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1 Introduction

In this paper we will discuss a collection of theorems whose proofs revolve
around understanding the way in which hyperbolic 3-manifolds cover one an-
other. We will emphasize the interplay between the topology and the geometry.
We will also state a number of conjectures about the geometry, topology and
group theory of hyperbolic 3-manifolds and discuss the relationships between
these conjectures. The main conjecture was first posed as a question by Al
Marden [14].

Main Conjecture: If N is a hyperbolic 3-manifold with finitely generated
fundamental group, then N 1is topologically tame, i.e. homeomorphic to the
interior of a compact 3-manifold.

The best partial result in the direction of the main conjecture is due to
Francis Bonahon. The main conjecture and Bonahon’s theorem serve as some
justification of the fact that we will often restrict to the setting of topologically
tame hyperbolic 3-manifolds

Theorem 1.1 (Bonahon [5]) If N is a hyperbolic 3-manifold with finitely gen-
erated, freely indecomposable fundamental group, then N is topologically tame.

For simplicity we will assume throughout this paper that our hyperbolic
3-manifolds have no cusps, i.e. that every homotopically non-trivial closed
curve is homotopic to a closed geodesic. All of the theorems we state will
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be true without this assumption, at least in some form, but the supporting
definitions would have to change. For example a hyperbolic manifold with
cusps is geometrically finite if it has finitely generated fundamental group and
its convex core has finite volume.

We will also assume, again for simplicity of exposition, that all our 3-
manifolds are orientable.

2 Geometrically finite hyperbolic 3-manifolds

Let N = H?/T" be a hyperbolic 3-manifold with finitely generated fundamental
group. Its convex core C'(IV) is the smallest convex submanifold such that the
inclusion map is a homotopy equivalence. Explicitly, C'(N) is the quotient by
' of the convex hull CH(Lr) of I'’s limit set. Ahlfors’ finiteness theorem [1],
together with an observation of Thurston (see Epstein-Marden [10]), states
that OC'(N) is a finite collection of closed hyperbolic surfaces. If R is a com-
ponent of N — C(N) then R is homeomorphic to S x (0, 00) and its metric is
quasi-isometric to cosh?tds? + dt* where ds% is a hyperbolic metric on S and
t is the real coordinate.

N is said to be geometrically finite if C(N) is compact. We see immediately
that N is topologically tame if it is geometrically finite. If N = H3/T is
geometrically finite then we will call I a geometrically finite Kleinian group.

Theorem 2.1 (Thurston) If N = If/F is a geometrically finite hyperbolic
g-manifold with infinite volume and N 1is a cover of N with finitely generated
fundamental group, then N is also geometrically finite.

Proof of 2.1: Notice that we may represent N as H? /f where T' C T.
Since C'(N) is compact there exist a constant D such that if x € C'(N), then
d(xz,0C(N)) < D. When we lift to the universal cover, this implies that if
i € CH(Ly), then d(#,dCH(Ly)) < D. Now, since I C T, we see that
Lz C Lr and hence that CH(Lz) C CH(Lyp). Therefore, if # € CH(Lg), then

— —~

d(x,0CH(Lz)) < D, which implies that if z € C(N), then d(x,0C(N)) < D.

Then, since dC(N) is compact, C(N) is compact.
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Thurston’s geometrization theorem (see Morgan [17]) asserts that if M
is a compact, atoroidal, irreducible 3-manifold with a non-toroidal boundary
component, then the interior of M is homeomorphic to an infinite volume
geometrically finite hyperbolic 3-manifold. So one obtains a strong topological
theorem from this simple geometric argument.

Theorem 2.2 (Thurston) Let M be a compact, atoroidal, irreducible 3-manifold
with a non-toroidal boundary component. Then every cover M of M with
finitely generated fundamental group has a manifold compactification.

