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An improved bound for Sullivan’s convex hull theorem

M. Bridgeman, R. Canary and A. Yarmola

ABSTRACT

Sullivan showed that there exists Ko such that if Q@  Cis a simply connected hyperbolic domain,
then there exists a conformally natural Ko-quasiconformal map from € to the boundary Dome(2)
of the convex hull of its complement which extends to the identity on 9S). Explicit upper and
lower bounds on Ky were obtained by Epstein, Marden, Markovic and Bishop. We improve on
these bounds, by showing that one may choose Ko < 7.1695.

1. Introduction

In this paper we consider the relationship between the Poincaré metric on a hyperbolic simply
connected domain  in C = @H? and the geometry of the boundary Dome(£2) of the convex core
of its complement in H3. Sullivan [15] (see also Epstein-Marden [10]) showed that there exists
Ky > 0 such if Q is simply connected, then there is a conformally natural Ky-quasiconformal
map f: Q — Dome(Q2) which extends to the identity on J€. Epstein, Marden and Markovic
provided upper and lower bounds for the value of Kj.

THEOREM 1.1. (Epstein-Marden-Markovic [11, 12]) There exists Ko < 13.88 such that
if QcC is a simply connected hyperbolic domain, then there is a conformally natural
Ky-quasiconformal map f:€Q — Dome() which extends continuously to the identity on
o0 cC. Moreover, one may not choose Ky < 2.1.

We recall that f is said to be conformally natural if whenever A is a conformal automorphism
of C which preserves ), then Ao f = f o Q where A is the extension of A to an isometry of
H3. If one does not require that the quasiconformal map f : € — Dome(Q2) be conformally
natural, Bishop [3] obtained a better uniform bound on the quasiconformality constant.
Epstein and Markovic [13] showed that even in this setting one cannot uniformly bound the
quasiconformality constant above by 2.

THEOREM 1.2.  (Bishop [3]) There exists K, < 7.88 such that ifQ C C is a simply connected
hyperbolic domain, then there is a Kj-quasiconformal map f : € — Dome({2) which extends
continuously to the identity on 02 C C.

In this paper, we obtain a bound in the conformally natural setting, which improves on both
of these bounds.
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THEOREM 1.3. There exists Ko < 7.1695 such that if @ c C is a simply connected hyper-
bolic domain, then there is a conformally natural Ko-quasiconformal map f : {2 — Dome()
which extends continuously to the identity on 92 C C.

Outline of argument: One may realize Dome({2) as the image of a pleated plane P, : H* — H3
whose bending is encoded by a measured lamination p. Given L > 0, we define the L-roundness
|| ]| L of it to be the least upper bound on the total bending of P, («) where « is an open geodesic
segment in H? of length L. (This generalizes the notion of roundness introduced by Epstein-
Marden-Markovic [11].) Our first bound improves on an earlier bounds of Bridgeman [4, 5] on
roundness.

Theorem 3.1. If L € (0,2sinh™'(1)), p is a measured lamination on H? and P, is an

embedding, then
L
llpllr < 2cos™t ( sinh <2>) .

We then generalize work of Epstein-Marden-Markovic [11, Theorem 4.2, part 2] and an
unpublished result of Epstein and Jerrard [9] which give criteria for P, to be an embedding.

Theorem 4.1. There exists an increasing function G : (0,00) — (0, 7) with G(1) = 0.948, such
that if y is a measured lamination on H? such that

lpllL < G(L),

then P, is a bilipschitz embedding which extends continuously to a map ]5# ‘H2US! 5> H3UC
so that P,(S") is a quasi-circle.

With these bounds in place, we may adapt the techniques of Epstein, Marden and Markovic
[11, 12] to complete the proof of our main result.

2. Pleated planes and L-roundness

In this section, we recall the definition of the pleated plane associated to a measured
lamination, and introduce the notion of L-roundness.

Let G(H?) be the set of unoriented geodesics on the hyperbolic plane H?. One may identify
G(H?) with (S* x St — A)/Zy. A geodesic lamination on H? is a closed subset A C G(H?) which
does not contain any intersecting geodesics. A measured lamination p on H? is a non-negative
measure u on G(H?) supported on a geodesic lamination A = supp(u). A geodesic arc o in H?
is said to be transverse to pu, if it is transverse to every geodesic in the support of . If « is
transverse to u, we define

i(n, @) = p({y € GE?) [yNa#0}).

If «v is not transverse to p, then it is contained in a geodesic in supp(u) and we let i(u, ) = 0.

Given a measured lamination p on H?, we may define a pleated plane P, : H? — H?, well-
defined up to post-composition by an isometry of H?. P, is an isometry on the components
of H? — supp(u), which are called flats. If y is a finite-leaved lamination, then P, is simply
obtained by bending, consistently rightward, by the angle u(l) along each leaf I of y. Since any
measured lamination is a limit of finite-leaved laminations, one may define P, in general by
taking limits (see [10, Theorem 3.11.9]).

If Q ¢ C is a simply connected hyperbolic domain, let Dome(2) denote the boundary of the
convex hull of its complement C — €. Thurston [16] showed that there exists a lamination y on
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H? such that Dome(Q) = P,(H?) and P, : H> — Dome(2) is an isometry. (See Epstein-Marden
[10, Chapter 1], especially sections 1.11 and 1.12, for a detailed exposition.)

LEMMA 2.1. IfQ is a hyperbolic domain, there is a lamination y on H? such that P, is a
locally isometric covering map with image Dome(().

For any point p € Dome(2), a support plane at p is a totally geodesic plane through p which
is disjoint from the interior of the convex hull of C — Q. The exterior angle, denoted Z(P, @),
between two intersecting support planes P and @ is the angle between their normal vectors at
a point of intersection.

Let o : [a,b] — H? be a unit-speed closed geodesic arc. If a(t) lies on a leaf I of p with p(l) > 0,
then there is a maximal family {Q}gc(o,.(1) of support planes to Dome(Q2) through P, (c(t)),
all of which contain P, (1). In all other cases, Dome(f2) has a unique support plane at P,(«a(t)).
One may concatenate all the support planes to points in P, («([a,b])) to obtain a continuous
family { P; };¢[0,) of support planes along a, so that P is the leftmost support plane to Dome(£2)
at P,(o(a)) and Py is the rightmost support plane to Dome(2) at P,(c(b)). Moreover, there
exists a continuous non-decreasing function g : [0, k] — [a,b] so that P; is a support plane to
Dome(Q2) at P, (a(q(t))) forall t. If 0 =ty < t; < --- < t, = k and P; intersects both P, , and
Pti for all t € [ti—hti]a then

7;(/1" a) < Z A(Pti—l7pti)'
i=1
See Section 4 of [6], especially Lemma 4.1, for a more careful discussion.

