SIMPLE LENGTH RIGIDITY FOR KLEINIAN SURFACE GROUPS
AND APPLICATIONS

MARTIN BRIDGEMAN AND RICHARD D. CANARY

ABSTRACT. We prove that a Kleinian surface groups is determined, up to conjugacy in
the isometry group of H?, by its simple marked length spectrum. As a first application,
we show that a discrete faithful representation of the fundamental group of a compact,
acylindrical, hyperblizable 3-manifold M is similarly determined by the translation lengths
of images of elements of 71 (M) represented by simple curves on the boundary of M. As
a second application, we show the group of diffeomorphisms of quasifuchsian space which
preserve the renormalized pressure intersection is generated by the (extended) mapping
class group and complex conjugation.

1. INTRODUCTION

We show that if p; and py are two discrete, faithful representations of a surface group
m1(S) into PSL(2, C) with the same simple marked length spectrum, then p; is either con-
jugate to po or its complex conjugate. (Two such representations have the same simple
marked length spectrum if whenever o € m1(S) is represented by a simple closed curve,
then the images of a have the same translation length. The complex conjugate of a rep-
resentation is obtained by conjugating the representation by z — z.) Marché and Wolff
[21, Sec. 3] have exhibited non-elementary representations of a closed surface group of
genus two into PSL(2,R) with the same simple marked length spectrum which do not
have the same marked length spectrum, so the corresponding statement does not hold for
non-elementary representations.

We give two applications of our main result. First, if M is a compact, acylindrical,
hyperbolizable 3-manifold, we show that if p; and po are discrete faithful representations
of m (M) into PSL(2, C) such that translation lengths of the images of elements of 71 (M)
corresponding to simple curves in the boundary of M agree, then p; is either conjugate
to p2 or its complex conjugate. For our second application we consider the renormalized
pressure intersection, first defined by Burger [9] and further studied by Bridgeman-Taylor
[7]. Bridgeman [5] (see also [6]) showed that the Hessian of the renormalized pressure
intersection gives rise to a path metric on quasifuchsian space QF'(S). We show that the
group of diffeomorphisms of Q F'(S) which preserve the renormalized pressure intersection is
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generated by the (extended) mapping class group and the involution of QF(S) determined
by complex conjugation.

1.1. Simple length rigidity for Kleinian surface groups. A Kleinian surface group
is a discrete, faithful representation p : w1 (S) — PSL(2,C) where S is a closed, connected,
orientable surface of genus at least two. If o € 71(.S), then let £,(a) denote the translation
of length of p(«), or equivalently the length of the closed geodesic in the homotopy class
of a in the quotient hyperbolic 3-manifold H?/p(71(S)). We say that two Kleinian surface
groups p;1 : m1(S) — PSL(2,C) and ps : m1(S) — PSL(2,C) have the same marked length
spectrum if £,, (o)) = £,,(a) for all a € m(S). Similarly, we say that p; and p2 have the
same simple marked length spectrum if £,, (o)) = £,,(a)) whenever « has a representative on
S which is a simple closed curve. If p : G — PSL(2,C) is a representation we define its
complex conjugate pa to be the representation obtained by conjugating by z — Z.

Theorem 1.1. (Simple length rigidity for Kleinian surface groups) If S is a closed,
connected, orientable surface of genus at least two, and py : 7 (S) — PSL(2,C) and
p2 = m1(S) — PSL(2,C) are Kleinian surface groups with the same simple marked length
spectrum, then p1 is conjugate to either pa or pa.

Since the full isometry group of H?® may be identified with the group generated by
PSL(2,C), regarded as the group of fractional linear transformations, and z — Z, one
may reformulate our main result as saying that two Kleinian surface groups with the same
simple marked length spectrum are conjugate in the isometry group of H3.

Historical remarks: It is a classical consequence of the Fenchel-Nielsen coordinates for
Teichmiiller space that there are finitely many simple curves on S whose lengths determine a
Fuchsian (i.e. discrete and faithful) representation of 71 (,S) into PSL(2,R) up to conjugacy
in PGL(2, R), which we may identify with the isometry group of H2. However, Marché and
Wolff [21, Sec. 3] showed that there exist non-Fuchsian representations of the fundamental
group of a surface of genus two into PSL(2, R) with the same simple marked length spectrum
which do not have the same marked length spectrum. The representations constructed by
Marché and Wolff do not lift to SL(2,R), so do not lie in the same component of the
PSL(2, C)-representation variety as the discrete faithful representations.

Kourounitis [19] showed that there are finitely many simple curves on S whose complex
lengths (see section 2 for a discussion of complex length) determine a quasifuchsian surface
group up to conjugacy in PSL(2,C). Culler and Shalen [13, Prop. 1.4.1] showed that
there are finitely many curves whose traces determine a non-elementary representation
into SL(2,C), up to conjugacy in SL(2,C), while Charles-Marché [11, Thm. 1.1] showed
that one may choose the finite collection to consist of simple closed curves.

Kim [18] previously showed that two Zariski dense representations into the isometry
group Isom(X) of a rank one symmetric space X with the same full marked length spec-
trum are conjugate in Isom(X). More generally, Dal’'Bo and Kim [14] showed that any
surjective homomorphism between Zariski dense subgroups of a semi-simple Lie group G,
with trivial center and no compact factors, which preserves translation length on the asso-
ciated symmetric space extends to an automorphism of G.
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1.2. Simple length rigidity for acylindrical hyperbolic 3-manifolds. A compact,
orientable 3-manifold M with non-empty boundary is said to be hyperbolizable if its interior
admits a complete hyperbolic metric, which implies that there exists a discrete, faithful
representation of 7 (M) into PSL(2,C). A compact, hyperbolizable 3-manifold is said to
be acylindrical if every mi-injective proper map of an annulus into M is properly homotopic
into the boundary of M. (Recall that a map of a surface into a 3-manifold is said to be
proper if it maps the boundary of the surface into the boundary of 3-manifold and that a
proper homotopy is a homotopy through proper maps.)

In this setting, we use Theorem 1.1 show that a discrete, faithful representation of
71 (M) into PSL(2, C) is determined, up to conjugacy in the isometry group of H?, by the
translation lengths of images of simple curves in the boundary M of M.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and py : m (M) — PSL(2,C)
and po : (M) — PSL(2,C) are two discrete faithful representations, such that £, (o) =

U, (@) if o € (M) is represented by a simple closed curve on OM, then pi is conjugate

to either pa or pa.

1.3. Isometries of the renormalized pressure intersection. Burger [9] introduced a
renormalized pressure intersection between convex cocompact representations into rank one
Lie groups. Bridgeman and Taylor [7] extensively studied this renormalized pressure inter-
section in the setting of quasifuchsian representation. We say that p : m1(S) — PSL(2,C)

is quasifuchsian if it is topologically conjugate, in terms of its action on C, to a Fuchsian
representation into PSL(2,R). If 7" > 0 we let

Ry (p) =A{la] € [1(S)] | £,(c) < T}
where [71(5)] is the set of conjugacy classes in 71(S). We define the entropy

log(#(Rr(p)))
T

of a quasifuchsian representation p. Sullivan [32] showed that h(p) is the Hausdorff dimen-
sion of the limit set of p(m1(5)).

Let QF(S) denote the space of PSL(2, C)-conjugacy classes of quasifuchsian representa-
tions. Bers [1] showed that QF'(S) is an analytic manifold which may be naturally identified
with T(S) x T(S). If p1,p2 € QF(S), the renormalized pressure intersection of p; and pa
is given by

h(p) = limsup

h(p2) 1 Cps (@)

lim | ———— =

h(p1) T—oo \ #(Rr(p)) lale (1) o (@)

Bridgeman and Taylor [7] showed that the Hessian of .J gives rise to a non-negative bilinear
form on the tangent spaceTQF(S) of quasifuchsian space, called the pressure form. Mo-
tivated by work of McMullen [24] in the setting of Teichmiiller space, Bridgeman [5] used
the thermodynamic formalism to show that the only degenerate vectors for the pressure
form correspond to pure bending at points on the Fuchsian locus. Moreover, the pressure

J(p1.p2) =
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form gives rise to a path metric on QF(S), called the pressure metric (see also [6, Cor.
1.7)).

We say a smooth immersion f : QF(S) — QF(S) is a smooth isometry of the renormal-
ized pressure intersection if

J(f(p1), f(p2)) = I (p1, p2)

for all p1,p2 € QF(S). We recall that the (extended) mapping class group Mod*(S) is
the group of isotopy classes of homeomorphisms of S. Since J is invariant under the
action of Mod*(5), every element of Mod*(S) is a smooth isometry of the renormalized
pressure intersection. There exists an involution 7 : QF(S) — QF(S) given by taking [p]
to [p]. Since T preserves the marked length spectrum, it is an isometry of the renormalized
pressure intersection. We use our main result and work of Bonahon [4] to show that these
give rise to all smooth isometries of the renormalized pressure intersection.