Notice that any infinite volume topologically tame hyperbolic 3-manifold
is homeomorphic to the interior of a compact, atoroidal irreducible 3-manifold
with a non-toroidal boundary component. So we can now turn the argument
around and obtain new information about covers of any infinite volume topo-
logically tame hyperbolic 3-manifold.

Corollary 2.3 ([/6]) If N is an infinite volume topologically tame hyperbolic
g-manifold and N is a cover of N with finitely generated fundamental group,
then N 1is also topologically tame.

Corollary 2.3 should really be regarded as a geometric consequence of the
topological theorem 2.2, as topological tameness has many geometric and an-
alytic consequences, see [6] and [7].

Remarks: Theorem 2.1 also holds for geometrically finite hyperbolic 3-manifolds
with cusps (see proposition 7.1 in Morgan [17].) If M is a compact, atoroidal,
irreducible 3-manifold with a toroidal boundary component, then the geo-
metrically finite hyperbolic structure on M produced by the geometrization
theorem, necessarily, has a cusp. Thus to obtain a complete proof of Theorem
2.2, one must use the more general version of theorem 2.1. Similarly, one must
note that theorem 3.1 holds for geometrically finite hyperbolic 3-manifolds
with cusps, in order to derive the complete version of theorem 3.2.

3 The finitely generated intersection property

A group G is said to have the finitely generated intersection property if when-
ever H and H’ are finitely generated subgroups of G, then H N H' is finitely
generated.
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Theorem 2.1 assures us that if we wish to establish the finitely generated
intersection property for a geometrically finite Kleinian group I' whose asso-
ciated manifold N = H?/T has infinite volume, then we need only consider
intersections of geometrically finite subgroups.

Theorem 3.1 (Susskind [23]) Let N = H3/T be a hyperbolic 3-manifold and
letT'y and I'y be geometrically finite subgroups of I, then I'1NI'y is geometrically
finite.

One may combine theorem 3.1 with Thurston’s geometrization theorem
and theorem 2.1 to obtain a theorem of Hempel:

Theorem 3.2 (Hempel [12]) Let M be a compact, atoroidal, irreducible 3-
manifold with a non-toroidal boundary component. Then i (M) has the finitely
generated intersection property.

Again, since any infinite volume hyperbolic 3-manifold with finitely gen-
erated fundamental group is homotopy equivalent to a compact, atoroidal,
irreducible 3-manifold with a non-toroidal boundary component, we derive a
geometric analogue of theorem 3.2.

Theorem 3.3 (Anderson [2]) If N = H?/T is an infinite volume hyperbolic
3-manifold, then I' has the finitely generated intersection property.

Notice that the derivation of theorems 3.2 and 3.3 from theorem 3.1 fol-
lowed the same pattern as in section 2. This pattern will reoccur in section
6.

The method of proof of theorem 3.1 involves developing information about
the limit set of I'y N T'y. (The limit set of a Kleinian group I' is the smallest
closed T-invariant subset of the sphere at infinity for H?  see Maskit [16].)
Another consequence of this analysis has a particularly nice statement when
N has no cusps.

Theorem 3.4 (Susskind [23]) Let N = H?/T be a hyperbolic 3-manifold with
no cusps and let I'y and T'y be geometrically finite subgroups of I, then

L[‘lmp2 = LFl N LFQ.
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Historical Remarks: Greenberg [11] proved theorems 3.1 and 3.4 for hyper-
bolic surfaces, Maskit [15] proved them for component subgroups of a finitely
generated Kleinian group, and Susskind and Swarup [24] proved them for
hyperbolic n-manifolds. Hempel [12] proved a portion of theorem 3.1 inde-
pendently in establishing theorem 3.2. One may apply Selberg’s lemma to see
that theorem 3.3 holds for hyperbolic 3-orbifolds (see Anderson [2].).

Anderson [3] further proved that if " is a Kleinian group without parabolic
elements whose limit set is not the entire sphere, I'; is any finitely generated
subgroup and I's is any geometrically finite subgroup, then I'y N I'y is geomet-
rically finite and Lp,qr, = Lr, N Lr,.

