EXOTIC QUASICONFORMALLY HOMOGENEOUS
SURFACES

PETRA BONFERT-TAYLOR, RICHARD D. CANARY, JUAN SOUTO,
AND EDWARD C. TAYLOR

ABSTRACT. We construct uniformly quasiconformally homogeneous
Riemann surfaces which are not quasiconformal deformations of
regular covers of closed orbifolds.

1. INTRODUCTION

Recall that a hyperbolic manifold M is K-quasiconformally homoge-
neous if for all z,y € M there is a K-quasiconformal map f: M — M
with f(x) = y. It is said to be uniformly quasiconformally homogeneous
if it is K-quasiconformally homogeneous for some K. We consider only
complete and oriented hyperbolic manifolds.

In dimensions 3 and above, every uniformly quasiconformally ho-
mogeneous hyperbolic manifold is isometric to the regular cover of a
closed hyperbolic orbifold (see [1]). The situation is more complicated
in 2 dimensions. It remains true that any hyperbolic surface which is
a regular cover of a closed hyperbolic orbifold is uniformly quasicon-
formally homogeneous. If S is a non-compact regular cover of a closed
hyperbolic 2-orbifold, then any quasiconformal deformation of S re-
mains uniformly quasiconformally homogeneous. However, typically a
quasiconformal deformation of S is not itself a regular cover of a closed
hyperbolic 2-orbifold (see Lemma 5.1 in [1].)

It is thus natural to ask if every uniformly quasiconformally homoge-
neous hyperbolic surface is a quasiconformal deformation of a regular
cover of a closed hyperbolic orbifold. The goal of this note is to answer
this question in the negative:

Theorem 1.1. There are uniformly quasiconformally homogeneous
surfaces which are not quasiconformal deformations of the reqular cover
of any closed hyperbolic 2-orbifold.
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In order to prove Theorem 1.1, we associate to every connected graph
X with constant valence a hyperbolic surface Sx which is obtained
by “thickening” X. In particular, Sx is quasi-isometric to X. Each
element ¢ € Aut(X) gives rise to a quasiconformal automorphism h,,
of Sx (with uniformly bounded dilatation). If Aut(X) acts transitively
on the set of vertices of X, then the associated set of quasiconformal
automorphisms is coarsely transitive, i.e. there exists D such that if
x,y € Sx, then there exists ¢ € Aut(X) such that d(h,(z),y) < D.
One may then use work of Gehring and Palka [5] to show that Sx is
uniformly quasiconformally homogeneous.

We choose X to be a Diestel-Leader graph DL(m,n) with m #
n. These graphs have transitive groups of automorphisms, but Eskin,
Fisher and Whyte [4] recently showed that they are not quasi-isometric
to the Cayley graph of any group. The proof is completed by the
observation that any surface which is a quasiconformal deformation of
a regular cover of a closed orbifold is quasi-isometric to the Cayley
graph of the deck transformation group.

On the other hand it is easy to construct hyperbolic surfaces which
are quasi-isometric to graphs with transitive automorphism group, which
are not uniformly quasiconformally homogeneous (see section 5). So,
one is left to wonder if there is a simple geometric characterization of
uniformly quasiconformally homogeneous surfaces.

Acknowledgements: The authors are grateful to Yair Minsky and
Kevin Whyte for very interesting conversations.

2. TURNING GRAPHS INTO SURFACES

For simplicity, let X be a connected, countable graph such that every
vertex has valence d > 3 and every edge has length 1. It will be con-
venient to assume that every edge of X has two distinct endpoints. In
this section we thicken X into a hyperbolic surface Sx quasi-isometric
to X in such a way that whenever the group of automorphisms of X
acts transitively on the set of vertices, then Sy is uniformly quasicon-
formally homogeneous.

We start by introducing some notation. Let )V and £ be the sets of
vertices and edges of the graph X. For each vertex v € V let &€, be the
set of edges of X which contain v. By assumption &, has d elements
for each v. For each v, choose a bijection

Sp: & — {1,...,d}
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Observe that if ¢ is an automorphism of X, then ¢ induces a bijection
(@i)v 2 E = Epqy for all v € V. Consider the permutation

$Y = Suw) 0 (Pu)u o syt i {1, ..., d} = {1,...,d}.