Theorem 1.3. If S is a closed, orientable surface of genus at least two, then the group of
smooth isometries of the renormalized pressure intersection on QF(S) is generated by the
(extended) mapping class group Mod*(S) and complex conjugation 7.

Royden [29] showed that Mod*(.S) is the isometry group of the Teichmiiller metric on 7T'(S).
Masur and Wolf [23] proved that Mod*(S) is the isometry group of the Weil-Petersson
metric on 7'(S). Bridgeman [5] used work of Wolpert [33] to show that the restriction of
the pressure form to the Fuchsian locus is a multiple of the Weil-Petersson metric.

One may thus view Theorem 1.3 as evidence in favor of the following natural conjecture.

Conjecture: The isometry group of the pressure metric on quasifuchsian space QF(S) is
generated by the (extended) mapping class group and complex conjugation.

In the proof of Theorem 1.3, we establish the following strengthening of our main result
which may be of independent interest.

Theorem 1.4. If S is a closed, connected, orientable surface of genus at least two,
p1:m(S) — PSL(2,C) and py : m1(S) — PSL(2,C) are Kleinian surface groups, and there
exists k so that and £, () = klp, () for all o € w1 (S) which are represented by simple
curves on S, then py is conjugate to either py or po.

Kim [18, Thm. 3] showed that if p; and py are irreducible, non-elementary, nonparabolic
representations of a finitely presented group I' into the isometry group of a rank one sym-
metric space and there exists £ > 0 such that £, () = k{,,(7) for all v € I' (where £,,(7))
the translation length of p;()), then k =1 and p; and py are conjugate representations.

Outline of paper: In section 2 we analyze the complex length spectrum of Kleinian
surface groups with the same simple marked length spectrum, then in section 3, we give
the proof of our main result. In section 4 we prove Theorem 1.2, while in section 5 we
establish Theorems 1.3 and 1.4
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2. THE COMPLEX LENGTH SPECTRUM

In this section, we investigate the complex length spectra of Kleinian surface groups
with the same simple marked length spectrum.

Given a € m(S) and p € AH(S), let Az(a) be the square of the largest eigenvalue of
p(a). Notice that A2(«) is well-defined even though the largest eigenvalue of a matrix in
PSL(2,C) is only well-defined up to sign. If we choose log )\g(a) to have imaginary part in
[0,27), then log )\%(a) is the complex length of p(«).

If o is a simple, non-separating closed curve on S, we let W(«) denote the set of all
simple, non-separating curves on S which intersect « at most once. We say that p; and
p2 have the same marked complex length spectrum on W(a) if )\/2)1 (B) = /\%2 (B) for all
B € W(«). Similarly, we say that p; and p2 have conjugate marked complez length spectrum
on W(a) if X2 (8) = A2, (3) for all 5 € W(a).

We will show that if two Kleinian surface groups p; and ps have the same simple marked
length spectrum, then, there exists a simple non-separating curve o on S such that p; and
p2 either have the same or conjugate complex length spectrum on W ().

Proposition 2.1. If S is a closed, connected, orientable surface of genus at least two,
p:m(S) = PSL(2,C) and p2 : m(S) = PSL(2,C) are Kleinian surface groups with the
same simple marked length spectrum, then there exists a simple non-separating curve o on
S such that p1(c) is hyperbolic and either

(1) p1 and p2 have the same marked complex length spectrum on W(a), or
(2) p1 and pa have conjugate marked complex length spectrum on W (a).

Proposition 2.1 will be a nearly immediate consequence of three lemmas. The first lemma
shows that for two Kleinian surface groups with the same length spectrum, then the com-
plex lengths of a simple non-separating curve either agree, differ by complex conjugation,
or differ by sign (and are both real). The second lemma deals with the case where the
complex length of every simple, non-separating curve is real, while the final lemma handles
the case where some complex length is not real. All the proofs revolve around an analysis
of the asymptotic behavior of complex lengths of curves of the form a”f where o and
intersect exactly once. We begin by recording computations which will be used repeatedly
in the remainder of the paper.

2.1. A convenient normalization. We recall that two elements «, § € 71(S) are coprime
if they share no common powers. We say that a representation p : 71 (S) — PSL(2,C) is
(a, B)-normalized if o, € m(S) are coprime and p(«) is hyperbolic and has attracting
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fixed point co and repelling fixed point 0. In this case,

p(a):i(é )\(—)1>

o) =+( 00 ).

where ad —be = 1. Notice that the matrix representations of elements of PSL(2, C) are only
well-defined up to multiplication by 47, but many related quantities like the square of the
trace, the product of any two co-efficients, and the modulus of the eigenvalue of maximal
modulus are well-defined.

where |[A| > 1, and

Lemma 2.2. Suppose that S is a closed, connected, orientable surface of genus at least two
and p: 7 (S) = PSL(2,C) is an («, 8)-normalized Kleinian surface group. In the above
notation,
ANa A"
n _
R A

and all the matrix coefficients of p(f) are non-zero. Moreover, if u(n) is the modulus of
the eigenvalue of p(a™B) with largest modulus, then

b
g (1) = nlog N + o ] + 8 (32725} +O(3 .

Proof. The first claim follows from a simple computation. If any of the coefficients of p(/3)
are 0, then p(f) takes some fixed point of p(a) to a fixed point of p(«), e.g. if a = 0,
then p(83)(c0) = 0. This would imply that p(Ba3~1) shares a fixed point with p(). Since
p(m1(S)) is discrete, this would imply that there is an element which is a power of both
p() and p(BaB~1) which would contradict the facts that p is faithful and the subgroup of
m1(S) generated by o and f3 is free of rank two.

The eigenvalues of p(a™ (), which are only well-defined up to sign, are then given by

N (()\”a + A7) £ /(Va+ A rd)? — 4)
2

So, since |A| > 1, for all large enough n, one may use the Taylor expansion for /1 + z to
conclude that they have the form

+ ()\"a (1 A2 <ada; 1) + O(A“*")))

Therefore, since ad — bc = 1,

be
—2n
1+~

log u(n) = nlog|A| + log|a| + log + O\,

a2
We then use the expansion of log |1 + z| about z = 0 given by

1 1
log|l+z| = 3 log (|1 4+ z|2) = §log(1 + 2R(z) + \z|2) =R(z) + O(|z[2)
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to show that
b
logpu(n) = mnlog|A| + log|al + R <)\_2"a(2;> + O(JA|71).

0

2.2. Basic relationships between complex lengths. Our first lemma shows that if
two Kleinian surface groups have the same simple marked length spectrum, then the com-
plex lengths of any simple, non-separating curve either agree or differ by either complex
conjugation or sign.

Lemma 2.3. If p; and p2 in AH(S) have the same simple marked length spectrum and o
is a simple non-separating curve on S, then either

(1) A%, () = A3, (a),
(2) )‘;231(@) = )\%2(&), or
(3) )‘/211(O‘) = —AZ2 (o) and )\%1 () s real.

Proof. If pi(a) is parabolic, then ps(a) is parabolic (since £, () = £,, (o)) = 0). In this
case, )\%1 () = )\%2 (o) = 1. So we may assume that p(«) is hyperbolic.
Let 8 be a curve intersecting o exactly once. We may assume that both p; and ps2 are

(a, B)-normalized, so
Ai O
ma):i( ; A;1>

a; b
ey == (0 0.
where a;d; — bjc; = 1.

Since, p; and p2 have the same simple marked length spectrum and |\;| = |A2|, Lemma
2.2 implies that

where |)\;| > 1, and

7nbc —4n 7nbc —4n
g ar + R (A 228) + 01 ~) = loglaal + % (32252 ) + O(12al )
1 2

for all n. Taking limits as n — oo, we see that log |a1| = log |as|, so

7nbc —4n fnbc —4n
§R(>\12 ;%1) +O(|x| ™ ):§R<)\22 Z;) +O(|Aa| 71

for all n. Therefore, after multiplying both sides by |A1]?" = |X2|?", we see that

lim R (ufv; —ujve) =0

n—oo
where )
i\ bic;
u; = <|/\Z> and v; = ZL?Z #0.

Lemma 2.3 is then an immediate consequence of the following elementary lemma. [
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Lemma 2.4. If uy,us € S', vy,v9 € C — {0} and

lim R (u]v1 — uSva) =0,
n—oo

then either
(1) Uy = u2,
(2) up =g, or
(3) Uy = —up = +1.

