KLEINIAN VIEWPOINTS ON HIGHER RANK WORLDS

RICHARD CANARY

ABSTRACT. This talk is designed to attract people who work on real hyperbolic manifolds to
consider thinking about discrete subgroups of higher rank Lie groups. To that end, we breezily
discuss some applications of the ideas from the theory of Kleinian groups in the higher rank

setting.
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1. INTRODUCTION

In this talk, I will highlight some recent applications of ideas and techniques from the theory
of Kleinian groups to the study of discrete subgroups of higher rank Lie groups. I will begin with
a brief introduction for those who, like me, are not totally conversant in the general theory of
Lie groups. I hope this will attract others working in the rank one setting to consider studying
discrete groups in higher rank. A longer attempt to make the theory of discrete subgroup of
higher rank Lie groups accessible to rank one people is my Informal Lecture Notes on Anosov
Representations which are available on my webpage and at the AMS Notes pages.

Since my choice of topics reflect my idiosyncratic personal interests, I will recommend some
other surveys. The surveys of Kapovich, Leeb and Porti [79, 77] explain their approach to discrete
subgroups which focuses on the action on the quotient symmetric space and explores many
parallels with the rank one setting. The surveys of Wienhard [131] and Burger-Tozzi-Wienhard
[32] do an excellent job of presenting results motivated by the techniques and ideas from the
Fuchsian setting. Kassel’s survey articles [81, 82] contain nice discussions of the relationship with
projective geometry, see also Marquis [97]. Finally, Canary-Zhang-Zimmer [37] survey recent
developments in Patterson-Sullivan theory in higher rank (see alse Sambarino [112], which is not
a survey paper but contains a very clear discussion of the Anosov case).

Acknowledgements: I would like to thank Martin Bridgeman, Subhadip Dey, James Farre,
Andres Sambarino, Kostas Tsouvalas, Gabriele Viaggi, Teddy Weisman, Neza Zager Korenjak,
Tengren Zhang and Andy Zimmer for helpful comments on an early version of this paper.

Canary was partially supported by grant DMS-2304636 from the National Science Foundation.
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2. TYPES OF DISCRETE SUBGROUPS

2.1. Linear algebra. We will work mostly in the setting of discrete subgroup of PSL(d, K) where
K is R or C. In this setting, much of the Lie theory is simple linear algebra involving singular
values and eigenvalues. The Cartan subspace a of PSL(d,K) is the space of real trace-free
diagonal matrices, which me may think of as d-tuples of real numbers whose entries add up to 0.
The (closed) positive Weyl chamber a™ is simply d-tuples in a whose entries are in descending
order, i,e.

a={GeR%: a1+ ---+a3=0} and at={Geca:a; > - >ay}.

We define the Jordan projection J : PSL(d, K) — a™ and the Cartan projection x : PSL(d, K) —
at to be

J(v) = (log A1(7), .-, log Aa(v)) and k(y) = (logo1(v),...,logoa(v))

where \;(y) is the modulus of the i*" eigenvalue of v and o;(7) is the i** singular value of .
Let X4 = PSL(d,R)/PSO(d) (or X4 = PSL(d,C)/PU(d)) be the symmetric space of PSL(d,R)

(or PSL(d,C)). One should think of J(A) and k(A) as vector-valued distance functions on Xj.

To make this precise, note that if zog = [PSO(d)] € X4 (or xo = [PU(d)] € Xy if K = C), then

dx,(x0, Awo)) = [|(A)[| and  inf dx,(z, A(x))) = [|7(A)]].

(Your favorite metric may be some constant multiple of our metric, but this choice will be
convenient for us. For example, with this convention, X» = H? with constant curvature —%.)

