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1. INTRODUCTION

Anosov representations ([19, 15]) from a hyperbolic group to a semi-simple Lie group are
characterized by their dynamical nature. In the context of projective Anosov representations,
we [7] previously associated a metric Anosov flow to such a representation and showed that the
(thermo)dynamical properties of this flow yield in turn new structures on the deformation space
of these representations: entropy functions, (pressure) intersections and a pressure metric.

In this paper, we focus on Hitchin representations of a surface group into PSL4z(R). We
associate a wealth of flows to a Hitchin representation, and hence geodesic currents, entropies,
pressure forms etc., depending essentially on an element in the Weyl chamber.

Let us be more specific. If E is a real vector space of dimension d and S is a closed sur-
face, a representation p : 71(S) — PSL(E) is d-Fuchsian if it is the composition of a Fuchsian
representation into PSL(2,R) and an irreducible representation of PSL(2, R) into PSL(E). A rep-
resentation p : m1(S) — PSL(E) is a Hitchin representation if it may be continuously deformed to
a d-Fuchsian representation. Hitchin [17] showed that the Hitchin component Hq(S) of (PGL(E)-
conjugacy classes of ) Hitchin representations into PSL(F) is an analytic manifold diffeomorphic
to R(@-DIXS) | Labourie [19] showed that a Hitchin representation is a discrete, faithful quasi-
isometric embedding and that the image of every non-trivial element ~ is diagonalizable over R
with eigenvalues of distinct modulus:

A(p(7) > A2(p(7)) > -+ > Aa(p(v)) > 0.

Moreover, there are Holder-continuous, p-equivariant limit curves &, : Ooomi(S) — P(E) and
£, 1 Ooomi(S) — P(E*) whose images are C'**submanifolds. This last feature is very specific
to Hitchin representations — see subsection 3.2 (Theorem 3.2) and Guichard [14] for details.

Let G(S) = 00om1(S)? \ A be the space of distinct points in the Gromov boundary deom1(S)
of m1(S5). We say that a flow over G(S) is an R-principal bundle L over G(S) equipped with a
properly discontinuous and co-compact action of 71 (.S) by bundle automorphisms. The R-action
on the quotient space Uy, = L/m(5) is a flow, which justifies the terminology. Given a geodesic
current w, i.e. a m(S)-invariant locally finite measure on G(S), we define a pairing

(w|L)::/ULw®dt

where dt is the element of arc length given by the R action.
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We focus on the simple root flows associated to a Hitchin representation p (see Section 3.3).
For each i € {1,...,d — 1} there is a flow L over G(S) such that if §, is the geodesic current
with Dirac measure one on every (oriented) axis of an element conjugate to -, then

Equivalently, if we let U,,(p) be the quotient flow with associated element of arc length dsp,
then the period of U,, (p) associated to v € 71(S) is given by Lq,(p(7)), the Ly, -length function.
We also consider the Hilbert flow LH(p) associated to p which is determined, up to Holder

conjugacy, by A(p(v))
M>

o | LY = L (p(y ::10g<
for any non-trivial v € m;(95).
Potrie and Sambarino show that the entropy of simple root flows is constant and characterize

Fuchsian representations in terms of the entropy of the Hilbert flow.

Theorem 1.1. (Potrie-Sambarino [32]) The topological entropy of a simple root flow is 1 for
all Hitchin representations. Moreover, a Hitchin representation p € Hq(S) is d-Fuchsian if and

only if the topological entropy of the Hilbert flow is %

One of the main constructions of our paper is to single out, amongst all geodesic currents
associated to a Hitchin representation, a specific asymmetric current called the Liouville current
wp. This Liouville current was introduced in [20] and characterized by the cross ratio b, of p as
discussed in Section 4.1. If (¢, xz,y, z) are four points in cyclic order in Jxom1(.5), then

1 P \\
n(ta] [ ) = 1og ({10 )
where u, v, ® and W are non zero elements in &,(t), {,(x), §;(y) and £;(2) respectively.

As a consequence of Labourie’s work on cross ratios for Hitchin representations [20], this gives
an embedding of the space of all Hitchin representations into the space of geodesic currents.

Theorem 1.2. If p and o are two Hitchin representations —of possibly different dimensions —
with the same Liouwville current, then p = o.

The Liouville current enjoys the following properties.

Theorem 1.3. If p is a Hitchin representation, then
(1) The current w, is the unique current — up to scalar multiplication — in the class of the
Lebesgque measure for the C! structure on G(S) associated to the embedding (&, €*).
(2) The measure w, ® dsyt is — up to scalar multiplication— the unique measure maximaizing
entropy for the flow Uy, (p).
(3) If u is a geodesic current, then

i, wp) = (| L)) -

Our Liouville current is closely related to the symmetric Liouville currents defined by Bonahon
[1], when d = 2, and Martone-Zhang [26]. In fact, one may view their Liouville currents as
symmetrizations of our Liouville current.

We define the Liouville volume of a representation, by

vol (p) = i(wp, wp),
and establish the following volume rigidity result, which is motivated by work of Croke and
Dairbekov [12].
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Theorem 1.4. If p,n € Hy(S), then
(| L3

2 2
SN o) (o
vem(S\{1} (05 | LH) voli(n) vem(S\{1} (0 | Li)
and equality holds in either inequality if and only if either p = n or p = n* where n* is the
contragredient of .

When d = 3, we apply work of Tholozan [36, Thm. 3] to obtain a simpler volume rigidity
result.

Corollary 1.5. If p € H3(S), then

vol (p) > 472[x(S)].
Moreover, equality holds if and only if p is 3-Fuchsian.

We return to the themes explored in [7], by constructing a new, hopefully more tractable,
pressure metric on a Hitchin component. If p,n € H4(S), we define their Liouville pressure
intersection to be

1 (07
Lo, (p,n) == PRIvD) (wp [ LYY) -

If p € Hq(S), we define a function (In,), : Hqa(S) — R by letting (In,),(n) = Ia, (p, 7).

Using the thermodynamic formalism developed by Bowen [3], Ruelle [33] and Parry-Pollicott
[30] we show that (I,,), has a minimum at p, and its Hessian P, at p is positive semi-definite.
We call P, the Liouville pressure quadratic form. This construction is motivated by Thurston’s
version of the Weil-Petersson metric on Teichmiiller space (see Wolpert [37]) as re-interpreted
by Bonahon [1], McMullen [27] and Bridgeman [5].

We show that P,, is non-degenerate, hence gives rise to a Riemannian metric, and apply
work of Wolpert [37] to see that it restricts to a multiple of the Weil-Petersson metric on the
Fuchsian locus.

Theorem 1.6. The Liouville pressure quadratic form Pq, is a mapping class group invari-
ant, analytic Riemannian metric on Hq(S), that restricts to a scalar multiple of the the Weil-
Petersson metric on the Fuchsian locus.

The main tool in the proof of the non-degeneracy of P, is that the L,,-length functions of
elements of 71(S) generate the cotangent space of the Hitchin component. More precisely, if
v € m(S), let LY, : Hqa(S) — R be given by

L, (p) = Lay (p(7)) = (6y [ L5 -
Theorem 1.7. If p € Hq(S), then the set

{DpLa, }rem(s)
generates, as a vector space, the cotangent space T:;Hd(S).

We can also give an interpretation of I,, in terms more reminiscent of the construction in
[7]. This interpretation generalizes to give pressure quadratic forms associated to other simple
roots. If T'> 0 and i € {1,...,d — 1}, let

Roi(p, T) ={I] € [m(SI\ AN} | Ly (p(7)) < T}
We then define an associated pressure intersection

Lo, (p,n) = 1

| 1 Lo, (n(7))
M gReT 2 I

a: (p(7))

YER,; (p,T)
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Hessian of (I, ),, a positive semi-definite quadratic pressure form P,,. It is natural to ask when
P, is non-degenerate. In a final section, we observe that P, is degenerate on Ha,(S) at any
Hitchin representation with image (conjugate into) PSp(2n), see Proposition &.1.

We recall that our original pressure metric from [7] was obtained as the Hessian of a renor-
malized pressure intersection

The associated function (I,,), has a minimum at p, and we again obtain, by considering the

_ h(p) ..
J(p,n) = h(n) TIEEO #Ri(p,T)

Li(n(v))
. I; Li(p(7))

(
where L1 (p(7)) = log Ai(p(7)), Ri(p, T) = {[7] € [m1(S)]\{[1]} | L1(p(7)) < T} and the spectral
radius entropy h(p) is the exponential growth rate of Ry(p,T).

There are two main advantages of the Liouville pressure metric with respect to the pressure
metric defined in [7]. First, due to work of Potrie and Sambarino [32], we do not have to
renormalize the pressure intersection by an entropy. Second, the Bowen—Margulis measure
associated to the first simple root is directly related to the cross ratio of the representation. We
hope that these two facts will make the Liouville pressure metric more accessible to computation.
It follows from work of Zhang [38] and Theorem 1.4 that the Liouville volume is non-constant on
Hq(S) when d > 3, so one cannot directly use the Hessian of intersection to construct a metric,
as Bonahon [1, Thm. 19] does to reconstruct the Weil-Petersson metric when d = 2.