Proof. We choose 6; so that
U; = et
If s = {ng}p2, is a strictly increasing sequence of integers, let S;(s) be the set of
accumulation points of {R(u;*v;)}. Then, by assumption, S;(s) = S2(s) for any sequence
s.
If 0; is an irrational multiple of 27, then S;(N) is the interval [—|v;|, |v;|]. If 6; is a rational
multiple of 27 then S;(N) is finite. Therefore either (a) both #; and 6, are irrational with

|vi| = |v2| or (b) both 6; and 0y are rational multiples of 2. We handle these two cases
separately.
Case (a): Both 0; and ¢ are irrational multiples of 27 and |vi| = [va|: Since 6,

ingdy _ U1

is an irrational multiple of 27, there is a sequence {ny} such that limy_, e = ]

Therefore,
lvy| = klggo %(emkelvl) _ klggo %(elnkGQ,UZ) = |val,
0 limy_, oo €02 = % If {my} = {nk + 1}, then
|vi|cos by = kli}n(r)lo R(emrry)) = klg](r)lo R %205) = |vg| cos .
Since |v1| = |vg| # 0, it follows that 6; = 65, so either u; = ug or u; = Uz and we are
either in case (1) or in case (2).

Case II: Both 6, and 6, are rational multiples of 27: Let 0; = 27p;/q; where
0 < p; < g; and p; and g¢; are relatively prime (and ¢; = 1 if p; = 0).
If r € Z and s, = {r + kqiq2}, then

Si(sr) = {R(ujv1)} = Sa(sr) = {R(uzva)},
S0
R(ufv1) = R(ubve) for all r € Z.
If R(ujv1) = R(uhva) = 0 for all r € Z, then u; = tug = £1, and we are in either case
(1) or case (3).
If R(ujv1) = R(ubve) # 0 for some r, then
2 cos(01)R(ujvr) = R(ujTor) + R(u) or) = R(ubtog) + R(uh tvg) = 2 cos(fa) R(ubva).

Since R(ujv1) = R(ubva) # 0, this implies that cos(61) = cos(z2), so 6; = £6,. Therefore,
either u; = ug or u; = Uz and we are in either case (1) or case (2).
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This completes the proof, since in all situations we have seen that either case (1), (2) or
(3) occurs. O

2.3. When the simple non-separating complex length spectrum is totally real.
We use a similar analysis to show that if the complex lengths of every simple, non-separating
curve is real for two Kleinian surface groups with the same simple marked length spectrum,
then the complex lengths agree for every simple, non-separating curve.

Lemma 2.5. If S is a closed, connected, orientable surface of genus at least two and
p1:m(S) = PSL(2,C) and py : m1(S) — PSL(2,C) are Kleinian surface groups with same
stmple marked length spectrum, then either

(1) tf;ere exist52 a simple non-separating curve v on S such that /\g1 (7) € R, or

(2) A5, (7) = A5, (v) € R whenever v is a simple non-separating curve on S.

Proof. Suppose that 1) does not hold, so /\%1 (7) € R whenever ~ is a simple non-separating
curve on S. Lemma 2.3 then implies that A2 (y) = £A2,(y) whenever 7 is a simple non-
separating curve on S

Suppose that there is a simple non-separating curve « such that >‘p271 () = —)\%2 ().
Notice that if pi(«) is parabolic, then £, (o) = 0 = £,,(), so )\?)1 () =1 = )\%2(04).
Therefore, p;(«), and hence pa(«), must be hyperbolic

We choose a simple non-separating curve [ intersecting a exactly once. We adapt the
normalization and notation of Lemma 2.3. Lemma 2.2 implies that

_ 2 n _ \2n 2 —2n 32 _ 2 n -2/ .n
ti(n) = Tr*(pi(a"B)) = Nj"a; + 2a;d; + A\ “"di = A (" B) + 2+ A, =(a"B).

(Notice that the trace Tr(p;(a”3)) of p;(a” ) is well-defined up to sign, so Tr?(p;(a™B)) is
well-defined.) Since )\/2)1 (a"pB) = :l:)\?)2 (o) for all n, by assumption, either (i) t;(n) = ta(n)
or (ii) t1(n) = 4 — ta(n) for all n and \? = —)\3.

The proof divides into two cases.
Case I: There is an infinite sequence {n;} of even integers so that t;(ny) = ta(ng):
Dividing by A2™ = A5™ and taking limits we see that

2a2d2 d% 2

2 . . 2
i A2\ po az + AZ T I %2
It follows that
d? d>?
2a1d; + 271L = 2a9ds + 212%
Al A

for all ng, so, after again taking limits, we see that
a1d1 = agdg.
Then, by considering the final term, we see that

d? = d2.
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If there exists an infinite sequence {m;} of odd integers so that t;(m;) = ta2(m;) for all
m;, then

AT 62+ 2a1dy + A AR = —N 62 4 2aydy — AT 2.

Then we may divide each side by )\?mj and pass to a limit to conclude that a? = —a?. This
would imply that a; = 0, which would contradict Lemma 2.2.

On the other hand, if there exists an infinite sequence {m;} of odd integers so that
t1(my;) = 4 — ta(my) for all m;, then

AP 62 4 2aydy + A TR =4 — (=N"a2 + 2a1dy — AT dD),
SO
2a1d1 =4 — 2a1d.

Therefore, a1d; = 1, which implies that byc; = 0, so either by = 0 or ¢; = 0, which again

contradicts Lemma 2.2.

Case II: There is an infinite sequence {n;} of even integers so that t;(n;) = 4 — ta(ng):
We then argue, as in Case I, to show that

a% = —a% and 2a1dy =4 — 2asdy  and d% = —d%.

If there exists an infinite sequence {m;} of odd integers so that t;(m;) = ta(m;) for all
m;, then
AT 62 4 2aydy + Ay T d2 = AT a? 4+ (4= 2a1dy) + AT 2.
So, a1dy = 1, again giving a contradiction.
On the other hand, if there exists an infinite sequence {m;} of odd integers so that
ti1(m;) = 4 — ta(m;) for all m;, then

N ad + 2a1dy + A7 dE = 4 — (A6} + (4 2a1dy) + A dY).

Dividing both sides by )\?mj and passing to a limit, we conclude that a? = —a?, which is
again a contradiction.
Therefore, neither Case I or Case II can occur, so case (2) must hold. O

2.4. When the complex length is not always totally real. We now show that if
)\%1 () is not real, for some simple non-separating curve «, then )\/2)1 (8) and )\%2 (B) either
agree for all § € W (), or differ by complex conjugation for all 8 € W(«).

Lemma 2.6. Suppose that S is a closed, connected, orientable surface of genus at least
two and p1 : m(S) = PSL(2,C) and ps : m1(S) — PSL(2,C) are Kleinian surface groups
with same simple marked length spectrum. If « is simple non-separating curve on S such
that X2 (a) & R, then either

(1) p1 and pa have the same marked complex length spectrum on W(«), or
(2) p1 and pa have conjugate marked complex length spectrum on W (a).
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Proof. Lemma 2.3 implies that either )\Zl () = A%Q(a) or )‘,%1 (@) = A2 (a). If )\%1 (a) =

AZ (), then we consider the representation pp. In this case, )\32 (7) = A2,(v) for all
~v € m1(5). In particular, )\,%1(04) = )\%2 (). Therefore, it suffices to prove that p; and po

have the same marked complex length spectrum on W (a) whenever \2 = /\f)1 (o) = )\?)2(04)
and p; and py have the same simple marked length spectrum.

First, suppose that 5 is a simple non-separating curve on S which intersects « once. We
adopt the normalization and notation of Lemmas 2.3 and 2.5, so

ti(n) = T2 (p;(a”B)) = \2"a? + 2a;d; + A\~ *"d?

Lemma 2.3 implies that for any n, either (i) t1(n) = ta(n), (i) t1(n) = t2(n) or (iii)
ti(n) =4 —to(n) and t1(n) is real.

If there is an infinite set of values of n such that ¢1(n) = ta(n), then, by taking limits,
we see that

a? =a3, aid; =azdy and d? =d3.
It follows then that t1(n) = ta(n) for all n. Moreover, since a; and d; are non-zero, either
a1 = az and dy = dy or a1 = —ap and dy = —da, so Tr?(p1(B)) = Tr?(p2(B)) which implies

that A2 (8) = A2, (5).
If there is an infinite set of values n such that ¢1(n) = 4 — ta(n) with ¢;(n) real, then
taking limits we have

a% = —a%, 2a1d1 =4- 2a2d2 and d% == —d%

It follows that ¢;(n) = 4 — ta(n) for all n, so by Lemma 2.3, t;(n) is real for all n. Since
S(ti(n)) = 0 for all n,

- S(ti(n) X\
e S\ ) %) =0

Since a? # 0, by Lemma 2.2, this can only happen if % = £1. Thus, A\? = \,, (a?) is real,
contradicting our assumption.
Finally, if ¢1(n) = ta(n) for all but finitely many values of n, we may divide the resulting

equation by A\2" and take a limit, to see that

\" L,
(27

Since A2 # A2, the limit does not exist unless a; = 0, which again contradicts Lemma 2.2.
Therefore, if § € W («) intersects a once, then )\31 (B) = )\32 (B).
Now suppose that S is a simple non-separating curve on S which does not intersect a.
We choose 3 to be a simple non-separating curve intersecting both a and 3 once.
For all n, o3’ € W(«) and intersects « once. By the first part of the argument,

