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The paper “Notes on Notes of Thurston” was intended as an exposition of some por-
tions of Thurston’s lecture notes The Geometry and Topology of Three-Manifolds. The
work described in Thurston’s lecture notes revolutionized the study of Kleinian groups and
hyperbolic manifolds, and formed the foundation for parts of Thurston’s proof of his Ge-
ometrization theorem. At the time, much of the material in these notes was unavailable
in a published form. In this foreword, we hope to point the reader to some more recently
published places where detailed explanations of the material in Thurston’s original lecture
notes are available. We will place a special emphasis on the material in Thurston’s chapters
8 and 9. This material was the basis for much of our original article and it still represents the
material which has been least well-digested by the mathematical community. This is also
the material which has been closest to the author’s subsequent interests, so the selection
will, by necessity, reflect some of his personal biases.

We hope this foreword will be useful to students and working mathematicians who are
attempting to come to grips with the very beautiful, but also sparingly described, mathe-
matics in these notes. No attempt has been made to make this foreword self-contained. It is
simply a rough-and-ready guide to some of the relevant literature. In particular, we will not
have space to define all the mathematical terms used, but we hope the reader will make use
of the many references to sort these out. In particular, we will assume that the reader has a
copy of Thurston’s notes on hand. We would also like to suggest that it would be valuable
for a publisher to make available Thurston’s lecture notes, in their original form. The author
would like to apologize, in advance, to the mathematicians whose relevant articles have been
omitted due to the author’s ignorance.

In a final section, we describe some recent progress on the issues dealt with in sections 8
and 9 of Thurston’s notes.

We would like to thank Francis Bonahon, Al Marden and Yair Minsky for their helpful
comments on earlier versions of this foreword.
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1 General References

Before focusing in a more detailed manner on the material in chapters 8 and 9, we will
discuss some of the more general references which have appeared since the publication of our
paper. In order to conserve space, we will be especially telegraphic in this section.

Thurston [153] recently published volume I of a new version of his lecture notes under
the title Three-dimensional Geometry and Topology. This new volume contains much of the
material in chapter 1, 2, and 3 of the original book, as well as material which comes from
sections 5.3 and 5.10. However, the most exciting and novel portions of his original notes
have been left for future volumes. A number of other books on Kleinian groups and hyper-
bolic manifolds have been published in the last 15 years, including books by Apanasov [14],
Benedetti and Petronio [23], Buser [50], Kapovich [83], Katok [84], Maskit [104], Matsuzaki
and Taniguchi [105], Ohshika [128] and Ratcliffe [137].

There are now several complete published proofs of Thurston’s Geometrization Theorem
for Haken 3-manifolds available. McMullen [107] outlined a proof of of the Geometrization
theorem for Haken 3-manifolds which do not fiber over the circle which used his proof of Kra’s
Theta conjecture. A more complete version of this approach is given by Otal [132], who also
incorporates work of Barrett and Diller [15]. Kapovich [83] has recently published a book
on the proof of the Geometrization theorem. His approach to the main portion of the proof
is based on work of Rips (see [21]) on the actions of groups on R-trees. (Morgan and Shalen
[120, 121, 122] first used the theory of R-trees to prove key portions of the Geometrization
theorem. See Bestvina [20] or Paulin [133] for a more geometric viewpoint on how actions of
groups on R-trees arise as limits of divergent sequences of discrete faithful representations.)
An outline of Thurston’s original proof of the main portion of the Geometrization theorem
was given by Morgan in [119]. Portions of this proof are available in Thurston’s article
[152] and preprint [155]. Thurston’s original proof develops much more structural theory of
Kleinian groups than the later proofs.

Otal [131] also published a proof of the Geometrization theorem in the case where the
3-manifold fibers over the circle. Otal’s proof makes use of the theory of R-trees, and in
particular uses a deep theorem of Skora [144] which characterizes certain types of actions of
surface groups on R-trees. (Kleineidam and Souto [90] used some of Otal’s techniques to
prove a spectacular generalization of Thurston’s Double Limit Theorem to the setting of hy-
perbolic structures on compression bodies.) Thurston’s original proof of the Geometrization
theorem for 3-manifolds which fibre over the circle is available at [154]. (A survey of this
proof is given by Sullivan [146], see also McMullen [108].)

We will now briefly indicate where one might look for details on some of the material
in Thurston’s notes which is not in chapters 8 and 9. The material in sections 4.1–4.7
of Thurston’s notes is discussed in chapter E of Benedetti-Petronio [23]. The material in
sections 4.8 and 4.9 was further developed by Epstein in [65]. The results in sections 4.10
and 4.11 were generalized in Floyd-Hatcher [73] and Hatcher-Thurston [76].

The material in section 5.1 is the subject matter of sections 1.5–1.7 of [57]. In sections
5.2, 5.5 and 5.6, Thurston develops a useful estimate for the dimension of the representation
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variety, which was proven carefully by Culler and Shalen in section 3 of [62]. Thurston’s
Hyperbolic Dehn Surgery theorem is established in section 5.8, using the dimension count
established in the previous sections and the theory developed in section 5.1. This version
of the proof is discussed in Hodgson-Kerckhoff [77] and, in more detail, in Bromberg [46].
Bromberg also develops generalizations of Thurston’s Hyperbolic Dehn Surgery theorem to
the infinite volume setting, see also Bonahon-Otal [31] and Comar [61]. A complete proof
of the Hyperbolic Dehn Surgery theorem using ideal triangulations is given by Petronio and
Porti [135]. The proof of the Mostow-Prasad rigidity theorem given in section 5.9 follows
the same outline as Mostow’s original proof [123], see also Marden [98], Mostow [124] and
Prasad [136]. In sections 5.11 and 5.12, Thurston proves Jørgensen’s theorem that given a
bound C, there exists a finite collection of manifolds, such that every hyperbolic 3-manifold
of volume at most C is obtained from one of the manifolds in the collection by Dehn Filling,
see also Chapter E in [23].