7T)
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2. DYNAMICAL BACKGROUND

In Sections 2.1 and 2.2 we recall the thermodynamic formalism of Bowen and Ruelle ([3, 4, 33]),
which was further developed by Parry and Pollicott [30]. We then discuss geodesic currents (in
Section 2.3) and describe the relationship between contracting line bundles and flows (in Section
2.4).

2.1. Basic definitions. Let X be a compact metric space and ¢ = {¢; : X — X }4cr be a topo-
logically transitive, metric Anosov flow on X. (Metric Anosov flows were first defined by Pollicott
[31] who called them Smale flows.) Let O, be the collection of periodic orbits of the flow ¢ and
and define

Ry(T) ={a €Oy | l(a) < T}
where ¢(a) is the period of a. The topological entropy of the flow ¢ is given by

) = i CEERAD)

T—oo

If a > 0, let Hol®(X, R) be the space of a-Holder continuous functions on X. If f € Hol*(X,R),
let

(s(a) = / fdb,
X
where 8, is a ¢-invariant measure supported on a with total mass l(a). Let
Ry(f,T) ={a €Oy | £s(a) <T}

and define

() — tim EFFALT)

T—o0 T
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If f is positive, we obtain a new flow ¢/ on X by reparametrizing ¢ by f. Concretely, ¢/ is
determined by the formula

Oty oy (1) = 0 (2)

where k¢(z,t) = fg f(¢sz)ds for all z € X and ¢ € R. Notice that if ds is an element of arc
length for the flow lines of ¢, then fds is an element of arc length for the flow lines of ¢7.

The flow ¢/ is Holder orbit equivalent to ¢ and if a € Oy = Oyy, then £f(a) is the period of
a in the flow ¢/. In this case, hg(f) is the topological entropy h(¢f) of the flow ¢7.

We will say that f,g € Hol*(X,R) are Livsic cohomologuous if there exists U : X — R such

that for all z € X one has
0

f@)—gl@) = | Ulna).

t=0
Recall that f and g are Livsic cohomologous if and only if £;(a) = ¢4(a) for all a € O,. Moreover,
if f and g are positive, then ¢/ and ¢9 are Holder conjugate if and only if f and ¢ are Livsic
cohomologuous (see Livsic [25]).

If M is the space of ¢-invariant probability measures on X and m € My, let h(¢p, m) be the
metric entropy of m. Then, for f € Hol%(X,R), the topological pressure is

Py(f) = sup {h(¢,m>+ /. fdm}.

m€M¢

A measure that attains this supremum is called an equilibrium state for f and an equilibrium
state for the zero function is called a measure of mazximal entropy.

If f € Hol*(X,R) is positive, Bowen [2, Thm. 5.11] (see also Pollicott [31, Thm. 9]) showed
that the measure of maximal entropy for ¢/ is given by the Bowen-Margulis measure for ¢f

~

| | 5.
SR G 2 i)

a€0x

where 8, is the product of Dirac measure on the orbit a and the element of arc length on a in
¢l

We make use of the following result of Sambarino [34, Lemma 2.4].

Lemma 2.1. Suppose that f € Hol*(X,R) is positive. If m_p,(p)s s the equilibrium state of
—hy(f)f, then

dm# =

is the measure of mazximal entropy of ¢7.

If f,g € Hol*(X,R) are positive, we define their pressure intersection' by

I(f, g) — lim # Z 69(a> _ fgdm_h(f)f (1)

=00 #tRo(f,T) et £i(@) [ fdmop(pys

The last equation follows from [7, Sec. 3.4]. We define the renormalized pressure intersection by

J(f,9) = ZZ((?)I(J‘}Q)-

lwe emphasize the terminology pressure intersection which is meant to distinguish pressure intersection from
the intersection defined by Bonahon [1].
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In [7, Cor. 2.5, Prop 3.11 and 3.12], we used results of Parry-Pollicott [30] and Ruelle [33] to
prove the following.

Proposition 2.2. If ¢ is a topologically transitive metric Anosov flow on a compact metric
space X, then
(1) If f € Hol*(X,R) is positive, then the function J; defined by J(g) = J(f,g) has a global
minimum at f. Therefore, Hess Jf is positive semi-definite.
(2) If {ft}ie(—e,) C Hol*(X,R) is a smooth one-parameter family of positive functions, then

82
5| 3o gy =0

if and only if, for every a € Oy, one has

0
ot ‘t:0h¢(ft)£ft (a) = 0.

(3) If { fuluem and {gy }venr are analytic families of positive a-Hdolder functions parametrized
by analytic manifolds M and M', then J(fy, gv) is an analytic function on M x M'.

2.2. Expansion on periodic orbits. Assume now that X is a manifold and that ¢ is a C1*¢
Anosov flow with unstable bundle E*. Denote by Aj : X — (0,00) the infinitesimal ezxpansion
rate on the unstable direction, defined by

u 0
/\¢>(9C) = ot

1 K
— / log det(dy¢rys| E")ds
0

t=0 F
for some x > 0.
We record the following observations (see [32, Section 2.2] for further discussion):

1) If a € Oy, then
( ) @
E,\z (a) = / Z = log det(dxqbg(aﬂE“)

is the total expansion of ¢ along a.
e Livsic-cohomology class o oes not depend on k.
2) The Liv&ic-cohomol 1 f Ay d d d
(3) If ¢~ ! is the inverse flow ¢; ' = ¢4, it follows from Livsic’s Theorem ([25]) that ¢
preserves a measure in the class of Lebesgue if and only if )\g is Livsic cohomologuous
to AY%_;.
-1

We make crucial use of the following classical result of Sinai, Ruelle and Bowen.
Theorem 2.3 (Sinai-Ruelle-Bowen [4]). Let ¢ be a C*** Anosov flow on a compact manifold

X, then P(—/\g) = 0. Moreover, if ¢ preserves a measure in the class of Lebesgue, then this
measure is the equilibrium state of —)\;.

Bowen and Ruelle state their result in the C? setting, but the proof may be extended to the
C1* setting by applying [16, Prop. 19.16 and 20.4.2].

2.3. Geodesic currents. Let I' be a hyperbolic group which is not virtually cyclic. Let G(T")
be the space of pair of distinct points, which we think of as the space of oriented geodesics, on
the Gromov boundary Ox,I" of I':

G(0) :=A{(z,y) € O [z # y} .
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A geodesic current for T' is a I'-invariant locally finite measure on G(I'). If ~ is a primitive
infinite order element of I' with attracting fixed point 73 € 0 I and repelling fixed point ~_
and 4, ) is the Dirac measure supported at (x,y) € G(I'), we define the geodesic current

57 = Z (5(,?77,7+) .
e

where [vy] is the conjugacy class of v in I'. If & = «" where « is primitive and n > 0, we let
0o = N0~.

We let C(I") denote the space of geodesic currents on I' and endow it with the weak-* topology.
When I" = 71 (S), for a closed surface S, we write G(S) and C(S) for G(m1(S)) and C(71(5)).

Following Bonahon [1, Section 4.2], we define a continuous, symmetric, bilinear pairing, called
the intersection

i:C(S)xC(S)—R

so that if a, 5 € I', then i(d4,03) is the geometric intersection number of the curves on S
representing a and 5. Let DG(S) C G(S) x G(S) denote the space of pairs (z,y) and (u,v)
of oriented geodesics which intersect, i.e. so that = and y lie in distinct components of

Osom1(S) — {u,v}. We then define

i(,u,u):/ dp®dv .
DG(S)/m1(S)

A geodesic current is symmetric if it is invariant by the involution ¢ : (x,y) — (y,x). Bonahon
[1] works entirely in the setting of symmetric geodesic currents. In fact, he defines a geodesic
current as a measure on the space G(I') = G(I') /¢ of unordered pairs of distinct points in dul.
A geodesic current p in our sense naturally pushes forward to a geodesic current /i in the sense
of Bonahon. Moreover, if u,v € C(S), then i(u, ) agrees with the intersection, in the sense of
Bonahon, of ji and ».

2.4. Contracting line bundles and flows. Gromov [13] defined a geodesic flow U(T") for
a hyperbolic group I', which is well-defined up to Holder orbit equivalence, see Champetier
[9] and Mineyev [28] for detailed constructions. The closed orbits of U(I') are in one-to-one
correspondence with conjugacy classes of infinite order elements of I'. There is a trivial Hélder
R principal bundle Ly = U(T") over G(T') equipped with a properly discontinuous action of T’
by bundle automorphisms, so that Lp/I" equipped with the flow coming from the action of R is
Holder orbit equivalent to U(T'). Moreover, U(T') may be parametrized as G(I') x R where the
action of R is by translation in the second factor. We will mostly be interested in the situation
where U(I") is metric Anosov.

