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1. Introduction

Anosov representations ([19, 15]) from a hyperbolic group to a semi-simple Lie group are
characterized by their dynamical nature. In the context of projective Anosov representations,
we [7] previously associated a metric Anosov flow to such a representation and showed that the
(thermo)dynamical properties of this flow yield in turn new structures on the deformation space
of these representations: entropy functions, (pressure) intersections and a pressure metric.

In this paper, we focus on Hitchin representations of a surface group into PSLd(R). We
associate a wealth of flows to a Hitchin representation, and hence geodesic currents, entropies,
pressure forms etc., depending essentially on an element in the Weyl chamber.

Let us be more specific. If E is a real vector space of dimension d and S is a closed sur-
face, a representation ρ : π1(S) → PSL(E) is d-Fuchsian if it is the composition of a Fuchsian
representation into PSL(2,R) and an irreducible representation of PSL(2,R) into PSL(E). A rep-
resentation ρ : π1(S)→ PSL(E) is a Hitchin representation if it may be continuously deformed to
a d-Fuchsian representation. Hitchin [17] showed that the Hitchin component Hd(S) of (PGL(E)-
conjugacy classes of) Hitchin representations into PSL(E) is an analytic manifold diffeomorphic

to R(d2−1)|χ(S)|. Labourie [19] showed that a Hitchin representation is a discrete, faithful quasi-
isometric embedding and that the image of every non-trivial element γ is diagonalizable over R
with eigenvalues of distinct modulus:

λ1(ρ(γ)) > λ2(ρ(γ)) > · · · > λd(ρ(γ)) > 0.

Moreover, there are Hölder-continuous, ρ-equivariant limit curves ξρ : ∂∞π1(S)→ P(E) and
ξ∗ρ : ∂∞π1(S)→ P(E∗) whose images are C1+α-submanifolds. This last feature is very specific
to Hitchin representations – see subsection 3.2 (Theorem 3.2) and Guichard [14] for details.

Let G(S) = ∂∞π1(S)2 \∆ be the space of distinct points in the Gromov boundary ∂∞π1(S)
of π1(S). We say that a flow over G(S) is an R-principal bundle L over G(S) equipped with a
properly discontinuous and co-compact action of π1(S) by bundle automorphisms. The R-action
on the quotient space UL = L/π1(S) is a flow, which justifies the terminology. Given a geodesic
current ω, i.e. a π1(S)-invariant locally finite measure on G(S), we define a pairing

〈ω | L〉 :=

∫
UL

ω ⊗ dt

where dt is the element of arc length given by the R action.
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We focus on the simple root flows associated to a Hitchin representation ρ (see Section 3.3).
For each i ∈ {1, . . . , d − 1} there is a flow Lαiρ over G(S) such that if δγ is the geodesic current
with Dirac measure one on every (oriented) axis of an element conjugate to γ, then

〈δγ | Lαiρ 〉 = Lαi(ρ(γ)) := log

(
λi(ρ(γ))

λi+1(ρ(γ))

)
.

Equivalently, if we let Uαi(ρ) be the quotient flow with associated element of arc length dsαiρ ,
then the period of Uαi(ρ) associated to γ ∈ π1(S) is given by Lαi(ρ(γ)), the Lαi-length function.

We also consider the Hilbert flow LH(ρ) associated to ρ which is determined, up to Hölder
conjugacy, by

〈δγ | LHρ 〉 = LH(ρ(γ)) := log

(
λ1(ρ(γ))

λd(ρ(γ))

)
,

for any non-trivial γ ∈ π1(S).
Potrie and Sambarino show that the entropy of simple root flows is constant and characterize

Fuchsian representations in terms of the entropy of the Hilbert flow.

Theorem 1.1. (Potrie–Sambarino [32]) The topological entropy of a simple root flow is 1 for
all Hitchin representations. Moreover, a Hitchin representation ρ ∈ Hd(S) is d-Fuchsian if and
only if the topological entropy of the Hilbert flow is 2

d−1 .

One of the main constructions of our paper is to single out, amongst all geodesic currents
associated to a Hitchin representation, a specific asymmetric current called the Liouville current
ωρ. This Liouville current was introduced in [20] and characterized by the cross ratio bρ of ρ as
discussed in Section 4.1. If (t, x, y, z) are four points in cyclic order in ∂∞π1(S), then

ωρ ([t, x]× [y, z]) =
1

2
log

(
〈u | Φ〉〈v | Ψ〉
〈u | Ψ〉〈v | Φ〉

)
.

where u, v, Φ and Ψ are non zero elements in ξρ(t), ξρ(x), ξ∗ρ(y) and ξ∗ρ(z) respectively.
As a consequence of Labourie’s work on cross ratios for Hitchin representations [20], this gives

an embedding of the space of all Hitchin representations into the space of geodesic currents.

Theorem 1.2. If ρ and σ are two Hitchin representations –of possibly different dimensions –
with the same Liouville current, then ρ = σ.

The Liouville current enjoys the following properties.

Theorem 1.3. If ρ is a Hitchin representation, then

(1) The current ωρ is the unique current – up to scalar multiplication – in the class of the
Lebesgue measure for the C1 structure on G(S) associated to the embedding (ξ, ξ∗).

(2) The measure ωρ ⊗ dsα1
ρ is – up to scalar multiplication– the unique measure maximizing

entropy for the flow Uα1(ρ).
(3) If µ is a geodesic current, then

i(µ, ωρ) = 〈µ | LHρ 〉 .
Our Liouville current is closely related to the symmetric Liouville currents defined by Bonahon

[1], when d = 2, and Martone-Zhang [26]. In fact, one may view their Liouville currents as
symmetrizations of our Liouville current.

We define the Liouville volume of a representation, by

volL(ρ) = i(ωρ, ωρ),

and establish the following volume rigidity result, which is motivated by work of Croke and
Dairbekov [12].
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Theorem 1.4. If ρ, η ∈ Hd(S), then(
inf

γ∈π1(S)\{1}

〈δγ | LHρ 〉
〈δγ | LHη 〉

)2

6
volL(ρ)

volL(η)
6

(
sup

γ∈π1(S)\{1}

〈δγ | LHρ 〉
〈δγ | LHη 〉

)2

and equality holds in either inequality if and only if either ρ = η or ρ = η∗ where η∗ is the
contragredient of η.

When d = 3, we apply work of Tholozan [36, Thm. 3] to obtain a simpler volume rigidity
result.

Corollary 1.5. If ρ ∈ H3(S), then

volL(ρ) > 4π2|χ(S)|.
Moreover, equality holds if and only if ρ is 3-Fuchsian.

We return to the themes explored in [7], by constructing a new, hopefully more tractable,
pressure metric on a Hitchin component. If ρ, η ∈ Hd(S), we define their Liouville pressure
intersection to be

Iα1(ρ, η) :=
1

〈ωρ | Lα1
ρ 〉
〈ωρ | Lα1

η 〉 .

If ρ ∈ Hd(S), we define a function (Iα1)ρ : Hd(S)→ R by letting (Iα1)ρ(η) = Iα1(ρ, η).
Using the thermodynamic formalism developed by Bowen [3], Ruelle [33] and Parry-Pollicott

[30] we show that (Iα1)ρ has a minimum at ρ, and its Hessian Pα1 at ρ is positive semi-definite.
We call Pα1 the Liouville pressure quadratic form. This construction is motivated by Thurston’s
version of the Weil-Petersson metric on Teichmüller space (see Wolpert [37]) as re-interpreted
by Bonahon [1], McMullen [27] and Bridgeman [5].

We show that Pα1 is non-degenerate, hence gives rise to a Riemannian metric, and apply
work of Wolpert [37] to see that it restricts to a multiple of the Weil-Petersson metric on the
Fuchsian locus.

Theorem 1.6. The Liouville pressure quadratic form Pα1 is a mapping class group invari-
ant, analytic Riemannian metric on Hd(S), that restricts to a scalar multiple of the the Weil-
Petersson metric on the Fuchsian locus.

The main tool in the proof of the non-degeneracy of Pα1 is that the Lα1-length functions of
elements of π1(S) generate the cotangent space of the Hitchin component. More precisely, if
γ ∈ π1(S), let Lγα1 : Hd(S)→ R be given by

Lγα1
(ρ) = Lα1(ρ(γ)) = 〈δγ | Lα1

ρ 〉 .
Theorem 1.7. If ρ ∈ Hd(S), then the set

{DρL
γ
α1
}γ∈π1(S)

generates, as a vector space, the cotangent space T∗ρHd(S).

We can also give an interpretation of Iα1 in terms more reminiscent of the construction in
[7]. This interpretation generalizes to give pressure quadratic forms associated to other simple
roots. If T > 0 and i ∈ {1, . . . , d− 1}, let

Rαi(ρ, T ) = {[γ] ∈ [π1(S)] \ {[1]} | Lαi(ρ(γ)) 6 T}.
We then define an associated pressure intersection

Iαi(ρ, η) = lim
T→∞

1

#Rαi(ρ, T )

∑
γ∈Rαi (ρ,T )

Lαi(η(γ))

Lαi(ρ(γ))
.
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The associated function (Iαi)ρ has a minimum at ρ, and we again obtain, by considering the
Hessian of (Iα1)ρ, a positive semi-definite quadratic pressure form Pαi . It is natural to ask when
Pαi is non-degenerate. In a final section, we observe that Pαn is degenerate on H2n(S) at any
Hitchin representation with image (conjugate into) PSp(2n), see Proposition 8.1.

We recall that our original pressure metric from [7] was obtained as the Hessian of a renor-
malized pressure intersection

J(ρ, η) =
h(ρ)

h(η)
lim
T→∞

1

#R1(ρ, T )

∑
γ∈R1(ρ,T )

L1(η(γ))

L1(ρ(γ))

where L1(ρ(γ)) = log λ1(ρ(γ)), R1(ρ, T ) = {[γ] ∈ [π1(S)]\{[1]} | L1(ρ(γ)) 6 T} and the spectral
radius entropy h(ρ) is the exponential growth rate of R1(ρ, T ).

There are two main advantages of the Liouville pressure metric with respect to the pressure
metric defined in [7]. First, due to work of Potrie and Sambarino [32], we do not have to
renormalize the pressure intersection by an entropy. Second, the Bowen–Margulis measure
associated to the first simple root is directly related to the cross ratio of the representation. We
hope that these two facts will make the Liouville pressure metric more accessible to computation.
It follows from work of Zhang [38] and Theorem 1.4 that the Liouville volume is non-constant on
Hd(S) when d > 3, so one cannot directly use the Hessian of intersection to construct a metric,
as Bonahon [1, Thm. 19] does to reconstruct the Weil-Petersson metric when d = 2.

