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Abstract

In this paper we obtain bounds on the total bending of the boundary of
the convex core of a hyperbolic 3-manifold. These bounds will depend on the
geometry of the boundary of the convex hull of the limit set.

1 Introduction

The boundary of the convex core of a hyperbolic 3-manifold is a hyperbolic surface
in its intrinsic metric. This surface is totally geodesic except along a lamination,
called the bending lamination. The bending lamination inherits a transverse measure
which keeps track of how much the surface is bent along the lamination. The length
(or mass) of the bending lamination, regarded as a measured lamination, records the
total bending of the boundary of the convex core. For example, if the boundary of
the convex core is bent by an angle of θ along a single simple closed geodesic of length
L, then the length of the bending lamination is Lθ.

Our main result is an upper bound on the mass of the bending lamination which
depends on a lower bound for the injectivity radius of the boundary of the convex
hull of the limit set. An upper bound on the mass of the bending lamination is also
implicit in the techniques developed by Bonahon and Otal, see Lemma 12 in [5].

If N = H3/Γ is an orientable hyperbolic 3-manifold and Γ is a non-abelian group
of orientation-preserving isometries of H3, then the limit set LΓ of Γ is the smallest
closed non-empty Γ-invariant subset of ∂∞H

3 = Ĉ. The convex core C(N) of N is
simply CH(LΓ)/Γ where CH(LΓ) is the convex hull in H3 of LΓ. Notice that ρ0 is a
lower bound for the injectivity radius of the boundary ∂CH(LΓ) of the convex hull
of the limit set if and only if 2ρ0 is a lower bound for the length of a compressible
curve on the boundary of the convex core (i.e. a closed curve in ∂C(N) which is
null-homotopic in C(N) but not in ∂C(N).)
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Theorem 1: There exist constants S and T such that if N is an orientable hyperbolic
3-manifold with finitely generated, non-abelian fundamental group, βN is its bending
lamination and ρ0 ∈ (0, 1] is a lower bound for the injectivity radius of the boundary
∂CH(LΓ) of the convex hull of the limit set, then

l∂C(N)(βN) ≤ |χ(∂C(N))|(S log(
1

ρ0

) + T )

where l∂C(N)(βN) denotes the length of βN and χ(∂C(N)) denotes the Euler charac-
teristic of the boundary of the convex core.

We also obtain a lower bound for the mass of the bending lamination, in the
case that ∂C(N) has a short compressible curve. This lower bound makes clear
that the dependence on the geometry of the convex hull of the limit set in our first
result cannot be removed and that the form of the estimate cannot be substantially
improved. Also notice that if one passes to a degree d cover of N both the length of
the bending lamination and the Euler characteristic of the boundary of the convex
core multiply by d, while the convex hull of the limit set is the same, so any upper
bound must depend linearly on |χ(∂C(N))|.
Theorem 2: Let N = H3/Γ be an orientable hyperbolic 3-manifold with finitely
generated, non-abelian fundamental group. If ∂CH(LΓ) contains a closed geodesic of
length ρ ≤ 2 sinh−1(1), then

l∂C(N)(βN) ≥ 4πlog

(
4 sinh−1(1)

ρ

)
.

In the case when the boundary of the convex core is incompressible, Proposition
4.2 gives the following stronger result:

Theorem 3: If N is an orientable hyperbolic 3-manifold with finitely generated,
non-abelian fundamental group and ∂C(N) is incompressible in N , then

l∂C(N)(βN) ≤ π3

sinh−1(1)
|χ(∂C(N))|.

In related work, Epstein, Marden and Markovic (see, for example, Theorem 4.2 in
[11]) have studied the possible bending laminations of embedded convex hyperbolic
planes in H3.

Thurston [15] (see also Kourouniotis [13], Johnson-Millson [12] or Epstein-Marden
[10]) studied the operation of obtaining a quasifuchsian group by bending a Fuchsian
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group along a simple closed geodesic, or more generally along a measured lamination.
Theorem 3 may be used to quantify the observation that if this geodesic is “long,”
then one may only bend by a “small” angle.