We may write any element A € PSL(d,K) as Ke*L where K,L € PO(d) (if K = R) or
K,L € PU(d) (if K = C). (This is known as the Cartan decomposition.) The elements K and

L are not uniquely defined, but if o (y) > oxy1(7), then
Ur(y) = K((e1,...,ex)) where {e1,...,eq} is the standard basis for K¢

is well-defined and is the image of the k-plane which is stretched the most by ~.
We will also be interested in linear functionals in a*. Particularly important are the simple
roots aj : @ — R and the fundamental weights wy, : a — R given by

ak(a):ak_alﬂ_l and Wk(a):a1+"'+ak.

A (full) flag in K% is a collection {F* }g;% where each F* is a k-dimensional K-subspace of K¢
and FV C F¥ if j < k. If F is the space of full flags in K%, we can define the Iwasawa cocycle
B : PSL(d,R) x F — a by the relation

_ AW A - A Ao

wr(B(A, F)) = o A A onl] where {vy,...,v.} is a basis for F¥ for all k

where F*¥ is the k-dimensional subspace of F. In rank one, the Iwasawa cocycle is equivalent to
the Busemann cocycle.

If0 C {1,...,d — 1}, a 0-flag is a collection {F*}cp where each F¥ is a k-dimensional K-
subspace of K% and F7 c FF if j < k and j,k € 6. Let Fy be the space of §-flags. We then
define a partial Cartan subspace

ag={d€a:aj@=0ifj¢0} and ay =agNa’.

Then the group aj of linear functionals on ag has basis {wy, } xcg. There is a projection pg : a — ag
defined by the relation

wi (@) = wi(pe(d)) for all k € 6.
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We can also define a partial Iwasawa cocycle just as before

A ANA
wr(By(A, F)) = I (‘T;) 2 21} (|Tk)” where {v1,...,v} is a basis for F* for all k € 6.
LA A v

2.2. Divergent and transverse groups. A group I' C PSL(d,K) is Py-divergent if whenever {~,}
is a sequence of distinct elements in I" we have ay(k(y)) — oo where

(@) = ap — ap41

is the &*® simple root. Intuitively, a P,-divergent group is a discrete group whose discreteness is
detected by the k"' simple root. Notice that if I' is Pj-divergent, then it is P;_j-divergent, since
ar(y) = ag_p(y~1). If T is Py-divergent, then both Ug () and Uy_(7) are well-defined for all
but finitely many v € I.

We say that I' is Py-divergent for some non-empty 6 C {1,...,d — 1} if it is Py-divergent for
all £ € 6. We will assume from now on that 0 is symmetric. Then Up(y) = {Ur(7)}reo is a
well-defined element of Fy for all but finitely many v € I'. The limit set Ag(T") of T" is then just
the set of accumulation points of {Up(y)}~er in Fy.

If ¢ € a3, we may define a “distance function” on the orbit I'(zg) in Xy by dg(xo,v(z0)) =
?(k(7)), although of course this “distance” may be negative. (Notice that in the constant cur-
vature —1 metric on H?, we have d(zg,v(20)) = a1(x(v)).) We may then define

5,(T) = lim sup B #1 €L L Os(1) < T}
T—00

which we regard as the exponential growth rate of the orbit from the point of view of the linear
functional ¢. This is also the critical exponent of the ¢-Poincaré series of I'. If §% < 400, then
one may define a ¢-Patterson-Sullivan measure supported on Ay(T") (see [35]), i.e. a probability
measure L so that
dV*“(F) — o 9s(D)Bo(y~1,F)

dp

for all v € I" and F € Ag(T").

A Py-divergent group I' C PSL(d,K) is Py-transverse if every two distinct flags F' and G in
Ag(T) are transverse, i.e. if k € @, then FF @ G¥* = K% One key feature of transverse groups
is that the action of I' on A(T") is a convergence group action. Moreover, one may establish a
Hopf-Tsuji-Sullivan dichotomy for Patterson-Sullivan measures on Ag(I") (see [35] and [85]).