Ao (") = A7, (a"6")
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for all n. If there exists ng so that )\%1 (a™ ") is not real, then since € W(a™ ') and
intersects a3’ exactly once, we may apply the above argument to show that )\/2,1 B) =

A, (B)-

It remains to consider the case that )\/2)1 (a™ ') is real for all n. Suppose that

a, b
== (4 )
Again, by Lemma 2.2 all the matrix coefficients must be non-zero. Since %(/\21 (a™8)) =0

for all n, S(Tr?(p1(a”B'))) = 0 for all n, so, after dividing the resulting equation by |A|?",
for all n, and passing to the limit we see that

1. o~ )\2 n/2 _0
dn s ((7e) o) =0

Since % ¢ R, this implies that a} = 0, which is again a contradiction. Therefore, if
B € W(a) does not intersect «, then )\/2)1 (8) = )\/2)2 (8) which completes the proof. O

2.5. Assembly. We can now easily assemble the proof of Proposition 2.1.

Proof of Proposition 2.1: If there exists a simple, non-separating curve a on S so that
/\%1 () is not real, then Proposition 2.1 follows immediately from Lemma 2.6. If )\/2)1(04)
is real for every simple, non-separating curve o on S, then Lemma 2.5 implies that p;
and pg have the same marked complex length spectrum on W («) for any non-separating
simple closed curve a. A result of Sullivan [30] implies that there are only finitely many
simple curves v on S so that p;(7) is parabolic, so we may always choose « so that p;(«)
is hyperbolic. O

Remark: An examination of the proofs reveals that Proposition 2.1 holds whenever the
length spectra of p; and ps agree on all simple, non-separating curves.

3. SIMPLE MARKED LENGTH SPECTRUM RIGIDITY
We are now ready for the proof of our main result.

Theorem 1.1: (Simple length rigidity for Kleinian surface groups) If S is a closed,
connected, orientable surface of genus at least two, and py : m(S) — PSL(2,C) and
p2 : m(S) — PSL(2,C) are Kleinian surface groups with the same simple marked length
spectrum, then p1 is conjugate to either pa or pa.

We begin with a brief sketch of the proof. It follows from Lemma 2.1 that, perhaps after
replacing py with a complex conjugate representation, there exists a simple, non-separating
curve « so that pi(«) is hyperbolic and p; and p have the same marked complex length
spectrum on W (a). We then lift p; and ps to representations into SL(2, C) which have the
same trace on a standard set of generators {a1, f1,..., a4, B4} where o = o, see Lemma
3.1. An analysis of the asymptotic behavior of the traces of o 5 allows us to conclude that
the restriction of the lifts to any subgroup of the form G; =< «;, 8; > are conjugate, see
Lemma 3.2. A more intricate analysis of the same type is then applied to show that if we
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conjugate the lifts to agree on G, then, for any k, they either agree on G}, or differ by
conjugation by a lift of the rotation of order two in the axis of the image of the commutator
of [}, Bj], see Lemmas 3.3 and 3.4. The proof is then easily completed when the genus
is greater than two, see Lemma 3.5, but a separate analysis is required when the genus is
two, see Lemma 3.6.

Proof of Theorem 1.1: Proposition 2.1 implies that there exists a a simple non-separating
curve « such that pj(«) is hyperbolic and p; and ps have the same marked complex length
spectrum on W («). If p; and p2 have conjugate complex marked length spectrum on W («),
then p; and py have the same marked complex length spectrum on W («). Therefore, we
may assume that p; and ps have the same marked complex length spectrum on W («).

We begin by choosing lifts whose traces agree on a standard set of generators which
includes a. We will call S = {a1, B1,..., a4, 84} a standard set of generators for m(S) if
each a; and $; is non-separating, 7 (S) =< o, f; | H?zl[ai,ﬁi] =id > and i(oy, ;) =1
for all j and if j # k then

i(oy, ag) = i(By, Br) = i(aj, Br) =0,

see Figure 1. We say that two lifts p; and ps of p1 and ps are trace normalized with respect
to S if

(1) p1(0) is hyperbolic for all 6 € S, and
(2) Tr(p1(9)) = Tr(p=2(9)) for all § € S.

FIGURE 1. Generators of 71 (.S, p)

Lemma 3.1. Suppose that p1 : m1(S) — PSL(2,C) and ps : m1(S) — PSL(2,C) are
Kleinian surface groups with the same marked complex length spectrum on W (a) for some
simple, non-separating curve a.. If pi(a) is hyperbolic, then there exists a standard set of
generators S, so that ay = a, and lifts p1 : m1(S) — SL(2,C) and ps : m(S) — SL(2,C) of
p1 and pa which are trace normalized with respect to S.
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Proof. Let a; = a. Choose a simple non-separating curve 8 which intersects a; exactly
once so that p1(f1) is hyperbolic. (We may do so, since, by a result of Sullivan [30], there are
only finitely many simple curves 7 such that p;(y) is parabolic and there are infinitely many
possibilities for 8;.) Extend {o1, (1} to a standard set of generators {aq, S, ..., a4, B}
We may assume that pi(c;) is hyperbolic for all j > 2, by replacing «; by «; B for some
n if necessary. We may then assume that p;(;) is hyperbolic for all j > 2 by replacing f;
by Bjaj for some n if necessary. Notice that S C W (a).

Since each p; is discrete and faithful, each p; lifts to a representation p, : w1 (S) — SL(2, C)
(see Culler [12] or Kra [20]). Let

5s(0) :{ p5(9) Af Tr(py(6)) = Tr(p5(9))

—p5(9) if Tr(p1(6)) = —Tr(p5(0))
for all § € S. Notice that p;(d) is a lift of p;(0) for all § € S and that p;( ?:1[04]-,@]) =1,
since pg(l_[?zl[aj,ﬁj]) = I. Therefore, p1 and po are lifts of p; and po which are trace
normalized with respect to S. [l

We next show that the trace normalized lifts are conjugate on the subgroups G; =< «;, 3;

Lemma 3.2. Suppose that p1 : m1(S) — SL(2,C) and pa : m1(S) — SL(2,C) are trace
normalized lifts, with respect to a standard generating set S, of Kleinian surface groups
with the same marked complex length spectrum on W(an). If j € {1,..., g}, then there
exists Kj € SL(2,C) such that p2|q; = (KjﬁlKj_l)|Gj. In particular, if v € G, then
Tr(p1(y)) = Tr(p2(7))-

Proof. Fix j for the remainder of the proof of the lemma and assume that p; and po are
(o, B;)-normalized, so

pi(aj) = p2(aj) = ( 8\ )\91 )

~ N a; bi
ORI G
where a;d;—b;c; = 1 and all the co-efficients are non-zero, by Lemma 2.2. Since Tr(p1(5;)) =

Tr(p2(8)),

where |A| > 1, and

a1+ di = as + ds.
The curve a}lﬁj € W(aq), for all n, since it is non-separating, simple and disjoint from «
if j > 1 and intersects a exactly once if j = 1. Therefore, Tr(p1(a] B;)) = £Tr(p2(a] 55)),
which gives the equation

)\"al + )\_ndl = j:(A"az + )\_ndg).
If N"ay + A\""dy = —(A\"ag + A\ "dg) for infinitely many values of n, then we see, by
dividing by A" and passing to a limit, that a; = —ao. It then follows that di = —ds.

Thus, a1 + dy = —(az + d2) which contradicts the fact that the traces of p; agree (and are
non-zero) on elements of S.
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Therefore, there are an infinitely many values of n where \"a; + A™"dy = A"as + A7 "ds
Taking limits again, we see that a; = as and dy = dy. Therefore,
bici =1 —a1dy =1 — aady = boco.
Choose u € C such that u? = by /by = c¢1/ca. Then u?b; = by and u=2c; = co. Let

u 0

Notice that Kjﬁl(aj)Kfl = p1(a;) and that

1 2
Kjﬁl(ﬁj)Kj_l - ( 8 u[_)l > ( Ccli fli ) ( UO 2 > - ( uleq udi)l ) = P2(5):

Therefore, K; conjugates the restriction of p; to G to the restriction of ps to G;. g

We begin our analysis of trace normalized lifts which agree on G; by examining the
relationship between the images of elements of S. Lemma 3.3 is the crucial step in the
proof of our main result. The additional information concerning matrix co-efficients in case
(2) will only be used when S has genus two.

Lemma 3.3. Suppose that p] : m1(S) = SL(2,C) and p} : m(S) — SL(2,C) are trace
normalized lifts, with respect to a standard generating set S, of Kleinian surface groups with
the same complex marked length spectrum on W (an). If pi and p} agree on G; =< aj, B; >
and § € S, then either

(1) £ (8) = #(8), or | |

(2) pl(lej, Bs]) is hyperbolic and ij{((;)R;l = p}(d), where R; is a lift of the rotation
of order two about the axis ofp{([ozj, Bil).
Moreover, if v € G; such that v,v0 € W(ay), and

(3 ) A (33) w5 0

where |A| > 1, then

Proof. The proof breaks up into two cases, depending on whether p{([aj, ;1) is hyperbolic
or parabolic.