For a measured lamination p on H?, Epstein, Marden and Markovic [11] defined the

roundness of p to be

[lpll = supi(p, @)

where the supremum is taken over all open unit length geodesic arcs in HZ2. The roundness
bounds the total bending of P, on any segment of length 1 and is closely related to average
bending, which was introduced earlier by the first author in [4]. In this paper, it will be useful
to consider the L-roundness of a measured lamination for any L > 0

|pl|r = supi(e, )

where now the supremum is taken over all open geodesic arcs of length L in H?. We note that
the supremum over open geodesic arcs of length L, is the same as that over half open geodesic
arcs of length L.

In [5], the first author obtained an upper bound on the L-roundness of an embedded pleated
plane.

THEOREM 2.2. (Bridgeman [5]) There exists a strictly increasing homeomorphism
F :[0,2sinh™'(1)] — [r,27] such that if y is a measured lamination on H? and P, is an
embedding, then

lpllz < F(L)
for all L < 2sinh™*(1). In particular,

1
osh(1)

||| < F(1) =27 — 2sin~" (C ) ~ 4.8731.
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Epstein, Marden and Markovic [11] provided a criterion guaranteeing that a pleated plane
is a bilipschitz embedding.

THEOREM 2.3. (Epstein-Marden-Markovic [11, Theorem 4.2, part 2]) If y is a measured
lamination on H? such that ||u|| < c2 = 73, then P, is a bilipschitz embedding which extends
to an embedding P, : H* US' — H? U C such that P,(S') is a quasi-circle.

In [12], Epstein, Marden and Markovic comment “Unpublished work by David Epstein and
Dick Jerrard should prove that ¢y > .948, though detailed proofs have not yet been written”.
The authors contacted David Epstein who kindly provided their notes outlining the proof. In
section 4 we prove a generalization of their result using the approach outlined in their notes.

3. An upper bound on L-roundness for embedded pleated planes

In this section, we adapt the techniques of [5] to obtain an improved bound on the
L-roundness of an embedded pleated plane.

THEOREM 3.1. If L € (0,2sinh™'(1)), u is a measured lamination on H? and P, is an

embedding, then
L
llullL < ci(L) =2cos™! (— sinh (2>> .

Proof. Since F(2sinh™*(1)) =27, Theorem 3.1 follows from Theorem 2.2 when
L = 2sinh™*(1). Therefore, we may assume that L < 2sinh™*(1).

Let a:[0,L] — H? be a geodesic arc of length L < 2sinh™*(1). Let {P, | t € [0,k]} be
the continuous one-parameter family of support planes to « and let ¢ : [0, k] — [0, L] be the
continuous non-decreasing map such that P; is a support plane to Dome(§2) at a(q(t)) for all
t.

We now recall the proof of Lemma 4.3 in [6]. If Py intersects P; for all ¢ € [0,k), then
i(a, p) < wand we are done. If not, there exists a € (0, k) such that P, has an ideal intersection
point with Py and P, intersects Py for all ¢ € (0,a). If there exists ¢ € (a, k| so that P, is
disjoint from P,, then Lemma 3.2 in [6] implies that «([0, ¢(t)]) has length at least 2sinh (1),
which would be a contradiction. Therefore, if ¢ € (a, k], then P, intersects P;. One of the
key arguments in the proof of [6, Lemma 4.3] gives that Py must be disjoint from Py (since
otherwise one could extend «([0,1]) to a closed curve by appending arcs in Py U Py and then
project onto Dome(£2) to find a homotopically non-trivial curve on Dome(f2).)

Let ¢ be the interior angle of intersection between P, and Pj. The interior angle of
intersection between P; and Py varies continuously from 7 to 0 as ¢ varies between 0 and a and
achieves the value 0 only at a. There exists ¢ € (0, a) such that P, has an ideal intersection with
Py, and P; intersects Py, for all ¢ € (¢, a) (since otherwise we could again argue that i(u, o) < ).
The interior angle of intersection of P, with Py varies from 0 to ¢ as t varies from ¢ to a. Thus,
there exists some b € (¢, a) such that P, intersects Py and Py in the same interior angle 6 > 0.
Therefore, by [6, Lemma 4.1], we have

i(p, o) < 2w — 26.

Consider the plane R perpendicular to Py, P, and Pj. Consider the three geodesics g5 =
P; N R, where s =0, b or k. Notice that g, intersects both gy and gy with interior angle 6.
Let @ be the orthogonal projection of o to R. Then @ is a curve in R with &(g(s)) € g5 for
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s =0,b,k. Let B be the shortest curve joining a point of gy to a point on g; which intersects
gk. One may easily check that 8 consists of two geodesic arcs 5y and 5y such that 5 intersects
go perpendicularly, 81 intersects g perpendicularly and Sy and  make the same angle with
gp at their common point of intersection.

FI1GURE 1. The triangle T' and its decomposition

Since gp and g do not intersect, 3 is shortest when the geodesics gy and g have a common
ideal point. In this case, the geodesics gg, g» and gr form an isosceles triangle T with an ideal
vertex (see Figure 1). One may apply hyperbolic trigonometry formulae [2, Theorem 7.9.1] and
[2, Theorem 7.11.2] to check that in this case

cos(f) = sinh(¢(8)/2).
So, in general
((B) > 2sinh™*(cos()).
Since, by construction, ¢(5) < {(a) = L, we see that
L > 2sinh™*(cos(0))

which implies that
6 > cos™*(sinh(L/2)).
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Therefore,
i(p, @) < 21 — 2cos™*(sinh(L/2)) = 2cos™!(—sinh(L/2))

for any closed geodesic arc « of length L. Therefore, the same bound holds for all open geodesic
arcs of length L and the result follows. |

4. A new criterion for embeddednes of pleated planes

In this section, we provide a new criterion which guarantees the embeddedness of a pleated
plane which generalizes earlier work of Epstein-Marden-Markovic [11] (see Theorem 2.3) and
an unpublished result of Epstein-Jerrard [9]

THEOREM 4.1. There exists an increasing function G : (0,00) — (0, 7), such that if u is a
measured lamination on H? and

lplle < G(L),

then Py, is a bilipschitz embedding which extends continuously to a map Pu H2US* 5 H3UC
such that P,(S') is a quasi-circle.

Since G(1) =~ 0.948, we recover the result claimed by Epstein and Jerrard as a special case.

COROLLARY 4.2. (Epstein-Jerrard [9]) If u is a measured lamination on H? such that
ul| < 948

then P, is a bilipschitz embedding which extends continuously to a map ]3” H2US' > H3UC
such that the image of S' is a quasi-circle.

We begin by finding an embedding criterion for piecewise geodesics. This portion of the
proof follows Epstein and Jerrard’s outline quite closely. Such a criterion is easily translated
into a criterion for the embeddedness of pleated planes associated to finite-leaved laminations.
We then further show that, in the finite-leaved lamination case, the pleated planes are in
fact quasi-isometric embeddings with uniform bounds on the quasi-isometry constants. The
general case is handled by approximating a general pleated plane by pleated planes associated
to finite-leaved laminations.

