. Label the two boundary components of S′

with a + and -. We may construct a n-fold regular cover Sn of S from n copies of
S′ by attaching the + boundary component of the ith copy of S′ to the - boundary
component of the (i + 1)st copy of S′ (and the + boundary component of the nth

copy of S′ to the - boundary component of the first copy of S′.) There is a conformal
action of Zn on Sn with quotient S and Sn has genus n+ 1.

We next observe that Kaut(Sn) ≤ K0(S). If x, y ∈ Sn, then there exists a
K0(S)-quasiconformal homeomorphism f : S → S such that f(p(x)) = p(y) (where
p : Sn → S is the obvious covering map) and f is homotopic to the identity. There
is then a lift f̃ : Sn → Sn of f which is K0(S)-quasiconformal and is homotopic
to the identity. It need not be the case that f̃(x) = y, but there always exists a
conformal automorphism g of Sn such that g(f̃(x)) = y. Then h = g ◦ f̃ is K0(S)-
quasiconformal, is homotopic to the conformal automorphism g, and h(x) = y. It
follows that kaut(x, y) ≤ k(h) ≤ K0(S). Since x and y were arbitrary, Kaut(Sn) ≤
K0(S).

Since {diam(Sn)} diverges to ∞ and ψ is proper, there exists N such that if
n ≥ N , then ψ(diam(Sn)) > K0(S). As the action of the mapping class group
on Teichmüller space is properly discontinuous and the fixed point set of each
finite order element has topological codimension at least 2, one may find a se-
quence {Rj} of surfaces in Mn+1, each of which has trivial conformal automor-
phism group, which converge to Sn, so Kaut(Rj) = K0(Rj) ≥ ψ(diam(Rj)). Since
lim diam(Rj) = diam(Sn), we see that

lim infKaut(Rj) ≥ ψ(diam(Sn)) > K0(S) ≥ Kaut(Sn)

if n ≥ N . It follows that Kaut is discontinuous on Mn+1 if n ≥ N . �

The lower semicontinuity of K, Kaut, and K0, along with their asymptotic prop-
erties allow us to see that each achieves its minimum on Mg.

Lemma 7.3. If {Sn} is a sequence of hyperbolic surfaces leaving every compact
subset of Mg, then

limK(Sn) = limK0(Sn) = limKaut(Sn) = ∞.

Moreover, K, Kaut and K0 all attain their minima on Mg.

Proof: It is well-known that lim l(Sn) = 0 if {Sn} leaves every compact subset of
Mg. Part (2) of Theorem 2.1 then implies that limK(Sn) = ∞. It follows that
limKaut(Sn) = ∞ and limK0(Sn) = ∞ as well.

Since, K, K0 and Kaut are all lower semicontinuous, the first claim of our lemma
allows us to conclude that they all attain their minima on Mg. �

It is thus natural to define

Kg = min{K(S) |S ∈Mg}
Kg

aut = min{Kaut(S) |S ∈Mg}
Kg

0 = min{K0(S) |S ∈Mg}
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From Lemma 6.1 and the fact that K attains its minimum on Mg, it follows
that for each genus g

1 < Kg ≤ Kg
aut ≤ Kg

0 .

We first observe that Kg
0 diverges to ∞ as g goes to ∞.

Lemma 7.4. For any g ≥ 2,

Kg
0 ≥ ψ(cosh−1(2g − 1)).

Proof: It follows from the Gauss-Bonnet theorem, that if S is a closed hyperbolic
surface of genus g, then diam(S) ≥ cosh−1(2g − 1). Theorem 6.4 then implies that
if S ∈Mg, then K0(S) ≥ ψ(cosh−1(2g − 1)) which establishes our result. �

The unboundedness of the sequence of minima {Kg
0} contrasts with the bound-

edness of the sequence {Kg
aut}.

Lemma 7.5. The sequence {Kg
aut}∞g=2 is universally bounded above. In particular

Kg
aut ≤ K2

0 .

Proof. Let S be a genus two hyperbolic surface such that K0(S) = K2
0 . Let Sn

be the genus n+ 1 regular cover of S constructed as in Lemma 7.2. In the proof of
Lemma 7.2, we showed that Kaut(Sn) ≤ K0(S) for all n, so

Kn+1
aut ≤ Kaut(Sn) ≤ K0(S) = K2

0 .

�
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