Acknowledgements: The authors would like to thank Harrison Bray, Francois Ledrappier,
Ralf Spatzier and Tengren Zhang for helpful conversations.

2. Dynamical background

In Sections 2.1 and 2.2 we recall the thermodynamic formalism of Bowen and Ruelle ([3, 4, 33]),
which was further developed by Parry and Pollicott [30]. We then discuss geodesic currents (in
Section 2.3) and describe the relationship between contracting line bundles and flows (in Section
2.4).

2.1. Basic definitions. Let X be a compact metric space and φ = {φt : X → X}t∈R be a topo-
logically transitive, metric Anosov flow on X. (Metric Anosov flows were first defined by Pollicott
[31] who called them Smale flows.) Let Oφ be the collection of periodic orbits of the flow φ and
and define

Rφ(T ) = {a ∈ Oφ | `(a) 6 T}
where `(a) is the period of a. The topological entropy of the flow φ is given by

h(φ) = lim
T→∞

log #Rφ(T )

T
.

If α > 0, let Holα(X,R) be the space of α-Hölder continuous functions onX. If f ∈ Holα(X,R),
let

`f (a) =

∫
X
fdδ̂a

where δ̂a is a φ-invariant measure supported on a with total mass `(a). Let

Rφ(f, T ) = {a ∈ Oφ | `f (a) 6 T}

and define

hφ(f) = lim
T→∞

log #Rφ(f, T )

T
.
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If f is positive, we obtain a new flow φf on X by reparametrizing φ by f . Concretely, φf is
determined by the formula

φfkf (x,t)(x) = φft (x)

where kf (x, t) =
∫ t

0 f(φsx)ds for all x ∈ X and t ∈ R. Notice that if ds is an element of arc

length for the flow lines of φ, then fds is an element of arc length for the flow lines of φf .
The flow φf is Hölder orbit equivalent to φ and if a ∈ Oφ = Oφf , then `f (a) is the period of

a in the flow φf . In this case, hφ(f) is the topological entropy h(φf ) of the flow φf .
We will say that f, g ∈ Holα(X,R) are Livšic cohomologuous if there exists U : X → R such

that for all x ∈ X one has

f(x)− g(x) =
∂

∂t

∣∣∣∣
t=0

U(φtx).

Recall that f and g are Livšic cohomologous if and only if `f (a) = `g(a) for all a ∈ Oφ. Moreover,

if f and g are positive, then φf and φg are Hölder conjugate if and only if f and g are Livšic
cohomologuous (see Livšic [25]).

IfMφ is the space of φ-invariant probability measures on X and m ∈Mφ, let h(φ,m) be the
metric entropy of m. Then, for f ∈ Holα(X,R), the topological pressure is

Pφ(f) = sup
m∈Mφ

{
h(φ,m) +

∫
X
fdm

}
.

A measure that attains this supremum is called an equilibrium state for f and an equilibrium
state for the zero function is called a measure of maximal entropy.

If f ∈ Holα(X,R) is positive, Bowen [2, Thm. 5.11] (see also Pollicott [31, Thm. 9]) showed
that the measure of maximal entropy for φf is given by the Bowen-Margulis measure for φf

lim
T→∞

1

#Rφ(f, T )

∑
a∈OX

δ̂a
`f (a)

where δ̂a is the product of Dirac measure on the orbit a and the element of arc length on a in
φf .

We make use of the following result of Sambarino [34, Lemma 2.4].

Lemma 2.1. Suppose that f ∈ Holα(X,R) is positive. If m−hφ(f)f is the equilibrium state of

−hφ(f)f , then

dm# =
fdm−hφ(f)f∫
fdm−hφ(f)f

is the measure of maximal entropy of φf .

If f, g ∈ Holα(X,R) are positive, we define their pressure intersection1 by

I(f, g) = lim
T→∞

1

#Rφ(f, T )

∑
a∈Rφ(f,T )

`g(a)

`f (a)
=

∫
gdm−h(f)f∫
fdm−h(f)f

. (1)

The last equation follows from [7, Sec. 3.4]. We define the renormalized pressure intersection by

J(f, g) =
hφ(g)

hφ(f)
I(f, g).

1We emphasize the terminology pressure intersection which is meant to distinguish pressure intersection from
the intersection defined by Bonahon [1].
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In [7, Cor. 2.5, Prop 3.11 and 3.12], we used results of Parry-Pollicott [30] and Ruelle [33] to
prove the following.

Proposition 2.2. If φ is a topologically transitive metric Anosov flow on a compact metric
space X, then

(1) If f ∈ Holα(X,R) is positive, then the function Jf defined by Jf (g) = J(f, g) has a global
minimum at f. Therefore, Hess Jf is positive semi-definite.

(2) If {ft}t∈(−ε,ε) ⊂ Holα(X,R) is a smooth one-parameter family of positive functions, then

∂2

∂t2

∣∣∣
t=0

J(f0, ft) = 0

if and only if, for every a ∈ Oφ, one has

∂

∂t

∣∣∣
t=0

hφ(ft)`ft(a) = 0.

(3) If {fu}u∈M and {gv}v∈M ′ are analytic families of positive α-Hölder functions parametrized
by analytic manifolds M and M ′, then J(fu, gv) is an analytic function on M ×M ′.

2.2. Expansion on periodic orbits. Assume now that X is a manifold and that φ is a C1+α

Anosov flow with unstable bundle Eu. Denote by λuφ : X → (0,∞) the infinitesimal expansion
rate on the unstable direction, defined by

λuφ(x) =
∂

∂t

∣∣∣∣
t=0

1

κ

∫ κ

0
log det(dxφt+s|Eu)ds

for some κ > 0.
We record the following observations (see [32, Section 2.2] for further discussion):

(1) If a ∈ Oφ, then

`λuφ(a) =

∫
a
λuφ = log det(dxφ`(a)|Eu)

is the total expansion of φ along a.
(2) The Livšic-cohomology class of λuφ does not depend on κ.

(3) If φ−1 is the inverse flow φ−1
t = φ−t, it follows from Livšic’s Theorem ([25]) that φ

preserves a measure in the class of Lebesgue if and only if λuφ is Livšic cohomologuous
to λuφ−1 .

We make crucial use of the following classical result of Sinai, Ruelle and Bowen.

Theorem 2.3 (Sinai-Ruelle-Bowen [4]). Let φ be a C1+α Anosov flow on a compact manifold
X, then P(−λuφ) = 0. Moreover, if φ preserves a measure in the class of Lebesgue, then this
measure is the equilibrium state of −λuφ.

Bowen and Ruelle state their result in the C2 setting, but the proof may be extended to the
C1+α setting by applying [16, Prop. 19.16 and 20.4.2].

2.3. Geodesic currents. Let Γ be a hyperbolic group which is not virtually cyclic. Let G(Γ)
be the space of pair of distinct points, which we think of as the space of oriented geodesics, on
the Gromov boundary ∂∞Γ of Γ:

G(Γ) := {(x, y) ∈ ∂∞Γ | x 6= y} .
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A geodesic current for Γ is a Γ-invariant locally finite measure on G(Γ). If γ is a primitive
infinite order element of Γ with attracting fixed point γ+ ∈ ∂∞Γ and repelling fixed point γ−
and δ(x,y) is the Dirac measure supported at (x, y) ∈ G(Γ), we define the geodesic current

δγ :=
∑
γ̂∈[γ]

δ(γ̂−,γ̂+) .

where [γ] is the conjugacy class of γ in Γ. If α = γn where α is primitive and n > 0, we let
δα = nδγ .

We let C(Γ) denote the space of geodesic currents on Γ and endow it with the weak-* topology.
When Γ = π1(S), for a closed surface S, we write G(S) and C(S) for G(π1(S)) and C(π1(S)).

Following Bonahon [1, Section 4.2], we define a continuous, symmetric, bilinear pairing, called
the intersection

i : C(S)× C(S)→ R
so that if α, β ∈ Γ, then i(δα, δβ) is the geometric intersection number of the curves on S
representing α and β. Let DG(S) ⊂ G(S) × G(S) denote the space of pairs (x, y) and (u, v)
of oriented geodesics which intersect, i.e. so that x and y lie in distinct components of
∂∞π1(S)− {u, v}. We then define

i(µ, ν) =

∫
DG(S)/π1(S)

dµ⊗ dν .

A geodesic current is symmetric if it is invariant by the involution ι : (x, y) 7→ (y, x). Bonahon
[1] works entirely in the setting of symmetric geodesic currents. In fact, he defines a geodesic

current as a measure on the space Ĝ(Γ) = G(Γ)/ι of unordered pairs of distinct points in ∂∞Γ.
A geodesic current µ in our sense naturally pushes forward to a geodesic current µ̂ in the sense
of Bonahon. Moreover, if µ, ν ∈ C(S), then i(µ, ν) agrees with the intersection, in the sense of
Bonahon, of µ̂ and ν̂.

2.4. Contracting line bundles and flows. Gromov [13] defined a geodesic flow U(Γ) for
a hyperbolic group Γ, which is well-defined up to Hölder orbit equivalence, see Champetier
[9] and Mineyev [28] for detailed constructions. The closed orbits of U(Γ) are in one-to-one
correspondence with conjugacy classes of infinite order elements of Γ. There is a trivial Hölder
R principal bundle LΓ = Ũ(Γ) over G(Γ) equipped with a properly discontinuous action of Γ
by bundle automorphisms, so that LΓ/Γ equipped with the flow coming from the action of R is

Hölder orbit equivalent to U(Γ). Moreover, Ũ(Γ) may be parametrized as G(Γ) × R where the
action of R is by translation in the second factor. We will mostly be interested in the situation
where U(Γ) is metric Anosov.

In [7, Section 5], we showed that, whenever a Γ admits an Anosov representation, U(Γ) is
indeed metric Anosov. In this paper, we will focus on the case where Γ = π1(S), in which case
U(Γ) may be taken to be the geodesic flow on the unit tangent bundle of a hyperbolic surface Y
homeomorphic to S, and will be denoted U(S), and LΓ may be identified with the geodesic flow

on the unit tangent bundle of the universal cover of Y , and will be denoted U(S̃).
A flow over G(Γ) is a Hölder R-principal line bundle L over G(Γ) equipped with a properly dis-

continuous action of Γ by Hölder bundle automorphisms, so that the quotient flow on UL := L/Γ
is Hölder orbit equivalent to the geodesic flow of Γ. In other words, one may think of a flow over
G(Γ) as a parametrization of the geodesic flow of Γ.

Given a geodesic current ω and a flow L over G(Γ), we define a pairing

〈ω | L〉 :=

∫
UL

ω ⊗ dt
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where dt is the element of arc length on UL given by the R-action. Given a flow L the function
ω 7→ 〈ω | L〉 from C(Γ) to R is continuous.