In sections 6.1–6.5, Thurston gives Gromov’s proof of the Mostow-Prasad rigidity theorem
and develops Gromov’s theory of simplicial volume, see Gromov [74] and Chapter C of
Benedetti and Petronio [23]. In section 6.6, Thurston proves that the set of volumes of
hyperbolic 3-manifolds is well-ordered, again see Chapter E of Benedetti and Petronio [23].
Dunbar and Meyerhoff [64] generalized Thurston’s arguments to show that the set of volumes
of hyperbolic 3-orbifolds is well-ordered.

Chapter 7 of the original notes, concerning volumes of hyperbolic manifolds, was written
by John Milnor and much of the work in this chapter appears in appendices to [110] and
[111]. Portions of the material in the incomplete chapter 11 appear in Appendix B of
McMullen [108]. Chapter 13 begins with the theory of orbifolds, see for example Scott [142]
and Kapovich [83]. Scott [142] also discusses the orbifold viewpoint on Seifert fibered spaces
and the geometrization of Seifert fibered spaces. The remainder of Chapter 13 concerns
Andreev’s theorem and its generalizations. Andreev’s original work appeared in [11] and
[12]. Andreev’s theorem has been generalized by Rivin-Hodgson [138] and Rivin [139].

2 Chapter 8 of Thurston’s notes

Sections 8.1 and 8.2 largely deal with basic properties of the domain of discontinuity and
the limit set of a Kleinian group. Variations on this material can be found in any text on
Kleinian groups, for example [104] or [105].

2.1 Geometrically finite hyperbolic 3-manifolds

In section 8.3, Thurston offers a new viewpoint on two of the main results in Marden’s seminal
paper “The geometry of finitely generated Kleinian groups.” Marden’s Stability theorem
(Proposition 9.1 in [98]) asserts that any small deformation of a convex cocompact Kleinian
group is itself convex cocompact and is quasiconformally conjugate to the original group.
Thurston’s version of this theorem (Proposition 8.3.3 in his notes) appears as Proposition
2.5.1 in our article [57]. Marden’s Stability theorem also includes a relative version of this
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result, which asserts that any small deformation of a geometrically finite Kleinian groups,
which preserves parabolicity, is itself geometrically finite and is quasiconformally conjugate
to the original manifold.

Marden’s Isomorphism Theorem (Theorem 8.1 in [98]) asserts that any homotopy equiv-
alence between two geometrically finite hyperbolic 3-manifolds which extends to a homeo-
morphism of their conformal boundaries, is homotopic to a homeomorphism which lifts (and
extends) to a quasiconformal homeomorphism of H3 ∪ S2

∞. Thurston’s Proposition 8.3.4 is
a variation on Marden’s Isomorphism theorem.

Proposition 8.3.4: Let N1 = Hn/Γ1 and N2 = Hn/Γ2 be two convex cocompact hyperbolic
n-manifolds and let M1 and M2 be strictly convex submanifolds of N1 and N2. If φ : M1 →
M2 is a homotopy equivalence which is a homeomorphism from ∂M1 to ∂M2, then there exists
a map f : Hn∪Sn−1

∞ → Hn∪Sn−1
∞ such that the restriction f̂ of f to Sn−1

∞ is quasiconformal,
fΓ1f

−1 = Γ2, and the restriction of f to Hn is a quasi-isometry.

In section 8.4, Thurston continues his study of geometrically finite hyperbolic 3-manifolds.
Theorem 8.4.2 is Ahlfors’ result, see [3], that the limit set Λ(Γ) of a geometrically finite
hyperbolic manifold N = Hn/Γ either has measure zero or is all of the sphere at infinity Sn−1

∞
and Γ acts ergodically on Sn−1

∞ . Ahlfors’ Measure Conjecture asserts that this is the case for
all finitely generated Kleinian groups. In section 8.12, Thurston proves Ahlfors’ conjecture
for freely indecomposable geometrically tame Kleinian groups. Proposition 8.4.3 discusses
three equivalent definitions of geometric finiteness. The various definitions of geometric
finiteness are treated thoroughly by Bowditch [33].

2.2 Measured laminations and the boundary of the convex core

In section 8.5, Thurston introduces geodesic laminations and observes that the intrinsic met-
ric on the boundary of the convex core is hyperbolic. This result is established in chapter 1
of Epstein-Marden [66] and by Rourke [140]. Later, Thurston will observe that the boundary
of the convex core is an uncrumpled surface. Uncrumpled surfaces are now known as pleated
surfaces. Geodesic laminations are treated in chapter 4 of our article [57] and in chapter 4
of Casson-Bleiler [60].

In section 8.6, Thurston introduces transverse measures on geodesic laminations. In
particular, he develops the bending measure on the bending locus of the boundary of the
convex core. The bending measure is discussed in section 1.11 of Epstein-Marden [66].
Measured laminations are discussed by Hatcher [75] and Penner-Harer [134]. The parallel
theory of measured foliations is developed in great detail in the book by Fathi, Laudenbach
and Poenaru [70]. The connection between measured laminations and measured foliations
in made explicit by Levitt [97]. Hubbard and Masur [80] showed that measured foliations
can themselves be naturally linked to the theory of quadratic differentials, see also Marden-
Strebel [101]. One of the most spectacular applications of the theory of measured laminations
was Kerckhoff’s proof [87] of the Neilsen Realization Theorem.