REMARK 1. Asin [11, Theorem 4.2] we can consider a horocycle C' in H? and a sequence
of points on C' with hyperbolic distance between consecutive points being L. Connecting
consecutive points, one obtains an embedded piecewise geodesic v in H3. Let PM(H2) be the
pleated plane in H? obtained by extending each flat in « to a flat in H>. One may check that

L
||p]]z = 2sin™* (tanh <2>)

which is the conjectured optimal bound. Since 2sin~!(tanh(1/2)) ~ .96076, Theorem 4.1 is
nearly optimal when L = 1. Comparing the bounds for all L € [0, 2sinh™!(1)], we see they are
also close to optimal (see Figure 2).
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FIGURE 2. G(L) and the conjectured optimal bound 2sin™*(tanh(L/2)) on [0, 2sinh™*(1)]

4.1. Piecewise geodesics

Let J be an interval in R containing 0. A continuous map 7 :J — H3 will be called a
“piecewise geodesic” if there exists a discrete subset {¢;} in J, parameterized by an interval in
Z, such that, for all i, t; < t;41 and vy((t;,t;11)) is a geodesic arc. (If there is a first bending
point ¢, we let ¢,._1 = inf J and if there is a last bending point ts, we define t;11 = sup J.) We
will call ¢; (or v(¢;)) the bending points of 7. The bending angle ¢; at t; is the angle between

Y([ti—1,t:]) and y([t;, ti41)). Let
s(t) = dms (7(0),7(1)).

If L >0, by analogy with the definition of L-roundness, we may define ||7y||L to be the
supremum of the total bending angle in any open subsegment of v of length L.
If ¢t #1t; for any 7, then let 0(¢) be the angle between the ray from (0) to v(¢) and the

tangent vector +/(¢t). For i = 1,...,n, we define
Yi(ti) = lim 7/(¢t) and ~L(t;) = lim +/(2).
t—t t—t;

We then choose 0% (t;) to be the angle between the ray from 7(0) to v(¢) and the vector v/, (t).
(Equivalently, we could have defined 8% (¢;) to be the angle between the ray from ~(0) to (t)
and the geodesic segment v([t;,¢;+1)).) Notice that 8(t) decreases smoothly on (¢;,¢;41) for all
7 and that

07 (t:) — 07 (t:)] < ¢ (4.1)
for all 4.
If t # t; for any 4, then Lemma 4.4 in Epstein-Marden-Markovic [11] gives that
sin(6(t))

s'(t) = cos(0(t)) and 6'(t) = < —sin(8(t)). (4.2)

~ tanh(s(t))
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4.2. The hill function of Epstein and Jerrard
A key tool in Epstein and Jerrard’s work is the following hill function
h:R — (0,7) given by h(x) = cos™!(tanh(z)).
The defining features of the hill function are that
K (z) = —sech(z) = —sin(h(z)) and h(0) = g

In particular, h is a decreasing homeomorphism.
For fixed L > 0, we consider solutions to the equation
/ h(z) — h(z - L)
R (z) = 7 .
Geometrically, we are finding the point on the graph of h such that the tangent line at (z, h(z))
intersects the graph at the point (z — L, h(x — L)) (see Figure 3). We will show that there is
a unique solution z = ¢(L) and that ¢(L) € (0, L).

Given z € R, the tangent line at (z,h(z)) to the graph of h intersects the graph in two
points (z, h(z)) and (f(x), h(f(z)) (except at & = 0 where the points are equal). The function
f is continuously differentiable and odd. We define A(z) = = — f(x), so A is also continuously
differentiable and odd. Since A is odd, to show that A is strictly increasing, it suffices to
show that it is strictly increasing on [0,00). Suppose that 0 < x; < x2, and that 77 and Th
are the tangent lines to h at 1 and z5. Since h is convex on [0,00), T3 NTe = (zg,yo) lies
below the graph of h and z; < xg < x2. Thus T intersects the graph of h to the left of the
point of intersection of T} with the graph of h. Therefore, f(z2) < f(z1) < f(0) =0 and f is
decreasing. It follows that A(x) = x — f(x) is increasing and that A(z) > x for all x € (0, 00).
The function c is the inverse of A, so c is also continuous differentiable and strictly increasing.
Since A(z) > x for x > 0, ¢(L) € (0, L).

Let

O(L) = h(c(L)) and G(L) = h(c(L) — L) — h(c(L)) = —Lh/ (c(L)).

To show G is monotonic, we define B(x) = h(f(x)) — h(x), the difference of the heights of
the intersection points of the tangent line at (z,h(z)) with the graph of h. As h and f are
both strictly decreasing continuous functions, B is strictly increasing and continuous. Since
G(L) = B(c(L)), G is a strictly increasing continuous function.

We note that

— =

O(L)+ G(L) = h(c(L) — L) < .

The following lemma is the key estimate in the proof of Theorem 4.1.

LEMMA 4.3. Ifv:[0,00) — H? is piecewise geodesic, L > 0 and
Ivllz < G(L),
then
0T (t)<OL)+G(L) <
for all t > 0.

Proof. 'We define maps P : (0, 00) — R? which are continuous except at the bending points
{t;} and whose image lies on the graph of h. Since h is a homeomorphism onto [0, 7], given
t € (0,00), we can find a unique g*(¢) € R, such that

h(g*=(t)) = 0%(1).
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We then define

PE(t) = (P{(), Py (1) = (g% (1), h(g™ (1)) = (g7 (1), 0% (t)).
Note that the functions P+ and P~ agree except at the bending points. In the intervals, we
denote the common functions by P(t), g(t), and 6(t).
Notice that as one moves along the geodesic ray 7, the functions % (t) decrease on each
interval (Z;,t;11) and have vertical jump equal to v; = 07 (¢;) — 6~ (t;) at each ¢;. By equation
4.1 we have

Wil =107 (t:) — 07 (t:)| < -
Correspondingly, the point P*(t) move along the graph of h by sliding rightward (and
downward) along (¢;,t;+1) and jumping vertically, either upwards or downwards, by v; at
t;, see Figure 3.

We argue by contradiction. Let ¢ = ¢(L), G = G(L), and © = O(L). Suppose there exists
T > 0 so that 7 (T) > © + G. Let
so =sup{s € (0,T] | 6~ (s) < ©}.

Notice that if so = T, then, since |07 (sg) — 0~ (s0)| < G,

O (T) <0 (T)+G<O+G

which would be a contradiction.

Also notice that sg = t; for some i, since otherwise §~ is continuous and non-increasing at
s0, which would contradict the choice of sq.