Case I: p{([aj,ﬁj]) is hyperbolic: We may assume, by conjugating, that
; i A0
Allas s = Aoz = (5 30 )

where [A| > 1. As p{ and pg agree on G, we can assume that ¢ is not either a; or ;. Let

j ei fi
pg(é): ( g hi )
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where e;h; — f;g; = 1. Moreover, since the traces agree on generators,
e1+ h1 =eg + ho.

Suppose that v € G; and 7,70 € W(a1). (We can choose either v = ; or v = B;l
depending on the orientations on the curves, see Figure 2). Let

Py = ph(7) = ( i Z)

where ad — be = 1.

FIGURE 2. Curves 7,6 and [ay, ;]

Let v, = [aj, Bj]"v[aj, 8]0, which also lies in W (a1), since it is the image of y§ under
the n-fold Dehn twist about [a;, 3;]. So, by assumption,

Tr(p} (ya)) = £Tx(ph(7n))-
By expanding, we see that, for all n,
aer + dhy + bgr \*" + cfia 2" = £(aeq + dhy + bgaA?" + cfr)A7H).

Thus there exists an increasing subsequence where the traces either all agree or all differ
up to sign.
If there exists an increasing sequence {n;} such that the traces all agree, then

aeq + dhy 4+ bgr N2 + c LA = aey + dhg + bga A2 + cfoA T2
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for all n;. Dividing the above equation by A2% and taking a limit as j — 0o, we see that
bg1 = bgy. Since b # 0, by Lemma 2.2, g1 = go. Thus,

ael + dhi + Cfl)\_an = aeg + dho + Cfg)\_an
and we see, by taking the limit as n; — oo, that ae; + dh1 = aez + dhy. Finally, since
cfid72" = cfyA72" and A and c are non-zero, f; = f». Summarizing, we have
(1) ael + dh1 = aeg + th, f1 = fz, and g1 = g2.

Similarly, if there exists an increasing sequence {n;} such that the traces all disagree
then,
aey + dhy + bgi A\ + e = —(aeg + dhg + bga N2 4 cfo A7)
for all n;. Taking limits as above, we conclude that

(2) aei + dhy = —(aez + dhz), fi=—/fo, and g1 = —go.
Thus given any v € G such that 7,76 € W(a1), then v either satisfies equation (1) or
(2). Since f; and g; are non-zero , we conclude that, with the above normalization, either
(a) equation (1) holds for all v € G; such that v,v6 € W(ay), or
(b) equation (2) holds for all v € G such that v,v0 € W(aq).

Case Ia): Equation (1) holds for all v € G such that v,~v§ € W(a1). Choose v € G
such that 7,75 € W (o) and let

P = () = < . Z )
where ad — bc = 1. Then, by equation (1),
ael + dhy = aes + dha, fi=fo, and g1 = go.
Since e;h; — fi;g; = 1, we conclude that e;h; = eshs, so, since we also have e; +h1 = es+ ho,
(x —e1)(z — hy) = 22 — 2(e1 + h1)x + ethy = (@ — ex)(x — ha),

which implies that either (i) e; = e3 and h; = hg or (ii) e; = hg and hy = es.

If ey = e2 and hy = hg, then, since we already know that f; = fo and g1 = g2, we may
conclude that p}(8) = p%(8) and we are in case (1).

If e; = hg and hy = eq, then, since ae; + dhy = aey + dhg, we conclude that

((I - d)(61 — hl) =0.
If a # d, then this implies that e; = hy, so e; = e2. Since we already know that f; = f2 and
g1 = g2, and all the matrix co-efficients are non-zero, we may conclude that pJ(8) = p3(d),
so we are again in case (1).

In order to conclude that we are in case (1), it only remains to check that we can choose
Y0 € G4, so that vp,700 € W () and

M) = ph(r0) = ( o de >

where ag # dp.
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We may assume that we have initially chosen ~ to be either Bj_l or 3;, and that, with the

above notation, a = d. We may then choose g to be the element in {[a;, 3i]7, [oj, 5] 7}
which is simple and has the property that 9,790 € W(a1) (see Figure 3). Observe that
either ag = Aa and dg = A\7'd or ap = A 'a and dy = Ad, so ag # do. This choice of g
allows us to complete the proof.

aj, 0]

FiGure 3. The curve

Case Ib): Equation (2) holds for all v € G such that v,~v§ € W(a1). Choose v € G;
so that v,v6 € W(a1) and let

. . a b
A =dm=(¢ 4 )
where ad — be = 1. Then, by equation (2).
aey + dhy = —(aeg + dha), Ji=—fa and g1 = —go.

As e;h; — figi = 1, we conclude that e;hy = eshs. Since ethy = eshs and e; + h1 = es + ho,
we may conclude, just as in Case Ia, that either (i) e; = hy and hy = eg or (ii) e; = eq,
and h1 = hg.

If e; = ho and h; = ey, then, since ae; + dhy = —(aez + dhg), we see that

Tr(p] (7)) Tr(p)(0)) = (a + d)(e1 + h1) = aey + dhy + aea + dhg = 0

which is impossible since both traces are non-zero. Therefore, e; = es and hy = hs, so.
since f1 = —f2 and g1 = —go,

a0- (5 2)-( %) (3 ) (3 0) -ndony

S0 pjl(é) = ijg(J)Rgl and R; is a lift of the rotation of order two about the axis of

(o, By))-
Moreover, since aej + dh; = —(aez +dhy) = —(ae; + dhy), we see that ae; + dhq =0, so
e1 d

hl B a’
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and we are in case (2).

Case II: p{([aj,ﬁj]) is parabolic: Choose v € G; so that 7,70 € W(a;). We may
conjugate so that

Allas i) = Aies D = o 1 )
and 0 is a fixed points of p{ (v) = p;(fy), S0)
pl(v) = pl(7) = ( i 2 >

where ad = 1. So, a and d are non-zero and ¢ is non-zero, since otherwise pi ([, 3;]) and
p%(y) would have a common fixed point.

Let
jooy _ [ € fi
7il0) = ( gi hi )
where e;h; — f;g; = 1 and all the matrix coefficients are non-zero. Moreover, since the lifts
are trace normalized with respect to S,
e1+ hi = ez + ho.
Again, let v, = [ov, 5i]"v]au, Bi] ™0, which lies in W (a1), so
Tr(pil (Vn)) = iTI‘(pé(")/n)).
Expanding, we obtain
(a+nc)er+(n(d—a)—n’c)gi+cfi+(d—nc)hy = +((a+nc)es+(n(d—a)—n?c)ga+cfo+(d—nc)hy).

If there are infinitely many n where the traces differ, then, by dividing by n? and taking
limits, we conclude that cg; = —cgs, so, since ¢ # 0, g1 = —go. By, successively taking
limits, we further conclude that

c(er — h1) = —c(ea — h2) and ae1 + cfr + dhi = —aes — cfy — dho

Since ¢ # 0, we see that e; —h; = —ea+ ho. As e1 + hy = ea + ho, this implies that e; = ho
and h; = eo. Therefore,

figi = eth1 — 1 =exhy — 1 = foga = — fag:1.

As p{(é) does not have a fixed point at oo, g must be non-zero, so f; = —fy. Since
aey + cfi + dhy = —aegy — cfs — dho, this implies that

Tr(y)Tr(6) = (a+d)(e1 +h1) =0

which is a contradiction, since both traces are non-zero.
Therefore, there are infinitely many n where the traces agree, so, taking limits as above,
we see that

g1 = go, c(er — hy) = c(ea — ha), and ael + cfr + dhi = aey + cfs + dho.
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Since ¢ # 0, ey — hy = e2 — ho, which we may combine with the fact that e; +hy = es + ho,
to conclude that e; = e5 and hq = ho. Therefore,
figr = €1h1 —1=ehy — 1= fago = foqn
which implies that f; = fs, so p1 p; , which implies that we are in case (1). U
We now refine our analysis of trace normalized lifts which agree on G; to show that,

for all k, they either agree on Gy, or differ by a rotation in the axis of the image of the
commutator in G.

Lemma 3.4. Suppose that p1 : 71(S) — SL(2,C) and py : m(S) — SL(2,C) are trace
normalized lifts, with respect to a standard generating set S, of Kleinian surface groups
with the same marked complex length spectrum on W(an). If j,k € {1,...,9} and p{ and
p% agree on Gj =< «j, Bj >, then either
(1) pjl and pg agree on Gy, or
(2) p{([aj, B4]) is hyperbolic and P{|Gk = (ij2 )|, where R; is a lift of the rotation
of order two about the axis ofp{([aj, Bil).

Proof. If neither (1) or (2) holds, then Lemma 3.3 implies that, perhaps after switching oy,
and By, pl([oj, B;]) is hyperbolic,

phlow) = pl(ax)  and  pA(Bk) = Rjpr (Bi) Ry !
where R; is a lift of the rotation of order two about the axis of p{([aj, Bil).