Bonahon developed the theory of geodesic currents, which are a generalization of mea-
sured laminations, in [25] and [26]. This theory provides a beautiful and flexible conceptual
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framework for the theory of measured laminations and was put to central use in Bonahon’s
proof [25] that finitely generated, freely indecomposable Kleinian groups are geometrically
tame. Bonahon [26] also used geodesic currents to give a beautiful treatment of Thurston’s
compactification of Teichmüller space. Bonahon is currently preparing a research monograph
[29] which covers geodesic laminations, measured laminations, train tracks and geodesic cur-
rents. It also describes Bonahon’s more recent work on transverse cocycles and transverse
Hölder distributions for geodesic laminations which provide powerful new tools for the study
of deformation spaces of hyperbolic manifolds. As one application of these techniques Bona-
hon [27] has computed the derivative of the function with domain a deformation space of
geometrically finite hyperbolic 3-manifolds given by considering the volumes of the convex
cores. His formula is a generalization of Schläfli’s formula for the variation of volumes of
hyperbolic polyhedra. Bonahon’s briefer survey paper [28] covers some of the same material;
both the research monograph and the survey paper are highly recommended.

2.3 Quasifuchsian groups and bending

In section 8.7, Thurston begins his study of quasifuchsian groups. A finitely generated,
torsion-free Kleinian group is said to quasifuchsian if its limit set is a Jordan curve and both
components of its domain of discontinuity are invariant under the entire group. Thurston’s
definition of a quasifuchsian group is incomplete as it leaves out the condition on the domain
of discontinuity. His definition allows Kleinian groups which uniformize twisted I-bundles
over surfaces, as well as those which uniformize product I-bundles. Proposition 8.7.2 of-
fers several equivalent definitions of quasifuchsian groups. We give a corrected version of
Thurston Proposition 8.7.2 below:

Proposition 8.7.2: (Maskit [102]) If Γ is a finitely generated, torsion-free Kleinian group,
then the following conditions are equivalent:

1. Γ is quasifuchsian.

2. The domain of discontinuity Ω(Γ) of Γ has exactly two components, each of which is
invariant under the entire group.

3. Γ is quasiconformally conjugate to a Fuchsian group, i.e. there exists a Fuchsian group
Θ ⊂ PSL2(R) (such that its limit set Λ(Θ) = R ∪ ∞) and a quasiconformal map
φ : Ĉ → Ĉ such that Γ = φΘφ−1.

This characterization is originally due to Maskit, see Theorem 2 in [102], although
Thurston follows the alternate proof given by Marden in section 3 of [98].

Example 8.7.3 is the famous Mickey Mouse example, which is produced using the bending
construction. Bending has been studied extensively by Apanasov [14] and Tetenov [13],
Johnson and Millson [81], Kourouniotis [91] and others. Universal bounds on the bending
lamination of a quasifuchsian group and hence on the bending deformation, are obtained by
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Bridgeman [34, 35] (and generalized to other settings by Bridgeman-Canary [37]). These
bounds are discussed in more detail in the addendum to Epstein-Marden [66] in this volume.

After the Mickey Mouse example, Thurston discusses simplicial hyperbolic surfaces, al-
though he does not give them a name. A simplicial hyperbolic surface is a map, not necessar-
ily an embedding, of a triangulated surface into a 3-manifold such that each face is mapped
totally geodesically and the total angle around each vertex is at least 2π. The restriction on
the vertices guarantees that the induced metric, usually singular, on the surface has curva-
ture ≤ −1 in the sense of Alexandrov. Simplicial hyperbolic surfaces were used extensively
by Bonahon [25] in his proof that freely indecomposable Kleinian groups are geometrically
tame and they are discussed in detail in section 1.3 of [25].

Proposition 8.7.7 asserts that every complete geodesic lamination is realizable in a quasi-
fuchsian hyperbolic 3-manifold. This statement is included in Theorem 5.3.11 in [57]. We
will discuss realizability of laminations more fully when we come to sections 8.10 and 9.7.

2.4 Pleated surfaces and realizability of laminations

Section 8.8 of Thurston’s notes concerns pleated surfaces, which are called uncrumpled sur-
faces in the notes. The results in this section form the basis of section 5 of our original
article [57]. Pleated surfaces are also discussed in Thurston’s articles on the Geometrization
theorem [152, 154, 155].

Section 8.9 of Thurston’s notes develops the theory of train tracks. Proposition 8.9.2 and
Corollary 8.9.3 assert that any geodesic lamination on a surface may be well-approximated by
a train track. Three-dimensional versions of these results play a key role in Bonahon’s work
and section 5 of his paper [25] discusses train track approximations to geodesic laminations
in great detail. The general theory of train tracks is developed by Penner and Harer in [134].

In section 8.10, Thurston turns to the issue of realizability of laminations in 3-manifolds.
We discuss this issue in detail in section 5.3 of [57]. One begins with an incompressible, type-
preserving map f : S → N of a finite area hyperbolic surface S into a hyperbolic 3-manifold
N . (An incompressible map f : S → N is said to be type-preserving if f∗(g) is parabolic if
and only if g ∈ π1(S) is parabolic where f∗ : π1(S) → π1(N) is regarded as a map between
the associated groups of covering tranformations.) One says that a geodesic lamination λ
on S is realizable if there is a pleated surface h : S → N which maps λ into N in a totally
geodesic manner. If a realization exists then the image of λ is unique (Proposition 8.10.2
in Thurston and Lemma 5.3.5 in [57].) The map from the space of pleated surfaces (which
are homotopic to f) into the space of geodesic laminations (with the Thurston topology)
given by taking a pleated surface to its pleating locus is continuous (Proposition 8.10.4 in
Thurston and Lemma 5.3.2 in [57].) Propositions 8.10.5, 8.10.6 and 8.10.7 develop more basic
properties of geodesic measured laminations, see the earlier references for details. Theorem
8.10.8 in Thurston’s notes asserts that the set Rf of realizable laminations is open and dense
in the set GL(S) of all geodesic laminations on S, see Theorem 5.3.10 in [57] for details.
Thurston’s Corollary 8.10.9, which asserts that if N is geometrically finite then Rf = GL(S)
unless N virtually fibres over the circle with fibre f(S), is stated as Corollary 5.3.12 in [57].