This paper is based on earlier work of the authors ([6, 7, 9]) which explored the
relationship between the boundary of the convex core and the conformal boundary.
In particular, we make central use of the fact (Lemma 4.3 in [7]) that there is a lower
bound, which depends only on the injectivity radius of its basepoint, on the length
of a geodesic arc in ∂CH(LΓ) whose intersection with the bending lamination is at
least 2π. We will combine this estimate with a Crofton-like formula (Lemma 4.1) for
the length of the bending lamination to prove Theorem 1.

In section 7, we will apply the results of [7] and [9] to obtain analogues of Theorems
1 and 2 which depend on the geometry of the domain of discontinuity Ω(Γ) for Γ’s
action on Ĉ.

2 Background

Let N = H3/Γ be an orientable hyperbolic 3-manifold with non-abelian fundamen-
tal group. Then, Γ acts properly discontinuously on the domain of discontinuity
Ω(Γ) = Ĉ − LΓ. The domain of discontinuity admits a canonical conformally in-
variant hyperbolic metric p(z)|dz| called the Poincaré metric. The quotient surface
∂cN = Ω(Γ)/Γ, called the conformal boundary of N , is then naturally a hyperbolic
surface. The hyperbolic 3-manifold N is said to be analytically finite if ∂cN has finite
area in this metric. Ahlfors’ Finiteness Theorem [1] asserts that N is analytically fi-
nite if Γ is finitely generated. All of our results hold for analytically finite hyperbolic
3-manifolds.

If N is analytically finite then there is always a positive lower bound for the injec-
tivity radius on Ω(Γ). By Lemma 8.1 of [7], a lower bound on the injectivity radius of
Ω(Γ) implies a lower bound on the injectivity radius of ∂CH(LΓ). In particular, if N
is analytically finite then there is a positive lower bound on the injectivity radius of
∂CH(LΓ). The boundary of the convex hull of the limit set is a hyperbolic surface in
its intrinsic metric and is totally geodesic in the complement of a closed union βΓ of
disjoint geodesics, called the bending lamination of CH(LΓ). The bending lamination
βN of the convex core C(N) is simply the projection of βΓ to ∂C(N).

A measured lamination on a hyperbolic surface S consists of a closed subset λ of
S which is the disjoint union of simple geodesics, together with countably additive
invariant (with respect to projection along λ) measures on arcs transverse to λ. The
bending laminations βΓ and βN come equipped with bending measures on arcs trans-
verse to the lamination which record the total bending along the arc. These bending
measures give βΓ and βN the structure of measured laminations. Real multiples of
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simple closed geodesics are dense in the space ML(S) of all measured laminations on
a finite area hyperbolic surface S. Moreover, the length of a simple closed geodesic
and the intersection number of two simple closed geodesics extend naturally to con-
tinuous functions on ML(S) and ML(S)×ML(S) respectively. See Thurston [15] or
Bonahon [4] for fuller discussions of measured lamination spaces and Thurston [15] or
Epstein-Marden [10] for a fuller discussion of convex cores and bending laminations.

3 Local intersection number estimates

In [7] we obtained bounds on the intersection of a transverse geodesic arc with the
bending lamination. In that paper we define a function

F (x) =
x

2
+ sinh−1

 sinh
(
x
2

)
√

1− sinh2
(
x
2

)


and its inverse G(x) = F−1(x). The function F is monotonically increasing and
has domain (0, 2 sinh−1(1)). The function G(x) has domain (0,∞), has asymptotic
behavior G(x) � x as x tends to 0, and G(x) approaches 2 sinh−1(1) as x tends to
∞. Moreover, we define G∞ = 2 sinh−1(1) ≈ 1.76275.

Lemma 3.1 (Lemma 4.3 in [7]) Let N = H3/Γ be an analytically finite hyperbolic
3-manifold such that LΓ is not contained in a round circle. Let α : [0, 1)→ ∂CH(LΓ)
be a geodesic path (in the intrinsic metric on ∂CH(LΓ)) with length l(α). If either

1. l(α) ≤ G(inj∂CH(LΓ)(α(0))), or

2. α([0, 1)) is contained in a simply connected component of ∂CH(LΓ)
and l(α) ≤ G∞,

then
i(α, βΓ) ≤ 2π.