In [7, Section 5], we showed that, whenever a I' admits an Anosov representation, U(I") is
indeed metric Anosov. In this paper, we will focus on the case where I' = 71(S), in which case
U(I") may be taken to be the geodesic flow on the unit tangent bundle of a hyperbolic surface Y
homeomorphic to S, and will be denoted U(S), and Lr may be identified with the geodesic flow
on the unit tangent bundle of the universal cover of Y, and will be denoted U(S).

A flow over G(I') is a Holder R-principal line bundle L over G(I") equipped with a properly dis-
continuous action of I" by Hoélder bundle automorphisms, so that the quotient flow on U := L/T’
is Holder orbit equivalent to the geodesic flow of I'. In other words, one may think of a flow over
G(T') as a parametrization of the geodesic flow of T'.

Given a geodesic current w and a flow L over G(I'), we define a pairing

(w|L)::/ULw®dt
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where dt is the element of arc length on U_ given by the R-action. Given a flow L the function
w i (w | L) from C(T") to R is continuous.

We observe that, for every non trivial element ~ in I, (d, | L) is the length of the periodic
orbit associated to v in Uy, or, equivalently, the translation distance of the action of v on the
fiber L(,~ ,+). The map v +— (0, | L) is the length spectrum of L. If U(T') is metric Anosov,
then, by Livsic’s Theorem, the length spectrum determines the quotient flow U up to Holder
conjugacy.

Let M be a Holder line bundle over U(T"), equipped with a lift of the geodesic flow {9 }er
on U(T) to a Holder flow {W¥;};cr on M by bundle automorphisms (i.e. the restriction of ¥,
is a linear automorphism from M, to My, ;) for all z € U(T') and all ¢t € R). We say that M is
contracting if there exist a metric || - || on M and tp > 0 so that

1
1o ()] < Sllull

for all uw in M. Every such line bundle has a contraction spectrum «y — ¢(y), where if the periodic
orbit of U(T") associated to v € m1(S) has period ¢, then

e, ()] = e~

for any vector v in a fiber over the periodic orbit. Again Liv§ic’s Theorem guarantees that two
line bundle with the same contracting spectrum are isomorphic.
The notions of contracting line bundles and flow are equivalent.

Proposition 2.4. Let I' be a hyperbolic group whose geodesic flow is metric Anosov. Then

(1) Given a contracting line bundle M over U(T'), there exists a flow over G(T') whose length
spectrum coincides with the contracting spectrum of M.

(2) Conwversely, given a flow L over G(I'), there exists a contracting line bundle over U(T)
whose contracting spectrum is the length spectrum of L.

Proof. Given a contracting line bundle M over U(I"), we construct a flow Ly over G(I') by the
following procedure

(1) First, lift M to a line bundle M over U(T') and let {W¥,};cr be the lift of the flow {¥,};cr
on M.

(2) We consider the corresponding R-principal line bundle Ly over U(T") equipped with an
action of I' by bundle automorphisms; concretely the fiber of Ly over (z,y,s) € U(T') is
(M(z,4,5) — 10})/ £ 1, i.e. non-zero vectors up to sign, and the action of ¢ € R takes

[0] € (L) . ,5) toO [e"0].

(3) Let 7 : U(T') = G(I'). We define Ly := m.Ly, that is the bundle whose sheaf of sections
are the sections of Ly invariant by the flow: More explicitly, for all # € R, (x,y,s) € G(I’)
and [v] € (/L\M)(%y,s), we identify [v] with [¥,(v)] and notice that the quotient is a principal
R-bundle over G(I).

The proof of [7, Prop. 4.2] generalizes immediately to yield the first part of our proposition.

We now establish our second claim. Let L be a flow over G(I'). Consider the trivial bundle
M =L xR over L equipped with the trivial lift of the action of ' given by v(z,v) = (v, v). Lift
the flow {ﬁgt}teR on L to the flow

@;(1‘7 U) = ((Z)t(x)v e_tv)
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on M. These two actions commute and we obtain a contracting line bundle M := M /T over
UL equipped with the quotient flow {¥,;};cr whose contracting spectrum agrees with the length
spectrum of L. O

As an immediate consequence, the tensor product on principal R bundles gives rise to an
inner product, also called the tensor product,

(Lo,L1) = Lo® Ly,

on geodesic flows, which is equivalent to the tensor product of the corresponding contracting line
bundles. The length spectrum of the tensor product is then the sum of the two length spectra
and thus for any geodesic current p € C(I)

(n|Lo@Ly) = (u|Lo)+ (u]| L)

since any current may be approximated by linear combinations of currents associated to group
elements. Given a positive number ¢, which we may view as an element of Aut(R), we can
renormalise the action of R on the R-bundle L to obtain a new bundle L! so that

() =t{ulL) .
One can check then that for a positive integer n,

n

n _
L"=L®...®L.

3. HITCHIN REPRESENTATIONS AND THEIR ASSOCIATED FLOWS

In Sections 3.1 and 3.2 we recall the definitions and basic properties of projective Anosov and
Hitchin representations. In Sections 3.3 and 3.4 we use the techniques of Section 2.4 to construct
families of flows associated to such representations.

3.1. Projective Anosov representations. It will occasionally be useful to work in the more
general class of projective Anosov representations. A representation p : I' — SL(d,R) with do-
main a hyperbolic group I' has transverse projective limit maps if there exist continuous, p-equivariant
functions
£y Ol — P(R?)

and

& sl = P((RY)*)
so that if x and y are distinct points in dx I, then

§(w) @ ker & (y) = R

Recall that a representation p : I' — SL(d, R), with domain a hyperbolic group I, gives rise to
a flat R%-bundle E, over U(T') and that the geodesic flow ¢ on U(T) lifts to a flow v, parallel to
the flat connection on E,. Explicitly, let E, = U(T) x R? and let ()e(2,0) = (¢e(2),v) where
¢y is the lift of the geodesic flow ¢; on U(T') to U(T). The group I acts on E, by the action of
I' on the first factor and p(I") on the second factor, and the quotient is the flat bundle E, and
the flow {(¢,):}ser descends to a flow 1, on E,,.

A representation p with transverse projective limit maps determines a ,-invariant splitting
=, @0, of the flat bundle E, over U(T"). Concretely, the lift =, of =, has fiber £,(x) and the lift
0, of ©, has fiber ker &, (y) over the point (z,y,t) € U(T"). One says that p is projective Anosov
if the resulting flow on the associated bundle

Hom(©,,5,) =&, ® 6}
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is contracting.

Projective Anosov representations are quasi-isometric embeddings with finite kernel, see [15,
Thm 5.3] and [22, Thm 1.0.1] for Hitchin representations. The following result is also a standard
consequence of the definitions, see, for example, [7, Prop. 2.6]).

Lemma 3.1. If p : m(S) — SL(d,R) is projective Anosov and v € m1(S) is non-trivial, then
p(7y) is prozimal with attracting line (4) and repelling hyperplane 6(y—). Moreover, there exist
positive constants B and C such that

M (p(7)) B
8 Nao()) = PN €

where £(v) is the reduced word length of .

3.2. Hitchin representations. If p : m(5) — PSLy4(R) is a Hitchin representation, it admits
a lift p: m(S) — SL(d,R). We will abuse notation and denote the flat bundle E; associated to
this lift by E,. (The flat bundle depends on the choice of lift, but this choice will not matter for
our purposes).

Labourie [19] showed that every Hitchin representation p admits a continuous p-equivariant
limit map ép : 0o (S) — Fy where Fy is the space of complete flags in R?. We summarize its
crucial properties below.

Theorem 3.2 (Labourie [19]). If p € Hq(S), there exists a unique p-equivariant Hélder contin-
uous map &, : Osom1(S) — Fy4 such that

(1) If d = nqy + -+ + ng, where each n, € N, and {z1,...,2,} C 0om1(S) are pairwise
distinct, then )

(2) The image fgl)(aoom(S)) is a C'T manifold for some a > 0.

(3) The splitting @?:1 |\~/|Z of Ep i@to line bundles so that (MZ)(%W) = él(f) (:v) N é,ﬁ"‘””(y)
descends to a splitting @?:1 M}, of E, into line bundles, so that M%@(Mljg)* is contracting
ifi<j.

It is well-known that any exterior power of a (lift of a) Hitchin representation is projective
Anosov (see for example Guichard-Wienhard [15, Pop. 4.4]). Guichard has shown conversely in
[14] that the existence of such limit maps characterize Hitchin representations.

Proposition 3.3. If p € H4(S), p : m(S) — SL(d,R) is a lift of p, k € {1,...,d — 1}, and
E¥5 : m1(S) — SL(A*R?) is the k't exterior power of p, then E*p is projective Anosov.

If p € Hq(S), then
LE=6=6Y  and  ker&(z) =ker&l(z) = (),
i.e. &(w) is the projective class of linear functionals with kernel égd_l)(x). More generally,
if p € Hq(S), we may choose for each x € dxm1(S) a basis {e;(p,x)} for R? so that é,(f)(:c) is
spanned by {e1(p,z),...,e;(p,z)}. The limit maps for E¥j are given by
gEkﬁ(x) = <€1 (p’ :U) ARRRNA ek(pv J})>
and
ker &g 5(x) = (ej(p,x) A Aej(p, ) | 1< <ja <o+ <k, Jx>Fk).