§2. Chapter 8 of Thurston’s notes 7

We note that Thurston’s Conjecture 8.10.10, which asserts that f∗(π1(S)) is quasifuchsian if
and only if Rf = GL(S), is a consequence of Bonahon’s work [25], see the discussion after
Proposition 9.7.1 and the discussion of Bonahon’s work in section 4.

In related work, Brock [38] proved that the length function is continuous on the space
of realizable laminations in AH(S) × ML(S) and extends to a continuous function on all
of AH(S) × ML(S). Thurston claimed this result and used it in his proof [154] of the
Geometrization theorem for 3-manifolds which fiber over the circle.

2.5 Relative compact cores and ends of hyperbolic 3-manifolds

It will be convenient to formalize the material in section 8.11 in the language of relative
compact cores. If N is a hyperbolic 3-manifold, and we choose ε less than the Margulis
constant (see Section 4.5 of Thurston [153] or Chapter D in Benedetti-Petronio [23] for
example) we can define the ε-thin part of N to be the portion of N with injectivity radius
at most ε. Each compact part of the ε-thin part will be a solid torus neighborhood of
a geodesic, while each non-compact component will be the quotient of a horoball by a
group of parabolic isometries (isomorphic to either Z or Z⊕ Z). We obtain N0 from N by
removing its “cusps”, i.e. the non-compact components of its thin part. A relative compact
core M for N is a compact 3-dimensional submanifold of N0 whose inclusion into N is a
homotopy equivalence which intersects each toroidal component of ∂N0 in the entire torus
and intersects each annular component of ∂N0 in a single incompressible annulus. Bonahon
[24], McCullough [106] and Kulkarni-Shalen [93] proved that every hyperbolic 3-manifold
with finitely generated fundamental group admits a relative compact core.

Feighn-McCullough [71] and Kulkarni-Shalen [93] (see also Abikoff [1]) have used the
relative compact core to give topological proofs of Bers’ area inequality, which asserts that
the area of the conformal boundary is bounded by the number of generators (see Bers [16])
and Sullivan’s Finiteness Theorem, which asserts that the number of conjugacy classes of
maximal parabolic subgroups of a Kleinian group is bounded by the number of generators (see
Sullivan [148]). See section 7 of Marden [98] for a similar treatment of Bers’ area inequalities
in the setting of geometrically finite groups where Marden constructs an analogue of the
relative compact core.

Much of the remainder of section 8 and section 9 are taken up with understanding the
geometry and topology of ends of hyperbolic 3-manifolds. Ends of N0 are in a one-to-one
correspondence with components of ∂M − ∂N0, see proposition 1.3 in [25], where M is a
relative compact core for N . An end of N0 is geometrically finite if it has a neighborhood
which does not intersect the convex core. At the end of section 8.11, Thurston introduces
the crucial notion of a simply degenerate end of a hyperbolic 3-manifold. If M is a relative
compact core for N , then an end E of N0 which has a neighborhood bounded by an incom-
pressible component S of ∂M−∂N0 is said to be simply degenerate if there exists a sequence
{γi} of non-trivial simple closed curves on S whose geodesic representatives in N all lie in
the component of N0 −M bounded by S and leave every compact subset of N . (Here we
have given Bonahon’s version of Thurston’s definition, which is equivalent to Thurston’s.)
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A hyperbolic 3-manifold in which each component of ∂M − ∂N0 is incompressible is said to
be geometrically tame if each of its ends is either geometrically finite or simply degenerate.

We will say that the relative compact core M has relatively incompressible boundary
if each component of M − ∂N0 is incompressible. Thurston works almost entirely in the
setting of hyperbolic 3-manifolds whose relative compact core has relatively incompressible
boundary. If N has no cusps, the relative compact core has incompressible boundary if and
only if π1(N) is freely indecomposable. In general, the relative compact core has relatively
incompressible boundary if and only if there does not exist a non-trivial free decomposition of
π1(N) such that every parabolic element is conjugate into one of the factors, see Proposition
1.2 in Bonahon or Lemma 5.2.1 in Canary-McCullough [58].

In section 4.1, we will explain how the definition of geometric tameness is extended to
all hyperbolic 3-manifolds with finitely generated fundamental group.

2.6 Analytic consequences of tameness

In Section 8.12, Thurston proves a minimum principle for positive superharmonic functions
on geometrically tame hyperbolic 3-manifolds.

Theorem 8.12.3: If N is a geometrically tame hyperbolic 3-manifold (whose compact core
has relatively incompressible boundary), then for every non-constant positive superharmonic
(i.e. ∆h ≤ 0) function h on N ,

infC(N)h = inf∂C(N)h

where C(N) denotes the convex core of N . In particular, if C(N) = N (i.e. LΓ = S2) then
there are no positive non-constant superharmonic functions on N .

As a corollary, he shows that Ahlfors’ measure conjecture holds for geometrically tame
hyperbolic 3-manifolds.

Corollary 8.12.4: If N = H3/Γ is a geometrically tame, 3-manifold (whose compact core
has relatively incompressible boundary), then either LΓ is all of S2

∞ or it has measure zero.
Moreover, if LΓ = S2

∞ then Γ acts ergodically on S2
∞.