We observe that, for every non trivial element γ in Γ, 〈δγ | L〉 is the length of the periodic
orbit associated to γ in UL, or, equivalently, the translation distance of the action of γ on the
fiber L(γ−,γ+). The map γ 7→ 〈δγ | L〉 is the length spectrum of L. If U(Γ) is metric Anosov,
then, by Livšic’s Theorem, the length spectrum determines the quotient flow UL up to Hölder
conjugacy.

Let M be a Hölder line bundle over U(Γ), equipped with a lift of the geodesic flow {ψt}t∈R
on U(Γ) to a Hölder flow {Ψt}t∈R on M by bundle automorphisms (i.e. the restriction of Ψt

is a linear automorphism from Mz to Mψt(z) for all z ∈ U(Γ) and all t ∈ R). We say that M is
contracting if there exist a metric ‖ · ‖ on M and t0 > 0 so that

‖Ψt0(u)‖ 6 1

2
‖u‖ ,

for all u in M. Every such line bundle has a contraction spectrum γ 7→ c(γ), where if the periodic
orbit of U(Γ) associated to γ ∈ π1(S) has period tγ , then

‖Ψtγ (v)‖ = e−c(γ)‖v‖

for any vector v in a fiber over the periodic orbit. Again Livšic’s Theorem guarantees that two
line bundle with the same contracting spectrum are isomorphic.

The notions of contracting line bundles and flow are equivalent.

Proposition 2.4. Let Γ be a hyperbolic group whose geodesic flow is metric Anosov. Then

(1) Given a contracting line bundle M over U(Γ), there exists a flow over G(Γ) whose length
spectrum coincides with the contracting spectrum of M.

(2) Conversely, given a flow L over G(Γ), there exists a contracting line bundle over U(Γ)
whose contracting spectrum is the length spectrum of L.

Proof. Given a contracting line bundle M over U(Γ), we construct a flow LM over G(Γ) by the
following procedure

(1) First, lift M to a line bundle M̃ over Ũ(Γ) and let {Ψ̃t}t∈R be the lift of the flow {Ψt}t∈R
on M.

(2) We consider the corresponding R-principal line bundle L̂M over Ũ(Γ) equipped with an

action of Γ by bundle automorphisms; concretely the fiber of L̂M over (x, y, s) ∈ Ũ(Γ) is

(M̃(x,y,s) − {0})/ ± 1, i.e. non-zero vectors up to sign, and the action of t ∈ R takes

[v] ∈ (L̂M)(x,y,s) to [etv].

(3) Let π : Ũ(Γ)→ G(Γ). We define LM := π∗L̂M, that is the bundle whose sheaf of sections

are the sections of L̂M invariant by the flow: More explicitly, for all t ∈ R, (x, y, s) ∈ Ũ(Γ)

and [v] ∈ (L̂M)(x,y,s), we identify [v] with [Ψ̃t(v)] and notice that the quotient is a principal
R-bundle over G(Γ).

The proof of [7, Prop. 4.2] generalizes immediately to yield the first part of our proposition.
We now establish our second claim. Let L be a flow over G(Γ). Consider the trivial bundle

M̃ = L×R over L equipped with the trivial lift of the action of Γ given by γ(x, v) = (γx, v). Lift

the flow {φ̃t}t∈R on L to the flow

Ψ̃t(x, v) = (φ̃t(x), e−tv)
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on M̃. These two actions commute and we obtain a contracting line bundle M := M̃/Γ over
UL equipped with the quotient flow {Ψt}t∈R whose contracting spectrum agrees with the length
spectrum of L. �

As an immediate consequence, the tensor product on principal R bundles gives rise to an
inner product, also called the tensor product,

(L0, L1) 7→ L0 ⊗ L1 ,

on geodesic flows, which is equivalent to the tensor product of the corresponding contracting line
bundles. The length spectrum of the tensor product is then the sum of the two length spectra
and thus for any geodesic current µ ∈ C(Γ)

〈µ | L0 ⊗ L1〉 = 〈µ | L0〉+ 〈µ | L1〉
since any current may be approximated by linear combinations of currents associated to group
elements. Given a positive number t, which we may view as an element of Aut(R), we can
renormalise the action of R on the R-bundle L to obtain a new bundle Lt so that

〈µ | Lt〉 = t 〈µ | L〉 .
One can check then that for a positive integer n,

Ln =

n︷ ︸︸ ︷
L⊗ . . .⊗ L .

3. Hitchin representations and their associated flows

In Sections 3.1 and 3.2 we recall the definitions and basic properties of projective Anosov and
Hitchin representations. In Sections 3.3 and 3.4 we use the techniques of Section 2.4 to construct
families of flows associated to such representations.

3.1. Projective Anosov representations. It will occasionally be useful to work in the more
general class of projective Anosov representations. A representation ρ : Γ→ SL(d,R) with do-
main a hyperbolic group Γ has transverse projective limit maps if there exist continuous, ρ-equivariant
functions

ξρ : ∂∞Γ→ P(Rd)
and

ξ∗ρ : ∂∞Γ→ P((Rd)∗)
so that if x and y are distinct points in ∂∞Γ, then

ξρ(x)⊕ ker ξ∗ρ(y) = Rd.

Recall that a representation ρ : Γ→ SL(d,R), with domain a hyperbolic group Γ, gives rise to
a flat Rd-bundle Eρ over U(Γ) and that the geodesic flow φ on U(Γ) lifts to a flow ψρ parallel to

the flat connection on Eρ. Explicitly, let Ẽρ = Ũ(Γ)× Rd and let (ψ̃ρ)t(z, v) = (φ̃t(z), v) where

φ̃t is the lift of the geodesic flow φt on U(Γ) to Ũ(Γ). The group Γ acts on Ẽρ by the action of
Γ on the first factor and ρ(Γ) on the second factor, and the quotient is the flat bundle Eρ and

the flow {(ψ̃ρ)t}t∈R descends to a flow ψρ on Eρ.
A representation ρ with transverse projective limit maps determines a ψρ-invariant splitting

Ξρ⊕Θρ of the flat bundle Eρ over U(Γ). Concretely, the lift Ξ̃ρ of Ξρ has fiber ξρ(x) and the lift

Θ̃ρ of Θρ has fiber ker ξ∗ρ(y) over the point (x, y, t) ∈ Ũ(Γ). One says that ρ is projective Anosov
if the resulting flow on the associated bundle

Hom(Θρ,Ξρ) = Ξρ ⊗Θ∗ρ



10 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

is contracting.
Projective Anosov representations are quasi-isometric embeddings with finite kernel, see [15,

Thm 5.3] and [22, Thm 1.0.1] for Hitchin representations. The following result is also a standard
consequence of the definitions, see, for example, [7, Prop. 2.6]).

Lemma 3.1. If ρ : π1(S) → SL(d,R) is projective Anosov and γ ∈ π1(S) is non-trivial, then
ρ(γ) is proximal with attracting line ξ(γ+) and repelling hyperplane θ(γ−). Moreover, there exist
positive constants B and C such that

log
λ1(ρ(γ))

λ2(ρ(γ))
> B`(γ)− C

where `(γ) is the reduced word length of γ.

3.2. Hitchin representations. If ρ : π1(S) → PSLd(R) is a Hitchin representation, it admits
a lift ρ̃ : π1(S)→ SL(d,R). We will abuse notation and denote the flat bundle Eρ̃ associated to
this lift by Eρ. (The flat bundle depends on the choice of lift, but this choice will not matter for
our purposes).

Labourie [19] showed that every Hitchin representation ρ admits a continuous ρ-equivariant

limit map ξ̂ρ : ∂∞π1(S)→ Fd where Fd is the space of complete flags in Rd. We summarize its
crucial properties below.

Theorem 3.2 (Labourie [19]). If ρ ∈ Hd(S), there exists a unique ρ-equivariant Hölder contin-

uous map ξ̂ρ : ∂∞π1(S)→ Fd such that

(1) If d = n1 + · · · + nk, where each nk ∈ N, and {z1, . . . , zk} ⊂ ∂∞π1(S) are pairwise
distinct, then

ξ̂(n1)
ρ (z1)⊕ · · · ⊕ ξ̂(nk)

ρ (zk) = Rd.

(2) The image ξ̂
(1)
ρ (∂∞π1(S)) is a C1+α manifold for some α > 0.

(3) The splitting
⊕d

i=1 M̃
i
ρ of Ẽρ into line bundles so that (M̃i

ρ)(x,y,t) = ξ̂
(i)
ρ (x) ∩ ξ̂(n−i+1)

ρ (y)

descends to a splitting
⊕d

i=1 M
i
ρ of Eρ into line bundles, so that Mi

ρ⊗(Mj
ρ)∗ is contracting

if i < j.

It is well-known that any exterior power of a (lift of a) Hitchin representation is projective
Anosov (see for example Guichard-Wienhard [15, Pop. 4.4]). Guichard has shown conversely in
[14] that the existence of such limit maps characterize Hitchin representations.

Proposition 3.3. If ρ ∈ Hd(S), ρ̃ : π1(S) → SL(d,R) is a lift of ρ, k ∈ {1, . . . , d − 1}, and
Ekρ̃ : π1(S)→ SL(ΛkRd) is the kth exterior power of ρ̃, then Ekρ̃ is projective Anosov.

If ρ ∈ Hd(S), then

ξρ = ξρ̃ = ξ̂(1)
ρ and ker ξ∗ρ(x) = ker ξ∗ρ̃(x) = ξ̂(d−1)

ρ (x),

i.e. ξ∗ρ(x) is the projective class of linear functionals with kernel ξ̂
(d−1)
ρ (x). More generally,

if ρ ∈ Hd(S), we may choose for each x ∈ ∂∞π1(S) a basis {ei(ρ, x)} for Rd so that ξ̂
(j)
ρ (x) is

spanned by {e1(ρ, x), . . . , ej(ρ, x)}. The limit maps for Ekρ̃ are given by

ξEkρ̃(x) = 〈e1(ρ, x) ∧ · · · ∧ ek(ρ, x)〉
and

ker ξ∗Ekρ̃(x) = 〈ej1(ρ, x) ∧ · · · ∧ ejk(ρ, x) | 1 6 j1 < j2 < · · · < jk, jk > k〉 .
One may check directly that Hom(ΘEkρ̃,ΞEkρ̃) is contracting and hence that Ekρ̃ is projective
Anosov, by applying part (3) of Theorem 3.2.
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If we apply Lemma 3.1 to the exterior product Eiρ̃ of a (lift of a) Hitchin representation we
obtain:

Lemma 3.4. If ρ ∈ Hd(S) and i ∈ {1, . . . , d− 1}, then there exist Bi > 0 and Ci so that

log
λi(ρ(γ))

λi+1(ρ(γ))
> Bi`(γ)− Ci

where `(γ) is the reduced word length of γ.