One may check directly that Hom(Ogx;, Zgr;) is contracting and hence that E¥p is projective
Anosov, by applying part (3) of Theorem 3.2.
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If we apply Lemma 3.1 to the exterior product E'j of a (lift of a) Hitchin representation we
obtain:

Lemma 3.4. If p € Hy(S) andi € {1,...,d — 1}, then there exist B; > 0 and C; so that

Ai(p(7)) P
08 i (o)) = )~ G

where £(v) is the reduced word length of .

Lemma 3.4 can also be derived directly from part (3) of Theorem 3.2.

3.3. Flows for Hitchin representations. Theorem 3.2 provides several contracting line bun-
dles over U(S) associated to a Hitchin representation p € Hq(.S).
(1) The spectral radius line bundle M.
(2) The simple root line bundles M5 := M!, @ (M5H1)*.
(3) The Hilbert line bundle My =Ml ® (Mg)*.
Proposition 2.4 shows that the associated flows
(1) The spectral radius flow U;(p) := L[l)/m(S).
(2) The simple root flows Uq, (p) = Lyi/m1(S).
(3) The Hilbert flow Uy(p) := L;'/’]Tl(S).
are all Holder orbit equivalent to U(S). The corresponding length spectra are
(1) The spectral radius length Li(p(7)) := log(A1(p(7))).

(2) The simple root length Ly, (p(y)) = log(%).

(3) The Hilbert length Ly(p(y)) = 10g(f\\2gz833)-

More generally, given any positive linear combination Ly = a1Ls, + ... + ag—1Lqa, , of the
simple root length functions, we can find a flow Uy (p) so that the period of v € m1(S) is given
by

Lg(p(7)) = a1Lay (p(7)) + - - - + @d—1Lay_, (p(7))-
(See the discussion in Section 2.4.)

Finally, we observe that, by Theorem 3.2 and [32, Prop. 6.2], the flow M; is obtained as a
pullback of a smooth line bundle over the C!'*®-submanifold (¢, x §,)(G(S)) of P(R?) x P*(R%),
SO Lll) inherits the structure of a C***flow.

Potrie and Sambarino [32, Prop. 6.2] show that the unstable manifold E} for L}) at a point
above (z,y) € G(S) may be identified with Hom(é,(f) () ﬂé’,()d_l)(y), Agl)(a;)) and so the infinites-
mal expansion rate Ay of U1(p) has the property that

[ Apdsh = Lay (o)

for all p € H4(S), where ds% is the element of arc length of Ui (p).

It follows that the reparametrization of Uy (p) by A} is Holder conjugate to Uy, (p). They then
apply results of Sinai, Ruelle and Bowen [4], to conclude that the entropy of Uy, (p) is 1. They
further show, with a more sophisticated argument in the general case, that all the simple root
flows have entropy 1.

Theorem 3.5. (Potrie-Sambarino [32, Thm. B|) If p € Hy4(S) and i € {1,...,d — 1}, then
Ua, (p) has topological entropy 1.



12 BRIDGEMAN, CANARY, LABOURIE, AND SAMBARINO

Remark: One may also construct a flow Holder conjugate to U, (p) by constructing, as is done
in Sambarino [34], a positive Holder function on U(S) whose periods are given by L, (p(7)), see
also Potrie-Sambarino [32].

3.4. The spectral radius flow of a projective Anosov representation. Proposition 2.4
implies that if p : I' — SL(d,R) is projective Anosov, then the contracting line bundle =, over
U(T) gives rise to a spectral radius flow L] over G(I") with quotient Uy (p) so that the closed orbit
associated to v € I" has period Li(p(7)) = log(A1(p(7)).

The spectral radius flow U;(p) is Holder orbit equivalent to U(T"). In [7], we prove that, up
to Holder conjugacy, the reparametrization function can be chosen to vary analytically in a
neighborhood of p.

Proposition 3.6. ([7, Prop 6.2]) Let {p, : m1(S) — SL(d,R)}uep be a real analytic family of
projective Anosov homomorphisms parameterized by a disk D about the origin 0. Then, there
exists a sub-disk Do about 0, a > 0 and a real analytic family {f, : U(T') — R}uep, of positive
a-Holder functions such that if v € ', then L5, () = log M (pu(7)).

4. LIOUVILLE CURRENTS FOR HITCHIN REPRESENTATIONS

In Sections 4.1 and 4.2 we recall Labourie’s cross ratio, define our Liouville current and prove
that it determines the Hitchin representation. In Section 4.3 we establish relationships between
the Liouville current, Hilbert length Ly, the Bowen-Margulis current p, for Uy, (p), and the
equilibrium state m_u for the (negative of the) infinitesmal expansion rate on Ui (p).

4.1. Labourie’s cross ratio. If V is a finite dimensional real vector space, let
PR =P(V) x P(V*) — {(L,®) : L € ker &}
and
PW = {(L,®,D,¥): L ¢ ker ¥ and D ¢ ker ®} .
Consider the cross ratio on P4 defined by

B(L. @, D,w) = AW L)
P(u) (v)
where p € @, 9 € ¥, v € L and v € D are all non-zero. Notice that the result does not depend
on the choices of ¢, ¥, u and v. Labourie observes that B is the polarized cross-ratio associated
to a symplectic form on P(3).

Proposition 4.1. (Labourie [20, Prop. 4.7, Prop. 5.4]) There exists a symplectic form Q on
P® so that if (L, ®, D, ¥) € PY| then
B(L,®,D, ) = el &0

where G : 0,112 — P3) is a map such that the images of the vertices of [0,1]? are (L, ®), (L, ¥), (D, ®)
and (D,¥) and the image of every boundary segment is contained in either P(V) x {-} or
{-} xP(V*).

Moreover, if p is Hitchin, the restriction of the symplectic form Q to the C'T-submanifold
(&p x &,)(G(S)) is non-degenerate.

Given p € Hq(S), Labourie defined a cross ratio b, on

0oom1 (S)H = {(w,9,2,1) € Do (S)* | #1, y # 2}
by setting
bp(&?, y7 Za t) = B (fp(x)a g;(y)v Ep(z)a g;“)) :



SIMPLE ROOTS AND HITCHIN REPRESENTATIONS 13

Labourie and McShane [23, Thm. 9.0.3] show that b,(z,z,t,y) > 1 if (¢,2,y, 2) is cyclically
ordered in Osm1(S5).

Labourie [20, Thm 1.1] proves that this cross ratio determines the representation and has rank
d. For any pair of (p+1)-tuples of pairwise distinct points X = (zo,...,zp) and Y = (yo,...,yp)
in Ox71(S), we define

Xp(bp)(X7Y> = det (bp(xi,yj,xo,yo)>ij€{1 e

Theorem 4.2. (Labourie [20, Thm. 1.1]) If p,o € Hq(S), then b, = b, if and only if p = o.
Moreover, xq(b,) =0 and x4-1(b,) never vanishes.

Labourie [20, Thm. 1.1] also shows that the facts that xq(b,) = 0 and x4—1(b,) never van-
ishes characterize cross ratios of Hitchin representations into PSL4(R) among all 71 (.S)-invariant
functions on Juemy (S )(4) satisfying the basic properties of a cross ratio.

4.2. Liouville currents: basic definitions. Let w, be the geodesic current defined by
1
wP([t7 l.] X [yv Z]) = 5 10g bp($7 2, t7 y) >0

when (x,y, z,t) is a cyclically ordered 4-tuple in the circle 071 (S) and [z, y] denotes the points
between z and y in this cyclic ordering.
Proposition 4.1 implies that

1
wp(ll, x| X 1y, 2]) = / "
p([t, 2] x [y, 2]) 2 Je, ([ta)) €5 (1y,2)

S0 wp, is a measure on G(S) which is absolutely continuous with respect to the Lebesgue measure
obtained by identifying G(S) with the C'*®-manifold (¢, x §,)(G(5)). We call w, the Liouville
current.

We observe that the Liouville current also determines the Hitchin representation.

Theorem 1.2. If p € Hy(S) and n € Hy,(S), then w, = wy if and only if p = 1.
Proof of Theorem 1.2. Suppose that w, = w,. By definition,

bp(2,y, 2,t) = wy([z, 2] X [t y]) = wy([z, 2] x [t,y]) = by(z,y, 2, 1)
whenever (z,x,t,y) is cyclically ordered. Similarly, if (z,z,y,t) is cyclically ordered, then
1 B 1
wollz 2] x [y, 1) wy((z,2] x [y,

(One may summarize these two observations, by saying that b,(x,y, z,t) = b, (x,y, 2,t) whenever
the pairs (z, z) and (y,t) have non-intersecting axes, i.e. y and ¢t lie in the same component of
Ooom1(S) — {z, 2}.)