He also notes that one may combine his minimum principle with work of Sullivan [145] to
show that the geodesic flow of a geometrically tame hyperbolic 3-manifold (whose compact
core has relatively incompressible boundary) is ergodic if and only if its limit set is the
entire Riemann sphere. These arguments are generalized to the setting of analytically tame
hyperbolic 3-manifolds in [53], see also section 7 of Culler-Shalen [63] and Sullivan [147]. (A
hyperbolic 3-manifold is analytically tame if its convex core may be exhausted by a nested
sequence {Ci} of compact submanifolds Ci such that there exists K and L such that ∂Ci

has area ≤ K and the neighborhood of radius one of ∂Ci has volume ≤ L.) In particular,
Ahlfors’ Measure conjecture is established for analytically tame hyperbolic 3-manifolds.

Sullivan [149] and Tukia [156] showed that limit sets of geometrically finite Kleinian
groups have Hausdorff dimension less than 2, unless their quotient has finite volume in
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which case the limit set is the entire sphere at infinity. Sullivan [147] provided the first
examples of finitely generated Kleinian groups whose limit sets have measure zero but Haus-
dorff dimension 2 (see also Canary [52]). Bishop and Jones [22] later proved that the limit
set of every finitely generated, geometrically infinite Kleinian group has Hausdorff dimension
2.

3 Chapter 9 of Thurston’s notes

Chapter 9 is largely devoted to the study of limits of hyperbolic 3-manifolds. In section 9.1,
the notion of geometric convergence of a sequence of Kleinian groups is discussed. In section
3 of [57] we prove the equivalence of several different notions of geometric convergence. In
particular Thurston’s Corollary 9.1.7 appears as Corollary 3.1.7 in [57].

3.1 Algebraic and geometric limits

Many of the most interesting results in chapter 9 concern the interplay between algebraic and
geometric convergence of Kleinian groups. If a sequence {ρi : G → PSL2(C)} of discrete,
faithful representations converges, in the compact-open topology, to ρ : G → PSL2(C), then
we say that ρ is the algebraic limit of {ρi}. If G is not virtually abelian, then {ρi} has a
subsequence {ρj} such that {ρj(G)} converges geometrically to a Kleinian group Γ̂ which
is called the geometric limit of {ρj(G)} (Corollary 9.1.8 in Thurston and Proposition 3.8 in
Jorgensen-Marden [82]). If ρ is the algebraic limit of {ρi} and ρ(G) is the geometric limit of
{ρi(G)}, then we say that {ρi} converges strongly to ρ.

Example 9.1.4, which is due to Jorgensen (see section 5 of Jorgensen-Marden [82]), is
the most basic example of a sequence which converges algebraically but not strongly. In
this example, the algebraic limit is an infinite cyclic group, while the geometric limit is
a free abelian group of rank two. More complicated examples which contain this same
phenomenon can be found in Marden [100], Kerckhoff-Thurston [88], Ohshika [126] and
Thurston [154]. Brock [40] exhibited a sequence where the algebraic limit differs from the
geometric limit, yet the geometric limit does not contain a free abelian subgroup of rank
two. Anderson and Canary [7] exhibited examples where the (quotient of the) algebraic
limit is topologically tame, but is not homeomorphic to any of its approximates. The most
comprehensive reference on the foundations of the relationship between the algebraic and
the geometric limit is Jorgensen-Marden [82].

3.2 Limits of quasifuchsian groups

In section 9.2, Thurston begins to study limits of quasifuchsian groups. This study was
crucial in his original proof of the Geometrization theorem. If S is a compact surface (with
negative Euler characteristic), a discrete, faithful representation τ : π1(S) → PSL2(C) is
said to be quasifuchsian if τ(π1(S)) is quasifuchsian and τ(g) is parabolic if and only if g
is a peripheral element of π1(S), i.e. if the curve representing g is freely homotopic into
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a component of the boundary. Thurston’s Theorem 9.2 asserts that any type-preserving
algebraic limit of quasifuchsian representations is geometrically tame and is in fact a strong
limit.

Theorem 9.2: Let S be a compact surface with negative Euler characteristic. Suppose that
{ρi : π1(S) → PSL2(C)} is a sequence of quasifuchsian representations converging to ρ and
that ρ ◦ ρ−1

i : ρi(π1(S)) → ρ(π1(S)) is type-preserving for all i. Then, Nρ = H3/ρ(π1(S)) is
geometrically tame and {ρi} converges strongly to ρ.

This result divides naturally into two pieces. Ohshika established that, in this setting,
the convergence is strong in Corollary 6.1 of [130]. Evans established a generalization of this
strong convergence result for surface groups as part of [67]. Generalizations of the fact that
a strong, type-preserving limit of quasifuchsian groups is geometrically tame are obtained
by Canary-Minsky [59] and by Ohshika [129] in the case that there are no parabolics and in
the general situation by Evans [68].

3.3 The covering theorem

In the proof of theorem 9.2, Thurston develops the covering theorem which is a very impor-
tant tool in the study of algebraic and geometric limits. It asserts that, with the exception of
the cover of 3-manifold which fibres over the circle associated to the fibre, a simply degenerate
end can only cover finite-to-one.

Theorem 9.2.2: Let N̂ be a hyperbolic 3-manifold which covers another hyperbolic 3-
manifold N by a local isometry p : N̂ → N . If Ê is a simply degenerate end of N̂0 then
either

a) Ê has a neighborhood Û such that p is finite-to-one on Û , or
b) N has finite volume and has a finite cover N ′ which fibers over the circle such that if

NS denotes the cover of N ′ associated to the fiber subgroup then N̂ is finitely covered by NS.
Moreover, if N̂ 6= NS, then N̂ is homeomorphic to the interior of a twisted I-bundle which
is doubly covered by NS.