If T'— sg < L, then since 6 can only increase at the bending points and the total bending in
the region [sg, T is at most G, again

0T (T) <0 (s0) +G<O+G
which is a contradiction.

So, we may assume that T — sy > L. We will use the assumption that 67 (¢) > © on
(80,80 + L] to arrive at a contradiction and complete the proof of the lemma.

We show that under our hypotheses, P(T) cannot lie to the left of (¢(L) — L, h(¢(L) — L)).
The key observation in the proof is that

W (g(t)g'(t) = 0'(t) < —sin(0(t)) = —sin(h(g(t))) = h'(9(t))
where the middle inequality follows from equation (4.2). Since h'(g(t)) < 0, we conclude that
g'(t) > 1 for all t € (¢;,t;11). Therefore,
9(tiv1) = g(ti) = g (tix1) — g7 (t) > tisa — i (4.3)
for all 4.

Let {so =tj,tj+1,...,tj4+m} be the bending points in the interval [sg, so + L). For conve-
nience, we redefine ¢; 4,41 = so + L. Since ||y||r < G, the total vertical jump in the region
[s0, 80 + L) is at most G, i.e.

j+m
> 106 0 ()] < G,
i=J

Since #T is non-increasing on each interval (¢;,%;11) and 6~ (sg) < O, it follows that

0r(t)<O+G
for all ¢ € [sq, so + L).
Let
d = min{g™ (1) | £ € [s0, 50 + L)}.
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FI1GURE 3. Jumps and slides on the graph of h

Notice that as g is non-decreasing on (t;,%;1) for all 4, there exists a largest k € {j,...,7 +
m} so that g7 (tx) = d. We further note that d € [c — L, | since 67 (t) € [0,0 + G] for all
t € [s0, 80 + L). We break the proof into two cases.

CaseI: d € [—c,c]: If d € [—c, ] then g™ ([s0, so + L]) C [—c, c]. Since 0~ (t) > © on (sg, so + L],
we have ¢~ ((so, so + L]) C [—¢, ¢]. Notice that, since h'(x) = —sin(h(x)) and h is decreasing,
if x € [—c¢, ], then

G

() < h(c)=——.

Wia) < Hie) =~
Therefore, applying (4.3), we see that

_ _ G, _ G
67 (tip1) =07 (1) < W) (g™ (tigr) = g7 (1) = = (97 (tir1) — g7 (1)) < —F(tipa — 1)
for all i = j,...,5 +m. Thus,
Jj+m Jjtm

0~ (so+ L) — 0 (so) = Z 0t (t) — 0~ () | + Z 0~ (tip1) — 07 (t;)

Jj+m j+m G
< | D10t -0 ()l ] - (Z 7 (tirs = tz))
i=j i=1
Jj+m
<G- 7 D (tigr—t:) =0

i=1
This implies that 6~ (so + L) < O, which contradicts the choice of sp.
Case II: de [c—L,,—c): If d € [c— L, —c), then

W' (g(t)| = |1 (d))|
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for all ¢ € [sg, so + L]. So,

(07 (t:) = 07 (tiv1)) = W (g™ (tix1) — g" (t)) = [ (d)|(tirr — t:) (4.4)
for all i = j,...,5 + m. It follows that
k—1
Z (0F(t:) = 07 (tir1)) = W (d)|(t — s0)-

Thus, since 07 (t5) = h(d) and 6~ (¢t;) < O,
k
S (0% (t) — 07 (1) > (h(d) — ©) + |1 (d)|(ts — s0)

i=j
and so, since the total jump on the interval [sg, so + L) is at most G,

j+m
D 0t (k) =07 (t:) < G — (h(d) — ©) — [W(d)|(tx — s0) = h(c — L) = h(d) — |W(d)|(tx — s0).
i=k+1

Since gt (t) = d,
Jj+m Jj+m
g (so+L)=d+ (Z g (tit1) — 9+(ti)> - ( > g (t) - 9+(ti)> :
i=k i

Applying inequalities (4.3) and (4.4), we see that

j+m j+m
g (so+L)>d+ <Z tit1 — ti) - |h’1d)| <Z 0% (t:) — 9(%‘))

i=k

>d+ (so+ L —ty) — m (h(c— L) — h(d) — |W'(d)|(t — o))

Caer (h(c—L)—h(d))_

|h'(d)|

Taking the tangent line at d we note that, since A’ is negative and decreasing on the interval
[¢c — L,d], we have

h(c — L) < h(d) + K (d)(c — L — d)

which implies that

1
—L)— >c—L—d.
g e = 1)~ h(@) = e~ L—d
Therefore,
1
g (so+L)>d+ L+ m(h(c— L) —h(d)) > ¢,
so, 0~ (sg + L) < © contradicting the definition of sg. This final contradiction completes the
proof. |

As a nearly immediate corollary, we obtain an embeddedness criterion for piecewise geodesics.

COROLLARY 4.4. If v :[0,00) — H3 is a piecewise geodesic, and ||v||p < G(L) for some
L > 0, then ~ is an embedding.
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Proof. Notice that if the corollary fails, then there exists a piecewise geodesic ray
7 :[0,00) — H? such that ||y||r < G(L) and v(0) = ~(b) for some b > 0. (Since if v(p) = v(q)
for some 0 < p < ¢, we can instead consider the piecewise geodesic ray v, : [0,00) — H? where
71(t) = v(t — p).) There must exist ¢; € (0,b) so that v is geodesic on [t;,b]. Then, 61 (¢) =7
on (t;,b), contradicting Lemma 4.3 above. O

If p1 is a finite-leaved measured lamination on H? and « : [0, 00) is any geodesic ray in H?,
then v = P, o a is a piecewise geodesic and ||||;, < ||u||- Since any two points in H? can be
joined by a geodesic ray, we immediately obtain an embeddedness criterion for pleated planes.

COROLLARY 4.5. If p is a finite-leaved measured lamination on H? and ||u||, < G(L) for
some L > 0, then P, : H> — H? is an embedding.

4.3. Uniformly bilipschitz embeddings

We next prove that if v:R — H? is a piecewise geodesic and ||v||r < G(L), then ~ is
uniformly bilipschitz. We note that since - is 1-Lipschitz, we only have to prove a lower bound.
This will immediately imply that if u is a finite-leaved lamination on H? and ||ur|| < G(L),
then P, is a K-bilipschitz embedding.

PROPOSITION 4.6. If~:R — H? is a piecewise geodesic such that

IWlle < G(L),
then v is K-bilipschitz where K depends only on L and ||7||L-

Proof. We first set our notation. We may assume, without loss of generality, that 0 is not
a bending point of . Let ¢y = 0 and assume that the bending points in (0, 00) are indexed by
an interval of positive integers beginning with 1 and the ending points in (—oco,0) are indexed
by an interval of negative integers ending with —1. Let ¢; be the bending angle of v at ¢;.
The following lemma will allow us to reduce to the planar setting.