2.3. Anosov groups. A finitely generated group I' C PSL(d, K) is said to be Py-Anosov if there
exists a,C > 0 so that

ag(k(y)) >aly|—CforallyeI' and k€6

where || is the word length of v with respect to some fixed generating set for I'. One may think
of this as saying that I' is quasi-isometrically embedded (with respect to the usual bi-invariant
metric on PSL(d,K)) and the fact that it is quasi-isometrically embedded is detected by the
kth-simple root for all k € 6.
If T' is Py-Anosov, then it is Gromov/word hyperbolic and Py-transverse and there exists a
I'-equivariant homeomorphism
€:0I = Ap(I)

where OI" is the Gromov boundary of T'.
Anosov groups have two important features. 1) The orbit map of I' into Xy is a quasi-
isometric embedding, i.e. d(xg,7y(z¢)) grows linearly in the word length of v. 2) There exists
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a neighborhood U of the inclusion map in Hom(T', PSL(d,K)) so that if p € U, then p(I") is
Py-Anosov.

In the case of PSL(2,K), a subgroup is P;-Anosov if and only if it is convex compact. (Recall
that in a rank one Lie group, a discrete group is convex cocompact if and only if its orbit map
is a quasi-isometric embedding.)

If I € PSL(d,K) is Py-Anosov, ¢ € aj; and §°(I") < +o0, then Sambarino [111] (see also [28])
constructed a metric Anosov flow which is Holder orbit equivalent to the geodesic flow of I' and
whose periods are exactly {¢(J(7))}}yer)- This flow is one of the main tools in the study of the
dynamics of the action of T". It allows us to think of ¢(J(v)) as giving a length function on the
group. (His construction can be generalized to the setting of transverse groups, see [35].)

Historical remarks: The book of Benoist and Quint [12] is an excellent source for the Lie theory
discussed here. Divergent and transverse groups were first studied Kapovich, Leeb and Porti
(see [80]), who called them regular and regular antipodal groups. Albuquerque [7] and Quint
[109] were the first to study Patterson-Sullivan measure for discrete subgroups of higher rank
Lie groups.

Labourie [89] first defined Anosov groups in his study of Hitchin representations. The general
theory was further developed by Guichard-Wienhard [68], Guéritaud-Guichard-Kassel-Wienhard
[67], Kapovich-Leeb-Porti [80], Bochi-Potrie-Sambarino [19] and others. Labourie’s original
definition was dynamical. The equivalent definition we gave is due to Kapovich-Leeb-Porti
[79] and Bochi-Potrie-Sambarino [19]. Dey and Kapovich [50] developed a theory of Patterson-
Sullivan measures for Anosov groups.

Given a semi-simple Lie group G of non-compact type and a parabolic subgroup P of G,
Labourie [89] introduced a theory of P-Anosov subgroups of G which had the same important
features as above. Guichard and Wienhard [68, Prop. 4.3, Remark 4.12] observed that given G
and P, there exists an irreducible representation 7 : G — PSL(d,R) (for some d) so that I' C G
is P-Anosov if and only if 7(I') is P; 4—1-Anosov. So many, but not all, problems concerning
Anosov groups can be studied by studying the PSL(d,R) case and using this equivalence.

3. WHICH GROUPS CAN BE ANOSOV?

It is natural to ask which isomorphism classes of groups arise at Anosov groups. The most
obvious examples are the convex cocompact subgroups of rank one Lie groups. For example,
convex cocompact subgroups of PO(d, 1) = Isom(H?) are P;-Anosov subgroups of PGL(d+ 1, R).

The next collection of examples, historically, is provided by fundamental groups of strictly
convex, closed (real) projective manifolds. We recall that an open domain Q C P(R*!) is
strictly convex if it is a bounded strictly convex subset of some affine chart for P(R4t!). If
I' € PSL(d + 1,R) preserves and acts properly discontinuously and cocompactly on a strictly
convex domain 2 C P(R¥*1), then Q/T is a closed strictly convex projective manifold. Benoist
proved that in this case I" is P;-Anosov. However, I" is not P Anosov for any 2 < k < d —2 (see
[33, Cor. 1.4]). Kapovich [76] showed that certain Gromov-Thurston d-manifolds admit strictly
convex projective structures so that their fundamental groups arise as P;-Anosov subgroups of
PSL(d + 1,R).