Notice that a geodesic arc α is either transverse to βΓ or contained within βΓ, in
which case we define i(α, βΓ) = 0.

If α : [0, 1) → ∂C(N) is a geodesic in the boundary of the convex core, then
we consider its lift α̃ : [0, 1) → ∂CH(LΓ). If we subdivide this lift into pieces to
which may apply Lemma 3.1, as in the proof of Proposition 5.1 in [7], we obtain the
following corollary.
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Corollary 3.2 Let N be an analytically finite hyperbolic 3-manifold. Let α : [0, 1)→
∂C(N) be a geodesic path with length l(α). If α is contained in an incompressible com-
ponent of ∂C(N), let G = G∞. Otherwise, let ρα be a lower bound on the injectivity
radius of ∂CH(LΓ) at every point in α̃([0, 1)) and let G = G(ρα). Then

i(α, βN) ≤ 2π

[
l(α)

G

]+

where [x]+ is the least integer greater than or equal to x.

We have so far avoided, for simplicity of exposition, discussing the case that the
limit set is contained in a round circle. In this case, the convex core is a totally
geodesic surface with geodesic boundary. It is natural to consider the boundary of
the convex core to be the double of the convex core (where one considers the two
sheets of the convex core to have opposite normal vectors.) With this convention, the
boundary of the convex core is still a finite area hyperbolic surface with boundary
if our manifold is analytically finite. One may easily see, just as in the proof of
Proposition 5.1 in [7], that Corollary 3.2 remains valid in this situation.

4 A length formula

In order to prove Theorem 1 we first represent the length of the bending lamination
as the integral of the intersection number over all geodesics of a fixed length. Our
formula is similar to the Crofton formula for the area of a region in the plane. See
also Proposition 14 in Bonahon [3].

Let S be a hyperbolic surface. If v ∈ T 1(S) is a unit tangent vector then let
ᾱ(v) : (0,∞) → S be the unit speed geodesic ray originating at the basepoint of v
and in the direction of v. Let αL(v) = ᾱ|(0,L) be the open geodesic segment of length
L emanating from the basepoint of v in the direction v.

Lemma 4.1 Let β be a measured lamination on a finite area hyperbolic surface S.
Then

lS(β) =
1

4L

∫
T 1(S)

i(αL(v), β)dΩ(v)

where dΩ is the volume form on T1(S).

Proof of 4.1: We define a function FL on the space ML(S) of measured lamina-
tions by setting

FL(β) =
1

4L

∫
T1(S)

i(αL(v), β)dΩ(v).
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As FL and lS are both continuous on ML(S) and real multiples of closed geodesics
are dense in ML(S), it suffices to prove that FL(β) = lS(β) for real multiples of closed
geodesics. Since FL(kβ) = kFL(β) and lS(kβ) = klS(β) for all β ∈ ML(S) and all
k > 0, we may assume that β is a single closed geodesic with unit transverse measure.

Let C be the hyperbolic cylinder covering S corresponding to β and let β̃ be the
lift of β to C. If v ∈ T 1(S), then i(αL(v), β) is precisely the number of lifts of αL(v)
to C which intersect β̃. Let

U =
{
v ∈ T 1(C)| αL(v) intersects β̃

}
.

Lifting the integral to C we see that∫
T 1(S)

i(αL(v), β) dΩ(v) =
∫
U
dΩ(v).

The metric on C is given by

ds2 = dx2 + cosh2 x dl2,

where x is the perpendicular distance to the core geodesic and l is a length coordinate
along the core geodesic, see Example 1.3.2 in Buser [8]. Moreover, the hyperbolic area
element is given by dA = coshx dx dl.

Let
N = {c ∈ C|0 < d(β̃, c) < L}.

If v ∈ U then the basepoint p of v is in N . If p ∈ N , let Up denote the cone of
tangent vectors in U ∩ T 1

p (C). Let wp denote the unit vector tangent to the geodesic

ray through p which is perpendicular to β̃. Then Up consists of all vectors in T 1
p (C)

which make an angle of at most θ(p) with wp, where

θ(p) = cos−1

(
tanhx

tanhL

)
.