LEMMA 4.7. There exists an embedded piecewise geodesic o :R — H? with the same
bending points as y such that
(i) if the bending angle of o at a bending point t; is given by ¢}, then ¢} < ¢;,
(i) d(a(0), a(t)) = d(~(0),~(¢)) for all t, and
(iii) there exists a non-decreasing function ¥ : R — (—m,m) such that if t > 0, then U(t) is
the angle between «([0,t1]) and the geodesic joining a(0) to «(t), while if t < 0, then
W(t) is the angle between a([—t1,0]) and the geodesic joining a.(0) to «a(t).

Proof. Let f; be the geodesic arc from +(0) to v(¢;) and let T; be the hyperbolic triangle
with vertices (0), v(¢;), and v(t;+1) and edges fi, v([t:, ti+1]) and fi11. We construct o by
first placing an isometric copy of Ty in H2, so that f; is counterclockwise from f;. We then
iteratively place a copy of T; adjacent to a copy of T;_i(so that their interiors are disjoint)
along the image of f; for all positive ¢;. We then place a copy of T_; in H? so that T_; and Ty
intersect along the image of 7(0), so that the images of f; and f_; lie in a geodesic and the
image of f_q is clockwise from f_;. We then iteratively place a copy of T_;_1 next to the copy
of T_; for all negative t_; (see Figure 4).
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FIGURE 4. The curve «

Let o : R — H? be the piecewise geodesic traced out by the images of pieces of 7. Then « has
the same bending points as 7 by construction. Moreover, since d(«(0), «(t)) is realized in the
isometric copy of T, when t € [t,,, tn+1], it is also immediate that d(a/(0), a(t)) = d(v(0),v(t))
for all ¢.

We next check that the bending angle ¢} of « at ¢; is at most ¢;. We consider the vectors
v, =~ (t;) and v} =~/ (t;) at y(t;). Then the exterior angle ¢; is the distance between v;”
and v;r in the unit tangent sphere at v(¢;). The edge f,, defines an axis in the unit sphere. The
possibilities for gluing T,, to T,,_1 are given by the one-parameter family of triangles obtained
by rotating T; about f;. It is then easy to see that the distance is shortest when T lies in the
same plane as T;_1 and has disjoint interior Therefore, ¢!, < ¢,,. Since

llall < vz < G(L),

Corollary 4.4 implies that « is an embedding.

We can now define a continuous non-decreasing function ¥ : R — R so that ¥(0) = 0 and,
if t > 0, then U(¢) is the angle, modulo 27, between «([0,¢1]) and the geodesic joining a(0) to
a(t), while if ¢ < 0, then ¥(¢) is the angle between a([—t1,0]) and the geodesic joining «(0) to
a(t).

We next show that U(t) <« for all ¢ > 0. If not, then v intersects the line gg containing
a([0,t1]). Suppose that a(b) € go for some b > 0. Then, consider the piecewise geodesic &
which first traces «([0, b]) backwards and then continues along go forever. Notice that & is not
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an embedding. However,
lallz < flell < G(L),

so Corollary 4.4 implies that & is an embedding, which is a contradiction. Similarly, U(¢) > —=
for all ¢ < 0. This completes the proof of (3). O

We notice that it suffices to show that there exists K depending only on L and ||v||, so
that

s(t) = d(7(0),7(t)) = d((0), a(t)) = Kt]

for all t € R. Since, if we suppose that v : R — H? is any piecewise geodesic with ||v||r. < G(L)
and r; < rg, then we can consider the new piecewise geodesic 7,, : R — H3 given by ~,, (t) =

Y(t =r1). Then ||y, ||z = []7||L and
s, (1) = d(yr, (1), 7, (0)) = Kt
It follows that
d((r1),7(r2)) = sy, (r2 = r1) = Klra — 1]
Since 7 is 1-Lipschitz by definition, it follows immediately that v is a K-bilipschitz embedding.
Since ¥ is monotone and bounded we may define

VU, = tlggo U(t) and V_, = tEI}lm‘P(t).

We now show that « is proper. The basic idea is that, since ¥ is monotonic, then ([0, o0))
can only accumulate on the geodesic ray 7} emanating from «(0) and making angle ¥ with
([0, t1]). If it accumulate at ¢, then there must be infinitely many segments of o running nearly
parallel to 7y and accumulating at some point ¢ on 7. However, by Lemma 4.3, no segment of
« can be pointing nearly straight back to «(0), so the total length of these segments which are
“pointing towards” «(0) is finite. This will allow us to arrive at a contradiction.

If o is not proper, then either ajp o) Or @|(—s,0] is not proper. We may assume ray ol o)
is not proper. We recall that if ¢ is not a bending point, then 6(¢) is the angle between o/ (t)
and the geodesic segment joining a(0) to «(t). Lemma 4.3 implies that

0(t) < Oy =O(L) + G(L) <

for all £. Since (g ) is not proper, there is an accumulation point g of alj o) on the ray 'y
emanating from «(0) which makes an angle ® ., with a([0,%]).

We may work in the disk model and assume that «(0) = 0 and «([0,#1]) lies in the positive
real axis. If € >0 is small enough, we can consider the region given in hyperbolic polar
coordinates (7, 6) by

Be = [r(q) —e,r(q) + €] x [8(q) — €,6(q)] C D*.

On B, we consider the taxicab metric, given by dr((r1,61), (re,62)) = |r1 — 2| + |61 — 2]. We
notice that that dr on B, is bilipschitz to the hyperbolic metric. If J = a~!(B,), then J is a
countable collection of disjoint arcs. Notice that a(J) = «([0,00)) N B..

Since ¥ is monotonic, the # coordinate of « is monotonic, so the total length of a(J) in the
6 direction is bounded above by e. Also the signed length of a(.J) in the 7 direction is bounded
above by 2e. Since 0(t) < ©p, at all non-bending points, the total length in the negative r-
direction is bounded above by e tan(©g). Therefore, the total length in the positive r-direction
is bounded above by € + etan(©g). It follows that «(J) has finite length in the taxicab metric
on B.. We choose t € J, so that a(J N [t,00)) has length, in the taxicab metric, less than /4

and dp, (a(t),q) < €/4. Therefore, a(J N [t,00)) C Be/2(q) and B./2(q)) C Be (where B /2(q)
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is the neighborhood of radius €/2 of ¢ in the taxicab metric on B.). It follows that [¢,00) C J,
which contradicts the fact that «([t,00)) has infinite length. Therefore, o must be proper.