Danciger, Guéritaud, Kassel, Lee and Marquis [48] showed that any hyperbolic Coxeter group
is isomorphic to an Anosov group. The following is the best current result.

Theorem 3.1. (Douba-Fléchelles-Weisman-Zhu [56]) If a hyperbolic group acts properly and co-
compactly on a CAT(0) cube complex, then it is isomorphic to an Anosov subgroup of PSL(d, R)
for some d.
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It is still unknown whether or not there is a linear hyperbolic group which is not isomorphic
to an Anosov group. In fact, only recently has it been shown that there exist linear hyperbolic
groups which are not isomorphic to a convex cocompact subgroup of some rank one Lie group.
Tholozan and Tsouvalas [121] gave examples of linear hyperbolic groups which are not isomorphic
to a discrete subgroup of any rank one Lie group. Their examples are doubles of lattices in
Sp(n, 1) along cyclic subgroups.

On the other hand, one can place restriction on groups which admit certain flavors of Anosov-
ness for a given group. For example, any torsion-free Pj-Anosov subgroup of SL(4,R) is iso-
morphic to a convex cocompact subgroup of PSL(2,C), see Canary-Tsouvalas [33, Thm. 1.2].
Moreover, one can obtain bounds on the cohomological dimension of Anosov groups.

Theorem 3.2. (Canary-Tsouvalas [33]) If T' C PSL(d,R) is torsion-free and Py-Anosov and

k< g, then
(1) If (d, k) is not (2,1), (4,2), (8,4) or (16,8), then I" has cohomological dimension at most
d—k.
(2) If (d, k) is either (2,1), (4,2), (8,4) or (16,8), then I has cohomological dimension at
most d — k + 1.

Sketch of proof: If d = 2, then I' is a Fuchsian group and the result is obvious and the case d = 3
can be handled separately (see [33, Thm. 1.1]).

If d > 4, we fix zp € I and a (d — k + 1)-dimensional subspace V containing &(zo)@ % and
define an injective map F : 9T — {zg} — P(V — &(z0)*)) by letting F(y) be the line &(y)*® N V.
Therefore, OI" has topological dimension at most d — k. However, Bestvina and Mess [14] showed
that the cohomological dimension of a torsion-free word hyperbolic group is exactly one more
than its topological dimension. Therefore, in all cases I' has cohomological dimension at most
d—Fk+1

If the cohomological dimension of T" is d — k + 1, then OI" has topological dimension d — k.
Since we have embedded OI' — {z¢} into a (d — k)-dimensional manifold, this implies that o’
has a manifold point, which guarantees that o' = S%%, see Kapovich-Benakli [75, Thm. 4.4].
Let

E= ] SE@)") csry),
zedl’
where S(v) denotes the unit sphere in V. Notice that E is a closed submanifold of S(R?) of
dimension (d — k) + (k—1)=d—1,s0 E = S9!, The map p: E — 9T is a fibre bundle with
fibre S¥~1 so the classification of sphere fibrations (see [4]) implies that (d — 1,k — 1) is either
(3,1), (7,3) or (15,7). O

Sambarino conjectured that if I' C PSL(d,R) is Borel Anosov, i.e. Pi-Anosov for all 1 <k <

d — 1, then I' has a finite index subgroup which is either a free group or the fundamental group

of a closed surface. This surprising conjecture was proved when d < 4 by Canary-Tsouvalas [33],
for d = 2(mod 4) by Tsouvalas [124], and for d = 3, 4 or 5(mod 8) by Dey [49].