Lemma 3.4 can also be derived directly from part (3) of Theorem 3.2.

3.3. Flows for Hitchin representations. Theorem 3.2 provides several contracting line bun-
dles over U(S) associated to a Hitchin representation ρ ∈ Hd(S).

(1) The spectral radius line bundle M1
ρ.

(2) The simple root line bundles Mαi
ρ := Mi

ρ ⊗ (Mi+1
ρ )∗.

(3) The Hilbert line bundle MH
ρ := M1

ρ ⊗ (Md
ρ)
∗.

Proposition 2.4 shows that the associated flows

(1) The spectral radius flow U1(ρ) := L1
ρ/π1(S).

(2) The simple root flows Uαi(ρ) := Lαiρ /π1(S).

(3) The Hilbert flow UH(ρ) := LHρ /π1(S).

are all Hölder orbit equivalent to U(S). The corresponding length spectra are

(1) The spectral radius length L1(ρ(γ)) := log(λ1(ρ(γ))).

(2) The simple root length Lαi(ρ(γ)) := log( λi(ρ(γ))
λi+1(ρ(γ))).

(3) The Hilbert length LH(ρ(γ)) := log(λ1(ρ(γ))
λd(ρ(γ))).

More generally, given any positive linear combination Lφ = a1Lα1 + . . . + ad−1Lαd−1
of the

simple root length functions, we can find a flow Uφ(ρ) so that the period of γ ∈ π1(S) is given
by

Lφ(ρ(γ)) = a1Lα1(ρ(γ)) + . . .+ ad−1Lαd−1
(ρ(γ)).

(See the discussion in Section 2.4.)
Finally, we observe that, by Theorem 3.2 and [32, Prop. 6.2], the flow M1

ρ is obtained as a

pullback of a smooth line bundle over the C1+α-submanifold (ξρ× ξ∗ρ)(G(S)) of P(Rd)× P∗(Rd),
so L1

ρ inherits the structure of a C1+α-flow.

Potrie and Sambarino [32, Prop. 6.2] show that the unstable manifold Euρ for L1
ρ at a point

above (x, y) ∈ G(S) may be identified with Hom(ξ̂
(2)
ρ (x)∩ ξ̂(d−1)

ρ (y), ξ̂
(1)
ρ (x)) and so the infinites-

mal expansion rate λuρ of U1(ρ) has the property that∫
γ
λuρds1

ρ = Lα1(ρ(γ))

for all ρ ∈ Hd(S), where ds1
ρ is the element of arc length of U1(ρ).

It follows that the reparametrization of U1(ρ) by λuρ is Hölder conjugate to Uα1(ρ). They then
apply results of Sinai, Ruelle and Bowen [4], to conclude that the entropy of Uα1(ρ) is 1. They
further show, with a more sophisticated argument in the general case, that all the simple root
flows have entropy 1.

Theorem 3.5. (Potrie-Sambarino [32, Thm. B]) If ρ ∈ Hd(S) and i ∈ {1, . . . , d − 1}, then
Uαi(ρ) has topological entropy 1.
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Remark: One may also construct a flow Hölder conjugate to Uαi(ρ) by constructing, as is done
in Sambarino [34], a positive Hölder function on U(S) whose periods are given by Lαi(ρ(γ)), see
also Potrie-Sambarino [32].

3.4. The spectral radius flow of a projective Anosov representation. Proposition 2.4
implies that if ρ : Γ → SL(d,R) is projective Anosov, then the contracting line bundle Ξρ over
U(Γ) gives rise to a spectral radius flow Lρ1 over G(Γ) with quotient U1(ρ) so that the closed orbit
associated to γ ∈ Γ has period L1(ρ(γ)) = log(λ1(ρ(γ)).

The spectral radius flow U1(ρ) is Hölder orbit equivalent to U(Γ). In [7], we prove that, up
to Hölder conjugacy, the reparametrization function can be chosen to vary analytically in a
neighborhood of ρ.

Proposition 3.6. ([7, Prop 6.2]) Let {ρu : π1(S) → SL(d,R)}u∈D be a real analytic family of
projective Anosov homomorphisms parameterized by a disk D about the origin 0. Then, there
exists a sub-disk D0 about 0, α > 0 and a real analytic family {fu : U(Γ) → R}u∈D0 of positive
α-Hölder functions such that if γ ∈ Γ, then `fu(γ) = log λ1(ρu(γ)).

4. Liouville currents for Hitchin representations

In Sections 4.1 and 4.2 we recall Labourie’s cross ratio, define our Liouville current and prove
that it determines the Hitchin representation. In Section 4.3 we establish relationships between
the Liouville current, Hilbert length LH, the Bowen-Margulis current µρ for Uα1(ρ), and the
equilibrium state m−λuρ for the (negative of the) infinitesmal expansion rate on U1(ρ).

4.1. Labourie’s cross ratio. If V is a finite dimensional real vector space, let

P(2) = P(V )× P(V ∗)− {(L,Φ) : L ∈ ker Φ}
and

P(4) = {(L,Φ, D,Ψ) : L /∈ ker Ψ and D /∈ ker Φ} .
Consider the cross ratio on P(4) defined by

B(L,Φ, D,Ψ) =
ϕ(u)

ψ(u)

ψ(v)

ϕ(v)
,

where ϕ ∈ Φ, ψ ∈ Ψ, u ∈ L and v ∈ D are all non-zero. Notice that the result does not depend
on the choices of ϕ, ψ, u and v. Labourie observes that B is the polarized cross-ratio associated
to a symplectic form on P(2).

Proposition 4.1. (Labourie [20, Prop. 4.7, Prop. 5.4]) There exists a symplectic form Ω on

P(2) so that if (L,Φ, D,Ψ) ∈ P(4), then

B(L,Φ, D,Ψ) = e
∫
G∗Ω

where G : [0, 1]2 → P(2) is a map such that the images of the vertices of [0, 1]2 are (L,Φ), (L,Ψ), (D,Φ)
and (D,Ψ) and the image of every boundary segment is contained in either P(V )× {·} or
{·} × P(V ∗).

Moreover, if ρ is Hitchin, the restriction of the symplectic form Ω to the C1+α-submanifold
(ξρ × ξ∗ρ)(G(S)) is non-degenerate.

Given ρ ∈ Hd(S), Labourie defined a cross ratio bρ on

∂∞π1(S)(4) = {(x, y, z, t) ∈ ∂∞π1(S)4 | x 6= t, y 6= z}
by setting

bρ(x, y, z, t) = B
(
ξρ(x), ξ∗ρ(y), ξρ(z), ξ

∗
ρ(t)

)
.
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Labourie and McShane [23, Thm. 9.0.3] show that bρ(x, z, t, y) > 1 if (t, x, y, z) is cyclically
ordered in ∂∞π1(S).

Labourie [20, Thm 1.1] proves that this cross ratio determines the representation and has rank
d. For any pair of (p+1)-tuples of pairwise distinct points X = (x0, . . . , xp) and Y = (y0, . . . , yp)
in ∂∞π1(S), we define

χp(bρ)(X,Y ) = det
(
bρ(xi, yj , x0, y0)

)
i,j∈{1,...,p}

.

Theorem 4.2. (Labourie [20, Thm. 1.1]) If ρ, σ ∈ Hd(S), then bρ = bσ if and only if ρ = σ.
Moreover, χd(bρ) ≡ 0 and χd−1(bρ) never vanishes.

Labourie [20, Thm. 1.1] also shows that the facts that χd(bρ) ≡ 0 and χd−1(bρ) never van-
ishes characterize cross ratios of Hitchin representations into PSLd(R) among all π1(S)-invariant

functions on ∂∞π1(S)(4) satisfying the basic properties of a cross ratio.

4.2. Liouville currents: basic definitions. Let ωρ be the geodesic current defined by

ωρ([t, x]× [y, z]) =
1

2
log bρ(x, z, t, y) > 0

when (x, y, z, t) is a cyclically ordered 4-tuple in the circle ∂∞π1(S) and [x, y] denotes the points
between x and y in this cyclic ordering.

Proposition 4.1 implies that

ωρ([t, x]× [y, z]) =
1

2

∫
ξρ([t,x])×ξ∗ρ([y,z])

Ω,

so ωρ is a measure on G(S) which is absolutely continuous with respect to the Lebesgue measure
obtained by identifying G(S) with the C1+α-manifold (ξρ × ξ∗ρ)(G(S)). We call ωρ the Liouville
current.

We observe that the Liouville current also determines the Hitchin representation.

Theorem 1.2. If ρ ∈ Hd(S) and η ∈ Hm(S), then ωρ = ωη if and only if ρ = η.

Proof of Theorem 1.2. Suppose that ωρ = ωη. By definition,

bρ(x, y, z, t) = ωρ([z, x]× [t, y]) = ωη([z, x]× [t, y]) = bη(x, y, z, t)

whenever (z, x, t, y) is cyclically ordered. Similarly, if (z, x, y, t) is cyclically ordered, then

bρ(x, y, z, t) =
1

ωρ([z, x]× [y, t])
=

1

ωη([z, x]× [y, t])
= bη(x, y, z, t)

(One may summarize these two observations, by saying that bρ(x, y, z, t) = bη(x, y, z, t) whenever
the pairs (x, z) and (y, t) have non-intersecting axes, i.e. y and t lie in the same component of
∂∞π1(S)− {x, z}.)

Suppose that m > d. Let X = (x0, x1, . . . , xm−1) and Y = (y0, . . . , ym−1) be two m-tuples
in ∂∞π1(S) so that (x0, x1, . . . , xm−1, y0, y1, . . . , ym−1) is cyclically ordered. It follows from the
previous paragraph that bρ(xi, yj , x0, y0) = bη(xi, yj , x0, y0) for all i, j > 0. Theorem 4.2 then

implies that every (d+ 1)× (d+ 1) minor of
(
bρ(xi, yj , x0, y0)

)
i,j∈{1,...,m−1}

is zero, yet

det
(
bρ(xi, yj , x0, y0)

)
i,j∈{1,...,m−1}

= det
(
bη(xi, yj , x0, y0)

)
i,j∈{1,...,m−1}

6= 0

which is impossible. Therefore, we may assume that m = d.
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By Theorem 4.2, it suffices to prove that ωρ determines the cross-ratio bρ(x, y, z, t) of any

4-tuple (x, y, z, t) ∈ ∂∞π1(S)(4). By the observations in the first paragraph, and symmetry, it
suffices to also consider the case where (x, y, z, t) is cyclically ordered.