Soma has recently claimed (in a footnote to [22]) that if I'; and I'y are
topologically tame subgroups of a Kleinian group I" (which has no parabolic
elements), then Lr,nr, = Lr, N Lr,. (See also Anderson [4].)

4 Geometrically Infinite Hyperbolic 3-manifolds

Let N be a topologically tame, infinite volume hyperbolic 3-manifold which
is geometrically infinite, i.e. not geometrically finite. One might naturally
wonder which covers of N are geometrically finite and which are geometrically
infinite.

Before we answer this question, we must introduce some terminology. An
end E of a hyperbolic 3-manifold is said to be geometrically finite if it has a
neighborhood which does not intersect the convex core. Otherwise, it is said
to be geometrically infinite. Notice that a hyperbolic 3-manifold with finitely
generated fundamental group is geometrically finite if and only if all its ends
are geometrically finite. The following theorem generalizes work of Thurston

[25].

Covering Theorem: ([8]) Let N be a topologically tame hyperbolic 3-manifold
which covers another hyperbolic 3-manifold N by a local isometry p: N — N.
If E is a geometrically infinite end of N then either

a) E has a netghborhood U such that p is finite-to-one on U, or

b) N has finite volume and has a finite cover N" which fibers over the circle
such that if Ng denotes the cover of N’ associated to the fiber subgroup then
N s finitely covered by Ng. Moreover, if N # Ng, then N is homeomorphic
to the interior of a twisted I-bundle which is doubly covered by Ng.
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The main tool in the proof of the covering theorem is a rough description
of the geometry of geometrically infinite ends of topologically tame hyperbolic
3-manifolds. We recall that a simplicial hyperbolic surfaceisamap f: S — N
from a surface S into a hyperbolic 3-manifold N such that there exists a tri-
angulation T' of S, such that f maps each face of T into a non-degenerate,
totally geodesic triangle in N. Moreover, the sum of the angles of these trian-
gles about each vertex must be at least 2m. The key point is that the intrinsic
geometry of f(.S) has curvature < —1.

The Filling Theorem: ([8]) Let N be a topologically tame hyperbolic 5-
manifold and let E be a geometrically infinite end of N. Then E has a neigh-
borhood U homeomorphic to S x [0,00) (where S is a closed surface), such that
every point in some subneighborhood U’ of U is in the image of some simpli-
cial hyperbolic surface f, : S — U which is homotopic (within U) to S x {0} .
Moreover, given any A > 0 we may choose a subneighborhood U4 such that if

x € U4 and 7y is any compressible curve on S, then f,(y) has length at least
A.

We can now give a short outline of the derivation of the covering theorem
from the filling theorem. If the covering p : N — N is infinite-to-one on a
geometrically infinite end E , then some point in N is in the image of an infinite
sequence of simplicial hyperbolic surfaces in N. Moreover, any two of these
surfaces bound an immersed S x I. Since there is a limit to how congested the
geometry can get locally we see that there really must be only finitely many
of these surfaces up to local homotopy. We may then construct a map of a
3-manifold @) which fibers over the circle into N such that i, : m(Q) — 7 (V)
is injective, which allows us to conclude that possibility (b) occurs.

One may now use the covering theorem to give a topological characteri-
zation of which covers of a topologically tame hyperbolic 3-manifold N are
geometrically finite. We notice that the covering theorem is only useful in
characterizing which covers of N are geometrically finite because we know
(theorem 2.3) that every cover of N with finitely generated fundamental group
is topologically tame.