In Thurston’s covering theorem, the end Ê is required to be associated to an incompress-
ible surface in N̂0 (as this is the setting in which Thurston has defined simply degenerate
ends.) Canary generalized Thurston’s covering theorem to the setting of simply degenerate
ends of topologically tame hyperbolic 3-manifolds in [55], see also Lemma 2.2 in Ohshika
[126]. For a survey of some of the remaining issues related to the covering theorem see [54].

3.4 An intersection number lemma

The key result in section 9.3 is Theorem 9.3.5, which is an intersection number lemma for
geodesic laminations. Bonahon proves a version of this result as Proposition 3.4 in [25].

Theorem 9.3.5: (Bonahon [25]) Let N be a hyperbolic 3-manifold with finitely generated
fundamental group and let S be a properly embedded incompressible surface in N0. There
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exists a constant K ≥ 0 such that if α∗1 and α∗2 are two closed geodesics in N0 of distance
≥ D from S, homotopic to 2 curves α1 and α2 in S by two homotopies which meet S only
in αi and arrive on the same side, and each geodesic is disjoint from the thin part of N , or
is itself the core of a Margulis tube, then

i(α1, α2) ≤ Ke−Dl(α1)l(α2) + 2

where i is intersection number in S, and l is length measured on S.

Thurston’s version allows α∗1 and α∗2 to be measured geodesic laminations in N , but
Thurston neglects to include the restriction on the geodesics.

One consequence of Theorem 9.3.5 is that a simply degenerate end admits a well-defined
geodesic lamination, called the ending lamination. Let E be a simply degenerate end with
a neighborhood bounded by an incompressible subsurface S of the boundary of a relative
compact core for N0. If {αi} is a sequence of simple closed curves on S whose geodesic
representatives {α∗i } in N exit E, then the ending lamination ε(E) of E is the limit of {αi}
in GL(S). (More formally, to ensure uniqueness, we must define ε(E) to be the maximal
sublamination of lim αi which supports a measure.) Thurston uses Theorem 9.3.5 to show
that ε(E) is well-defined, that every leaf of ε(E) is dense in ε(E) and that every simple
closed curve in the complement of ε(E) is peripheral. These results are also established in
Bonahon [24]. This discussion is generalized to the setting of topologically tame hyperbolic
3-manifolds in [53]. For a more thorough discussion of ending laminations and the Ending
Lamination Conjecture see Minsky [114].

3.5 Topological tameness

Sections 9.4 and 9.5 of Thurston are devoted to proving that a geometrically tame hyperbolic
3-manifold is topologically tame, i.e. homeomorphic to the interior of a compact 3-manifold.

Theorem 9.4.1: If N is a geometrically tame hyperbolic 3-manifold (whose relative
compact core has relatively incompressible boundary), then N is topologically tame.

Bonahon offers a simpler proof of Theorem 9.4.1 in [24], based on a result of Freedman,
Hass and Scott [72]. An outline of this argument is also given in [25]. Canary [53] generalized
the notion of a geometrically tame hyperbolic 3-manifold to the setting where the relative
compact core need not have relatively incompressible boundary and proved that topologically
tame hyperbolic 3-manifolds are geometrically tame. We will discuss this further in the next
section.

Thurston’s method of proof is based on a scheme for interpolating between any two
pleated surfaces in a simply degenerate end with a family of negatively curved surfaces.
This approach is discussed in section 5 of Ohshika’s paper [130]. As part of this discussion,
Thurston proves that the space ML(S) of measured laminations has a piecewise integral
linear structure and that the space PL(S) of projective measured laminations has a piecewise
integral projective structure, see Theorem 3.1.4 in Penner-Harer [134] for details.
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In remarks at the end of section 9.5, Thurston describes two alternative approaches to
this interpolation. The first approach, which makes use of simplicial hyperbolic surfaces
and elementary moves on triangulations, is carried out by Canary in [55] and has also been
used by Fan [69] and Evans [68]. The second approach makes use of the theory of harmonic
maps. This approach was carried out by Minsky in [112] and was utilized in his proof of
the ending lamination conjecture for geometrically tame hyperbolic 3-manifolds with freely
indecomposable fundamental group and a lower bound on their injectivity radius [113].

3.6 Strong convergence

In section 9.6, Thurston generalizes Theorem 9.2 to the setting of hyperbolic manifolds
whose relative compact cores have relatively incompressible boundary. Let M be a compact
3-manifold and let P be a collection of incompressible annuli and tori in ∂M . (One often
explicitly requires that (M, P ) be a pared 3-manifold, see section 4 of Morgan [119].) We say
that ρ : π1(M) → PSL2(C) uniformizes the pair (M, P ) if there exists a relative compact
core Q for (Nρ)

0 and a homeomorphism of pairs h : (M, P ) → (Q,Q ∩ ∂(Nρ)
0) such that

h∗ = ρ.

Theorem 9.6.1: Let M be a compact 3-manifold and let P be a collection of incompressible
annuli and tori in ∂M such that each component of ∂M − P is incompressible. Suppose
that {ρi} is a sequence of geometrically tame uniformizations of (M, P ) which converge to
ρ : π1(M) → PSL2(C) and that ρ ◦ ρ−1

i is type-preserving for all i. Then,

1. {ρi} converges strongly to ρ, and

2. ρ is a geometrically tame uniformization of (M, P ).

Thurston only sketches the proof of Theorem 9.6.1 in the case that there is no essential
annulus in M with one boundary component in P . A generalization of the result in part
(1), that {ρi} converges strongly to the setting where M is allowed to have compressible
boundary is given by Anderson and Canary [8, 9]. A generalization of part (1) which allows
the sequence to be only weakly type-preserving is given by Evans [67]. (Kleineidam [89]
has given a quite nice characterization of strong convergence from a different viewpoint.) A
generalization of part (2), is given in the case where P is empty by Canary-Minsky [59] and
Ohshika [129], and in the general setting by Evans [67].

