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Abstract

We construct nonlinear hyperbolic groups which are large, torsion-free, one-ended, and admit a
finite K (7, 1). Our examples are built from superrigid cocompact rank one lattices via amalgamated
free products and HNN extensions.

1 Introduction

In this note, we construct new examples of nonlinear hyperbolic groups. For us, a group is “nonlinear” if
it does not admit a faithful representation into GL,, (F') for F' any field. As with previous constructions,
our groups are built from superrigid cocompact lattices in rank 1 Lie groups. Previous examples were
quotients of such lattices, small cancellation theory was used to show that the quotients are hyperbolic,
and superrigidity results were used to see that they are nonlinear (see M. Kapovich [KO05, §8]). Our
construction involves simple HNN extensions and free products with amalgamation, and one can prove
that the resulting groups are hyperbolic using the Bestvina—Feighn Combination Theorem [BF]. Our
examples are large (i.e., have finite index subgroups that surject a free group of rank two), torsion-free,
one-ended, and admit a finite K (,1).

Theorem 1.1. For any n > 0, there exist large, torsion-free, one-ended, nonlinear hyperbolic groups
that admit a finite K(m,1), have first betti number n, and surject a free group of rank n.

We present two related constructions, both of which begin with a cocompact torsion-free lattice '
in Sp(m,1) (always with m > 2) or F[(fzo). As in M. Kapovich [K05], our proofs rely crucially on
Corlette’s [Cor] and Gromov-Schoen’s [GS] generalizations of the Margulis superrigidity theorem to
lattices in these groups. In what follows, let G be Sp(m, 1) or Fi_QO) and X be the associated rank one
symmetric space, i.e., quaternionic hyperbolic m-space or the Cayley hyperbolic plane.

In our first construction, we choose elements vy and ~» of I' associated with primitive closed geodesics
of different length in the locally symmetric space X/T". We consider the group A; obtained by taking
the HNN extension of I' such that the stable letter conjugates v; to 7o, i.e.,

Ay = (Tt [ tyat™" = y2).

We use superrigidity results to show that if A; is linear, then it admits a faithful representation p into
GL,,(R) and there is a totally geodesic embedding of X into the symmetric space Y, of GL,(R) which



is equivariant with respect to the restriction p|r of p to I'. Since the translation lengths of p(y1) and
p(y2) agree in Y, and f is totally geodesic, the translation lengths of 771 and v2 on X agree, which
gives a contradiction. It follows that A; is nonlinear. The Bestvina-Feighn combination theorem [BF]
implies that A is hyperbolic, and it is clear that A; has first betti number 1, has the same cohomological
dimension as I', admits a finite K (7, 1), and is torsion-free. (In order to easily guarantee that A; is large,
we will choose 71 and 72 to be elements of a normal, finite index subgroup of I' of index at least 3.) We
will see that it is easy to iterate this construction to produce examples with arbitrarily large first betti
number.

Our second construction involves amalgamated free products and produces examples with first betti
number zero. Let A = («, 8) be a malnormal, infinite index subgroup of T" freely generated by a and .
Let ¢ : A — A be an isomorphism such that the ratio of the translation lengths of o and g is different
than the ratio of the translation lengths of ¢(a) and ¢(3). We then construct

AOZF*¢F

from two copies of I" by identifying A in the first copy with A in the second copy via the isomorphism
¢. We argue, as before, that if Ag is linear, then there is a representation p of Ay into GL,,(R) such that
the restriction of p to each factor determines an equivariant totally geodesic embedding of X into Y;,.
It follows that the ratio of the translation lengths of o and 3 agrees with the ratios of the translation
lengths of ¢(a)) and ¢(f5), which we have disallowed. (In order to establish that Ag is large we will also
assume that A is contained in a normal subgroup of I' of finite index at least 3.)

We regard the main advantage of our new constructions to be their relative simplicity and flexibility.
For example, if one were given an explicit presentation of a superrigid lattice, one could easily write
down an explicit presentation of a group of the form Aj.

The first published examples of nonlinear hyperbolic groups are due to M. Kapovich [K05]. Gromov
[Gr] used small cancellation theory to show that suitable quotients of a lattice I' as above are infinite
hyperbolic groups (see also [Ch, D, Ol]), and then Kapovich used superrigidity results to show that any
linear representation of these quotients has finite image. In particular, these examples have Property
(T), since they are quotients of Property (T) groups. It follows that these groups are not large and
hence are not abstractly commensurable with our examples.