Suppose that m > d. Let X = (xo,z1,...,Zm-1) and Y = (yo,...,Ym—1) be two m-tuples
in Osom1(S) so that (xo,z1,. .., Tm—1,Y0,Y1,---,Ym—1) is cyclically ordered. It follows from the
previous paragraph that b,(x;, y;j, o, y0) = by(xi, yj, o, yo) for all i, j > 0. Theorem 4.2 then

by(z,y,2,t) = 7 =by,(z,y, 2,1)

implies that every (d + 1) x (d + 1) minor of (bp(xi,yj, zo, y0)> is zero, yet

i,j€{1,....,m—1}

= det <bn($i,yj,l‘073/0))

i,j€{1,....m—

det (bp(l‘i; yj,fEanO)) 1} #0

ije{l,...,m—1}

which is impossible. Therefore, we may assume that m = d.
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By Theorem 4.2, it suffices to prove that w, determines the cross-ratio b,(xz,y, z,t) of any
4-tuple (x,y,z,t) € dsom1(S)?. By the observations in the first paragraph, and symmetry, it
suffices to also consider the case where (z,y, z,t) is cyclically ordered.

Fix a cyclically ordered configuration (4, ¥4, Zo,%0) € Osem1(S)®. Choose pairwise distinct
points {x1,...,xq_1}and {y1,...,Y4—1} in Osom1(S) so that (xo, 1, ..., Tg—1,Y0, - - Yd—1,Td> Yd)
is cyclically ordered. Let X = (z9,...,z4) and Y = (yo,...,yq). Theorem 4.2 implies that

Xabp) (X, V) = det (bl 70 90)) = det (bl sz m0) = xalby) (X,Y) =0

If i and j are not both d, then either (xo,z;,v0,y;) or (xo,zi,yj,y0) is cyclically ordered, so
by (4, Y5, o, Y0) = by(i, Y5, To,y0). One sees that all the coefficients in the matrices above agree
except for the term where i = j = d, moreover, again applying Theorem 4.2, we see that the
minors

agree and are non-zero. It follows that, b,(x4, ya, 0, Y0) = by(x4, ya, To,y0). This completes the
proof. O

ije{l,....d—1}

Corollary 4.3. The Liouville current is symmetric if and only if p = p*.

Proof. There is a natural identification of P(R?) with P((R%)*), given by identifying v € R? to
the linear functional w — v - w. So, given a representation p € Ha(S), §,, = £, and 3. = &,
Therefore,

wp*([t7 J"] X [y7 Z]) = wp([ya Z] X [tvx]) = wP(L([ta 1"] X [ya Z]))
whenever (x,, 2,t) is cyclically ordered. It follows that w, is symmetric if and only if w, = w,, .
Theorem 1.2 then completes the proof. U

4.3. Liouville currents, equilibrium states and Bowen-Margulis measures. We define
the current

1
py = lim ———— ——0, (2)
T # R (0, T) Melgl:(p,T) (Lot !

where Rq,(p,T) is the set of closed orbits of U, (p) of period at most 7. As was discussed
in Section 2.1, the measure of maximal entropy for U,, (p) is the Bowen-Margulis measure for

Ua, (p), given by , ,
e ®dst = Tim o Y s
T—oo #Rq, (va) (N€Ray (p.T) <7 | LP )
where dsj? is the element of arc length on Uy, (p). We will refer to u, as the Bowen-Margulis

current for Uq, (p).
The following result is an enlarged version of Theorem 1.3 from the introduction.

Theorem 4.4. Suppose that p € Hq(S), w, is its Liouville current, Ay is the infinitesmal
expansion rate of Ui(p) and p, is the Bowen-Margulis current for Uq, (p).

(1) Ify € ma(S), then i(8,,) = Lu(p(x)) = (5 | LY.

(2) If p € C(S), then i(p,wp) = (| Ly).

(3) The equilibrium state m_xu for the Hélder potential —X; on Ui(p) is a scalar multiple

of w, ® ds; where ds; is the element of arc length on Uy(p).
(4) The equilibrium state m_xu is a scalar multiple of p, ® ds),.
(5) The measure of mazimal entropy for Ua, (p) is a scalar multiple of w, @ dsgt.
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(6) The Liouville current w, is a scalar multiple of the Bowen-Margulis current fu,.

Proof. A standard computation, see for example [20, Prop 5.8], shows that, for all v € m1(S),

i(0y,wp) = wpl[ye, =] x [z, 7(2)]) + wp[v: =] X [y, 7(W)])

1
= 5 (logby(y—,7(2), 4, %) +log by(y-,7(y), 7+, 9))

. A1(p(7))
= 83 0)
= Lu(p(7))

= (5| L)

where z and y are in distinct components of 0,11 (S) — {7—,7+}-
Since every current is a limit of positive linear combinations of currents associated to elements
of m1(S) and the intersection function is continuous in the weak-* topology, we see that

i(p,wp) = (| L)

whenever p € C(S5).

Since w, is a measure on G(S) which is absolutely continuous with respect to the pullback of
the Lebesgue measure on the C'*®-submanifold (¢, x §)(G(S)), wp ® dsfl) is in the class of the
Lebesgue measure on the C'™* manifold U (p). Theorem 2.3 implies that w, ® ds}) is a scalar
multiple of the equilibrium state m_u for —A7 on Ui(p), i.e.

wp ® dsll)
{wp [ L})

Since Uq, (p) is Holder conjugate to the reparametrization of Ui(p) by A} and Ug, (p) has
topological entropy 1, the equilibrium measure m_« is a scalar multiple of the pullback of the

3)

m,)\g =

measure of maximal entropy p, ® ds§* for Uy, (p) to Ui(p), see Lemma 2.1, i.e.

fp ® ds’
Moy =T (4)
(1o | Lp)
Since, by Equations (3) and (4), p, ® ds,l) is a scalar multiple of w, ® ds},, we see that p, is
a scalar multiple of w,. Therefore, the measure of maximal entropy p, ® dsg* for U, (p) is a

scalar multiple of w, ® dsj*.
O

As an immediate corollary, we obtain an expression for the intersection of two Liouville cur-
rents.

Corollary 4.5. If p € H,,(S) and n € Hq(S), then
i(wp, wn) = (wp | Lm :

Remark: Since symmetric geodesic currents are determined by their periods [29, Thm. 2], our
Liouville current w, pushes forward to Bonahon’s Liouville current on G(.5), if d = 2, and to the
symmetric Liouville current defined by Martone and Zhang [26], if d > 2.
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5. LIOUVILLE VOLUME RIGIDITY

Recall that we define the Liouwville volume of p € Hq4(S) by

voli (p) = (wp | L})
so Corollary 4.5 implies that
vol(p) = i(wp, wp)-
In this section, we apply Corollary 4.5, an argument of Labourie [21, Lemma 5.1] and a length

spectrum rigidity result [7, Theorem 11.2] to obtain a Liouville volume rigidity result.

Theorem 5.1. If p,n € Hy(S), then

voli(p) ( inf LH(P(7)>>2
voli () = \vem($)-{1} Lu(n(7))

Moreover, equality holds if and only if either p = n or p = n* where n* is the contragredient of

7.

Notice that, inf,cq (5)-(1} é:gz 83% is finite and non-zero, since Hitchin representations are

well-displacing (see [22, Thm. 6.1.3]). However, if d > 2, it can be arbitrarily close to 0 or co
(see Zhang [38]).

Proof. Let K = inf,c (s)—f1} éﬂé;%; so that if v € m1(S) — {1}, then

i(0y,wp) = Lu(p(v)) = KLu(n(7)) = K i(dy, wy).

Since w, and w;, are both limits of positive linear combinations of currents associated to elements
of m1(5), this implies that

i(wp,wp) = K i(wp,wy) and  i(wy,w)y) = K i(wy,wy,).
Therefore, using the fact that ¢ is symmetric,
vol (p) = i(wp,wp) = K i(wp,wy) = K i(wy,w,) = K2 i(w,,w,) = K2volL(n).
Now assume that, in addition, vol (p) = K?vol (1), so
i(wp,wp) = K i(wp,wy) and  i(wy,wyn) = K i(wy,wy).

Since Un(p), Un(n) and U,, (n) are all Holder orbit equivalent to U(S), we may assume that, up
to Holder conjugacy, there exist positive Holder functions ¢g : U(S) — R and j : U(S) — R so
that

H_ H croon _ q.H
ds, = gds, and Jdsyt =ds,.

So, applying Corollary 4.5,
/gdwn ® ds!}I = /dw77 ® dsﬂ = i(wy,w,) = K vol(n)
and
/(g — K) dw, ® dsg = /g dw, ® ds,';| — K/dcu77 ® ds:;| = Kvol (n) — Kvol (n)=0. (5)
On the other hand, since Ly(p(v)) = KLn(n(7)),
(650 sl = tot0) = K ) 2 0

for all v € m(S5) — {1}.
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Let f = (g9 — K)j. We will apply the argument of [21, Lemma 5.1] to establish our rigidity

claim. If v € m1(5), then
/fdsg1 = /(g—K) dsg > 0.
g gl

Since measures supported on periodic orbits are dense in the space MUal(n) of all flow invariant
probability measures on U,, (1) (see Sigmund [35]), we see that

/fdu>0, (6)

for all p € My, (-
Since p,) is a multiple of wy), equation (5) implies that

/f dun®d8$1=/(g—K)J‘ dun®d8%1=/(g—K) dpiy ® dsy) = 0, (7)

SO

sup (h(u)— / fdu) < sup h(p)

HEMug, (n) nEMuyq, ()
_ aq
= h(py ®@dsy?)