3.7 Ending Laminations

The first result in section 9.7 sums up what has been learned about ending laminations. It
can be derived from the work of Bonahon [24, 25] but is not explicitly stated in any of his
papers. We say that an isomorphism τ : Γ → Θ is weakly type-preserving if whenever γ ∈ Γ
is parabolic, then τ(γ) is parabolic.

Proposition 9.7.1: Let S be a finite area hyperbolic surface and let ρ : π1(S) → PSL2(C)
be a discrete, faithful, geometrically tame, weakly type-preserving representation. There exist



§4. Selected Generalizations 13

two geodesic laminations λ+ and λ− on S, such that α ∈ GL(S) is realizable if and only if
α contains no component of λ+ or λ−.

In Proposition 9.7.1, one first constructs a relative compact core M for (Nρ)
0. Then M

is homeomorphic to S × [0, 1] and P = ∂M ∩ ∂(Nρ)
0 is a collection of annuli which includes

∂S × [0, 1]. We let γ+ and γ− denote the core curves of the annuli in P which lie in S × {0}
and S × {1}. One obtains λ+ by appending to γ+ the ending laminations of any simply
degenerate ends bounded by components of S × {0} − P . One forms λ− similarly.

The remainder of section 9.7 concerns train track coordinates for the space of measured
laminations. We refer the reader again to sections 3.1 and 3.2 of Penner-Harer [134] for
details. In particular, Thurston proves that PL(S) is a sphere, see Theorem 3.1.4 in Penner-
Harer [134] or Proposition 1.5 of Hatcher [75].

In section 9.9, Thurston surveys Sullivan’s work [145] on ergodicity of geodesic flows on
hyperbolic manifolds. Sullivan’s work is also discussed in Ahlfors’ book [4].

4 Selected Generalizations

In this section, we will briefly discuss a few of the most direct generalizations of the material
in chapters 8 and 9 of Thurston’s notes. The past few years has been a period of intense
activity in the field and we will not have space to mention many important results. Other
recent surveys of related material include Anderson [6], Brock-Bromberg [41], Canary [56]
and Minsky [117, 118].

4.1 Tameness

Marden [98] conjectured that all hyperbolic 3-manifolds with finitely generated fundamental
group are topologically tame. Marden’s Tameness Conjecture has developed into a central
goal of the field.

In a tour de force, Bonahon proved that every hyperbolic 3-manifold whose relative
compact core has relatively incompressible boundary is geometrically tame, and hence topo-
logically tame.

Theorem: (Bonahon [25]) Suppose that N is a hyperbolic 3-manifold with finitely generated
fundamental group and that M is a relative compact core for N0. If each component of
∂M − ∂N0 is incompressible, then N is geometrically tame.

An immediate consequence of this result is that Ahlfors’ Measure Conjecture is valid
for all hyperbolic 3-manifolds whose relative compact cores have relatively incompressible
boundary.

Subsequently, Canary [53] used Bonahon’s work to prove that all topologically tame
hyperbolic 3-manifolds are geometrically tame. In order to make sense of this result, one
must first define geometric tameness for hyperbolic 3-manifolds whose relative compact core
may not be relatively incompressible. For simplicity, we will assume that N has no cusps,
for the full definition see [53]. We say that an end E of N is simply degenerate if it has a
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neighborhood U which is homeomorphic to S×[0,∞) (for some compact surface S) and there
exists a sequence of simplicial hyperbolic surfaces {fi : S → U}, each of which is homotopic
within U to S × {0}, which leave every compact subset of U . A hyperbolic 3-manifold with
finitely generated fundamental group is said to geometrically tame if all its ends are either
geometrically finite or simply degenerate.

Theorem: (Canary [53]) A hyperbolic 3-manifold with finitely generated fundamental group
is topologically tame if and only if it is geometrically tame.

Canary’s result implies that topologically tame hyperbolic 3-manifolds are analytically
tame so Thurston’s Theorem 8.12.3 holds for topologically tame hyperbolic 3-manifolds. In
particular, Ahlfors’ Measure Conjecture holds.

Corollary: If N = H3/Γ is a topologically tame, 3-manifold, then either LΓ is all of S2
∞ or

it has measure zero. Moreover, if LΓ = S2
∞ then Γ acts ergodically on S2

∞.

There has been a steady progression in our understanding of tameness properties of
limits of geometrically finite hyperbolic 3-manifolds due to many authors, including Canary-
Minsky [59], Ohshika [129], and Evans [68]. The best results about limits combine work of
Brock-Bromberg-Evans-Souto [43] and Brock-Souto [45].

Theorem: (Brock-Bromberg-Evans-Souto [43] and Brock-Souto [45]) Any algebraic limit of
geometrically finite hyperbolic 3-manifolds is topologically tame.

Agol [2] and Calegari-Gabai [51] have recently given complete proofs of Marden’s Tame-
ness Conjecture.

4.2 Spaces of geometrically finite hyperbolic 3-manifolds

The parameterization of the space of geometrically finite hyperbolic structures on a fixed
compact 3-manifold has been well-understood since the 1970s. Roughly, a geometrically
finite hyperbolic 3-manifold is known to be determined by its topological type and the
conformal structure on its conformal boundary. This parameterization combines work of
Ahlfors [5], Bers [18], Kra [92], Marden [98] and Maskit [103]. For complete discussions
of this parameterization see Bers [19], section 6 of Marden [99], or section 7 of Canary-
McCullouch [58].