Lemma 3.2 implies that there exists K € SL(2, C) so that p, and Kpb K1 agree on Gj.
If K = +1, then p) and p} = Kp, K1 agree on Gy and we are in case (1). So, we may
assume that K # +I and
Pllan) = Kpy(en) K™ = Kpj(an) K" and - p}(8y) = Kpy(B)K " = KRjp] (B Ry K.
It follows that K fixes the fixed points of p{(ak) and that K R; fixes the fixed points of
P1(Br)- . ) ,

If p] and Kp) K~1 agree on either a; or ;, then, since p] and pj agree on G, either

pi(ey) = Kpyla) K~ = Kpj(ay) K~ or pi(B)) = Kpy(B) K~ = Kpj(Bj) K~
which implies that K fixes the fixed points of either ,01(04]) or py (BJ) But, since K fixes

the fixed points of pl(ak) and the fixed points of pi(ozk) ) () and pf(;) are all distinct,
this implies that K = £, which is a contradiction.
Therefore, p] and K p;K disagree on both «; and ;. Lemma 3.3 then implies that

pl([ak, Bk]) is hyperbolic and
pi(aj) = ReKpo(a) K'Y and pl(B;) = RiKph(8)K 'Ry

where Ry, is a lift of the rotation of order two about the axis of pl([ak, Bk]). Therefore, Pi
and Ry K py K 1Rk agree on Gi;. Since p{ and p]2 agree on G this implies that Ry K = %1,
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so K = :l:R,;l. Therefore, K fixes the fixed points of p{([ak, Bk]). However, since we already

know that K fixes the fixed points of p{(ak), this implies that K = £, which is again a
contradiction. O

It is now relatively simple to use Lemma 3.4 to complete the proof when S has genus at
least three.

Lemma 3.5. Suppose that S has genus g > 3 and that py : m(S) — SL(2,C) and
po w1 (S) — SL(2,C) are trace normalized lifts, with respect to a standard generating set
S, of Kleinian surface groups with the same marked complex length spectrum on W (ay).
Then, p1 is conjugate to pa in SL(2,C).

Proof. Lemma 3.2 implies that we may choose conjugates pi and p} of p; and po which
agree on G| =< aj, f; > . Lemma 3.4 implies that for all j > 1, the restrictions of pt and
ps to G; either agree or are conjugate by Ry, where R; is a lift of the rotation of order two
about the axis of pi([a, £1]). If pI # pi, we may assume without loss of generality that
pila: = (RipyRi )G,

Lemma 3.4 implies that either (1) p} and RipR;* agree on Gy, or (2) pb([az, Ba]) is
hyperbolic and p! and Ry péRfl are conjugate by Rs on G1 where Ry is a lift of the rotation
of order two about the axis of pl([ag, 32]).

If p} and Ripi R agree on G, then, since p} and p} agree on G, Ry commutes with
every element of pl(Gy). Since pi(G1) is non-elementary, this implies that Ry = 41, which
is a contradiction.

If p} and Rao(RipdR; )R, ! agree on Gy, then since pi and pd agree on Gy, we similarly
conclude that RoR; = +I. So, Ry = iRl_l. This would imply that pl([a1,31]) and
p%([ag, B2]) have the same axis, so share fixed points, which is a contradiction unless S has
genus 2 and [ag, f1] = [az, B2] 1. O

We now complete the proof by establishing our result in the genus two case.

Lemma 3.6. Suppose that S has genus g = 2 and that p; : m(S) — SL(2,C) and
p2 w1 (S) — SL(2,C) are trace normalized lifts, with respect to a standard generating set
S, of Kleinian surface groups with the same marked complex length spectrum on W (ay).
Then, p1 is conjugate to pa in SL(2,C).

Proof. In this case m1(S) =< a1, f1, a2, B2 > given by the standard oriented curves as in
Figure 4. Lemma 3.2 implies that we may conjugate p; to p} so that p} and pl agree on
G1.

Suppose that pi # pi. Lemma 3.4 implies that p;([ay,1]) is hyperbolic and p} and
RlpéRl_l agree on (G where R; is a lift of the rotation of order two about the axis of
p1([a1, B1]). We may normalize so that

phllon. i) = pbtlan, i) = (o ,01 )

where |A| > 1.
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FIGURE 4. Surface of genus 2 with standard generators

Let v = afl. Notice that, assuming that elements of S are oriented as in Figure 4, vao
and S, are simple and lie in W (ay). Define A = pl(a;'), C = pl(az), and D = pi(Ba),
and adapt the convention that if a matrix is denoted by capital letter X, then it has
coefficients (z;;). Since pl and pd differ on both as and (2, Lemma 3.3 implies that

e _dn __az
co2  da air
We now consider the element a2 € Go. We replace generators {ag, B2} by {aof2, a5 1
in S to form another standard generating set S’ = {al,ﬁl,a262,a2_l} (we note that
[a2B2, 5 '] = [, B2]). The representations p} and p} agree on Gy and their traces agree
on &'. Notice that vy(az82) € W(a1) (see Figure 4) and let E = CD = p;(ag2). Since p}
and pl agree on G and disagree on asf3, Lemma 3.3 implies that

€11 a2
€22 ai

If M = CDC D™t = pl([ag, Ba]7Y) = pl([au, B1]), then

M= < 3 )\(—)1 )
Since DC = M~'CD = M~'E and C~1(CD)C = DC,
Tr(DC) = Tr(CD) = Tr(E) = Tr(M'E),
50 e11 + e2n = A leq + Aean. Therefore

en_du _en (A1
co2  dyp ez (1—A71) '



SIMPLE LENGTH RIGIDITY FOR KLEINIAN SURFACE GROUPS AND APPLICATIONS 23

Since CD = M DC,
(CD)12 = ci11d12 + ci2do2 = (MDC)12 = AM(DC)12 = A(d11c12 + di2c22),
80, since c11 = Acog and di1 = Adas,
Aegadia + ciadar = A(Ad2aci2 + di2ca),
which implies that
()\2 — 1)612d22 =0.
Thus, since daa, and ¢i9 are both non-zero, A = 1 which is a contradiction. Therefore, it
must be the case that p% = p%. O

Remark: Observe that in the proof we only assume that there exists a simple non-
separating curve « such that p; and ps have the same or conjugate marked complex length
spectrum on W («). It then follows from the remark at the end of Section 2 that p; and po
are conjugate in the isometry group of H? if they have the same marked length spectrum
on all simple, non-separating curves.

4. ACYLINDRICAL 3-MANIFOLDS

We now use our main result to prove our length rigidity theorem for acylindrical 3-manifolds.

Theorem 1.2. If M is a compact, acylindrical, hyperbolizable 3-manifold, and py : w1 (M) — PSL(2,C)
and po : T (M) — PSL(2,C) are two discrete faithful representations, such that ¢, () =

Uy (@) if o € (M) is represented by a simple closed curve on OM, then pi is conjugate

to either pa or pa.

In order to motivate the more general proof, we offer a sketch of the proof in the case
that M has connected boundary and p; and py are both convex cocompact, i.e. each
N; = H3/p;(m1(M)) admits a conformal compactification with boundary 9.N;. After per-
haps replacing p2 with a complex conjugate representation, we may assume by Johannson’s
Classification Theorem [16], that there exists an orientation-preserving homeomorphism
7 : N1 — Ns in the homotopy class determined by po o pl_l. In this case, work of Bers [2]
implies that p; is conjugate to po if and only if j extends, up to isotopy, to a conformal
homeomorphism f : 0cN1 — O.No.

If the length spectra of p; and ps agree on simple curves on the boundary, our main result
implies that the restrictions of p; and ps to the fundamental group of the boundary agree up
to conjugacy in in the isometry group of H3. It follows that the conformal compactifications
le and N2S of the covers of N; and N» associated to 71(S) are either conformal or anti-
conformally homeomorphic (by a homeomorphism in the homotopy class consistent with
the identifications of their fundamental groups with 71(.S).) Notice that 0.N; is identified
with one component of the conformal boundary of Nis . If the conformal compactifications of
N 15 and NQS are conformally homeomorphic, then j extends to a conformal homeomorphism
between 9.N7 and 0.N3, so Bers’ result implies that p; and po are conjugate in PSL(2,C). If
not, then one may use the Klein-Maskit combination Theorems (see Maskit [22]) to combine
p1 and (a conjugate of) ps to produce the holonomy representation of a hyperbolic structure



24 MARTIN BRIDGEMAN AND RICHARD D. CANARY

on the double of M. Mostow’s Rigidity Theorem [27] then implies that the involution of
the double is an isometry, so the restriction of p; and ps to the boundary is Fuchsian, and
the conformal structures on the boundary must agree.

In the general case, we must organize the components of the boundary into those where
the conformal structures agree and those where they disagree and replace the use of Bers’
theorem and Mostow’s Rigidity Theorem with applications of the Ending Lamination The-
orem [26, 8.