= h(p, ®ds;") - /f dpy ® ds;*

ueﬁggl . (h(u) - / fdu)

where the first inequality follows from inequality (6), the equality in the second line holds because
pn ® dsp? is the measure of maximal entropy for Ua, (), the equality in the third line follows
from equation (7) and the final inequality holds by definition. Therefore,

N

P(—f)= sup (h(u) - /fd,u) = h(py @ dsy') — /f dpy @ dsy*

lueMUal (m)

S0 up ®dsp?t is the equilibrium state for —f. Since w, ® dsy* is also the equilibrium state for the
zero function, [16, Prop 20.3.10] implies that — f is Livsic cohomologuous to a constant function
A. However, A = 0 since

/fdw77 ®dsy' =

It follows that for all v € m1(S5),

Lu(p(7)) — KLn(n(7) = / fdsar =

Therefore, Ly(p(7y)) = KLu(n(y)) for all v € m1(S).

We recall that since p and o are projective Anosov, Adp and Ad(c) are also projective Anosov
(see [15, Section 10.2]). Since A;(Adp(7y)) = Lu(p(7)) for all v € m1(S), [7, Theorem 11.2] implies
that K = 1 and either Adp = Adn or Adp = Adn*. Therefore, either p =n or p = n*. (When
d = 3, we could apply earlier results of Cooper-Delp [11] or Kim [18].) O

We obtain the following corollary, stated in the introduction as Theorem 1.4, by symmetry.
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Corollary 5.2. If p,n € Hy(S), then

L) _ vol(p) Lup))’
(weml({lsf)\{l} LH(U(W))) S Vol (n) S (we:g\{l} LHWV)))

and equality holds in either inequality if and only if either p =n or p =n".

If p € H3(S), Tholozan [36, Thm. 3] showed that there exists a 3-Fuchsian representation
o = 73 0 09, where o¢ : m(S) — PSL(2,R) is Fuchsian and 73 : PSL(2,R) — PSL4(R) is the
irreducible representation, so that p dominates o, i.e. Ly(p(7y)) = Lu(o(y)) for all v € m1(5).
Since wy = 2wy, and i(Wey, Wey) = m2|x(S)| (see Bonahon [1, Prop. 15]), Corollary 5.2 implies
that voly (p) = vol (o) = 47%|x(9)|.

Corollary 5.3. If p € H3(S), then

vol(p) > 472[x(S)|.
Moreover, equality holds if and only if p is 3-Fuchsian.

If p € H3(S), then, see Choi-Goldman [10], there exists a strictly convex open domain 2, in
RP? so that p(m(S)) acts properly discontinuously and cocompactly on Q,. It would be inter-
esting to explore the relationship between volj (p) and other notions of volume for Q,/p(m1(5)).

If 0 = 74000 € Hq(S) is d-Fuchsian, then wy = (d — 1)wy,, so vol (o) = (d — 1)%72|x(S)|. Tt
is known that not every p € Hq(S) dominates a Fuchsian representation, but one might still ask
the following question.

Question: Is it true that, for all d > 3,
voli (p) > (d = 1)°7%|x(5)|
for all p € Hq(S)? If so, does equality hold if and only if p is d-Fuchsian?

6. PRESSURE QUADRATIC FORMS ASSOCIATED TO SIMPLE ROOTS

In [8, Section 3], we describe a general procedure for producing pressure metrics on defor-
mation spaces of representations based on the constructions in McMullen [27], Bridgeman [5]
and [7]. The first step in the process is to associate a flow to each representation. One then
defines an associated pressure intersection and renormalized pressure intersection. Fundamental
properties from the thermodynamic formalism, as summarized in Proposition 2.2, then guaran-
tee that the Hessian of the renormalized intersection gives rise to a non-negative quadratic form
on the tangent space to the deformation space. The resulting quadratic form may or may not
be positive definite and the analysis of its degeneracy is typically the most difficult step in this
procedure.

Recall that, in Section 3.3, we associated a family Uy, (p) of simple root flows to a Hitchin
representation. We interpret the next result to say that this family of flows varies analytically
over the Hitchin component.

Proposition 6.1. Foralli € {1,...,d—1} and p € Hq(S), there exists a neighborhood V; of p
in Ha(S), vi > 0 and an analytic map T; : V; — Hol”*(U(S)) such that if o € V;, then T;(o) is
positive and {1,5) () = La,; (o (7)) for all v € m1(S5).

Notice that the conclusion of Proposition 6.1 implies that the reparametrization of U(S) by
T;(o) is Holder conjugate to Uy, (o).
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Proof. Let p € Hy4(S). Proposition 3.6 implies that there exists a neighborhood Wy of p, 51 > 0
and an analytic map S; : Wi — Hol® (U(S)), so that

s, (o) (7) = log A1(a(7))

for all v € m1(S) and o € W;. Similarly, since for all i € {2,...,d — 1}, the exterior power E‘p
of a lift of p is projective Anosov, by Proposition 3.3, Proposition 3.6 implies that there exists a
neighborhood W; of p in Hg(S), B; > 0 and an analytic map S; : W; — Hol% (U(S),R) so that
if o0 € W;, then

U501 (7) = 1og M (E'G (7)) = log (A1(a(7)A2(0(7)) - - Xi(0(7)))

for all v € w1 ().
Let Vi = W1 N Wy and #; = min{f, 2} and define an analytic map T : V; — Holﬁl(U(S))
by setting T (o) = 2S51(0) — S2(o). Then

Ai(e(7))
~ - _ 2 — AOVT)) )
(3, () (7) = 2log Ai (o (7)) —log A1 (E70o (7)) = log < o))~ Loy (0(7))

for all v € m(S) and o € V.

More generally, if i € {2,...,d—2}, let V; = WinWan---NW;y; and ; = min{p, ..., Bit1},
and define T} : V; — Hol” (U(S)) by setting

Ti(0) = 2Si(0) = Siy1(0) — Si-1(0).

One easily checks that {7 (o) (7) = Lq,(o(y)) for all v € m1(S5) and o € Vi. Finally, we define
Ty_1 : Vi — Hol?1(U(S)), where 041 = i1, by Ty_1(c) = Ti(c) o F where F : U(S) — U(S) is
given by F(v) = —v, and check that efd—l(g) (7) = Loy (c(v™Y)) = La,_, (o(7)) for all v € m1(9)
and o € ‘A/d_l = ‘71

It remains to alter each T; so thaAt, after restricting to a sub-neighborhood of V;, the image
consists of positive functions. Since T;(p) has positive periods, it is Livsic cohomologous to a pos-
itive 7;-Holder function f;, for some 7; > 0 (see [34, Lemma 3.8]). Define T; : V; — Hol”(U(S)),
where v; = min{7;, 7;}, by setting

Ti(o) = Ti(o) + (fi = Ti(p))-
We now check that T; has the properties we claimed.
(1) Since ZA} is inalytic, and T; is a translate of IA’,-, T; is also analytic. R
(2) Since f; — T;(p) is Livsic cohomologous to 0, T;(o) is Livsic cohomologous to T;(o). In
particular, they have the same periods, 50 £7,(o) = {7, (7) = Lq, (o()) for all v € 71(5)
and o € V7.

(3) Since U(S) is compact, the set of positive functions is an open subset of Hol”'(U(S5)).
Since T;(p) is a positive function and T is analytic, hence continuous, there is a neigh-

bourhood V; C V; of p so that T;(o) is a positive function for all o € V;.
O

We then define the pressure intersection

. 1 La'(”(V)) )
I..(p,n) = lim ———— N (§?
Z( ) Tl}oo 11 Rai (pvj ) YERa, (p,T) ai( ( )) (fp fn)

(3
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for all p,n € Hq(S), where

Ra;(p,T) = {[] € [m(SINANI} [ Las(p(7)) < T

and the reparametrizations of U(S) by f;; and fé are Holder conjugate to Uy, (p) and Uy, (7).
For fixed p € Hq(S), we further define (I,,), : Ha(S) — R by

(Iai)P(U) = Iai (P, U)

for all o € Hq(S). If V; is the neighorhood of p and T; is the map provided by Proposition 6.1,
then

Ly, (o,n) =1(T3(0), Ti(n))
for all o,n € V;. By Theorem 3.5, U, (o) has entropy 1, for all o € H4(S) and all 7, so

Ly, (0,n) = I(T3(0), Ti(n)) = J(T3(0), Ti(n))
for all o,n € V;. Proposition 2.2 then implies that

Po,|1,14(5) = Hessp(La,),

is positive semi-definite and varies analytically over H4(S).