The building blocks of our construction will be copies of a fixed
hyperbolic surface F' that is homeomorphic to a sphere with d holes
such that each boundary component of F' is a geodesic of length 1.
Label the components of OF by ~v1,...,74. For each i, choose a base
point p; € v; and observe that the choice of the base point together with
the orientation of F determines uniquely a parametrization S' — ~;
with constant velocity 1. We state the following observation as a lemma
for future reference:

Lemma 2.1. For each d > 3, there exists K4 > 1 such that if 0 € &y
is a permutation of the set {1,...,d} then there is a K4-quasiconformal
map f, : ' — F which is an isometry when restricted to a neighborhood

of OF and such that f,(7;) = Vo) and f-(pi) = Pogs)-

Consider the hyperbolic surface F' xV and set F, = F x {v}. We will
construct Sy by gluing the components of F' x V together. The gluing
maps are determined by the edges of X as follows. Given an edge e € &,
let v,v" € V be its two vertices, which we assumed are always distinct.
We identify the curves 7y, X {v} C OF, and 7, ) x {v'} C OFy.
More precisely, let

Ge * Vsy(e) X {v} 7 Vsy(e) X {U/}

be the unique orientation-reversing isometry which maps the marked
point (ps,(e),v) to (ps,(e),v’). Let ~ be the equivalence relation on
F x'V generated by the maps g. for all e € £. The equivalence classes
of ~ contains either one point in the interior of F' x V or two points in
the boundary. In particular, the quotient space of ~

is a surface. Moreover, since the gluing maps g. are isometries, the
hyperbolic metric on F' xV descends to a hyperbolic metric on Sx. By
construction, this metric has injectivity radius bounded from above and
below. In particular, if we choose er to be a lower bound for the length
of any homotopically non-trivial closed curve on F' and g to be a lower
bound for the length of any properly embedded arc in F' which is not
properly homotopic into the boundary of F, then ¢; = min{er/2,dr}
is a lower bound for the injectivity radius of Sx.

Associated to every edge e € £ there is a simple closed geodesic ¢, in
Sx and c¢, is disjoint from ¢ for every pair of distinct edges e, e’ € £.
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Let C = {c.|e € £} be the collection of all such geodesics and notice
that Sx \ C is isometric to the interior of F' x V.

It follows that the graph X can be recovered from Sx as the dual
graph to the multicurve C. Moreover, there is a projection wy : Sx —
X which maps every component of C to the midpoint of its associated
edge and maps every component of Sx \C to its associated vertex. The
map 7y is then a (K, C)-quasi-isometry where K = C' = 2diam(F).
We recall that a map g : ¥ — Z between two metric spaces is a
(K, C)-quasi-isometry if

%dm y) = C < dz(g(x), g(y)) < Kdy(w,y) +C

for all z,y € Y and if z € Z there exists y € Y such that dz(g(y), z) <
C.

It also follows from the identification of X with the dual graph to
C that every homeomorphism f : Sx — Sx which maps C to itself,
meaning f(C) = C and f~!(C) = C, induces an automorphism of the
graph X.

Lemma 2.2. FEvery automorphism of the graph X is induced by a Kg4-
quasiconformal homeomorphism of Sx which preserves C, where Ky is
the constant provided by Lemma 2.1.

Proof. Given an automorphism ¢ : X — X recall the definition of the
permutation

s A{l,...,d} —{1,...,d}
given above for each v € V. Let f, : FF — F be the Kj-quasiconformal
map associated by Lemma 2.1 to the permutation s¥ and define

H,:FxV—FxV, Hyz,v)=(f(2),p))

Observe that H, is K4-quasiconformal. Moreover, if an edge e € £
contains v, then

H@(’ysv(e) X {U}) = f)/sap(v)(go(e)) X (‘D(U)

Also, by construction H, maps marked points to marked points. It
follows that H, descends to a Kj-quasiconformal homeomorphism

hcp : SX — SX
with hy(ce) = cprey and h'(ce) = cp-1() for all e € €. In other words,
h, induces . 0

Remark: It is not possible to construct the quasiconformal automor-
phisms in Lemma 2.1 so that one obtains an action of >; on F'. There-
fore, we do not in general obtain an action of Aut(X) on Sx.
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We now combine Lemma 2.2 with a technique of Gehring and Palka
[5] to show that if X is a graph with transitive automorphism group,
then Sx is uniformly quasiconformally homogeneous.