One might hope that one could also parameterize geometrically finite hyperbolic 3-
manifolds by internal geometric data, e.g. the bending lamination. Bonahon and Otal
[32] characterize exactly which measured laminations arise as the bending lamination of the
convex core of a geometrically finite hyperbolic 3-manifold whose relative compact core has
relatively incompressible boundary. Lecuire [95] has extended their result to the general case.
Keen and Series, see [85] for example, have done an extensive analysis of the “pleating rays”
(i.e. lines where the support of the bending lamination is constant) in a number of concrete
situations. It is conjectured that the topological type of the convex core and the bending
lamination determines a geometrically finite hyperbolic 3-manifold, but Bonahon-Otal [32]
and Lecuire [95] only establish this for finite-leaved laminations. Series [143] has recently
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established this conjecture for punctured torus groups. For more general surfaces, Bonahon
[30] proved the conjecture for quasifuchsian groups lying in a neighborhood of the set of
Fuchsian groups.

Similarly, it is conjectured that the topological type of the convex core and the conformal
structure on the boundary of the convex core determine a geometrically finite hyperbolic 3-
manifold. It is known that every possible conformal structure arises, but the uniqueness
remains unknown. If the boundary of the convex core has incompressible boundary, then
the existence follows immediately from the continuity of the structure on the conformal
boundary, see Keen-Series [86], and Sullivan’s theorem, see Epstein-Marden [66]. If the
boundary of the convex core is compressible, one may replace the use of Sullivan’s theorem
with the results of Bridgeman-Canary [36]. See Labourie [94] for a generalization of the
existence result.

Scannell and Wolf [141] established that a quasifuchsian hyperbolic 3-manifold is deter-
mined by the conformal structure on one boundary component and the bending lamination
on the associated component of the boundary of the convex core. McMullen [109] had
previously established this fact for quasifuchsian once-punctured torus groups.

Bers [17], Sullivan [149] and Thurston [151] conjectured that every hyperbolic 3-manifold
with finitely generated fundamental group arises as the (algebraic) limit of a sequence of
geometrically finite hyperbolic 3-manifolds. Bromberg [47] and Brock-Bromberg [42] proved
that all hyperbolic 3-manifolds with freely indecomposable fundamental group and no cusps
arise as limits of geometrically finite hyperbolic 3-manifolds.

4.3 Thurston’s Ending Lamination Conjecture

Another subject which is hinted at, although not addressed directly, in chapters 8 and 9,
is Thurston’s Ending Lamination Conjecture, which Thurston first explicitly states in [151].
Thurston conjectured that a hyperbolic 3-manifold is determined by the topological type
of its relative compact core, the conformal structure at infinity of each of its geometrically
finite ends and the ending laminations of its simply degenerate ends. For a discussion of the
background of this conjecture see Minsky [114, 118].

Minsky [113] established Thurston’s Ending Lamination Conjecture for hyperbolic 3-
manifolds with a lower bound on their injectivity radius and freely indecomposable funda-
mental group. Ohshika [127] generalized Minsky’s proof to the setting of topologically tame
hyperbolic 3-manifolds with a lower bound on their injectivity radius. Minsky [115] sub-
sequently established Thurston’s conjecture for punctured torus groups, i.e. weakly type-
preserving representations of the fundamental group of a finite area punctured torus, see
Minsky [115]. Ohshika [125] used results of Thurston [154, 155] to give a complete charac-
terization of which laminations can arise as the ending invariants of a hyperbolic 3-manifold
whose relative compact core has relatively incompressible boundary.

Brock, Canary and Minsky [116, 44] established Thurston’s Ending Lamination Conjec-
ture for hyperbolic 3-manifolds with freely indecomposable fundamental group (and more
generally for hyperbolic 3-manifolds whose relative compact core has relatively incompress-
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ible boundary.) In combination with work of Ohshika [125], this establishes the Bers-Sullivan-
Thurston Density Conjecture for hyperbolic 3-manifolds whose relative compact core has
relatively incompressible boundary. See Minsky [118] for a survey of this work.

Brock, Canary and Minsky have announced a proof of Thurston’s Ending Lamination
Conjecture for topologically tame hyperbolic 3-manifolds. In combination with the recent
resolution of Marden’s Tameness Conjecture, see Agol [2] and Calegari-Gabai [51], this gives
a complete resolution of Thurston’s Ending Lamination Conjecture. One may combine work
of Ohshika [125], Kleineidam-Souto [90] and Lecuire [96] with the resolution of Thurston’s
Ending Lamination Conjecture to give a full proof of the Bers-Sullivan-Thurston Density
Conjecture.

The resolution of Thurston’s Ending Lamination Conjecture gives a complete classifica-
tion of hyperbolic 3-manifolds with finitely generated fundamental group. One might hope
that it would also give a topological parameterization of the space AH(M) of hyperbolic
3-manifolds homotopy equivalent to a fixed compact 3-manifold M . However, both the
topological type (see Anderson-Canary [7]) and the ending invariants themselves (see Brock
[39]) vary discontinuously, so one does not immediately obtain such a parameterization.
Moreover, Holt [78, 79] showed that there are points in the closures of arbitrarily many com-
ponents of the interior of AH(M), i.e. arbitrarily many components can “bump” at a single
point. McMullen [109] and Bromberg-Holt [49] showed that individual components of the
interior of AH(M) often “self-bump,” i.e. there is a point in the closure of the component
such that the intersection of any small enough neighborhood of the point with the compo-
nent is disconnected. Most recently, Bromberg [48] has shown that the space of punctured
torus groups is not locally connected. Thus, any parameterization of AH(M) must be rather
complicated.

To finish on a positive note, the work of Anderson, Canary and McCullough [10] may be
combined with the proof of Thurston’s Ending Lamination Conjecture to give a complete
enumeration of the components of AH(M) whenever M has incompressible boundary. This
enumeration can be expressed entirely in terms of topological data.
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