Since « is proper and ¥ is monotone, a has two unique limit points ¢~ and ¢+ in S! which are
endpoints of the geodesic rays from «(0) which make angles ¥_., and U, with a([t_1,%1]).
Thus, since « is embedded,

\IIJ’_OO — \If_;,_oo S .
Let
G(L) — llullc
2

B =

We further observe that
V,w—-VY_ <7—B

If not, we construct a new piecewise geodesic c; : R — H? which has a bend of angle
w at 0. One then checks that

llaallz < flellz +3/4(G(L) = [[ullz) < G(L)

but a;j is not an embedding, which would contradict Corollary 4.4.

Let g be the geodesic joining £~ to £F. Since ¥, — ¥_, <7 — B, the visual distance
between £ and £, as viewed from «(0) is at least B. It follows that there exists C, depending
only on B, so that d(«(0),g)) < C. In fact, one may apply Theorem 7.9.1 in Beardon [2] to

check that we may choose
1
=cosh™ [ ——= |-
0=con” (m7m)

Notice that, by considering a reparameterization of a, we can see that the visual distance
between ¢ and £~ is at least B as viewed from «a(t) for any ¢ € R, and thus that a(t) lies
within C of g for any t € R.

We next claim there exists K > 0 such that if p: H? — g is orthogonal projection, then
po« is a 1-Lipschitz, K-bilipschitz orientation-preserving embedding. The fact that po « is
1-Lipschitz follows immediately from the fact that both p and « are 1-Lipschitz. Let vy be the
angle between the orthogonal geodesic hg to g through «g and the geodesic segment a([t_1,t1])
chosen so that vy > 0 if a(t1) lies on the same side of hg as £*. Notice that

B < B
g SWsTT Y
since otherwise ¥, — W_,, > 7 — B. Therefore, the restriction of poa« to [t_1,t1] is an
orientation-preserving embedding. We let vy be a unit tangent vector at a(0) perpendicular to
g. Then
1 1

P (@)l = cosh(d(a(0), g)) = cosh(C) = sin(B/2)
As o/(0) makes an angle at most B/2 with v
oy (0)] > e = sint(5/2) =

Again, by reparameterizing, we may check that if ¢ is a non-bending point, then po « is an
orientation-preserving local homeomorphism at ¢ and that

) 1
o a)Y @)l = &

It follows that, for all ¢,

1
d(p(+(0)),p(~(t)) = 5.
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Therefore, since p is 1-Lipschitz,

s(0) = d(a(0), a(t)) > d(p((0)),p(r (1)) > -

We observed earlier that this is enough to guarantee that ~ is K-bilipschitz. |

As an immediate corollary, we obtain a version of Theorem 4.1 for finite-leaved laminations.

COROLLARY 4.8. If i is a finite-leaved measured lamination on H? such that

llpllz < G(L),
then P, is a K-bilipschitz embedding, where K depends only on L and ||p||r.

4.4. Proof of Theorem 4.1

Suppose that p is a measured lamination on H? with ||u||, < G(L). By Lemma 4.6 in Epstein-
Marden-Markovic [12], there exists a sequence {u,} of finite-leaved measured laminations
which converges to p such that ||u, ||z = ||u||z for all n. Corollary 4.8 implies that each P, is
a K-bilipschitz embedding where K depends only on L and ||u||r. The maps {P,,} converges
uniformly on compact sets to P, (see [10, Theorem II1.3.11.9]), so P, is also a K-bilipschitz
embedding. Therefore, P, extends continuously to Pu :H2USL, — H3USZ, and PM(SI) is a
quasi-circle. [J

5. Complex earthquakes

In this section, we use Theorem 4.1 to give improved bounds in results of Epstein-Marden-
Markovic which will lead to the improved bound obtained in our main result. We first obtain
new bounds guaranteeing that complex earthquakes extend to homeomorphisms at infinity, see
Corollaries 5.2 and 5.3. Once we have done so, we obtain a generalization of [11, Theorem 4.14]
which produces a family of conformally natural quasiconformal maps associated to complex
earthquakes with the same support p which satisfy the bounds obtained in Corollary 5.2 or
Corollary 5.3. Finally, we give a version of [12, Theorem 4.3] which gives rise to a family of
quasiregular maps associated to all complex earthquakes with positive bending along p.

If 41 is a measured lamination on H?, we define E,: H? — H? to be the earthquake map
defined by fixing a component of the complement of y and left-shearing all other components
by an amount given by the measure on . An earthquake map is continuous except on leaves
of p with discrete measure and extends to a homeomorphism of S!.Therefore, any measured
lamination A on H? is mapped to a well-defined measured lamination on H? which we denote
E.(N).

Given a measured lamination p on H? and z = x + iy € C, we define the complex earthquake

CE. = Pyg,, 0 By, - H* — H®
to be the composition of earthquaking along zp and then bending along the lamination
yE;,(1). The sign of y determines the direction of the bending. By linearity,

Wy Eap ()l = [yl | Expe ()] -

(See Epstein-Marden [10, Chapter 3] or Epstein-Marden-Markovic [11, Section 3] for a detailed
discussion of complex earthquakes.)
The following estimate allows one to bound ||E,, (1)||z-
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THEOREM 5.1. (Epstein-Marden-Markovic [11, Theorem 4.12]) Let ¢1 and ¢5 be distinct
leaves of a measured lamination 1 on H?. Suppose that « is a closed geodesic segment with
endpoints on {1 and {5 and let x = i(«, ). Let ¢} and ¢ be the images of {1 and {5 under the
earthquake E,,. Then

sinh(d(¢7,€5)) < e”sinh(d(f1,05)) and  d(£},05) < 61/2d(£1,€2).
Furthermore,

sinh(d(fy,£5)) < e”sinh(d(¢},05)) and  d(f1,0s) < e*/2d(0}, 65).

Motivated by this result, Epstein, Marden, and Markovic define the function
f(L,z) = min (Lel"”‘/z, sinh ! (el®! sinh(L))) .

Corollary 4.13 in [11] generalizes to give:

COROLLARY 5.2. If i is a measured lamination on H?, z = x + iy € C, and L > 0, then

1Bl < [ P22 .

Furthermore, if

G(L)
252l

then CE, extends to an embedding of S' into C.

ly| <

We similarly define
g(L,x) = max (Le"ll/z, sinh~* (e~ 1! sinh(L))) .

We will show later, see Lemma 7.1, that if 2tanh(L) > L then g(L,z) = Le~ /2,
Theorem 5.1 and Theorem 4.1 combine to give the following:

COROLLARY 5.3. If yu is a measured lamination on H?, z = x + iy € C, and L > 0, then

B (1)l lg(L,a) < [z

Furthermore, if

Glg(L, 7))

ly| <
el

b

then Pyg,, is a bilipschitz embedding and CE, extends to an embedding of St into C.

Proofs: The proofs of Corollaries 5.2 and 5.3 both follow the same outline as the proof of [11,
Corollary 4.13]. Let i be a measured lamination on H?, z = x + iy € C, and L > 0.