Therefore, ∫
U
dΩ(v) =

∫
N

2 cos−1

(
tanhx

tanhL

)
dA.

Integrating over the core of the annulus we obtain∫
N

2 cos−1

(
tanhx

tanhL

)
dA = 2lS(β)

∫ L

−L
cos−1

(
tanhx

tanhL

)
coshx dx

= 4lS(β)
∫ L

0
cos−1

(
tanhx

tanhL

)
coshx dx.
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Therefore,

FL(β) =
lS(β)

L

∫ L

0
cos−1

(
tanhx

tanhL

)
coshx dx.

Substituting u = tanhx
tanhL

we obtain

FL(β) =
lS(β) tanhL

L

∫ 1

0

cos−1(u)

(1− u2 tanh2 L)3/2
du.

We may then integrate by parts and evaluate the result to check that FL(β) has the
claimed form.

4.1

We now prove a version of Theorem 1, which is a direct application of Corollary
3.2 and Lemma 4.1. Recall that G(x) � x as x tends to 0. If ρ0 ≥ 1, then this
estimate is better than the one provided by Theorem 1, but it is much weaker as
ρ0 approaches 0, since the upper bound provided by Proposition 4.2 is O( |χ(∂C(N))|

ρ0
)

while the estimate provided by Theorem 1 is O(|χ(∂C(N))| log
(

1
ρ0

)
). Notice that

Theorem 3 is case (2) of Proposition 4.2.

Proposition 4.2 Let N = H3/Γ be an analytically finite hyperbolic 3-manifold with
bending lamination βN .

1. If ρ0 > 0 is a lower bound for the injectivity radius of ∂CH(LΓ), then

l∂C(N)(βN) ≤ 2π3

G(ρ0)
|χ(∂C(N))|

2. If ∂C(N) is incompressible in N , then

l∂C(N)(βN) ≤ π3

sinh−1(1)
|χ(∂C(N))|

Proof of 4.2: If ∂C(N) is incompressible, let G = G∞ = 2 sinh−1(1). If not, we
let G = G(ρ0). Corollary 3.2 implies that, for all v ∈ T 1(∂C(N)),

i(αL(v), βN) ≤ 2π
[
L

G

]+

≤ 2π
(
L

G
+ 1

)
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Therefore, by Lemma 4.1,

l∂C(N)(βN) ≤ π

2L

∫
T 1(∂C(N))

(
L

G
+ 1

)
dΩ

≤ vol(T 1(∂C(N)))
(
π

2G
+

π

2L

)
.

The volume of the unit tangent bundle T 1(∂C(N)) is 4π2|χ(∂C(N))|. Thus, by
letting L tend to infinity, we see that

l∂C(N)(βN) ≤ 4π2|χ(∂C(N))|
(
π

2G

)
=

2π3

G
|χ(∂C(N))|.

4.2

5 Proof of Theorem 1

To obtain the sharper bound on the length of the bending lamination given by Theo-
rem 1, we must decompose ∂C(N) using the Collar Lemma. We will use the following
explicit version of the Collar Lemma, which combines Theorem 4.4.6 in Buser [8], and
Lemma 7 of Yamada [16], which guarantees that curves of length at most 2 sinh−1(1)
are simple.

Theorem 5.1 (Collar Lemma) Let S be a finite area hyperbolic surface of genus g
with n punctures. Let {ν1, . . . , νk} be the collection of all primitive closed geodesics
on S of length at most 2 sinh−1(1). Then

1. k ≤ 3g − 3 + n,

2. {ν1, . . . , νk} is a disjoint collection of simple closed geodesics,

3. there exists a disjoint collection {B1, . . . , Bk} of metric collar neighborhoods of
{ν1, . . . , νk} such that if νi has length lS(νi), then Bi is isometric to the quotient
of [−w(νi), w(νi)]× [0, lS(νi)] where one identifies (t, 0) with (t, lS(νi)) for all t
with the metric

ds2 = dx2 + cosh2 x dl2

where w(νi) = sinh−1(1/ sinh(1
2
lS(νi))).