4. HYPERCONVEX GROUPS

Pozzetti, Sambarino and Wienhard [108] studied the class of (1, 1,2)-hyperconvex groups. A
group I' C PSL(d, K) is (1, 1, 2)-hyperconvex if it is Py 9 49 q—1}-Anosov and whenever z,y, z €
Ol are distinct, then

@) @ €(y)V @ ()" = K
where ¢(x)* is the k-dimensional subspace in the partial flag £(x). Farre, Pozzetti and Viaggi [62]
called these representation (d—1)-hyperconvex. The most basic examples of (1, 1, 2)-hyperconvex
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groups in PSL(d,C) are the images of a convex cocompact group subgroup of PSL(2,C) by an
irreducible representation of PSL(2,C) into PSL(d, C).

One of the key motivations for [108] was that aj-Patterson-Sullivan measures of (1,1, 2)-
hyperconvex groups behave more like the conformal measures developed by Patterson [106] and
Sulllivan [120] for Kleinian groups than Patterson-Sullivan measures for typical Anosov groups.
The following result of Pozzetti, Sambarino and Wienhard [108] generalizes the fact, due to
Patterson [106] and Sulllivan [120], that the Hausdorff dimension of the limit set of a convex
cocompact Kleinian group I' agrees with 61 (I").

Theorem 4.1. (Pozzetti-Sambarino-Wienhard [108]) If I' € PSL(d,K) is (1,1, 2)-hyperconvez,
then the Hausdorff dimension of A1(T') is equal to 6**(I") and §*'(I") < dim(K).

Pozzetti-Sambarino-Wienhard [108, Prop. 4.1] and Glorieux-Monclair-Tholozan [65, Thm 1.1]
showed that if I' C PSL(d, K) is P; gq—1-Anosov, then its limit set A;(I") has Hausdorff dimension
at most d*(I") but that the bound is not always sharp.

One of my favorite examples of the use of technology from Kleinian groups in higher rank is
the following structural result of Farre, Pozzetti and Viaggi.

Theorem 4.2. (Farre-Pozzetti-Viaggi [62, Thm. A]) IfI" C PSL(d,C) is (1, 1,2)-hyperconvez,
then T is virtually isomorphic to a convexr cocompact subgroup of PSL(2,C).

We provide a brief outline of their beautiful proof. Given x € JI', consider the projection
map 7, : O — P(C4/€(x)(@=2) =2 CP* (first studied in [108]) given by

12(2) =€(2) V) ifz#42 and w(x) = ()4,

They show that this map is well-defined, continuous and injective. (The main difficulty here is
establishing continuity at z.)
They then show, by a compactness argument, that there exists K > 1 so that if z,y € 0T,
then the homeomorphism
Joy =Ty 0 7751 iz (O1) — my(OT)
is K-quasi-Mobius on 7, (9T'), i.e. if 21, 29, 23, 24 € m,(OT') and the absolute value of their cross
ratio }[z1,22,23,24]‘ =1, then

1

= = (20, o (22), Fr(20), Frg (20)]| < K.

If OT = 2, then &, (0T) = P(C?/¢(x)@~2)) and one can conclude that f,, is K-quasiconformal
if it is orientation-preserving (since orientation-preserving K-quasi-Mobius homeomorphisms of
CP! are K-quasiconformal.)

They then define an action p, : I' — Homeo(, (9I")) given by

pz(y) =mpo0vo0 (7r96)_1 forall yeT
and check that
px(f)/) = fA}/"‘/*l(w),x © fa:,'yfl(x)

where 4, -1, P(C?/e(y1(2))@=2)) — P(C?/¢(x)(@2)) is the map induced by 7. Since
Yy-1(z),z 18 conformal, p,(I') is K-quasi-Mobius for all v € T'.