Suppose that A > 0 and that « is an open geodesic arc in H? of length A which is transverse
to By, (p). Theorem 5.1 guarantees that one can choose an open geodesic arc 3 in H? which
intersects exactly the leaves of p which correspond to leaves of E,, which intersect a and has
total length at most f(A,x). Therefore,

i(a, Bap(p) = (8, ) < lplla,)s
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SO
[ Ewu()lla < el eam)- (5.1)
We begin with the proof of Corollary 5.3. Inequality 5.1 immediately implies that

Bz ()l gLy <l pig(z.ay) = llnllL-
So, if
G(g(L,x))

lyl <
[z

)

then
Hy E;Cu”g(L@) < G(Q(L,QJ))

Theorem 4.1 then implies that Py g, , is a bilipschitz embedding which extends to an embedding
of St into C. Since E,, extends to a homeomorphism of St it follows that CE, extends to an
embedding of S! into C. This completes the proof of Corollary 5.3.

We now turn to the proof of Corollary 5.2. We can divide a half open geodesic arc in H? of
length f(L,z) into [f(L,x)/L] half open geodesic arcs of length less than or equal to L, so

f(L,x
Bl < el < | P52 el

Therefore, if

ly] < #7
Rl
then
ly Exp(p)ll < G(L).
and we may again use Theorem 4.1 to complete the proof of Corollary 5.2. O

For all L > 0, we define

and
T = int({z +iy | Iyl < Q(L,2)}.

The following theorem is a direct generalization of Theorem 4.14 in Epstein-Marden-
Markovic [11]. In its proof, we simply replace their use of Corollary 4.13 in [11] with our
Corollaries 5.2 and 5.3.

THEOREM 5.4. Suppose that L > 0 and u is a measured lamination on H? such that ||u||;, =
1. Then, for z € 76L,
(i) CE, extends to an embedding ¢ : S* — C which bounds a region €2,.
(ii) There is a quasiconformal map ®, : D?> — Q, with domain the unit disk and quasicon-
formal dilatation K, bounded by

14 [h(2)
K= 1)

where h : Ty — D? is a Riemann map taking 0 to 0.
Moreover, ®, U ¢, : D> US' — C is continuous.
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(iii) If G is a group of Mébius transformations preserving p, then ®, can be chosen so
that there is a homomorphism p, : G — G, where G, is also a group of Mobius
transformations and

$.09=0p.(9)0®,
for all g € G.

Epstein, Marden and Markovic [12] introduce the theory of complex angle scaling maps and
use them to produce a family of quasiregular mappings indexed by

0.73
St :int{x+iy€(c y > —}
SO
so that if [Im(¢)| < %, then ®; is quasiconformal. (See also the discussion in [7, Section
3.4].)
We consider the enlarged region

TE=int{zr+iycC |y > —-Q(z,L)}.

Given Theorems 4.1 and 5.4, their proof of Theorem 4.3 extends immediately to give:

THEOREM 5.5. ([12, Theorem 4.13]) Suppose that L > 0, p is a measured lamination on
H? with ||u||L =1, vo > 0 and to = ivg € T If t € TgE, let Q; be the the image of D? under
the map ®, given by Theorem 5.4. Then there exists a continuous map ¥ : U x £y, — C, where
U is the upper half-plane, such that

(i) Wy, = id.
(ii) For each z € Q4,, Y(t, z) depends holomorphically on t.
(iii) For each t € Tg", ¥, can be continuously extended to S, such that

\I’t o (I)tO|S1 = (I)t|S1 .

In particular ¥ : 9, — S! and O St — 09 are inverse homeomorphisms.
(iv) Ift € T¥ and Im(t) > 0, then W, is injective and V() = ®4(D?) = Q.
(v) Ift =u+iv and v > 0, then U, is locally injective K;-quasiregular mapping where
1 t 2 — vg)?
B +|I<E()|7 ()] = u? + (v —vp)
1—[k(t)] u? + (v +vp)?
(vi) If G is a group of Mébius transformations preserving g, then there is a homomorphism
pt + G — Gy where Gy is also a group of Mobius transformations, such that

Ky

Viog=pi(g) oV,
for all g € G.

6. Quasiconfomal bounds

One can now readily adapt the techniques of proof of Epstein-Marden-Markovic [12, Theorem
6.11] to establish:

THEOREM 6.1. If() is a simply connected hyperbolic domain in Cand L > 0, then there is
a conformally natural K-quasiconformal map f : 2 — Dome((2) which extends to the identity
on 02 C C such that

log(K) < dyc(ic1(L),0)
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where dr. is the Poincaré metric on the domain T* and ¢;(L) = 2cos™! (—sinh (%)).

We offer a brief sketch of the proof in order to indicate where our new bounds, as given in
Theorems 3.1, 5.4 and 5.5, are used in the argument.

We recall that universal Teichmiiller space U is the space of quasisymmetric homeomorphisms
of the unit ciricle S!, modulo the action of Mébius transformations by post-composition (see,
for example, Ahlfors [1, Chapter VI]. The Teichmiiller metric on the space U is defined by

dy(f,g) =loginf K(f~'0g)

where the infimum is over all quasiconformal extensions f and g of f and g to maps from
the unit disk to itself and K(f !0 ) is the quasiconformal dilatation of f~1og. If I' is
a group of conformal automorphisms of D?, we define U(I') CU to be the quasisymmetric
homeomorphisms which conjugate the action of I' to the action of an isomorphic group of
conformal automorphisms. The Teichmiiller metric on U(I") is defined similarly by considering
extensions which conjugate I" to a group of conformal automorphisms.

Let g : D? — C be a locally injective quasiregular map, i.e. ¢ = h o f where f is a quasicon-
formal homeomorphism and h is locally injective and holomorphic on the image of f. We may
define a complex structure Cy on D? by pulling back the complex structure on C via g. The
identity map defines a quasmonformal homeomorphism § : D — C,. We then uniformize C,
by a conformal map R : C; — D? and consider the quasiconformal map Ro g: D? — D2 This
map extends to the boundary to give a quasisymmetric map ¢s(g) : St — S*.

Choose 1 so that Dome(Q) = P, (D?) where ||u||, =1 and ¢ > 0. We use Theorem 5.4 to
define a map

FLTE S un),
where T is the group of conformal automorphisms of H? preserving pu. If t € Tg&, let
F(t) = qgs(Dy).
Similarly, we may use Theorem 5.5, with some choice of tg = ivg € TgF, to define a map
G:U—-U)
by letting
G(t) = qs(Vy 0 Dy).

If ¢ lies in the intersection of the domains of F' and G, then even though ®; and ¥, o ®;, need
not agree on D?, Theorem 5.5 implies that they have the same boundary values and quasi-disk
image Q;. Therefore F' and G agree on the overlap 7" N U of their domains. We may combine
the functions to obtain a well-defined function

F:TE = uUm).