4. if x ∈ Bi, then sinh (injS(x)) = sinh
(

1
2
lS(νi)

)
cosh (d(x, νi)), and
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5. if there is a curve through x ∈ S homotopic to νi of length at most 2 sinh−1(1),
then x ∈ Bi.

We now restate Theorem 1 for analytically finite hyperbolic 3-manifolds.

Theorem 1: There exist constants S and T such that if N = H3/Γ is an analytically
finite hyperbolic 3-manifold, βN is its bending lamination and ρ0 ∈ (0, 1] is a lower
bound for the injectivity radius of the boundary ∂CH(LΓ) of the convex hull of the
limit set, then

l∂C(N)(βN) ≤ |χ(∂C(N))|(S log(
1

ρ0

) + T )

where l∂C(N)(βN) denotes the length of βN and χ(∂C(N)) denotes the Euler charac-
teristic of the boundary of the convex core.

Proof of Theorem 1: As the proof is rather technical, we will begin with a brief
outline. We first decompose ∂C(N) into the set X of collars of short compressible
geodesics and its complement Y . We choose ε = sinh−1(1) and L = G(ε). By Lemma
4.1

l∂C(N)(βN) =
1

4L

∫
T 1(S)

i(αL(v), βN)dΩ(v)

=
1

4L

(∫
T 1(X)

i(αL(v), βN)dΩ(v) +
∫
T 1(Y )

i(αL(v), βN)dΩ(v)

)
.

Corollary 3.1 implies that if v ∈ T 1(Y ), then i(αL(v), βN) ≤ 2π, so, just as in the
proof of Proposition 4.2,∫

T 1(Y )
i(αG(ε)(v), βN)dΩ ≤ 2πvol(T 1(Y )).

To handle the integral over T 1(X), we use Corollary 3.2 which implies that

i(αL(v), βN) ≤ 2π

[
L

G(r(v))

]+

.

where r(v) is a lower bound on the injectivity radius of ∂C(N) at any point on αL(v).
If B is a component of X with core geodesic ν and v ∈ T 1(B), we observe that

r(v) ≥ sinh−1

(
1

eG(ε)
sinh

(
lS(ν)

2

)
cosh d(v)

)

where d(v) is the distance from the basepoint of v to ν. Combining the resulting
bounds and integrating, we obtain an upper bound on the integral of i(αL(v), βN)
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over T 1(B) in terms of the length of ν. Summing the resulting bounds over T 1(Y )
and all components of T 1(X) gives our result.

Let {ν1, . . . , νk} be the primitive closed geodesics of length at most 2 sinh−1(1) on
∂C(N). Let {B1, . . . , Bk} be the collar neighborhoods of {ν1, . . . , νk} provided by the
Collar Lemma.

Let π : ∂CH(LΓ)→ ∂C(N) be the covering map from the boundary of the convex
hull to the boundary of the convex core. Let ε = sinh−1(1) and let

Ṽ =
{
x ∈ ∂CH(LΓ)| inj∂CH(LΓ)(x) ≤ ε

}
.

If x ∈ Ṽ , then x lies on a homotopically non-trivial curve nx of length at most 2ε.
Since there is a lower bound on the injectivity radius of ∂CH(LΓ), nx is homotopic
to a closed geodesic ν̃x of length at most 2ε. Then ν̃x projects to (a multiple of)
one of the curves {ν1, . . . , νk}, so π(x) lies in some collar neighborhood Bi and x lies
in a lift of Bi to ∂CH(LΓ). Let X denote the union of all collar neighborhoods Bi

which contain some component of π(Ṽ ). Let Y = ∂C(N) − X. We may renumber
{B1, . . . , Bk}, so that X = ∪mi=1Bi for some m ≤ k. Notice that if y ∈ π−1(Y ), then
inj∂CH(LΓ)(y) > ε.