The paper is organized as follows. In §2, we give the details of our constructions and show that
our groups have the claimed group-theoretic properties. In §3 we recall the necessary consequences of

superrigidity for lattices in Sp(m,1), m > 2, or Fé(fzo). The proofs of nonlinearity are given in §4.
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2 The constructions

In this section, we give the details of the constructions described in the introduction and establish the
group-theoretic properties claimed there. Throughout this paper G will be either Sp(m, 1) for m > 2



or Fffzo), so G acts by isometries on a rank one symmetric space X, which is quaternionic hyperbolic
m-space or the Cayley hyperbolic plane, respectively. Then I' will always denote a torsion-free cocompact
lattice in G. In particular, I' is hyperbolic, admits a finite K (7, 1), H*(I',R) = 0, and the cohomological
dimension of T" is the dimension of X.

We first construct the examples with nontrivial first betti number. If n > 2, let {v1,...,72n} be
primitive elements of I' with distinct translation lengths. The associated geodesics in X/I" are distinct,
so no nontrivial power of v; is conjugate to a power of 7; for ¢ # j. We define

A, = <F7t17"-,tn | tzf)/ltl_l :71+n>

to be obtained by repeated HNN extensions.

In order to construct examples which are large and have betti number zero and one, we observe that
I" contains a free, quasiconvex, malnormal subgroup A of rank two so that A is contained in a finite
index, normal subgroup N of I" of index at least three. We first note that, since I" is residually finite, it
contains a finite index, normal subgroup N of index at least three. I. Kapovich [K99, Thm 6.7] showed
that every non-elementary hyperbolic group contains a malnormal quasiconvex subgroup which is free of
rank two. Let F' be a free malnormal quasiconvex subgroup of I' of rank two and let D be a subgroup of
F N N which is free of rank two. Since every finitely generated subgroup of a free group is quasiconvex
and F' is quasiconvex in I', we see that D is quasiconvex in I'. Kapovich’s proof actually first constructs
a free quasiconvex subgroup of rank two and then shows that this subgroup contains a free subgroup of
rank two which is malnormal in the entire group. Therefore, D, and hence N, contains a subgroup A
which is free of rank two and malnormal and quasiconvex in T.

Let 1 and 5 be generators of A with distinct translation length. Since A is malnormal in I, no
nontrivial power of 7, is conjugate to a power of 75. Let A; be the HNN extension of I' given by

Ay = (Tt [ iyt~ = y2).

(If we do not require A; to be large, it would suffice to choose 71 and 75 to be primitive elements with
distinct translation length as in the construction of A, when n > 2.)

We now construct the examples with trivial first betti number. Let o and 5 generate A and let
¢ : A — A be an isomorphism such that the ratio of the translation lengths of o and 3 is different than
the ratio of the translation lengths of ¢(«) and ¢(5). We define

AOZF*¢F

to be obtained from two copies of I' by identifying A in the first copy with A in the second copy via the
isomorphism ¢. (If we do not require that Ay is large, it would suffice to choose A to be the malnormal,
quasiconvex subgroup of I' guaranteed by Kapovich [K99].)

Proposition 2.1. For all n, a group A, constructed as above is hyperbolic, torsion-free, large, one-
ended, has a finite K(m,1), has first betti number n, and its cohomological dimension is the dimension
of X. Moreover, if n > 1, A,, admits a surjective homomorphism to the free group F, of rank n.

Proof. That A, is torsion-free, one-ended, has a finite K (, 1), has first betti number n, and has coho-
mological dimension equal to the dimension of X follows from standard facts about graphs of groups
(see, for example, Serre [Ser, Chap. 1] or Scott—Wall [SW]). If n > 1, then A, clearly surjects onto
the group freely generated by {t1,...,¢,}. The fact that each A,, is hyperbolic is a special case of the
Bestvina—Feighn combination theorem [BF], which is explicitly stated in I. Kapovich [K01, Ex. 1.3] as
follows:



Theorem 2.2.

1. If A and B are hyperbolic groups and C is a quasiconvex subgroup of both A and B that is malnormal
in either A or B, then A xc B is hyperbolic.

2. If A is a hyperbolic group and a1 and as are elements of A so that no nontrivial power of ai is
conjugate to a power of as, the HNN extension

(At | tart™ = ay)
is hyperbolic.

Part (1) immediately implies that Ag is hyperbolic, while part (2) gives that A,, is hyperbolic if n > 1.
Also, notice that normal form for words in the HNN extension A, _; (see [Ser, §1.5]) implies we still have
that that no power of =, is conjugate to a power of vo, in A,_1.