Epstein, Marden, Markovic further show that F' is holomorphic (see [12, Theorem 6.5 and
Proposition 6.9]).

The Kobayashi metric on a complex manifold M is defined to be the largest metric on M
with the property that for any holomorphic map f:D? — M, f is 1-Lipschitz with respect
the hyperbolic metric on D?. Therefore, holomorphic maps between complex manifolds are
1-Lipschitz with respect to their Kobayashi metrics. The Teichmiiller metric agrees with the
Kobayashi metric on ¢ and U(T') (see [14, Chapter 7]). Morever, the Poincaré metric on any
simply connected domain, in particular 77, agrees with its Kobayashi metric. It follows then
that for any t € T,

dy(ry(F(t), F(0)) < dye(t,0).
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Theorem 3.1 implies that

c<eci(L) =2cos™! (—sinh <§))

du(p)(F(ic), F(0)) < dyr(ic,0) < dyr(ici(L),0).

SO

Since CE;. = Py, and Q = ;. is simply connected, the map g;c = W;. 0 @4, is a conformally
natural quasiconformal mapping with image €2. Moreover, P, o g;cl : Q — Dome(92) extends
to the identity on 9 = dDome(2). (For more details, see the discussion in the proofs of [12,
Theorem 6.11] or [7, Theorem 1.1].)

We have that F(ic) = qs(gic) = (Ro gic)|s: where R:Q — D? is a uniformization map.
Therefore,

dy(r) (F(ic), F(0)) = du(p)(F(ic), Id) = loginf K (h)
where the infimum is taken over all quasiconformal maps from D? to D? extending (R o gic)lg:
and conjugating I" to a group of conformal automorphisms. By basic compactness results
for families of quasiconformal maps, this infimal quasiconformal dilatation is achieved by a
quasiconformal map h : D? — D2 If f: Q — D? is given by f = h~! o R, then

K(f) = K(h) = dy()(F (ic), F(0)) < drw(ic1(L),0).

Since h and Ro g;. are quasiconformal maps with the same extension to OH?Z, they are
boundedly homotopic (see, e.g., [12, Lemma 5.10]). So, f is boundedly homotopic to g;.'.
Thus, P, o f : Q@ — Dome(2) is boundedly homotopic to P, o g;cl. Since P, o g;l extends
to the identity on 012, it follows that P, o f also extends to the identity on 0f2. Therefore,
P, of:Q— Dome() is the desired conformally natural K-quasiconformal map which
extends to the identity on 0f) such that

log(K) < dyi(ic1(L),0).
This completes the sketch of the proof of Theorem 6.1.

Remark: Epstein, Marden and Markovic showed that if ) is simply connected, then a
quasiconformal map between 2 and Dome(Q2) extends to the identity on 99 if and only if it is
boundedly homotopic to the nearest point retraction from Q to Dome(£2) (see [12, Theorem
5.9)).

7. Derivation of main theorem

In order to complete the proof of our main theorem, Theorem 1.3, it suffices to show that
one can choose L > 0 such that

dri(icy (L),0) < 7.1695.

Motivated by computer calculations for various values of L, we choose L = 1.48.

First, we construct a polygonal approximation for the region 7 from within, see figure 5. The
approximation is constructed using MATLAB’s Symbolic Math Toolbox and variable precision
arithmetic. Variable precision arithmetic allows us to compute vertex positions to arbitrary
precision. In particular, we can deduce sign changes to find intervals containing intersection
points.

We build a step function s(z) < Q(L,z) as follows; We recall that

G(L)W Glg(L.))

L,z)= BRAS AN
Q(L, z) = max W(LL’”
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FIGURE 5. Polygonal approximation of T

We first locate intervals where % and G(g(L,x)) intersect. For values where %

L
dominates, we bound Q(L, z) by truncated decimal expansions (i.e. lower bounds) of values of

%, which we compute using variable precision arithmetic.

For parts dominated by G(g(L,x)), we simplify our computation by using the following
lemma.

LEMMA 7.1. Let Ly > 0 be the unique positive solution to 2tanh(L) = L. If L < Lo ~
1.91501, then g(L,z) = Le— /2,

Proof. Recall that
g(L,x) = max (Le_‘x‘/z, sinh ™! (e~ sinh L)) .

Let L < Ly and consider the function j(z) = e* sinh(Le~*/2). It has a critical point precisely
when

2tanh(Le™%/2) = Le™*/2,

Since L < Ly, we have Le */? < Ly when = > 0, so j has no critical points in the interval
[0,00). Since j'(0) = sinh L — %coshL > 0, j is increasing on the interval [0, c0). Therefore,

j(z) = e sinh(Le™®/2) > sinh(L) = j(0)
for all x > 0, so
Le /2 > sinh ™! (e sinh(L))
for all z > 0. Thus, g(L,z) = Le™1I/2 for all . O
From our initial analysis of the hill function, we know that G(t) is an increasing function on

t € [0,00). It follows that G(g(L, z)) is a decreasing function for x € [0, 00). Therefore, we can
approximate G(g(L,x)) by a step function from below.
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To compute the values of G(g(L, x)), recall that G(t) = h(c(t) —t) — h(c(t)). The function
¢(t) can be computed to arbitrary precision from the equation

th'(c(t)) = h(c(t)) — h(c(t) —t).

In particular, variable precision arithmetic can give us truncated decimal expansions of values
of G(g(L,x)). We sample at a collection of points to obtain a step function where G(g(L,x))
dominates.

We use these computations to build s(x) < Q(L,x) on some interval [—a, a]. Outside of that
interval, we set s(z) = 0. The graph of —s(z) gives us the boundary of a polygonal region
contained in 7.

Using the Schwarz-Christoffel mapping toolbox developed by Toby Driscoll 8], the images
of the points 0 and 2cos™? (— sinh (%))z are computed under a Riemann mapping of the
approximation of 7% to the upper half plane. Computing the hyperbolic distance between the
images provides the result. The Schwarz-Christoffel mapping toolbox provides precision and
error estimates. The error bounds are on the order of 1075.

We found that the optimal bound is given when L is approximately 1.48. Using L = 1.48,
the point

L
B =c¢(L)i=2cos! (- sinh (2)> i ~ 5.027888826784i
and
edrr(ici(L).0) ~ 7 16947.

A truncated version of the output provides the values of G(L), HPL(0), and HPL(B), where
HPL: TV — H? is a Riemann mapping from 7% to the upper half-plane. We also have
H(L) =dy2(HPL(0), HPL(B)) and K (L) = exp(dyc(ic1(L),0).

L=1.48
G(L) = 1.327185362837166
HPL(0) = 0.000007509959438 + 0.0093475472306741

HPL(B) = 0.000009420062234 + 0.0670169706867421i
H(L) = 1.969831901361628
K(L) = 7.169471208698489
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