Corollary 4.1 ([8]) Let N = H?/T' be an infinite volume topologically tame
hyperbolic 3-manifold. Then sz s a finitely generated subgroup of I' either
a) N H3/F is geometrically finite, or
b) N has a geometrically znﬁmte end E such that P N — N is finite-to-
one on some neighborhood U ofE
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If E is a geometrically infinite end of N with a neighborhood homeomorphic
to S x [0,00), then we will call the image, under the homomorphism induced
by the inclusion map, of 7 (S) into m () a geometrically infinite (mazimal)
peripheral subgroup. Notice that if N is topologically tame, then it has only
finitely many geometrically infinite (maximal) peripheral subgroups (up to
conjugacy). We may now give a group-theoretic characterization of which
covers are geometrically finite.

Corollary 4.2 (/8]) Let N = H?/T be an infinite volume topologically tame
hyperbolic 3-manifold. Then sz‘ 15 a finitely generated subgroup of I' either
a) N = Hg/f 18 geometrically finite, or
b) T contains a (conjugate of a) finite index subgroup of a geometrically
infinite (mazximal) peripheral subgroup.

One, nearly immediate, corollary of the filling theorem is:

Corollary 4.3 ([8]) If N is a topologically tame hyperbolic 3-manifold, then
there exists K such that injn(z) < K for all points x € C(N).

Curt McMullen has proposed the following related conjecture:

Conjecture A: (McMullen) Given an integer n, there exists K, such that if
N is a hyperbolic 3-manifold such that w (N) is generated by < n elements,
than C(N) contains no embedded ball of radius > K,.

Historical Remarks: Bill Thurston [25] proved the covering theorem for
geometrically tame hyperbolic 3-manifolds with freely indecomposable funda-
mental group. Francis Bonahon [5] proved that all hyperbolic 3-manifolds with
finitely generated freely indecomposable fundamental group are both topolog-
ically and geometrically tame. Combining these two results it would have
been possible to prove analogues of corollaries 4.1 and 4.2 for covers of N with
freely indecomposable fundamental groups. Canary [6] used Bonahon’s work
[5] to prove that all topologically tame hyperbolic 3-manifolds are geometri-
cally tame. Scott and Swarup [19] previously proved corollary 4.2 for the fiber
subgroups of 3-manifolds which fiber over the circle.
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5 Closed hyperbolic 3-manifolds

The main barrier to extending many of the results in the previous section
to closed hyperbolic 3-manifolds and their covers is the following conjecture
which is a special case of the main conjecture.

Conjecture B: (Simon [18]) If N is a closed hyperbolic 3-manifold and N is
a cover of N with finitely generated fundamental group, then N is topologically
tame.

One, very partial, result in this direction is the following:

Proposition 5.1 (/8]) Let N = H3/T be a closed hyperbolic 3-manifold. If
[ isa ﬁnﬁtely generated group in the kernel of a surjection p : I' — Z, then
N = H3/T is topologically tame.

Let N = H?/T be a closed hyperbolic 3-manifold and N = H3 / T be a
topologically tame cover of N. Then the covering theorem guarantees that N
is geometrically finite unless [ contains a virtual fiber subgroup with index at
most two. (A subgroup [ of T is said to be a virtual fiber subgroup if there
exists a finite index subgroup I of " such that N’ = H3/T" fibers over the
circle and T corresponds to the fiber subgroup. See Soma [20] for a discussion
of virtual fiber subgroups.) The following conjecture is thus equivalent to
conjecture B.

Conjecture C: If N = H3/T is a closed hyperbolic 3-manifold and L isa
finitely generated subgroup of I', then T is either geometrically finite or contains
a virtual fiber subgroup of I' of index at most two.

One may apply proposition 5.1 to obtain the following, very partial, case
of conjecture C.

Corollary 5.2 (/8]) Let N = H?/T be a closed hyperbolic 3-manifold and T
be a finitely generated group in the kernel of a surjection p: ' — Z. Then r
s geometrically finite if and only sz does not contain a virtual fiber subgroup
of I' of index at most two.

Jaco (see example V.19.d in [13]) showed that if a compact 3-manifold has
a finite cover which fibers over the circle then its fundamental group does not
have the finitely generated intersection property. There is no known example of
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a closed hyperbolic 3-manifold which does not have a finite cover which fibers
over the circle, and hence no example of a closed hyperbolic 3-manifold whose
fundamental group has the finitely generated intersection property. This led
Thurston to pose the following conjecture.