We choose L = G(ε) in the formula for l∂C(N)(βN) in Lemma 4.1. We split the
integral into two integrals using the decomposition, so that

l∂C(N)(βN) =
1

4G(ε)

(∫
T 1(X)

i(αG(ε)(v), βN)dΩ +
∫
T 1(Y )

i(αG(ε)(v), βN)dΩ

)

We first estimate the portion of the integral with domain T 1(Y ). If v has basepoint
in Y and α̃G(ε)(v) is a lift of αG(ε)(v) to ∂CH(LΓ), then α̃G(ε)(v) originates at a point
ỹ such that inj∂CH(LΓ)(ỹ) > ε and has length G(ε) < G(inj∂CH(LΓ)(ỹ)). Therefore,

Lemma 3.1 implies that i(α̃G(ε)(v), βΓ) ≤ 2π and hence that i(αG(ε)(v), βN) ≤ 2π.
Therefore ∫

T 1(Y )
i(αG(ε)(v), βN)dΩ ≤

∫
T 1(Y )

2πdΩ ≤ 2πvol(T 1(Y )) (1)

We now estimate the portion of the integral with domain T 1(X). If X is empty,
then we are already done. Otherwise, let Bi be a component of X. Let v ∈ T1(Bi)
and di(v) be the distance of the basepoint bv of v from νi.

We now derive a lower bound for the injectivity radius along the geodesic αG(ε)(v)
as a function of di(v). One may readily check that if S is a hyperbolic surface,
w, z ∈ S and δ = dS(z, w), then sinh(injS(w)) ≥ 1

eδ
sinh(injS(z)). (One may derive

this, for example, from Theorem 7.35.1 in Beardon [2].) Since, by the Collar Lemma,
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sinh(injS(bv)) = sinh
(

1
2
lS(νi)

)
cosh (di(v)), we see that if x is any point on αG(ε)(v),

then

sinh
(
inj∂C(N)(x)

)
≥ 1

eG(ε)
sinh

(
lS(νi)

2

)
cosh (di(v)) .

We define Ri : [0, w(νi)]→ R by

Ri(t) = sinh−1

(
1

eG(ε)
sinh

(
lS(νi)

2

)
cosh t

)
.

The injectivity radius at every point of αG(ε)(v) is bounded from below by Ri(di(v)),
so if α̃G(ε)(v) is a lift of αG(ε)(v) to ∂CH(LΓ), the injectivity radius of ∂CH(LΓ) at
every point of α̃G(ε)(v) is also bounded from below by Ri(di(v)). Thus, by Corollary
3.2,

i(αG(ε)(v), βN) ≤ 2π

[
G(ε)

G(Ri(di(v)))

]+

.

So,

∫
T 1(Bi)

i(αG(ε)(v), βN)dΩ ≤
∫
T 1(Bi)

2π

[
G(ε)

G(Ri(di(v)))

]+

dΩ

≤ 2πG(ε)
∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ + 2πvol(T 1(Bi)) (2)

Since the integral depends only on di(v),

∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ 2π

∫ lS(νi)

0

∫ ω(νi)

−ω(νi)

1

G(Ri(|x|))
coshx dxdl

where x and l are the coordinates on Bi provided by the Collar Lemma.
As Ri(|x|) < ε on Bi, we need only consider G on the domain [0, ε]. Since t/G(t)

tends to 1 as t tends to 0 and is continuous on (0, ε], there exists a constant K1 > 0
such that t/G(t) ≤ K1 for all t ∈ (0, ε]. Therefore we have

∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ 2π

∫ lS(νi)

0

∫ ω(νi)

−ω(νi)

K1 coshx

Ri(|x|)
dxdl.

Integrating over the core curve and making use of the symmetry about the core
geodesic, we see that∫

T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ 4πK1lS(νi)

∫ w(νi)

0

coshx

Ri(x)
dx. (3)
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Since sinhx/x is increasing on (0,∞), sinhx/x ≤ K2 = sinh ε/ε for all x ∈ (0, ε].
Thus, for all x ∈ (0, w(νi)),

1

Ri(x)
≤ K2

sinhRi(x)
.