Lemma 2.3. Given d > 3, there exists Ly > 1 such that if X is
a connected graph such that every vertex has valence d > 3, every
edge has length 1, and Aut(X) acts transitively on the vertices of X,
then there is a Lg-quasiconformally homogeneous hyperbolic surface Sx
quasi-isometric to X .

Proof. Let x and y be any two points on Sx. By Lemma 2.2 there
exists a Ky-quasiconformal automorphism h : Sy — Sx such that h(z)
and y both lie in (the image of ) F, for some vertex v of X. Therefore,
d(z, h(y)) < diam(F).

Let ¢4 > 0 be a lower bound for the injectivity radius of Sx. (Notice
that ¢4 depends only on d and the choice of surface F' above.) Lemma
2.6 in [1] (which is derived from Lemma 3.2 in [5]) implies that there
exists a K/-quasiconformal map 1 : Sx — Sx such that ¢¥(h(z)) =y

where
4diam(F)

K= (e 1)
Then, ¢ o h is a K K)-quasiconformal map taking x to y. Therefore,
Sx is Lg-quasiconformally homogeneous where Ly = K K. O

+2

3. DIESTEL-LEADER GRAPHS

Diestel and Leader [3] constructed a family of graphs whose auto-
morphism groups act transitively on their vertices and conjectured that
these graphs are not quasi-isometric to the Cayley graph of any finitely
generated group. Eskin, Fisher and Whyte [4] recently established this
conjecture. In this section we give a brief description of the Diestel-
Leader graphs (see Diestel-Leader [3] or Woess [8] for more detailed
descriptions).

Given m,n > 2 consider two trees T, and T,, of valence m + 1 and
n—+1 respectively and such that every edge has length 1. Choose points
0, € O0soTy, and 0,, € 05T, in the corresponding Gromov boundaries
and vertices 0,, € T,, and 0,, € T,. Finally, consider R as a graph
with vertices of valence 2 at every integer k& € Z. Observe that the
Busemann function

B+ T — R
centered at 6, and normalized at 0,, is a simplicial map between both
graphs. Notice that for any two vertices v,w € T,,, there exists an
automorphism ¢ of 7}, such that ¢(v) = w and

B (@(x)) = B () = Om(w) = B (v)
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for all z € T,,. Clearly, the same is true for the corresponding Buse-
mann function

Gy T, — R

We orient the tree T), (resp. 7T),) in such a way that every positively
oriented edge points towards 6, (resp. 6,).

Let T, x T, be the product of the two trees T,,, and T,, in the category
of graphs. In other words, the set of vertices of T;,, x T}, is the product
of the set of vertices of T},, and T,, and and edge in T,, x T}, with vertices
(v,v") and (w,w’) is a pair (e, €’) where e is an edge in T,,, with vertices
v and w and €' is an edge in T,, with vertices v and w’. See [6] for a
more precise description of the product.

The automorphism groups of the two oriented trees 7,, and T,, act
transitively on the set of vertices and every pair (p,v) € Aut(T,,) X
Aut(T,,) of automorphisms induces an automorphism of 7, x T),. It
follows that Aut(7,,) x Aut(T,) acts transitively on the set of vertices
of T,, x T,.

Consider the simplicial map

[T xTy =R, (2,y) = Bn(z) — Bu(y)

The pre-image DL(m,n) = f~1(0) of 0 is a connected graph and it is
clear from the discussion above that the subgroup of Aut(T,,) x Aut(T,)
which preserves f~!(0) acts transitively on the vertices of DL(m,n).
The following result of Eskin, Fisher and Whyte [4] is the key fact
needed to prove our main Theorem:

Theorem 3.1 (Eskin, Fisher, Whyte). If m # n, then DL(m,n) is
not quasi-isometric to the Cayley-graph of any finitely generated group.

4. THE PROOF OF THE MAIN THEOREM

We are now ready to give the proof of our main Theorem. We first
observe that a quasiconformal deformation of a regular cover of a closed
orbifold is quasi-isometric to the Cayley graph of a finitely generated

group.