Proof of Theorem 1.2: Suppose that p; : m1 (M) — PSL(2,C) and ps : m (M) — PSL(2,C)
are two discrete faithful representations, such that ¢, (a) = £,, () if o € w1 (M) is repre-
sented by a simple closed curve on OM. Let N; = H3/p;(m1(M)).

There exists a homotopy equivalence h; : M — N; in the homotopy class determined
by p; (where we regard p; as an isomorphism between 71 (M) and m1(N;) = pi(71(M))).
Bonahon’s Tameness Theorem [3] implies that /V; may be identified with the interior of a
compact 3-manifold M;. Since M is acylindrical, Johannson’s Classification Theorem [16]
implies that h; is homotopic to a homeomorphism. Therefore, there exists a homeomor-
phism g : My — Ms so that g o hy is homotopic to ho, i.e. ¢ is in the homotopy class
determined by psy o pfl. If g is not orientation-preserving then we replace ps with p2. So,
we may assume that g is orientation-preserving.

Thurston associates to each p; a family of ending invariants, i.e. a multicurve p;, called
the parabolic locus, in the collection 0gM; of non-toroidal components of dM;, and on
each component of dyM; — p;, either a hyperbolic structure of finite area (in which case
the component is called geometrically finite) or a filling, geodesic lamination which ad-
mits a transverse measure of full support, called the ending lamination (in which case the
component is called geometrically infinite), see [26, 8] for details. The Ending Lamination
Theorem of Minsky [26] and Brock-Canary-Minsky [8] implies that p; is conjugate to ps
in PSL(2,C) if and only if the ending invariants of p; agree with the ending invariants
of po, i.e., up to isotopy of g, g(p1) = p2, the restriction of g to each geometrically finite
component of JgM| — p; is an isometry onto a geometrically finite component of 0y Ms — po,
and if a geometrically infinite component of dyM; — p; has ending lamination A, then g(\)
is the ending lamination of a geometrically infinite component of dyMs — po.

Let {Si,...,S,} be the components of dgM;. Since ¢, (a) = £, () if & € m (M) is
represented by a simple closed curve on M, our main result, Theorem 1.1, implies that,
for each j, p1lr,(s;) is conjugate to either py or p. If each pil,, (s, is conjugate to pa|r(s;),
then the ending invariants of p; agree with the ending invariants of ps, so p1 is conjugate
to pg in PSL(2,C) and we are done.

If there exists S; so that ,01|7r1(sj) is conjugate to ,52|m(5].), then we may re-order the
components of M, so that Pllm(sj) is conjugate to pg]m(sj) if and only if j > ¢ for some
g € {1,...,7 — 1}. Let N/ be the cover of N; associated to 71(S;). Then, N/ may be
identified with the interior of S; x [0,1] so that the end invariants of N/ on S; x {1} agree
with the restriction of the end invariants of NNV; restricted to S;. The Covering Theorem

(see [10]) may be used to show that the restriction of the ending invariant of Nij to S; x {0}
is a conformal structure on all of S; x {0} (see the discussion in Kent’s proof of Thurston’s
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Bounded Image Theorem [17, Thm. 41]). If j < g, then the ending invariant of N{ on
Sj x {1} agree with the end invariants of NJ on S; x {0}, while the ending invariant of Ny
on S; x {0} agree with the end invariants of NJ on S; x {1}. It follows that, if j < ¢, then

the ending invariants of N7 are a pair of hyperbolic structures on S; x {0} and S; x {1},
SO Pilmy( s;) is quasifuchsian, and the map from S; x {0,1} to itself given by taking (x,t) to
(x,1—t) is isotopic to an isometry from the ending invariants of Ni to the ending invariants
of NJ.

Let M be the manifold obtained by doubling M along S;U---US;_1. We first conjugate
p2 so that pi(m1(S1)) = p2(7w1(S1)). We may use the Klein-Maskit Combination Theorems
[22] to see that the combination of pq(71(M)) and pa(m(M)) gives rise to a hyperbolic
structure on the double of M along Si. For each j = 2,...,q, let A; € PSL(2,C) be
chosen so that A; conjugates p1|7r1(3].) to P2|7r1(S]-)- Then, the Klein-Maskit Combination
Theorems give that the group generated by pi(mi(M)), p2(m1(M)) and {As,... A} gives
rise to a hyperbolic structure on M and so a representation p : m (M) — PSL(2,C). (See
Sections 8 and 9 of Morgan [25], in particular Theorem 9.4, for a discussion of the Klein-
Maskit Combination Theorems in a topological phrasing compatible with our application.)
The obvious involution of M preserves the ending invariants of N = H3/p(wi(M)), so, by
the Ending Lamination Theorem, there is an isometry of N realizing this involution. By
restriction, p; is conjugate to ps. U

Remark: In the case that 0gM is connected, lan Agol astutely pointed out that one may
rephrase this proof as an application of the fact that the square of the skinning map has a
unique fixed point, see Morgan [25] and Kent [17] for a discussion of the skinning map.

5. RENORMALIZED PRESSURE INTERSECTION

We next show that the isometry group of the renormalized pressure intersection is gen-
erated by the (extended) mapping class group and complex conjugation. We begin by
reinterpreting our renormalized pressure intersection in terms of the Patterson-Sullivan ge-
odesic current, following Bridgeman [5] and Bridgeman-Taylor [7]. Since isometries of the
renormalized pressure intersection are isometries of the pressure metric and the only de-
generate vectors for the pressure metric are at points on the Fuchsian locus (see Bridgeman
[5]), any isometry f of the renormalized pressure intersection must preserve the Fuchsian
locus. Since the restriction of the pressure metric to the Fuchsian locus is a multiple of
the Weil-Petersson metric, we may apply Masur and Wolf’s classification of isometries of
the Weil-Petersson metric [23], to conclude that the restriction of f to the Fuchsian locus
agrees with the action of a mapping class g. We then use Bonahon’s interpretation (see
[4]) of the Thurston compactification of Teichmiiller space in terms of geodesic currents,
to show that if p € QF(S), then f(p) and g(p) have proportional simple marked length
spectrum. The proof is completed by showing that any two Kleinian surface groups with
proportional simple marked length spectrum are conjugate in the isometry group of HS3.
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5.1. Geodesic Currents. Identify the space G(H?) of geodesics in H? with the open
Mobius band (SL, x S, — diagonal)/Zs by identifying a geodesic with its endpoints. A
geodesic current on a hyperbolic surface X = H?/I is a positive Borel measure on G(H?)
that is invariant under the action of I'. For example, if « is a primitive closed geodesic
on X, we may consider the geodesic current C,, given by taking the Dirac measure on the
pre-image of a in G(H?). Let C(X) be the space of geodesic currents defined for X = H?/T
with the weak*-topology. If S is a closed surface of genus at least two, we identify S with
a fixed hyperbolic surface Xy and let C(S) = C(Xp).

Following Bonahon [4], Bridgeman and Taylor [7, Sec. 5] showed that there is a natural
continuous, linear function

L:C(S) x QF(S) — R,

called the length function, with the property that if rC, is a positive multiple of C,, then
L(rCq,p) = rl,(a). Since multiples of closed geodesics are dense in C(S) (see [3, Prop.
4.2]), this property completely determines L.

Given p € QF(S), Sullivan [31, Prop. 11, Thm. 21], following work of Patterson
[28] in the Fuchsian case, used the Poincaré series to define a non-atomic I'-invariant
measure [, on OsoH? x OoH3, called the Patterson-Sullivan measure, which is supported
on A(p) x A(p), where A(p) is the limit set of p(71(S)), such that I' acts ergodically on
DooH? x 0o H? with respect to p1, (see also Sullivan [32, Thm. 3]). One may push forward
I, to obtain a I-invariant measure fi, on A(p) x A(p)/Zs (where Zso acts by interchanging
the factors). The representation p induces a homeomorphism f, : St — A(p), where we use
our identification of S with Xg to identify S* with 0,,H?, so one obtains a homeomorphism

fﬁp : G(H?) — A(p) x A(p)/Zsy. One then defines the Patterson-Sullivan current as the

scalar multiple ¥(p) € C(S) of (f, x f,),(f1p) so that L(¢(p),p) = 1. If p is Fuchsian,
then 1 (p) is the Liouville geodesic current constructed by Bonahon [4] (see [15, Thm. 1]).
Hamenstadt [15, Thm. 1] showed that the associated map

¥ QF(S) — C(S)

is continuous and injective. See Bridgeman [5], Bridgeman-Taylor [7] or Hamenstadt [15]
for further discussion of the Patterson-Sullivan geodesic current.