We remarked above that A, is large for n > 2, so it remains to prove that A; and Ag are also large.
Suppose that n = 1. There is a surjective homomorphism

pliAl—)H]_:F/N*Z

given by projecting I onto I'/N and taking ¢ to the generator of Z. Let J be a finite index subgroup of
H, which is isomorphic to a free group of rank at least two, which exists, since I'/N has order at least
three. Then py*(J) is a finite index subgroup of A; and p; restricts to a surjection of p;*(J) onto J, so
A is large.

We now consider Ag. There exists a surjective homomorphism
pvo—)HQ:F/N*F/N

given by projecting the first factor of Ay to the first factor of Hy and the second factor of Ay to the
second factor of Hy. Notice that this is well-defined since A has trivial image in both factors. As above,
Hy contains a finite index subgroup which is isomorphic to a free group of rank at least two, so Ag is
large. O

Remarks: 1) Kapovich [K99] further uses a malnormal quasiconvex free subgroup of a word hyperbolic
group G to construct a hyperbolic group G* which contains G as a non-quasiconvex subgroup. We note
that G* is a quotient of a group of the form As, obtained by identifying the two stable letters, so if G is
a superrigid rank one lattice then G* can be chosen to be nonlinear.

2) We expect that the techniques of Belegradek—Osin [BO], which also begin with quotients of
superrigid lattices and employ more powerful small cancellation theoretic results, also produce large,
one-ended, nonlinear hyperbolic groups (in particular, see [BO, Thm. 3.1]).

3) It is clear that one can construct infinitely many isomorphism classes of groups of the form A,
for each n, even if one begins with a fixed superrigid lattice I'. For example, if n > 1, it follows readily
from the JSJ theory for hyperbolic groups, see Sela [Sel], that the isomorphism type of a group of the
form A; is determined, up to finite ambiguity, by the conjugacy class of the pair {v1,72} in T



3 Superrigidity

In this section, we record a version of the superrigidity theorem of Corlette [Cor] and Gromov—Schoen
[GS] that is crafted for our purposes. In our statement Y;, will denote the symmetric space

Y, = Z0(n)\ GL,(R) = PO(n)\ PGL, (R)
associated with GL,,(R), where Z denotes the center of GL,,(R).

Theorem 3.1. Suppose that T' is a lattice in G, where G is either Sp(m,1) or FEL_QO), F is a field of
characteristic zero, and p : T — GL4(F) is a representation with infinite image.

1. There exists a faithful representation 7 : GL4(F) — GL,(R) for some n such that 7 o p(T') has
noncompact Zariski closure.

2. If F =R and p(I") has noncompact Zariski closure in GL4(R), then there exists a p-equivariant
totally geodesic map
fo: X =Yy,

where X = K\G is the symmetric space associated with G.

Proof. Since I' is finitely generated we may assume that F is isomorphic to a subfield of C. Moreover,
GL4(C) is asubgroup of GLag4(R). It follows that there exists an injective representation 7 : GLg(F') — GL,(R)
for some n, so we may assume that the original representation maps into GL,,(R).

Fisher and Hitchman [FH, Thm. 3.7] then observe that the existing results on superrigidity imply
that one can factor p as two representations

pi: I' = GL,,(R) C GL,(R)
such that:

1. When p; is nontrivial, there is a group G’ locally isomorphic to G, a continuous representation
p1: G' = GL,, (R), and an embedding ¢ : T' < G’ of T as a lattice in G’ such that p; = p; o ¢.

2. The image of po is bounded, i.e., has compact Zariski closure.

3. The groups p1(T") and p2(T) commute and p(y) = p1(7)p2(7) for all v € T.

If py is nontrivial, the continuous embedding p; : G — GL,, (R) determines a totally geodesic embedding
of X into Y,,, hence into Y,. Since p; and py commute, this is a p-equivariant map.

When p; is trivial, we follow arguments in the proof of [K05, Thm. 8.1]. Note that our use of
[FH, Thm. 3.7] allows us to know beforehand that the solvable radical considered in [K05] is trivial.
As in [KO05], the fact that I' has Property (T) allows us to conclude that we may conjugate p so that
p(I') € GL, (k) for some number field k. Given an element o € Aut(k/Q), we can choose an extension of
o to an element of Aut(C/Q), which we continue to denote by o. Applying o to matrix entries induces
an embedding 7, : GL,,(F) — GL,(C).