Conjecture D: (Thurston) Every closed hyperbolic 3-manifold has a finite
cover which fibers over the circle.

One consequence of Conjecture D would be:

Conjecture E: The fundamental group of a hyperbolic 3-manifold N has the
finitely generated intersection property if and only if N has infinite volume.

In turn, Conjecture D would be a consequence of conjecture E together
with either Conjecture B or C.

An immediate consequence of either Conjecture B or C and the covering
theorem would be a weaker form of Conjecture E:

Conjecture F: Let N be a closed hyperbolic 3-manifold. m(N) has the finitely
generated intersection property if and only if N does not have a finite cover
which fibers over the circle.

Historical Remarks: Simon [18] originally conjectured that all covers (with
finitely generated fundamental group) of a closed, irreducible 3-manifold are
topologically tame. Proposition 5.1 is a generalization of proposition 10.2
in Culler-Shalen [9]. Soma [21] previously noted that Conjecture D implied a
form of Conjecture E. In this same paper, he investigates the finitely generated
intersection property for more general classes of geometric 3-manifolds.

6 A curious group-theoretic property of Kleinian groups

The first consequence of I’ being a finite index subgroup of I is that for all
g €T, there exists n(g) # 0, such that ¢"9 e T'. In the proof of corollary 4.2
it seemed that the converse of this would be useful. Surprisingly, the converse
holds for all fundamental groups of infinite volume hyperbolic 3-manifolds.
The following simple, but elegant, proof was provided by Jim Anderson.

Theorem 6.1 (Anderson) Let N = H3 /T be an infinite volume geometrically
finite hyperbolic 3-manifold and I' a finitely generated subgroup of I'. If for all
g € T there exists n(g) # 0 such that g"9) € T, then ' has finite index in T\
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Proof of 6.1: If ~ is a hyperbolic element of I' with fixed points = and
y, then v is a hyperbolic element of I’ with fixed points z and y. Since
fixed points of hyperbolic elements are dense in the limit set (see Maskit [16])
and Ly C Lr, we see that Ly = Ls. Since N is geometrically finite and has
infinite volume, Dr is non-empty. (Here Dr denotes the complement, in the
sphere at infinity for H?, of Lp.) Ahlfors’ finiteness theorem [1] asserts that
both Sp = Dp/I' and Sk = Df/f‘ are finite area hyperbolic surfaces. Since

Dr = Dz and [c I', we see that Si covers Sr. Since both surfaces have finite
area, the covering is finite-to-one. Hence I' is a finite index subgroup of .

Again, combining this with Thurston’s geometrization theorem, we get a
theorem with topological assumptions.

Theorem 6.2 Let M be a compact, atoroidal, irreducible 3-manifold with a
non-torotdal boundary component and let G be a finitely generated subgroup of
7 (M). If for all g € m (M) there exists n(g) # 0 such that g"9 € G, then G
has finite index in m (M).

We again may return this to a more general theorem with geometric as-
sumptions.

Theorem 6.3 Let I' be a discrete, finitely generated subgroup of Isom, (H?)
such that H? /T has infinite volume and let T be a finitely generated subgroup
of T. If for all g € T there exists n(g) # 0 such that g"9 € T, then T has
finite index in I.

The following conjecture would follow from either Conjecture B or Conjec-
ture C.

Conjecture G: Let I' be a discrete, finitely generated subgroup of Isom (H?)
and let T a finitely generated subgroup. If for all g € ' there exists n(g) #0
such that g™9) € T, then T has finite index in T

We finish by asking which classes of 3-manifold groups or, more generally,
groups does this property hold for? Do all hyperbolic groups, in the sense of
Gromov, have this property? Do all finitely presented hyperbolic groups have
this property?
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