Therefore,

∫ w(νi)

0

coshx

Ri(x)
dx ≤

∫ w(νi)

0

K2e
G(ε)

sinh(l(νi)/2)
dx ≤ w(νi)K2e

G(ε)

sinh(l(νi)/2)
. (4)

Combining inequalities (3) and (4) we see that

∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ 4πK1l(νi)w(νi)K2e

G(ε)

sinh(l(νi)/2)
.

Since sinh(x) ≥ x, we see that∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ 8πK1K2e

G(ε)w(νi).

Applying the fact that sinh−1(x) = log(x+
√
x2 + 1) we see that

w(νi) = sinh−1

 1

sinh( l(νi)
2

)

 = log

(
1 + cosh(l(νi)/2)

sinh(l(νi)/2)

)
.

So,

w(νi) ≤ log

(
1 + cosh

(
l(νi)

2

))
+log

(
1

sinh(l(νi)/2)

)
≤ log(1+cosh ε)+log

(
2

l(νi)

)
.

Thus, ∫
T 1(Bi)

1

G(Ri(di(v)))
dΩ ≤ S0 log

(
2

l(νi)

)
+ T0 (5)

where S0 = 8πK1K2e
G(ε) and T0 = S0 log(1 + cosh ε).

As X = ∪mi=1Bi, we may combine inequalities (2) and (5) to obtain

∫
T 1(X)

i(αG(ε)(v), βN)dΩ =
m∑
i=1

∫
T 1(Bi)

i(αG(ε)(v), βN)dΩ

≤
m∑
i=1

2πG(ε)

(
S0 log

(
2

l(νi)

)
+ T0

)
+ 2πvol(T 1(Bi))
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Since m is bounded above by the number of disjoint geodesics in ∂C(N),

m ≤ 3

2
|χ(∂C(N))|.

Moreover, as ρ0 is a lower bound for the injectivity radius of ∂CH(LΓ), ρ0 ≤ l(νi)/2
for all i. Therefore,

∫
T 1(X)

i(αG(ε)(v), βN)dΩ ≤ 3πG(ε)|χ(∂C(N))|
(
S0 log

(
1

ρ0

)
+ T0

)
+ 2πvol(T 1(X)). (6)

Combining the estimates (1) and (6) for the integral over T 1(X) and T 1(Y ), we
see that∫
T 1(∂C(N))

i(αG(ε)(v), βN)dΩ =
∫
T 1(X)

i(αG(ε)(v), βN)dΩ +
∫
T 1(Y )

i(αG(ε)(v), βN)dΩ

≤ 3πG(ε)|χ(∂C(N))|
(
S0 log

(
1

ρ0

)
+ T0

)
+2πvol(T 1(X)) + 2πvol(T 1(Y ))

≤ 3πG(ε)|χ(∂C(N))|
(
S0 log

(
1

ρ0

)
+ T0

)
+ 2πvol(T 1(∂C(N)))

Recalling that

l∂C(N)(βN) =
1

4G(ε)

∫
T 1(∂C(N))

i(αG(ε)(v), βN)dΩ

and that vol(T 1(∂C(N))) = 4π2|χ(∂C(N))|, we see that this implies that

l∂C(N)(βN) ≤ |χ(∂C(N))|(S log(
1

ρ0

) + T )

where S = 3πS0

4
and T = 3πT0

4
+ 2π3

G(ε)
.

Theorem 1

Remark: One may evaluate the constants used in the proof to check that ε =
sinh−1(1) ≈ .8814, G(ε) = F−1(ε) ≈ .8387, K1 = ε

G(ε)
≈ 1.0509 (since t/G(t) is

increasing), and K2 = sinh ε
ε
≈ 1.1346. Therefore, S ≤ 164 and T ≤ 218.
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6 A lower bound on the length of the bending lamination

If the boundary of the convex core contains a short compressible curve we obtain a
lower bound on the length of the bending lamination which has the same asymptotic
form as the upper bound obtained in Theorem 1. Notice that if N is Fuchsian, then
the bending lamination has length zero, so no general lower bound is possible.