Fix a cyclically ordered configuration (xd, yd, x0, y0) ∈ ∂∞π1(S)(4). Choose pairwise distinct
points {x1, . . . , xd−1} and {y1, . . . , yd−1} in ∂∞π1(S) so that (x0, x1, . . . , xd−1, y0, . . . , yd−1, xd, yd)
is cyclically ordered. Let X = (x0, . . . , xd) and Y = (y0, . . . , yd). Theorem 4.2 implies that

χd(bρ)(X,Y )) = det
(
bρ(xi, yj , x0, y0)

)
i,j∈{1,...,d}

= det
(
bσ(xi, yj , x0, y0)

)
i,j∈{1,...,d}

= χd(bη)(X,Y ) = 0.

If i and j are not both d, then either (x0, xi, y0, yj) or (x0, xi, yj , y0) is cyclically ordered, so
bρ(xi, yj , x0, y0) = bη(xi, yj , x0, y0). One sees that all the coefficients in the matrices above agree
except for the term where i = j = d, moreover, again applying Theorem 4.2, we see that the
minors

det
(
bρ(xi, yj , x0, y0)

)
i,j∈{1,...,d−1}

= det
(
bσ(xi, yj , x0, y0)

)
i,j∈{1,...,d−1}

6= 0

agree and are non-zero. It follows that, bρ(xd, yd, x0, y0) = bη(xd, yd, x0, y0). This completes the
proof. 2

Corollary 4.3. The Liouville current is symmetric if and only if ρ = ρ∗.

Proof. There is a natural identification of P(Rd) with P((Rd)∗), given by identifying v ∈ Rd to
the linear functional w → v · w. So, given a representation ρ ∈ Hd(S), ξρ∗ = ξ∗ρ and ξ∗ρ∗ = ξρ.
Therefore,

wρ∗([t, x]× [y, z]) = wρ([y, z]× [t, x]) = wρ
(
ι([t, x]× [y, z])

)
whenever (x, y, z, t) is cyclically ordered. It follows that ωρ is symmetric if and only if ωρ = ωρ∗ .
Theorem 1.2 then completes the proof. �

4.3. Liouville currents, equilibrium states and Bowen-Margulis measures. We define
the current

µρ = lim
T→∞

1

#Rα1(ρ, T )

∑
[γ]∈Rα1 (ρ,T )

1

〈γ | Lα1
ρ 〉

δγ , (2)

where Rα1(ρ, T ) is the set of closed orbits of Uα1(ρ) of period at most T . As was discussed
in Section 2.1, the measure of maximal entropy for Uα1(ρ) is the Bowen-Margulis measure for
Uα1(ρ), given by

µρ ⊗ dsα1
ρ = lim

T→∞

1

#Rα1(ρ, T )

∑
[γ]∈Rα1 (ρ,T )

1

〈γ | Lα1
ρ 〉

δ̂γ

where dsα1
ρ is the element of arc length on Uα1(ρ). We will refer to µρ as the Bowen-Margulis

current for Uα1(ρ).
The following result is an enlarged version of Theorem 1.3 from the introduction.

Theorem 4.4. Suppose that ρ ∈ Hd(S), ωρ is its Liouville current, λuρ is the infinitesmal
expansion rate of U1(ρ) and µρ is the Bowen-Margulis current for Uα1(ρ).

(1) If γ ∈ π1(S), then i(δγ , ωρ) = LH(ρ(γ)) = 〈δγ | LHρ 〉.
(2) If µ ∈ C(S), then i(µ, ωρ) = 〈µ | LHρ 〉 .
(3) The equilibrium state m−λuρ for the Hölder potential −λuρ on U1(ρ) is a scalar multiple

of ωρ ⊗ ds1
ρ where ds1

ρ is the element of arc length on U1(ρ).

(4) The equilibrium state m−λuρ is a scalar multiple of µρ ⊗ ds1
ρ.

(5) The measure of maximal entropy for Uα1(ρ) is a scalar multiple of ωρ ⊗ dsα1
ρ .
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(6) The Liouville current ωρ is a scalar multiple of the Bowen-Margulis current µρ.

Proof. A standard computation, see for example [20, Prop 5.8], shows that, for all γ ∈ π1(S),

i(δγ , ωρ) = ωρ([γ+, γ−]× [x, γ(x)]) + ωρ([γ+, γ−]× [y, γ(y)])

=
1

2

(
log bρ(γ−, γ(x), γ+, x) + log bρ(γ−, γ(y), γ+, y)

)
= log

λ1(ρ(γ))

λd(ρ(γ))

= LH(ρ(γ))

= 〈δγ | LHρ 〉

where x and y are in distinct components of ∂∞π1(S)− {γ−, γ+}.
Since every current is a limit of positive linear combinations of currents associated to elements

of π1(S) and the intersection function is continuous in the weak-* topology, we see that

i(µ, ωρ) = 〈µ | LHρ 〉

whenever µ ∈ C(S).
Since ωρ is a measure on G(S) which is absolutely continuous with respect to the pullback of

the Lebesgue measure on the C1+α-submanifold (ξρ × ξ∗ρ)(G(S)), ωρ ⊗ ds1
ρ is in the class of the

Lebesgue measure on the C1+α manifold U1(ρ). Theorem 2.3 implies that ωρ ⊗ ds1
ρ is a scalar

multiple of the equilibrium state m−λuρ for −λuρ on U1(ρ), i.e.

m−λuρ =
ωρ ⊗ ds1

ρ

〈ωρ | L1
ρ〉
. (3)

Since Uα1(ρ) is Hölder conjugate to the reparametrization of U1(ρ) by λuρ and Uα1(ρ) has
topological entropy 1, the equilibrium measure m−λuρ is a scalar multiple of the pullback of the

measure of maximal entropy µρ ⊗ dsα1
ρ for Uα1(ρ) to U1(ρ), see Lemma 2.1, i.e.

m−λuρ =
µρ ⊗ ds1

ρ

〈µρ | L1
ρ〉
. (4)

Since, by Equations (3) and (4), µρ ⊗ ds1
ρ is a scalar multiple of ωρ ⊗ ds1

ρ, we see that µρ is
a scalar multiple of ωρ. Therefore, the measure of maximal entropy µρ ⊗ dsα1

ρ for Uα1(ρ) is a
scalar multiple of ωρ ⊗ dsα1

ρ .
�

As an immediate corollary, we obtain an expression for the intersection of two Liouville cur-
rents.

Corollary 4.5. If ρ ∈ Hm(S) and η ∈ Hd(S), then

i(ωρ, ωη) = 〈ωρ | LHη 〉 .

Remark: Since symmetric geodesic currents are determined by their periods [29, Thm. 2], our

Liouville current ωρ pushes forward to Bonahon’s Liouville current on Ĝ(S), if d = 2, and to the
symmetric Liouville current defined by Martone and Zhang [26], if d > 2.
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5. Liouville volume rigidity

Recall that we define the Liouville volume of ρ ∈ Hd(S) by

volL(ρ) = 〈ωρ | LHρ 〉
so Corollary 4.5 implies that

volL(ρ) = i(ωρ, ωρ).

In this section, we apply Corollary 4.5, an argument of Labourie [21, Lemma 5.1] and a length
spectrum rigidity result [7, Theorem 11.2] to obtain a Liouville volume rigidity result.

Theorem 5.1. If ρ, η ∈ Hd(S), then

volL(ρ)

volL(η)
>

(
inf

γ∈π1(S)−{1}

LH(ρ(γ))

LH(η(γ))

)2

.

Moreover, equality holds if and only if either ρ = η or ρ = η∗ where η∗ is the contragredient of
η.

Notice that, infγ∈π1(S)−{1}
LH(ρ(γ))
LH(η(γ)) is finite and non-zero, since Hitchin representations are

well-displacing (see [22, Thm. 6.1.3]). However, if d > 2, it can be arbitrarily close to 0 or ∞
(see Zhang [38]).

Proof. Let K = infγ∈π1(S)−{1}
LH(ρ(γ))
LH(η(γ)) so that if γ ∈ π1(S)− {1}, then

i(δγ , ωρ) = LH(ρ(γ)) > KLH(η(γ)) = K i(δγ , ωη).

Since ωρ and ωη are both limits of positive linear combinations of currents associated to elements
of π1(S), this implies that

i(ωρ, ωρ) > K i(ωρ, ωη) and i(ωη, ωρ) > K i(ωη, ωη).

Therefore, using the fact that i is symmetric,

volL(ρ) = i(ωρ, ωρ) > K i(ωρ, ωη) = K i(ωη, ωρ) > K
2 i(ωη, ωη) = K2 volL(η).

Now assume that, in addition, volL(ρ) = K2 volL(η), so

i(ωρ, ωρ) = K i(ωρ, ωη) and i(ωρ, ωη) = K i(ωη, ωη).

Since UH(ρ), UH(η) and Uα1(η) are all Hölder orbit equivalent to U(S), we may assume that, up
to Hölder conjugacy, there exist positive Hölder functions g : U(S) → R and j : U(S) → R so
that

dsHρ = gdsHη and jdsα1
η = dsHη .

So, applying Corollary 4.5,∫
gdωη ⊗ dsHη =

∫
dωη ⊗ dsHρ = i(ωη, ωρ) = K volL(η)

and∫
(g −K) dωη ⊗ dsHη =

∫
g dωη ⊗ dsHη −K

∫
dωη ⊗ dsHη = K volL(η)−K volL(η) = 0. (5)

On the other hand, since LH(ρ(γ)) > KLH(η(γ)),∫
γ
(g −K) dsHη = LH(ρ(γ))−KLH(η(γ)) > 0

for all γ ∈ π1(S)− {1}.
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Let f = (g −K)j. We will apply the argument of [21, Lemma 5.1] to establish our rigidity
claim. If γ ∈ π1(S), then ∫

γ
fdsα1

η =

∫
γ
(g −K) dsHη > 0.

Since measures supported on periodic orbits are dense in the spaceMUα1 (η) of all flow invariant

probability measures on Uα1(η) (see Sigmund [35]), we see that∫
fdµ > 0 , (6)

for all µ ∈MUα1 (η).