Following the adelic argument in [K05], if p(T") were bounded for every valuation of k then p(T") would
be finite, which is a contradiction. Moreover, p(I') must be bounded for every nonarchimedean valuation
by nonarchimedean superrigidity [GS]. Consequently, there exists o € Aut(k/Q) such that 7,(p(I")) has
noncompact Zariski closure in GL, (R) or GLs, (R), according to whether o(k) ®, R is R or C. Applying
the previous argument to 7, o p, there is a (7, o p)-equivariant totally geodesic embedding of X into Y,
or Ys,, accordingly. This completes the sketch of the proof. O



M. Kapovich [K05] also points out that superrigidity rules out faithful representations of I into linear
groups of fields of positive characteristic. Briefly, one shows that the image of p lies in GL,, (k) where
k is a finite extension of Fy(z1,...,2,). Then, applying Gromov-Schoen superrigidity [GS] to each
valuation of k associated with some z?ﬂ, one sees that p(T") is bounded in each field associated with such
a valuation on k, as all valuations on k are nonarchimedean. It follows that p(I') is bounded and hence
finite. Thus we have:

Proposition 3.2. IfT is a lattice in either Sp(m,1) or FE{2O) and F is a field of characteristic p > 0,

then there does not exist a faithful representation of T into GL,(F) for any n.

4 Proofs of nonlinearity

To complete the proof of Theorem 1.1 it remains to prove:
Theorem 4.1. Groups of the form A,, constructed in Section 2 are nonlinear.

Proof. We begin with a group of the form
A1 = <F,t ‘ t")/ltil = ")/2>

constructed in Section 2, where I' is a cocompact lattice in G and G is either Sp(m, 1) or Fi_%). Recall
that X is the symmetric space associated with G and that ~; and 7, are assumed to have different
translation lengths on X.

Suppose that F' is a field and n : Ay — GL4(F) is a faithful representation. Applying Proposition
3.2 to the restriction p = n|r of 5 to T, we conclude that F' has characteristic zero. Theorem 3.1 implies
that there exists a faithful representation 7, : GL4(F) — GL,(R), for some n and a (7, o p)-equivariant
totally geodesic embedding f of X into Y;,, where Y, is the symmetric space associated with GL,,(R).

Since 7,(p(71)) is conjugate to 75 (p(y2)) in 7,(n(A1)), and hence in GL,(R), they have the same
translation length on Y. However, since f is a (7, o p)-equivariant totally geodesic embedding, this
implies that 7, and 2 have the same translation length in X, which is a contradiction, hence A; is
nonlinear. Notice that if n > 2, then any group of the form A,, constructed in Section 2 contains a
subgroup of the form Ay, so A, is also nonlinear.

Now suppose we have a group of the form

Ao =(T1,T2 | a1 = p(a)2, B1=¢(B)2)

where each T'; is a copy of I'; A = («, ) is a subgroup of I" freely generated by o and 3, A; is the copy
of Ain I'; and if 6 € A, then §; is the copy of § in A;. Moreover, ¢ is an automorphism of A so that
the ratio of the translation lengths of a and § on X differs from the ratio of translation lengths of ¢(«a)
and ¢(8) on X.

Suppose that F' is a field and 7 : Ag — GL4(F) is a faithful representation. Let p; = n|r, and
p2 = nlr, We again apply Proposition 3.2 to conclude that F has characteristic zero, Theorem 3.1
implies that there exists a faithful representation 7, : GLq(F) — GL,(R), for some n and a (7, o p1)-
equivariant embedding f of X into Y,,, where Y,, is the symmetric space associated with GL,(R).
Since 75(p1(A1)) = 7o (p2(A2)) has noncompact Zariski closure, Theorem 3.1 implies that there exists
a (7, o p2)-equivariant embedding g of X into Y,. Notice that 7,(p1(a1)) = 7o(p2(¢(c)2)) and that
7o (p1(B1)) = 7o (p2(4(B)2))-



Since f and g are equivariant totally geodesic embeddings, there exist positive constants ¢; and cy
so that if v € T, then the ratio of the translation length of 7,(p;(7;)) on Y, and the translation length
of v on X is ¢;. Indeed, the metrics on f(X) and g(X) differ by a scalar multiple. It follows that the
ratio of the translation lengths of « and § on X agrees with the ratio of the translation lengths of ¢(a)

and ¢(8) on X. However, this contradicts our assumptions, so Ay is nonlinear. O
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