By construction, the extended mapping class group and the contragredient preserve each P,.
It follows immediately from work of Wolpert [37], that the restriction of each P, to the Fuchsian
locus is a positive multiple of the Weil-Petersson metric. Since La, (p(7)) = La,_,(p(y™1)) for all
p € Ha(S) and v € 71(S), we see that I, (p,0) =1, .(p,0) for all p,o € Ha(S), so Py, = Pq,_,
for all 4.

We combine these observations with the non-degeneracy criterion provided by Proposition 2.2
to obtain:

Proposition 6.2. For each i € {1,...,d — 1}, there exists a positive semi-definite, analytic,
quadratic form Py, on TH4(S), which is invariant under the action of the mapping class group
and restricts to a multiple of the Weil-Petersson metric on the Fuchsian locus. Moreover, if
{pt}+ € (—¢€,€) is a smooth one-parameter family in Hq(S), then Hpon)ai = 0 if and only if

9
Ot lt=0

g

0
(rIL5) = 57|,y Lai (e (7)) = 0
for all v € m1(5).

Remark: Labourie and Wentworth [24] evaluate the original pressure metric at the Fuchsian
locus. They remark [24, Sec. 6.6] that their analysis should extend to the pressure quadratic
forms P,,.

Finally, we observe that, as was claimed in the introduction, we may rewrite the Liouville

pressure intersection I, as

1
Lo, (p,m) = W (wp [ LY
Notice that, by Theorem 4. ,l,,(swp is a scalar multiple of p, so w, = c,u, for some c, € R. Since
1
o = T SR, (i) Ty We See that {w, | Lg1) = ¢, and
1

(w, | LY =¢, lim —————
p 1= P o0 #Ro, (p, T) RQ%T)

8y | L , “
{9y | ”>:cp . 1 3 Lo, (n())

Lay(p(7)) 7500 # R (0, T) | €y L (p(7)
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Therefore,

1 L, 777
T = (w, | LYY = lim =L =1, (p, 7).
o, Loy ol Lyt = lim #Rm o T Z Ly (0) (1)

7. THE LIOUVILLE PRESSURE QUADRATIC FORM IS A RIEMANNIAN METRIC

The main work of this section is to show that the derivatives of the L,,-length functions
generate the cotangent space of the Hitchin component.

Theorem 1.7. If p € Hy(S), then the set

{DﬁLgl }’YETM(S)
generates the cotangent space TyHa(S).

Theorem 1.7 and Proposition 6.2 together imply that the Liouville pressure quadratic form is
a Riemannian metric.

Theorem 1.6. The Liouville pressure quadratic form P, is a mapping class group invari-
ant, analytic Riemannian metric on Hq(S), that restricts to a scalar multiple of the the Weil-
Petersson metric on the Fuchsian locus.

Proof of Theorem 1.6: Suppose that v € TpHd(S) and [[v||p,, = 0. Proposition 6.2 implies that
D,L}, (v) = 0 for all v € m(S). Theorem 1.7 then 1mphes that v = 0. Therefore, since we
already know it is positive semi-definite, P, is positive definite. The remainder of the theorem
follows from Proposition 6.2. O

The remainder of the section will be taken up with the proof of Theorem 1.7. Theorem
1.7 generalizes [7, Prop. 10.1], which asserts that derivatives of the spectral radius functions
generate the cotangent space, and its proof follows a similar outline. We use an analysis of the
asymptotic behavior of the L,,-length functions to show that if D,Ld, (v) = 0 for all v, then
the derivatives of functions which record the eigenvalues are also trivial in the direction v. We
then apply [7, Prop. 10.1] itself to finish the proof, but we could also have observed that the
derivatives of all trace functions are trivial in the direction v and applied standard facts about
character varieties.

7.1. Transversality results. Let p/(\'y) be the lift of p(y) to SL(d,R) so that all of its eigenvalues
are positive. Suppose that {e1(p(7)),...,eq(p(7))} is a basis of R? consisting of eigenvectors for
p(7y) so that

—

p(y)(ei(7)) = Ailp())ei(p(v))

for all 4. Then we may write

d
_ Z Ai(p()pi(p(7))

where p;(p(7)) is the projection onto the eigenline spanned by e;(p(7y)) parallel to the hyperplane
spanned by the other basis elements.

In [6], we prove that if o and  have non-intersecting axes and p € Hy(S), then the bases
{ei(p(a))} and {e;(p())} have strong transversality properties, which generalize the transver-
sality properties established by Labourie in [19].
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Theorem 7.1. ([6, Cor. 4.1]) If p € Hq(S), o, € m(S) — {1} and o and B have non-
intersecting axes, then any d elements of

{ex(p(@)),.- - edl(p(a)), e1(p(B)), - .- ealp(B))}
span R%. In particular,
pi(p(a))(ej(p(B))) # 0
foranyi,j € {1,...,d}.
If p € Ha(S) and S?p : 71(S) — SL(S?(R?)) is the second symmetric product of a lift of p to
a representation into SL(d, R), then
d

S2p(v) = D Ai(p(M))Ai (p(1)Pis (p(7))

i<
and if E2p : m1(S) — SL(E%(R?)) is the second exterior product of a lift of p to a representation
into SL(d,R), then

ZA p(7))ai; (p(7))

1<J
where p;;(p(7)) is the projection onto the eigenline spanned by e;(p(7)) - ¢;(p(7v)) and q;;(p(7))
is the projection onto the eigenline e;(p(y)) Ae;j(p(y)) parallel to the hyperplane spanned by the
other products of basis elements. (Notice that E?p and S?p are independent of the choice of lift
of p to a representation into SL(d,R).) Then

Pii(p(7))(v - w) = pi(p(7))(v) - Pi(p(7)) (W),

Pij(p(7)) (v - w) = pi(p(7))(v) - Pj(p(7)(w) + pi(p(7))(v) - Pi(p(7))(w) for i # j, and
aij(p(7)) (v Aw) = pi(p(7))(v) A pi(p(7)(w) — Pj(p(7))(v) APi(p(7))(w).

We use Theorem 7.1 to prove that various terms arising in our asymptotic analysis are non-
zZero.

Lemma 7.2. If a, p € m1(S) have non-intersecting azes and p € Hq(S), then

Tr (pis(p(a)) pkk (p(8)) #0, for all i,k € {1,...,d},
) (CIzj p(a) CIkl (5))) #0ifi,5,k 1l € {1,...,d}, i#j and k #1,
(3) Tr (pii(p()S?p(B)) #£0 ifi € {1,...,d}, and
(4) Tr (qij(p(@)E®p(B)) # 0 if i,j € {1,...,d} and i # j.
Proof. We fix p € Hq(S) and identify p(y) with ~, for all v € m1(S), throughout the proof

for notational simplicity. Choose bases {ei(a),...,eq(a)} and {e1(B),...,eq(8)} and define
tij(«, B) so that

pPi(a)(e;(B)) = tij(a, B)ei(e)
for all 7,7 € {1,...,d}. Theorem 7.1 implies that t;;(c, 8) # 0 for all ¢ and j, so

Tr (pii(a)Prr(B)) = tir(v, B)*tri (B, ) # 0.
If i < j and k < [, we define s;j1;(ar, 8) by the equation

ex(B) Ae(B) N\ er(a) =sin(e, B) (61'(04) nej(a) A\ er(a)) :
r#i,j r#4,J
Theorem 7.1 implies that s;;x(c, 3) # 0, so

Tr (qij(a)qu(B8)) = sijri(c, B)ski; (B, ) # 0.
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Notice that we may choose the basis {e;(8aB871)}, = {B(ei(a))}%, in which case
S?p(B)(ei(a) - ei(@)) = ei(Bap™) - ei(Bas™).
One then computes that
Tr (pis(@)S*p(8)) = tui(ov, BaB™)* # 0.

(Notice that if  and 3 have non-intersecting axes, then so do a and Ba371.)
Similarly,

Tr (qij(a)Ezp(ﬁ)) = sjij(a, Baf™1) £ 0

7.2. Trace asymptotics. If v € 71(5), let A, : Hq(S) — R be given by

Sy M)
A (o) = 3,000)

and notice that L}, = log AJ,. An asymptotic analysis of traces yields:

Lemma 7.3. If a, f € m1(S) have non-intersecting azes and p € Hq(S), then

im A0 () Tr(eu(pe))pu(p(9)))
o0 Ao (p)Agy (p)  Tr(aiz(p(e))aiz(p(5)))

£0

and
- A% (p) _ T (P11(p(a))S?p(8))
n—oo AY'(p)  Tr(aiz(p(a)E?p(B))

Proof. We again fix p € Hy4(S5) and identify p(y) with v throughout the proof for notational
simplicity. One can compute that

£0

Tr(S%p(a™B™)) _ ZKigjgd Ai(@"B™)Aj(a”B") _ A(a™B7)*(1 + an)
Tr(E2p(a”B)  PicicjcadilamBm)Nj(@m ) Ai(aB™)Ag(a”B7)(1 + bn)
Aj(@”B"™)

Since limg,, s M@ F) = 0 if ¢ > j, by Lemma 3.4, a,, — 0 and b,, — 0 as n — oo.
Similarly,

ms%m”)s%(ﬁ“)):Tf((ziw(“ Mpis(a)) (Sics MEA(BMPi(5) )
Tr(E2p(am)E2p(67)) Tr<<21'<j/\i(a " (@ )( s ) A.(ﬁn)qij(5)>>

Tr (p11(a)p11(B)) (1 + cn)
Tr (quz(a)qi2(8)) (1 + dp)
where ¢, — 0 and d,, — 0. Since the two expression are equal, we may take limits to obtain
the first equality in the statement. Notice that Lemma 7.2 is being used to guarantee that
Tr(p11(a@)p11(B8)) and Tr(qi2(a)qi2(B)) are non-zero so that the right-hand expression makes
sense and is non-zero.