Theorem 2: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold. If
∂CH(LΓ) contains a closed geodesic of length ρ ≤ 2 sinh−1(1), then

l∂C(N)(βN) ≥ 4π log

(
4 sinh−1(1)

ρ

)
.

Proof of Theorem 2: Let α̃ be the closed geodesic of length ρ on ∂CH(LΓ) and
let ε = sinh−1(1). Let α be the projection of α̃ to ∂C(N). It follows from the Collar
Lemma that α is a multiple of a simple closed geodesic ν. Let B be the collar of ν
provided by the Collar Lemma. The collar B has width w ≥ sinh−1(1/ sinh(ρ/2)).
Since sinh−1(x) = log(x+

√
x2 + 1),

w ≥ log

(
1 + cosh(ρ/2)

sinh(ρ/2)

)
≥ log

(
2

sinh(ρ/2)

)
.

Since sinhx/x is an increasing function on (0,∞)

sinh
(
ρ

2

)
≤
(

sinh ε

ε

)
ρ

2
=

ρ

2ε
,

so

w ≥ log

(
4ε

ρ

)
.

Any leaf of βN ∩ B which intersects α, intersects it exactly once and runs from
one boundary component of B to the other and has length at least 2w. Proposition
4 in Lecuire [14], see also Proposition 7 in Bonahon-Otal [5] for the case when βN is
finite-leaved, implies that i(α, βN) > 2π. Thus, the total (measured) length of βN ∩B
is at least 2π(2w) = 4πw. Therefore,

l∂C(N)(βN) ≥ 4π log

(
4ε

ρ

)

as claimed.

Theorem 2
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7 Bounds which depend on the geometry of Ω(Γ)

We observed in [7] that a lower bound on the injectivity radius of the boundary
of the convex hull implies a lower bound on the injectivity radius of the domain of
discontinuity, while in [9] we saw that a short geodesic in the domain of discontinuity
implies the existence of an even shorter geodesic in the boundary of the convex hull.
Therefore, we may give versions of Theorems 1 and 2 where the constants depend on
the geometry of the domain of discontinuity.

If N = H3/Γ is an analytically finite hyperbolic 3-manifold, then Lemma 8.1
of [7] implies that if r0 is a lower bound for the injectivity radius of the domain of
discontinuity Ω(Γ) of Γ, then

e−me
−π2

2r0

2

is a lower bound for the injectivity radius of ∂CH(LΓ) where m = cosh−1(e2).
Therefore, we obtain the following version of Theorem 1, where S ′ = π2S

2
and

T ′ = S log 2 + Sm+ T .

Theorem 1′: There exist constants S and T such that if N is an analytically finite
hyperbolic 3-manifold, βN is it bending lamination, and r0 is a lower bound for the
injectivity radius of the domain of discontinuity Ω(Γ), then

l∂C(N)(βN) ≤ |χ(∂C(N))|
(
S ′

r0

+ T ′
)

where l∂C(N)(βN) denotes the length of βN and χ(∂C(N)) denotes the Euler charac-
teristic of the boundary of the convex core.

Theorem 5.1 of [9] implies that if Ω(Γ) contains a closed geodesic of length r ≤ 1,
then ∂CH(LΓ) contains a closed geodesic of length at most

4πe(.502)π

e
π2
√
er

≤ .153 r.

Thus, we obtain the following version of Theorem 2 where P = 4π3
√
e

and

Q = 4π log
(

4πe(.502)π

sinh−1(1)

)
.

Theorem 2′: There exist postive constants P and Q such that if N = H3/Γ is an
analytically finite hyperbolic 3-manifold, Ω(Γ) contains a closed geodesic of length
r ≤ 1, then

l∂C(N)(βN) ≥ P

r
−Q.
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[13] C. Kourouniotis, “Deformations of hyperbolic structures,” Math. Proc. Camb. Phil. Soc.
98(1985), 247–261.

[14] C. Lecuire, “Plissage des variétés hyperboliques de dimension 3,” preprint.

[15] W.P. Thurston, The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton Univer-
sity, 1979.

[16] A. Yamada, “On Marden’s universal constant of Fuchsian groups II,” J. Analyse Math.
41(1982), 234–248.