Since µη is a multiple of ωη, equation (5) implies that∫
f dµη ⊗ dsα1

η =

∫
(g −K)j dµη ⊗ dsα1

η =

∫
(g −K) dµη ⊗ dsHη = 0, (7)

so

sup
µ∈MUα1 (η)

(
h(µ)−

∫
fdµ

)
6 sup

µ∈MUα1 (η)

h(µ)

= h(µη ⊗ dsα1
η )

= h(µη ⊗ dsα1
η )−

∫
f dµη ⊗ dsα1

η

6 sup
µ∈MUα1 (η)

(
h(µ)−

∫
fdµ

)

where the first inequality follows from inequality (6), the equality in the second line holds because
µη ⊗ dsα1

η is the measure of maximal entropy for Uα1(η), the equality in the third line follows
from equation (7) and the final inequality holds by definition. Therefore,

P(−f) = sup
µ∈MUα1 (η)

(
h(µ)−

∫
fdµ

)
= h(µη ⊗ dsα1

η )−
∫
f dµη ⊗ dsα1

η ,

so µη⊗dsα1
η is the equilibrium state for −f . Since ωη⊗dsα1

η is also the equilibrium state for the
zero function, [16, Prop 20.3.10] implies that −f is Livšic cohomologuous to a constant function
A. However, A = 0 since ∫

fdωη ⊗ dsα1
η = 0.

It follows that for all γ ∈ π1(S),

LH(ρ(γ))−KLH(η(γ)) =

∫
γ
fdsα1

η = 0 .

Therefore, LH(ρ(γ)) = KLH(η(γ)) for all γ ∈ π1(S).
We recall that since ρ and σ are projective Anosov, Adρ and Ad(σ) are also projective Anosov

(see [15, Section 10.2]). Since λ1(Adρ(γ)) = LH(ρ(γ)) for all γ ∈ π1(S), [7, Theorem 11.2] implies
that K = 1 and either Adρ = Adη or Adρ = Adη∗. Therefore, either ρ = η or ρ = η∗. (When
d = 3, we could apply earlier results of Cooper-Delp [11] or Kim [18].) �

We obtain the following corollary, stated in the introduction as Theorem 1.4, by symmetry.
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Corollary 5.2. If ρ, η ∈ Hd(S), then(
inf

γ∈π1(S)\{1}

LH(ρ(γ))

LH(η(γ))

)2

6
volL(ρ)

volL(η)
6

(
sup

γ∈π1(S)\{1}

LH(ρ(γ))

LH(η(γ))

)2

and equality holds in either inequality if and only if either ρ = η or ρ = η∗.

If ρ ∈ H3(S), Tholozan [36, Thm. 3] showed that there exists a 3-Fuchsian representation
σ = τ3 ◦ σ0, where σ0 : π1(S) → PSL(2,R) is Fuchsian and τ3 : PSL(2,R) → PSLd(R) is the
irreducible representation, so that ρ dominates σ, i.e. LH(ρ(γ)) > LH(σ(γ)) for all γ ∈ π1(S).
Since ωσ = 2ωσ0 and i(ωσ0 , ωσ0) = π2|χ(S)| (see Bonahon [1, Prop. 15]), Corollary 5.2 implies
that volL(ρ) > volL(σ) = 4π2|χ(S)|.

Corollary 5.3. If ρ ∈ H3(S), then

volL(ρ) > 4π2|χ(S)|.

Moreover, equality holds if and only if ρ is 3-Fuchsian.

If ρ ∈ H3(S), then, see Choi-Goldman [10], there exists a strictly convex open domain Ωρ in

RP2 so that ρ(π1(S)) acts properly discontinuously and cocompactly on Ωρ. It would be inter-
esting to explore the relationship between volL(ρ) and other notions of volume for Ωρ/ρ(π1(S)).

If σ = τd ◦ σ0 ∈ Hd(S) is d-Fuchsian, then ωσ = (d− 1)ωσ0 , so volL(σ) = (d− 1)2π2|χ(S)|. It
is known that not every ρ ∈ Hd(S) dominates a Fuchsian representation, but one might still ask
the following question.

Question: Is it true that, for all d > 3,

volL(ρ) > (d− 1)2π2|χ(S)|

for all ρ ∈ Hd(S)? If so, does equality hold if and only if ρ is d-Fuchsian?

6. Pressure quadratic forms associated to simple roots

In [8, Section 3], we describe a general procedure for producing pressure metrics on defor-
mation spaces of representations based on the constructions in McMullen [27], Bridgeman [5]
and [7]. The first step in the process is to associate a flow to each representation. One then
defines an associated pressure intersection and renormalized pressure intersection. Fundamental
properties from the thermodynamic formalism, as summarized in Proposition 2.2, then guaran-
tee that the Hessian of the renormalized intersection gives rise to a non-negative quadratic form
on the tangent space to the deformation space. The resulting quadratic form may or may not
be positive definite and the analysis of its degeneracy is typically the most difficult step in this
procedure.

Recall that, in Section 3.3, we associated a family Uαi(ρ) of simple root flows to a Hitchin
representation. We interpret the next result to say that this family of flows varies analytically
over the Hitchin component.

Proposition 6.1. For all i ∈ {1, . . . , d− 1} and ρ ∈ Hd(S), there exists a neighborhood Vi of ρ
in Hd(S), νi > 0 and an analytic map Ti : Vi → Holνi(U(S)) such that if σ ∈ Vi, then Ti(σ) is
positive and `Ti(σ)(γ) = Lαi(σ(γ)) for all γ ∈ π1(S).

Notice that the conclusion of Proposition 6.1 implies that the reparametrization of U(S) by
Ti(σ) is Hölder conjugate to Uαi(σ).
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Proof. Let ρ ∈ Hd(S). Proposition 3.6 implies that there exists a neighborhood W1 of ρ, β1 > 0

and an analytic map S1 : W1 → Holβ1(U(S)), so that

`S1(σ)(γ) = log λ1(σ(γ))

for all γ ∈ π1(S) and σ ∈ W1. Similarly, since for all i ∈ {2, . . . , d − 1}, the exterior power Eiρ̃
of a lift of ρ is projective Anosov, by Proposition 3.3, Proposition 3.6 implies that there exists a
neighborhood Wi of ρ in Hd(S), βi > 0 and an analytic map Si : Wi → Holβi(U(S),R) so that
if σ ∈Wi, then

`Si(σ)(γ) = log λ1(Eiσ̃(γ)) = log
(
λ1(σ(γ))λ2(σ(γ)) · · ·λi(σ(γ))

)
for all γ ∈ π1(S).

Let V̂1 = W1 ∩W2 and ν̂1 = min{β1, β2} and define an analytic map T̂1 : V1 → Holν̂1(U(S))

by setting T̂1(σ) = 2S1(σ)− S2(σ). Then

`
T̂1(σ)

(γ) = 2 log λ1(σ(γ))− log λ1(E2σ(γ)) = log

(
λ1(σ(γ))

λ2(σ(γ))

)
= Lα1(σ(γ))

for all γ ∈ π1(S) and σ ∈ V̂1.

More generally, if i ∈ {2, . . . , d−2}, let V̂i = W1∩W2∩· · ·∩Wi+1 and ν̂i = min{β1, . . . , βi+1},
and define T̂i : V̂i → Holν̂i(U(S)) by setting

T̂i(σ) = 2Si(σ)− Si+1(σ)− Si−1(σ).

One easily checks that `
T̂i(σ)

(γ) = Lαi(σ(γ)) for all γ ∈ π1(S) and σ ∈ V̂i. Finally, we define

T̂d−1 : V̂1 → Holν̂d−1(U(S)), where ν̂d−1 = ν̂1, by T̂d−1(σ) = T̂1(σ) ◦ F where F : U(S)→ U(S) is
given by F (v) = −v, and check that `

T̂d−1(σ)
(γ) = Lα1(σ(γ−1)) = Lαd−1

(σ(γ)) for all γ ∈ π1(S)

and σ ∈ V̂d−1 = V̂1

It remains to alter each T̂i so that, after restricting to a sub-neighborhood of V̂i, the image

consists of positive functions. Since T̂i(ρ) has positive periods, it is Livšic cohomologous to a pos-

itive τi-Hölder function fi, for some τi > 0 (see [34, Lemma 3.8]). Define Ti : V̂i → Holνi(U(S)),
where νi = min{ν̂i, τi}, by setting

Ti(σ) = T̂i(σ) + (fi − T̂i(ρ)).

We now check that Ti has the properties we claimed.

(1) Since T̂i is analytic, and Ti is a translate of T̂i, Ti is also analytic.

(2) Since fi − T̂i(ρ) is Livšic cohomologous to 0, Ti(σ) is Livšic cohomologous to T̂i(σ). In
particular, they have the same periods, so `Ti(σ) = `

T̂i(σ)
(γ) = Lαi(σ(γ)) for all γ ∈ π1(S)

and σ ∈ V̂1.
(3) Since U(S) is compact, the set of positive functions is an open subset of Holνi(U(S)).

Since Ti(ρ) is a positive function and Ti is analytic, hence continuous, there is a neigh-

bourhood Vi ⊂ V̂i of ρ so that Ti(σ) is a positive function for all σ ∈ Vi.
�

We then define the pressure intersection

Iαi(ρ, η) = lim
T→∞

1

#Rαi(ρ, T )

∑
γ∈Rαi (ρ,T )

Lαi(η(γ))

Lαi(ρ(γ))
= I(f iρ, f

i
η)
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for all ρ, η ∈ Hd(S), where

Rαi(ρ, T ) = {[γ] ∈ [π1(S)] \ {[1]} | Lαi(ρ(γ)) 6 T}

and the reparametrizations of U(S) by f iρ and f iη are Hölder conjugate to Uαi(ρ) and Uαi(η).
For fixed ρ ∈ Hd(S), we further define (Iαi)ρ : Hd(S)→ R by

(Iαi)ρ(σ) = Iαi(ρ, σ)

for all σ ∈ Hd(S). If Vi is the neighorhood of ρ and Ti is the map provided by Proposition 6.1,
then

Iαi(σ, η) = I(Ti(σ), Ti(η))

for all σ, η ∈ Vi. By Theorem 3.5, Uαi(σ) has entropy 1, for all σ ∈ Hd(S) and all i, so

Iαi(σ, η) = I(Ti(σ), Ti(η)) = J(Ti(σ), Ti(η))

for all σ, η ∈ Vi. Proposition 2.2 then implies that

Pαi |TρHd(S) = Hessρ(Iαi)ρ

is positive semi-definite and varies analytically over Hd(S).
By construction, the extended mapping class group and the contragredient preserve each Pαi .

It follows immediately from work of Wolpert [37], that the restriction of each Pαi to the Fuchsian
locus is a positive multiple of the Weil-Petersson metric. Since Lαi(ρ(γ)) = Lαd−i(ρ(γ−1)) for all
ρ ∈ Hd(S) and γ ∈ π1(S), we see that Iαi(ρ, σ) = Iαd−i(ρ, σ) for all ρ, σ ∈ Hd(S), so Pαi = Pαd−i
for all i.