Let F(S) denote the space of Fuchsian representations in QF(S) and let PC(S) denote
the space of projective classes of non-zero currents in C(,S). Bonahon [4, Thm. 18] showed
that if one considers the associated map into the space of projective geodesic currents
Y : F(S) — PC(S), then the closure of )(F(S)) is ¥(F(S)) U PML(S) where PML(S)
is the space of projective classes of measured laminations. (We recall that the set M L(S)
of measured laminations in C(S) is exactly the closure of the set of positive multiples of
currents associated to simple curves, see Bonahon [3, Sec. 4.3] for more details.)

We note that L(1(p1), p2) can also be defined to be the length in py of a random geodesic
in py, i.e.

i L 0p,(7)
(3) L((p1), p2) = Th_{%o LT () <7 Z P -

= W | 4o, (1T} b
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It follows that

(4) (1. pa) = A22)

h(pl)L(w(pl)’ PQ)

In analogy with Thurston’s formulation of the Weil-Petersson metric on Teichmiiller
space, and Bonahon’s re-formulation in terms of geodesic currents [4, Thm. 19], Bridgeman
and Taylor [7] consider, for each p € QF(S), the function J, : QF(S) — R given by
J,(0) = J(p,0) and define a non-negative symmetric two-tensor G, called the pressure
form, on the tangent bundle TQF(S), where G, on T,QF(S) is the Hessian of J,. By
construction, the pressure form is invariant under the action of the (extended) mapping
class group Mod*(S) of S. It follows from the work of Wolpert [33] and Bonahon [4], that
the restriction of the pressure form to the Fuchsian locus F(S) is a multiple of the Weil-
Petersson metric. Motivated by the work of McMullen [24] in the setting of Teichmiiller
space, Bridgeman [5] showed that the pressure form is non-degenerate except along pure
bending vectors based at points in the Fuchsian locus. Moreover, the pressure form gives
rise to a path metric on QF(S), see [6, Cor. 1.7].

Remark: In the proof of Theorem 6.1 in [5], Bridgeman gives an expression for L((p1), p2)
in terms of equilibrium measures. Our equation (3) then follows from equations (12) and
(13) in [6], see also the discussion in section 8 of [6]. If one prefers that the proof of
Theorem 1.3 be self-contained, one can take J to be defined by our equation (4) as is done
in Bridgeman-Taylor [7] and Bridgeman [5].

5.2. Isometries of renormalized pressure intersection. We use the interpretation of
renormalized pressure intersection in terms of geodesic currents to show that the restriction
of an isometry f of the renormalized pressure intersection to the Fuchsian locus F'(S) agrees
with an element g of the (extended) mapping class group. We further show that f(o) and
g(o) have closely related length spectrum whenever o € QF(S).

Proposition 5.1. If f : QF(S) — QF(S) is a smooth isometry of J, then f preserves the
Fuchsian locus F(S) and there exists g € Mod*(S) such that f and g agree on the Fuchsian
locus.

Moreover, if a is a simple curve on S and o € QF(S), then

hg(@))g(0) (@) = h(f(0))l()()-

Proof. Since f is smooth and preserves J, one sees by differentiating that f also preserves
the pressure form G.

If o € F'(X) and v is a pure-bending vector, then G (v, v) = 0, 50 G4 (D f5(v), D fo(v)) = 0.
Since, f is an immersion, D f,(v) = 0 which implies that f(o) € F(S).

Since the restriction of G to F(.S) is a multiple of the Weil-Petersson metric, the restric-
tion of f to the Fuchsian locus is an isometry of the Weil-Petersson metric. Masur and
Wolf [23] proved every isometry of the Weil-Petersson metric is an element of Mod*(S). So
we may choose g € Mod*(S) so that f and g agree on the Fuchsian locus F(S).
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If pe F(S) and 0 € QF(S), then since
I(p,a) = I(f(p), f(0)) = I(9(p), 9()),

and h is constant on F'(S), we may conclude that

L(¥(9(p), 9(0)) _ h(f(0))
L@(f(p), f(o))  hlg(o))
If v is a simple curve, let {p,} be a sequence in F(S) so that {¢(f(pn))} = {(9(pn))}
converges to [Cy] in PC(S). Since L is continuous,
ly) (@) _ . L((g(pn)): 9(0)) _ h(f(2))
L) (@) L (f(pn)), f(0))  h(g(o))

which establishes our claim. O

5.3. Simply k-related Kleinian surface groups. We say that two Kleinian surface
groups pp : m1(S) — PSL(2,C) and py : m1(S) — PSL(2,C) are simply k-related, for some
k>0, if

Cpy (@) = Kty (ax)
whenever « is a simple closed curve on S.

Proposition 5.1 implies that if f is an isometry of the renormalized pressure intersection,
then there exists ¢ € Mod*(S), such that f(o) and g(o) are simply k-related whenever
o € QF(S). Theorem 1.3 will thus follow from the following strengthening of our simple
length rigidity theorem.

Theorem 1.4: If S is a closed, connected, orientable surface of genus at least two and
p1:m1(S) — PSL(2,C) and pa : m1(S) — PSL(2,C) are simply k-related Kleinian surface
groups, then py is conjugate to either py or ps.

Proof of Theorem 1.4: We first choose non-separating simple curves a and § on S which
intersect exactly once, so that pi(«), p1(8), p2(a) and p2(5) are all hyperbolic. (One
may do so, since, again by a result of Sullivan [30], only finitely many simple curves have
parabolic images for p; or ps.)

We can assume that p; and py are (o, 3)-normalized, so

i(a) =i( S )

Ay a; b

pi(B) —i( o d >

where all the matrix coefficients are non-zero (see Lemma 2.2). Since p; and pe are simply
k-related,

where |A;| > 1, and

Al = [of".
Notice that if & = 1, then Theorem 1.4 follows immediately from our main result,
Theorem 1.1. So we may assume, without loss of generality, that k£ > 1.
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Let p;(n) be the modulus of the eigenvalue of p;(a”f) with largest modulus. Since "
is simple for all n, uu1(n) = po(n)¥ for all n. Lemma 2.2 implies that

bic; _
g 5(0) = og | + 1o s+ (321755 ) + O~

)

Since log p1(n) = klogua(n), after eliminating the leading terms (which are equal), we
obtain

bic _dn _ap bac _dn
1og|a1\+§re<A12" ;1>)+0(w ) = klog as| + kR (AQQ ij) +O(|xo| 7M™,
1 2

Therefore, by considering the limits as n — oo, we see that
log |a1| = klog |az].
So, after subtracting the equal leading order terms,
b b
R ()\1—2n ;Cl> + O(|)\1| 4n) — kR <)\—2n ZCQ> + O(‘)\z‘ 4n)
1 2

for all n. If we multiplly both sides of the above equation by |A2|?", then since I /\1} > 1,
the right hand side converges to 0, and we see that

)\2 _anQCQ
5 lim R —— ] =0.
) i ((M)

If we let

N\ b
u= 2% = ¢ and UZQ—CQ;&O.
|)\2’ a

then we may rewrite (5) as

As we can always choose a sequence {ny} so that limg_,o, u™ = 1, we see that
R(v) =0.

If § is an irrational multiple of 2, then for all z € S! there exists a sequence {n;} so
that lime™? = 2, which implies that R(zv) = 0. Therefore, in this case, as v # 0 then
choosing z = |v|/v, we get |v| = 0 a contradiction.

If 6 is a rational multiple of 27w and w # +1, then there exists {nx} so that v = u for
all k, so R(uv) = 0. Since R(v) =0, v = iy from some y € R, so,

R(ev) = —sin()y = 0.

Thus, y = 0, since sin(#) # 0. It again follows that v = 0 and we obtain a contradiction.
Therefore, we can assume that u = 1, so A3 is real. It follows that if 5 is a simple,
non-separating curve on S, then A2, (1) € R, so

Tr*(pa(n)) = A2, (n) + 24 A, (n) € R.
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In particular, since o™ g is simple and non-separating for all n, we see that
Tr?(p2(a”B)) = A3"a3 + 2azds + Ay 2"d3 € R,

S0,
S(Tr?(p2(a"B))) = A3"S(a3) + 23 (azdz) + A5 2"S(d3) = 0

for all n. Therefore,

(T 2 n
lim (I <”22(a ) _ ga2) o,
n—00 AQn
SO
lim (Tr?(pa(a™B))) = 23 (azds) = 0.
n—oo
Since a2 and azds are real, v = bé# = % is real. Therefore, since we have already
2 2

shown that R(v) = 0, we see that v = 0, which contradicts the fact that ag, by and ¢ are
all non-zero. Since we have now achieved a contradiction in all cases where k > 1, this
completes the proof. O

5.4. Proof of Theorem 1.3. If f is an isometry of the renormalized pressure intersection,

then Theorem 5.1 implies that there exists g € Mod*(S) such that f and g agree on F(5)
and f(o) and g(o) are simply k-related, where k = 28; EZ;; , whenever o € QF(S). Theorem
1.4 implies that if o € QF(S), then either f(o) = g(o) or f(o) = 7(g(c)). Since f is

continuous, this implies that either f = g or f = 7 0 g. The result follows. [
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