To establish the second equality, we compute that

Tr(S%p(a”pB)) _ A(a"B)?(1 + a},)
Tr(E2p(aB)) — Ai(aB)ra(aB)(1+1b},)’

= A2 ()AL (p)

a1
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where a), — 0 and b}, — 0, and that
TH(S2p(0™S%(8) ™ ((22 < Aila™);(0")pis (@) $20(8))
2 n
THEAEND) T (S0, Mlamns(am)ale) E20(6))

TI“ (p11 )(1+C )

Tr (Q12( )E2 (ﬁ))( +d;,)

where ¢}, = 0 and d], — 0. We obtain the second equation by setting the two expressions above
equal, taking limits and applying Lemma 7.2 to guarantee that the right-hand expression makes
sense and is non-zero. O

iAa

7.3. Derivatives of eigenvalue functions. Let A} : H4(S) — R be given by X/ (p) = Xi(p(v))-

Proposition 7.4. If v € T,H4(S) and D,L%, (v) = 0 for all v € 1 (S), then D, (v) = 0, for
alli=1,...,d and all v € m(S5).

Notice that the assumptions of Proposition 7.4 are equivalent to the assumption that D,,AZ[1 (v)=0
for all 4 € m1(.S). The proof of Proposition 7.4 makes use of the following elementary lemma:

Lemma 7.5. Let a;,b;,c;,d;,w; € R, fori =1,...k, with wy > we > ... > wg > 0. If, for

every n € N,
k k

> (@i +nbi)wp =Y (e + ndi)wy,

i=1 i=1
then a; = ¢; and b; = d; for all 1.

Proof. We first divide by nw] and take the limit to see that
1 [ 1 (&
_ 1 . N | — 1 ) Ny | —
b = nh_)rr;o ot (Z:(abZ + nb;)w; ) = nh_}rgo ot (Z;(Cl + nd; )w; ) =dj.
1=
We then subtract nbjw] from each side, divide by w[, and pass to a limit to conclude that

a]p = Cqp.
We may then remove the first order terms and proceed iteratively. g

Proof of Proposition 7./. We will show that, if v € 71(S), then D,(log X} )(v) = D,(log A])(v)
for all i. Since A] - )\g =1,

D, (0)(v) = Dy(log A)(v) + -+ + D, (log Ag) (v) = d Dy(log A])(v) = 0,
which in turn implies that D,\] (v) = 0 for all 4.

We first notice that, since D,L{, (v) = 0, D,(log Xy)( ) = D,(log A])(v) for all v € m1(S). We
proceed iteratively. Assume that D,(log Xy)( ) = D,(log Xf)( ) for all i < m and v € m(9).
Notice that this is equivalent to the claim that D )\V(v) =D,A\](v) for all i < m and v € m(9).

Fix a € m1(S) — {1} and let 8 be an element of 71(.5), s hat o and  have non-intersecting
axes and consider the family of analytic functions {F, : ’Hd(S ) — R},en defined by

( (p11 (a) 52 5” )
Tr(qi2(p EQP(B"

v o [T (pu(p(a))pll(f)(ﬂ)))>.
(Ar(e)) <Tr (asz(p(a))arz(p(8)))

Notice that, by Lemma 7.3, the numerator of F;, is an analytic function which is a limit of analytic
functions which, by assumption, have derivative zero in the direction v, so the numerator has
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derivative zero in direction v. We may similarly use our assumptions and Lemma 7.3 to show
that the denominator of F;, has derivative zero in direction v. Therefore, D,F},(v) = 0 for all
n € N.

We adopt the shorthand A\; = /\f (8) and expand the above equation to see that

L) () (3) S eulon
Z:i<j bij(p) (%)n (%)n Zi<] bij (p)u 'U?

Fo(p) =

where

oy Tr(pu(p(e)pii (p(B))) .
%50 = Trpn(p@)pud)’ =

In particular, a;; = b1s = 1 and, by Lemma 7
n €N,

2(p(@)aij(p(B) A Ai

and v;

Tr(a Ai _ N
(((Dmx(M’m_Af N
"2, bym # 0 for all m. Since D,F,(v) = 0 for all

Z aijuiug | (v) ((Z bklUZ’Uz awu (p) (Dp (Z bklu’gvl”> (v)>

<) k<l k<l

Letting U;jr = u;ujugvy, this becomes

WU Uk U
Z (aubkl + ’I’Lazjbkl (ul + uj>> ir;'k:l = Z (a/zjbk;l + naz]bkl <Uk + Ul>> ’lr;k‘l

1<j,k<l 1<g,k<l

We group terms where Ujji; agree and order so that, as sets, {ws 3, = {Uijki }i<j k<1 and
w; > w1 > 0 for all i. We may rewrite the expression above as

M M

Z(As + nBg)w] = Z(C’s +nDg)w?

s=1 s=1
where A,, B, Cs and Dy are constants depending only on s and not on n. Lemma 7.5 implies
that A; = Cs and B = Dy for all s.

By our iterative hypothesis, D,(log A;)(v) = D,(log A1) for all i < m, and m > 2. Therefore,
u; = v; = 0 for all i« < m. Since m > 2, the iterative step of the proof will be completed if we
show that either 7,, =0 or v, = 0.

Consider s; such that ws, = Uj11m = vy, and notice that

Ui Ui
Bum X (em(3e))

{i<y, k<l | Uijri=vm}

If ws, = Uyjri, then Uy = uiujugv; = vy, Since 1 = ug > ug > -+ > ug > 0and 1 > v; > u;
for all 7 > 2, we see that u; > wujurv; = vy > Up, 50 1 < Jj < m. Slnce u; = 0 if 1 < m, we see
that Bs, = 0.

A similar analysis yields that if Uj;p; = wjujuiv; = vy, then & < m and [ < m. Therefore,
U, = 0 and oy = 0 if [ ## m. However, if [ =m, theni=j=k =1, so

up U U v
Ds1 = Z <az]bkl < + )> = a11bim (m) = bim (m> 5
. Uk U Um Um
{i<5 k<l | Usjri=vm}

so, since Dy, = B,, = 0, we conclude that by, 0, = 0. Since we have previously observed that
bim # 0, it must be that v, = 0 which completes the proof. O
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7.4. Proof of Theorem 1.7. If v € T,H4(S) and D,LZ, (v) = 0 for all y € 71(S), then, by
Proposition 7.4, D,A)(v) = 0 for all 4 and all v € m(S). However, Proposition 10.1 in [7]
guarantees that {D,A]},cx, (s) generates the cotangent space to Hq(S) at p, so our proof is
complete. O

8. DEGENERACY OF P, ON Hy,(S5)

Bridgeman [5] showed that the pressure metric on quasifuchsian space is degenerate on the

Fuchsian locus. In [8, Section 5.8], we construct a pressure metric on H4(.S) which is associated
to the Hilbert length of elements of the image and similarly prove that this metric is degenerate
on the fixed point locus of the contragredient involution. A very similar argument yields that
P,, is degenerate on Hay(5).
Recall that the contragredient involution 7 : H2,(S) — Han(S) fixes the submanifold H(S, PSp(2n))
of Hitchin representations with image in PSp(2n).

Proposition 8.1. The pressure quadratic form P, on Hap(S) is degenerate on H (S, PSp(2n)).
In particular, if p € H(S,PSp(2n)), v € T,Ha(S) and D1,(v) = —v, then ||v||p,, = 0.

Proof. Suppose that p € H(S,PSp(2n)), v € T,H4(S) and D7,(v) = —v. We choose a path
{pt}te(e,) in Han(S) such that pg = v and 7(p;) = p—; for all t € (—¢,€). Since Ni(o(y71)) =
(A2n—i(T(0)(7))) " for all i and all o € Hay,

B An(pe(7))
Lo, (pt(7)) = log <)\n+1(Pt(7))

for all t € (—e, €) and v € m1(S). Therefore,

d
- L. —
= Lay(p(7) =0

for all v € m(S), so Proposition 6.2 implies that ||po|p,, = [|v|P., = 0. O

) = Laulp-at)

It is natural to wonder whether a similar symmetry is responsible for all degeneracies of
pressure metrics constructed in this fashion.
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