We combine these observations with the non-degeneracy criterion provided by Proposition 2.2
to obtain:

Proposition 6.2. For each i ∈ {1, . . . , d − 1}, there exists a positive semi-definite, analytic,
quadratic form Pαi on THd(S), which is invariant under the action of the mapping class group
and restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus. Moreover, if
{ρt}t ∈ (−ε, ε) is a smooth one-parameter family in Hd(S), then ‖ρ̇0‖2Pαi = 0 if and only if

∂

∂t

∣∣∣
t=0
〈γ | Lαiρt 〉 =

∂

∂t

∣∣∣
t=0

Lαi(ρt(γ)) = 0

for all γ ∈ π1(S).

Remark: Labourie and Wentworth [24] evaluate the original pressure metric at the Fuchsian
locus. They remark [24, Sec. 6.6] that their analysis should extend to the pressure quadratic
forms Pαi .

Finally, we observe that, as was claimed in the introduction, we may rewrite the Liouville
pressure intersection Iα1 as

Iα1(ρ, η) =
1

〈ωρ | Lα1
ρ 〉
〈ωρ | Lα1

η 〉 .

Notice that, by Theorem 4.4, ωρ is a scalar multiple of µρ so ωρ = cρµρ for some cρ ∈ R. Since

µρ = 1
#Rα1 (ρ,T )

∑
Rα1 (ρ,T )

δγ
Lα1 (ρ(γ)) , we see that 〈ωρ | Lα1

ρ 〉 = cρ and

〈ωρ | Lα1
η 〉 = cρ lim

T→∞

1

#Rα1(ρ, T )

∑
Rα1 (ρ,T )

〈δγ | Lα1
η 〉

Lα1(ρ(γ))
= cρ lim

T→∞

1

#Rα1(ρ, T )

∑
Rα1 (ρ,T )

Lα1(η(γ))

Lα1(ρ(γ))
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Therefore,

1

〈ωρ | Lα1
ρ 〉
〈ωρ | Lα1

η 〉 = lim
T→∞

1

#Rα1(ρ, T )

∑
Rα1 (ρ,T )

Lα1(η(γ))

Lα1(ρ(γ))
= Iα1(ρ, η).

7. The Liouville pressure quadratic form is a Riemannian metric

The main work of this section is to show that the derivatives of the Lα1-length functions
generate the cotangent space of the Hitchin component.

Theorem 1.7. If ρ ∈ Hd(S), then the set

{DρL
γ
α1
}γ∈π1(S)

generates the cotangent space T∗ρHd(S).

Theorem 1.7 and Proposition 6.2 together imply that the Liouville pressure quadratic form is
a Riemannian metric.

Theorem 1.6. The Liouville pressure quadratic form Pα1 is a mapping class group invari-
ant, analytic Riemannian metric on Hd(S), that restricts to a scalar multiple of the the Weil-
Petersson metric on the Fuchsian locus.

Proof of Theorem 1.6: Suppose that v ∈ TρHd(S) and ‖v‖Pα1 = 0. Proposition 6.2 implies that

DρL
γ
α1(v) = 0 for all γ ∈ π1(S). Theorem 1.7 then implies that v = 0. Therefore, since we

already know it is positive semi-definite, Pα1 is positive definite. The remainder of the theorem
follows from Proposition 6.2. 2

The remainder of the section will be taken up with the proof of Theorem 1.7. Theorem
1.7 generalizes [7, Prop. 10.1], which asserts that derivatives of the spectral radius functions
generate the cotangent space, and its proof follows a similar outline. We use an analysis of the
asymptotic behavior of the Lα1-length functions to show that if DρL

γ
α1(v) = 0 for all γ, then

the derivatives of functions which record the eigenvalues are also trivial in the direction v. We
then apply [7, Prop. 10.1] itself to finish the proof, but we could also have observed that the
derivatives of all trace functions are trivial in the direction v and applied standard facts about
character varieties.

7.1. Transversality results. Let ρ̂(γ) be the lift of ρ(γ) to SL(d,R) so that all of its eigenvalues
are positive. Suppose that {e1(ρ(γ)), . . . , ed(ρ(γ))} is a basis of Rd consisting of eigenvectors for
ρ(γ) so that

ρ̂(γ)(ei(γ)) = λi(ρ(γ))ei(ρ(γ))

for all i. Then we may write

ρ̂(γ) =
d∑
i=1

λi(ρ(γ))pi(ρ(γ))

where pi(ρ(γ)) is the projection onto the eigenline spanned by ei(ρ(γ)) parallel to the hyperplane
spanned by the other basis elements.

In [6], we prove that if α and β have non-intersecting axes and ρ ∈ Hd(S), then the bases
{ei(ρ(α))} and {ei(ρ(β))} have strong transversality properties, which generalize the transver-
sality properties established by Labourie in [19].
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Theorem 7.1. ([6, Cor. 4.1]) If ρ ∈ Hd(S), α, β ∈ π1(S) − {1} and α and β have non-
intersecting axes, then any d elements of

{e1(ρ(α)), . . . , ed(ρ(α)), e1(ρ(β)), . . . , ed(ρ(β))}
span Rd. In particular,

pi(ρ(α))(ej(ρ(β))) 6= 0

for any i, j ∈ {1, . . . , d}.

If ρ ∈ Hd(S) and S2ρ : π1(S)→ SL(S2(Rd)) is the second symmetric product of a lift of ρ to
a representation into SL(d,R), then

S2ρ(γ) =
d∑
i6j

λi(ρ(γ))λj(ρ(γ))pij(ρ(γ))

and if E2ρ : π1(S)→ SL(E2(Rd)) is the second exterior product of a lift of ρ to a representation
into SL(d,R), then

E2ρ(γ) =

d∑
i<j

λi(ρ(γ))λj(ρ(γ))qij(ρ(γ))

where pij(ρ(γ)) is the projection onto the eigenline spanned by ei(ρ(γ)) · ej(ρ(γ)) and qij(ρ(γ))
is the projection onto the eigenline ei(ρ(γ))∧ ej(ρ(γ)) parallel to the hyperplane spanned by the
other products of basis elements. (Notice that E2ρ and S2ρ are independent of the choice of lift
of ρ to a representation into SL(d,R).) Then

pii(ρ(γ))(v · w) = pi(ρ(γ))(v) · pi(ρ(γ))(w),

pij(ρ(γ))(v · w) = pi(ρ(γ))(v) · pj(ρ(γ))(w) + pj(ρ(γ))(v) · pi(ρ(γ))(w) for i 6= j, and

qij(ρ(γ))(v ∧ w) = pi(ρ(γ))(v) ∧ pj(ρ(γ))(w)− pj(ρ(γ))(v) ∧ pi(ρ(γ))(w).

We use Theorem 7.1 to prove that various terms arising in our asymptotic analysis are non-
zero.

Lemma 7.2. If α, β ∈ π1(S) have non-intersecting axes and ρ ∈ Hd(S), then

(1) Tr
(
pii(ρ(α))pkk(ρ(β))

)
6= 0, for all i, k ∈ {1, . . . , d},

(2) Tr
(
qij(ρ(α))qkl(ρ(β))

)
6= 0 if i, j, k, l ∈ {1, . . . , d}, i 6= j and k 6= l,

(3) Tr
(
pii(ρ(α))S2ρ(β)

)
6= 0 if i ∈ {1, . . . , d}, and

(4) Tr
(
qij(ρ(α))E2ρ(β)

)
6= 0 if i, j ∈ {1, . . . , d} and i 6= j.

Proof. We fix ρ ∈ Hd(S) and identify ρ(γ) with γ, for all γ ∈ π1(S), throughout the proof
for notational simplicity. Choose bases {e1(α), . . . , ed(α)} and {e1(β), . . . , ed(β)} and define
tij(α, β) so that

pi(α)(ej(β)) = tij(α, β)ei(α)

for all i, j ∈ {1, . . . , d}. Theorem 7.1 implies that tij(α, β) 6= 0 for all i and j, so

Tr
(
pii(α)pkk(β)

)
= tik(α, β)2tki(β, α)2 6= 0.

If i < j and k < l, we define sijkl(α, β) by the equation

ek(β) ∧ el(β)
∧
r 6=i,j

er(α) = sijkl(α, β)

ei(α) ∧ ej(α)
∧
r 6=i,j

er(α)

 .

Theorem 7.1 implies that sijkl(α, β) 6= 0, so

Tr
(
qij(α)qkl(β)

)
= sijkl(α, β)sklij(β, α) 6= 0.
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Notice that we may choose the basis {ei(βαβ−1)}di=1 = {β(ei(α))}di=1, in which case

S2ρ(β)(ei(α) · ei(α)) = ei(βαβ
−1) · ei(βαβ−1).

One then computes that

Tr
(
pii(α)S2ρ(β)

)
= tii(α, βαβ

−1)2 6= 0.

(Notice that if α and β have non-intersecting axes, then so do α and βαβ−1.)
Similarly,

Tr
(
qij(α)E2ρ(β)

)
= sijij(α, βαβ

−1) 6= 0.

�

7.2. Trace asymptotics. If γ ∈ π1(S), let Λγα1 : Hd(S)→ R be given by

Λγα1
(ρ) =

λ1(ρ(γ))

λ2(ρ(γ))

and notice that Lγα1 = log Λγα1 . An asymptotic analysis of traces yields:

Lemma 7.3. If α, β ∈ π1(S) have non-intersecting axes and ρ ∈ Hd(S), then

lim
n→∞

Λα
nβn
α1 (ρ)

Λαnα1
(ρ)Λβ

n

α1 (ρ)
=

Tr(p11(ρ(α))p11(ρ(β)))

Tr(q12(ρ(α))q12(ρ(β)))
6= 0

and

lim
n→∞

Λα
nβ
α1 (ρ)

Λαnα1
(ρ)

=
Tr
(
p11(ρ(α))S2ρ(β)

)
Tr (q12(ρ(α)E2ρ(β))

6= 0

Proof. We again fix ρ ∈ Hd(S) and identify ρ(γ) with γ throughout the proof for notational
simplicity. One can compute that

Tr(S2ρ(αnβn))

Tr(E2ρ(αnβn))
=

∑
16i6j6d λi(α

nβn)λj(α
nβn)∑

16i<j6d λi(α
nβn)λj(αnβ))

=
λ1(αnβn)2(1 + an)

λ1(αnβn)λ2(αnβn)(1 + bn)

Since limn→∞
λj(α

nβn)
λi(αnβn) = 0 if i > j, by Lemma 3.4, an → 0 and bn → 0 as n→∞.