Lemma 4.1. Suppose that a surface ¥ is a quasiconformal deformation
of a surface S which normally covers a closed orbifold O, then X is
quasi-isometric to the Cayley graph of the (finitely generated) group of
deck transformations of the covering map S — O.

Proof. Since any K-quasiconformal map is a (K, K log 4)-quasi-isometry
(see Theorem 11.2in [7]), ¥ is quasi-isometric to S. Let G be the, neces-
sarily finitely generated, group of deck transformations of the covering



EXOTIC QUASICONFORMALLY HOMOGENEOUS SURFACES 7

S — O. Since G acts on S cocompactly and discretely, the Svarc-
Milnor lemma (see, for example, Proposition 8.19 in [2]) implies that
S is quasi-isometric to the Cayley graph of G. O

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. Let X = DL(2,3) be the (2,3)-Diestel-Leader
graph and let Sx be the Riemann surface associated to X in the pre-
vious section. Since Aut(X) acts transitively on the vertices of X, it
follows from Lemma 2.3 that Sx is uniformly quasiconformally homo-
geneous. Suppose for the sake of contradiction that Sx is a quasicon-
formal deformation of a Riemann surface S which is a regular cover
S — O of a compact orbifold @. By Lemma 4.1, the surface Sx
is quasi-isometric to the Cayley graph of a finitely generated group.
Since Sx is quasi-isometric to X, the same is true for X = DL(2,3).
This contradicts Eskin, Fisher and Whyte’s Theorem 3.1. U

5. SURFACES QUASI-ISOMETRIC TO CAYLEY GRAPHS NEED NOT BE
UNIFORMLY QUASICONFORMALLY HOMOGENEOUS

It is easy to check that every hyperbolic surface S is quasi-isometric
to a graph X with unit-length edges and bounded valence. Any qua-
siconformal automorphism of S induces a quasi-isometry of X (which
is only coarsely well-defined) and the quasi-isometry constants may be
uniformly bounded by the dilatation of the quasiconformal map. One
may then readily show that if S is uniformly quasiconformally homo-
geneous, then S is quasi-isometric to a graph X such that there exists
C, L > 0 such that the set of (L, C)-quasi-isometries of X acts transi-
tively on X.

One might hope this construction, which is a sort of quasi-inverse to
the construction in section 2, could be used to construct a characteri-
zation of uniformly quasiconformally homogeneous surfaces. However,
uniform quasiconformal homogeneity is not a quasi-isometry invariant.
For example, if we let X be the “ladder” graph made by joining equal
integer points on two copies of the real line, Sy is quasi-isometric to
the real line as is any finite area hyperbolic surface S homeomorphic
to a twice-punctured torus. The thickened ladder Sy is uniformly qua-
siconformally homogeneous, by Lemma 2.3, but S is not, as it has no
lower bound on its injectivity radius (see Theorem 1.1 in [1]).

One may further construct hyperbolic surfaces with bounded ge-
ometry (i.e. having upper and lower bounds on their injectivity ra-
dius) which are quasi-isometric to graphs with transitive automorphism
group which are not uniformly quasiconformally homogeneous.
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Example 5.1. A bounded geometry surface S" which is quasi-isometric
to the Cayley graph of the free group Fy on 2 generators, but is not
uniformly quasiconformally homogeneous.

Construction of Example 5.1: Let T be the infinite 4-valent tree and let
St be the uniformly quasiconformally homogeneous surface constructed
by Lemma 2.3. One may form a new surface S’ by removing a disk D
from S and replacing it by a surface F' which is homeomorphic to a
torus with a disk removed. We place a hyperbolic structure on S” such
that there is an isometry from Sy — U to S’ —V where U is a bounded
neighborhood of D and V' is a bounded neighborhood of F'. One may
further assume that the boundary 0F of F is totally geodesic in the
resulting hyperbolic structure. It follows that S’ is also quasi-isometric
to T, which is the Cayley graph of F5.

Every non-separating closed geodesic on S’ must intersect F. One
may then readily check, using the fact that a K-quasiconformal auto-
morphism is a (K, K log 4)-quasi-isometry, that given a non-separating
closed geodesic v in F' and any K > 1, there exists Rx such that if
g: S — S is K-quasiconformal then g(«) lies in the neighborhood of
radius R about F'. It immediately follows that S’ cannot be uniformly
quasiconformally homogeneous.
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