Similarly,

Tr(S2ρ(αn)S2ρ(βn))

Tr(E2ρ(αn)E2ρ(βn))
=

Tr
((∑

i6j λi(α
n)λj(α

n)pij(α)
)(∑

i6j λi(β
n)λj(β

n)pij(β)
))

Tr
((∑

i<j λi(α
n)λj(αn)qij(α)

)(∑
i<j λi(β

n)λj(βn)qij(β)
))

= Λα
n

α1
(ρ)Λβ

n

α1
(ρ)

Tr
(
p11(α)p11(β)

)
(1 + cn)

Tr
(
q12(α)q12(β)

)
(1 + dn)

where cn → 0 and dn → 0. Since the two expression are equal, we may take limits to obtain
the first equality in the statement. Notice that Lemma 7.2 is being used to guarantee that
Tr(p11(α)p11(β)) and Tr(q12(α)q12(β)) are non-zero so that the right-hand expression makes
sense and is non-zero.

To establish the second equality, we compute that

Tr(S2ρ(αnβ))

Tr(E2ρ(αnβ))
=

λ1(αnβ)2(1 + a′n)

λ1(αnβ)λ2(αnβ)(1 + b′n)
,
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where a′n → 0 and b′n → 0, and that

Tr(S2ρ(αn)S2ρ(β))

Tr(E2ρ(αn)E2ρ(β))
=

Tr
((∑

i6j λi(α
n)λj(α

n)pij(α)
)
S2ρ(β)

)
Tr
((∑

i<j λi(α
n)λj(αn)qij(α)

)
E2ρ(β)

)
= Λα

n

α1
(ρ)

Tr
(
p11(α)S2(ρ(β)

)
(1 + c′n)

Tr
(
q12(α)E2ρ(β)

)
(1 + d′n)

where c′n → 0 and d′n → 0. We obtain the second equation by setting the two expressions above
equal, taking limits and applying Lemma 7.2 to guarantee that the right-hand expression makes
sense and is non-zero. �

7.3. Derivatives of eigenvalue functions. Let λγi : Hd(S)→ R be given by λγi (ρ) = λi(ρ(γ)).

Proposition 7.4. If v ∈ TρHd(S) and DρL
γ
α1(v) = 0 for all γ ∈ π1(S), then Dρλ

γ
i (v) = 0, for

all i = 1, . . . , d and all γ ∈ π1(S).

Notice that the assumptions of Proposition 7.4 are equivalent to the assumption that DρΛ
γ
α1(v) = 0

for all γ ∈ π1(S). The proof of Proposition 7.4 makes use of the following elementary lemma:

Lemma 7.5. Let ai, bi, ci, di, wi ∈ R, for i = 1, . . . k, with w1 > w2 > . . . > wk > 0. If, for
every n ∈ N,

k∑
i=1

(ai + nbi)w
n
i =

k∑
i=1

(ci + ndi)w
n
i ,

then ai = ci and bi = di for all i.

Proof. We first divide by nwn1 and take the limit to see that

b1 = lim
n→∞

1

nwn1

(
k∑
i=1

(ai + nbi)w
n
i

)
= lim

n→∞

1

nwn1

(
k∑
i=1

(ci + ndi)w
n
i

)
= d1.

We then subtract nb1w
n
1 from each side, divide by wn1 , and pass to a limit to conclude that

a1 = c1.
We may then remove the first order terms and proceed iteratively. �

Proof of Proposition 7.4. We will show that, if γ ∈ π1(S), then Dρ(log λγi )(v) = Dρ(log λγ1)(v)
for all i. Since λγ1 · · ·λ

γ
d = 1,

Dρ(0)(v) = Dρ(log λγ1)(v) + · · ·+ Dρ(log λγd)(v) = d Dρ(log λγ1)(v) = 0,

which in turn implies that Dρλ
γ
i (v) = 0 for all i.

We first notice that, since DρL
γ
α1(v) = 0, Dρ(log λγ2)(v) = Dρ(log λγ1)(v) for all γ ∈ π1(S). We

proceed iteratively. Assume that Dρ(log λγi )(v) = Dρ(log λγ1)(v) for all i < m and γ ∈ π1(S).
Notice that this is equivalent to the claim that Dρλ

γ
i (v) = Dρλ

γ
1(v) for all i < m and γ ∈ π1(S).

Fix α ∈ π1(S)− {1} and let β be an element of π1(S), so that α and β have non-intersecting
axes and consider the family of analytic functions {Fn : Hd(S)→ R}n∈N defined by

Fn(ρ) =

(
Tr(p11(ρ(α))S2ρ(βn))
Tr(q12(ρ(α))E2ρ(βn))

)
(Λβ1 (ρ))n

(
Tr
(
p11(ρ(α))p11(ρ(β))

)
Tr
(
q12(ρ(α))q12(ρ(β))

)) .
Notice that, by Lemma 7.3, the numerator of Fn is an analytic function which is a limit of analytic
functions which, by assumption, have derivative zero in the direction v, so the numerator has
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derivative zero in direction v. We may similarly use our assumptions and Lemma 7.3 to show
that the denominator of Fn has derivative zero in direction v. Therefore, DρFn(v) = 0 for all
n ∈ N.

We adopt the shorthand λi = λρi (β) and expand the above equation to see that

Fn(ρ) =

∑
i6j aij(ρ)

(
λi
λ1

)n (λj
λ1

)n
∑

i<j bij(ρ)
(
λi
λ1

)n (λj
λ2

)n =

∑
i6j aij(ρ)uni u

n
j∑

i<j bij(ρ)uni v
n
j

where

aij(ρ) =
Tr(p11(ρ(α))pij(ρ(β)))

Tr(p11(ρ(α))p11(ρ(β)))
, bij(ρ) =

Tr(q12(ρ(α))qij(ρ(β)))

Tr(q12(ρ(α))q12(ρ(β)))
, ui =

λi
λ1
, and vi =

λi
λ2
.

In particular, a11 = b12 = 1 and, by Lemma 7.2, b1m 6= 0 for all m. Since DρFn(v) = 0 for all
n ∈ N,Dρ

∑
i6j

aiju
n
i u

n
j

 (v)

 ((∑
k<l

bklu
n
kv

n
l

)
(ρ)

)
=

∑
i6j

aiju
n
i u

n
j

 (ρ)

 (
Dρ

(∑
k<l

bklu
n
kv

n
l

)
(v)

)
Letting Uijkl = uiujukvl, this becomes∑

i6j,k<l

(
ȧijbkl + naijbkl

(
u̇i
ui

+
u̇j
uj

))
Unijkl =

∑
i6j,k<l

(
aij ḃkl + naijbkl

(
u̇k
uk

+
v̇l
vl

))
Unijkl.

We group terms where Uijkl agree and order so that, as sets, {ws}Ms=1 = {Uijkl}i6j,k<l and
wi > wi+1 > 0 for all i. We may rewrite the expression above as

M∑
s=1

(As + nBs)w
n
s =

M∑
s=1

(Cs + nDs)w
n
s

where As, Bs, Cs and Ds are constants depending only on s and not on n. Lemma 7.5 implies
that As = Cs and Bs = Ds for all s.

By our iterative hypothesis, Dρ(log λi)(v) = Dρ(log λ1) for all i < m, and m > 2. Therefore,
u̇i = v̇i = 0 for all i < m. Since m > 2, the iterative step of the proof will be completed if we
show that either u̇m = 0 or v̇m = 0.

Consider s1 such that ws1 = U111m = vm and notice that

Bs1 =
∑

{i6j, k<l | Uijkl=vm}

(
aijbkl

(
u̇i
ui

+
u̇j
uj

))
.

If ws1 = Uijkl, then Uijkl = uiujukvl = vm. Since 1 = u1 > u2 > · · · > ud > 0 and 1 > vi > ui
for all i > 2, we see that uj > uiujukvl = vm > um, so i 6 j < m. Since u̇i = 0 if i < m, we see
that Bs1 = 0.

A similar analysis yields that if Uijkl = uiujukvl = vm, then k < m and l 6 m. Therefore,
u̇k = 0 and v̇l = 0 if l 6= m. However, if l = m, then i = j = k = 1, so

Ds1 =
∑

{i6j ,k<l | Uijkl=vm}

(
aijbkl

(
u̇k
uk

+
v̇l
vl

))
= a11b1m

(
v̇m
vm

)
= b1m

(
v̇m
vm

)
,

so, since Ds1 = Bs1 = 0, we conclude that b1mv̇m = 0. Since we have previously observed that
b1m 6= 0, it must be that v̇m = 0 which completes the proof. 2
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7.4. Proof of Theorem 1.7. If v ∈ TρHd(S) and DρL
γ
α1(v) = 0 for all γ ∈ π1(S), then, by

Proposition 7.4, Dρλ
γ
i (v) = 0 for all i and all γ ∈ π1(S). However, Proposition 10.1 in [7]

guarantees that {Dρλ
γ
1}γ∈π1(S) generates the cotangent space to Hd(S) at ρ, so our proof is

complete. 2

8. Degeneracy of Pαn on H2n(S)

Bridgeman [5] showed that the pressure metric on quasifuchsian space is degenerate on the
Fuchsian locus. In [8, Section 5.8], we construct a pressure metric on Hd(S) which is associated
to the Hilbert length of elements of the image and similarly prove that this metric is degenerate
on the fixed point locus of the contragredient involution. A very similar argument yields that
Pαn is degenerate on H2n(S).

Recall that the contragredient involution τ : H2n(S)→ H2n(S) fixes the submanifoldH(S,PSp(2n))
of Hitchin representations with image in PSp(2n).

Proposition 8.1. The pressure quadratic form Pαn on H2n(S) is degenerate on H(S,PSp(2n)).
In particular, if ρ ∈ H(S,PSp(2n)), v ∈ TρHd(S) and Dτρ(v) = −v, then ||v||Pαn = 0.

Proof. Suppose that ρ ∈ H(S,PSp(2n)), v ∈ TρHd(S) and Dτρ(v) = −v. We choose a path
{ρt}t∈(ε,ε) in H2n(S) such that ρ̇0 = v and τ(ρt) = ρ−t for all t ∈ (−ε, ε). Since λi(σ(γ−1)) =

(λ2n−i(τ(σ)(γ)))−1 for all i and all σ ∈ H2n,

Lαn(ρt(γ)) = log

(
λn(ρt(γ))

λn+1(ρt(γ))

)
= Lαn(ρ−t(γ))

for all t ∈ (−ε, ε) and γ ∈ π1(S). Therefore,

d

dt

∣∣∣
t=0

Lαn(ρt(γ)) = 0

for all γ ∈ π1(S), so Proposition 6.2 implies that ‖ρ̇0‖Pαn = ‖v‖Pαn = 0. �

It is natural to wonder whether a similar symmetry is responsible for all degeneracies of
pressure metrics constructed in this fashion.
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