If OT = 52, let

Io={y €T :ps(y) is orientation-preserving }

and notice that 'y has index at most two in I'. So p;(I'g) is a uniformly K-quasiconfomal
action on P(C%/¢(x)(42), ie. every p,(7) is K-quasiconformal. A theorem of Sullivan [119,

Theorem VII] then implies that p,(Ig) is quasiconformally conjugate to an action I' of p,(I'o)



KLEINIAN VIEWPOINTS ON HIGHER RANK WORLDS 7

on P(C%/&(x)(4=2)) by Mobius transformations. Since I' acts on 9T as a uniform convergence
group, I acts on P(C4/&(x)(4=2)) as a uniform convergence group, so I is a uniform lattice in
PSL(2,C). If K is the kernel of p,, then K is finite and [ [o/K. Therefore, if O = S2, then
I' is virtually isomorphic to a uniform lattice in PSL(2, C).

In order to handle the general case, they use work of Haissinsky [69] which implies that a
hyperbolic group I' with planar Gromov boundary is virtually isomorphic to a convex cocompact
Kleinian group if every quasiconvex subgroup H of I" whose Gromov boundary is homeomorphic
to a Sierpinski carpet is virtually isomorphic to a convex cocompact Kleinian group. In the case
that OH is a Sierpinski carpet, they use results of Ahlfors [5], Bonk [21] and Markovic [96] to
extend the uniformly K-quasi-Mébius action p,(H) on m,(0H) to a uniformly K’-quasiconformal
action on P(C4/¢(x)(@=2)). (I am glossing over a delicate argument here.) Sullivan’s theorem
again implies that p,(H) is virtually isomorphic to a convex cocompact Kleinian group. This
completes the (sketch of the) proof of Theorem 4.2.

One may use the theory developed in Canary-Zhang-Zimmer [34, 35] to show that the aj-
Patterson-Sullivan measure p of a (1,1, 2)-hyperconvex group is §*'-Ahlfors regular, i.e. there
exists €y, C' > 0 so that if 0 < r < ¢g and F' € A;("), then

%r‘sal(r) < w(B(F,r)) < cro™®)

where B(F,r) is the ball of radius r about F (in some fixed Riemannian metric on P(K%)).
Since this implies that Aj() has finite, non-zero §*!(I')-dimensional Hausdorff measure, one
may regard this result as a strengthening of Theorem 4.1.

Theorem 4.3. (Canary-Zhang-Zimmer [38]) If I' C PSL(d,C) is (1,1, 2)-hyperconvez, then the
aq -Patterson-Sullivan measure p of I' on Ay (I') is 6“1 (I")-Ahlfors regular. Therefore, A1(I') has
finite, non-zero 6*1(I")-dimensional Hausdorff measure.

Farre, Pozzetti and Viaggi [62, Thm 3.1] proved that if 9T # S2, then 7, (9I') has measure
zero. Their proof is a foliated version of Ahlfors’ [6] original beautiful argument that the limit
set of a geometrically finite group has measure zero if it is not all of CP!. It is easy to see that
Tz © (5(1))71 : A1(T') — m,(AT") is bilipschitz on any compact subset of A1(T) — {£(z)(V} (see
the proof of [62, Prop. 5.3]). So, if OI' # 52, then A;(T") has 2-dimensional Hausdorff measure

zero. So, Theorem 4.3 implies that if 0*1(I") = 2, then I is virtually isomorphic to a lattice in
PSL(2,C).

Theorem 4.4. (Canary-Zhang-Zimmer [38]) IfI" C PSL(d, C) is (1,1, 2)-hyperconvez, then 6** (I') = 2
if and only if T is virtually isomorphic to a uniform lattice in PSL(2,C).

A result of Pozzetti, Sambarino and Wienhard [108, Thm 7.1] (see also Zhang-Zimmer [133])
implies that if T is (1,1, 2)-hyperconvex and dI' = S?, then A;(T') is C'. Since the tangent
space to A1 (I") is a complex subspace at every point, A;(I") is a complex submanifold, and hence
algebraic, by a theorem of Chow [40]. Therefore, the Zariski closure Z of T" preserves A;(I") and
acts as a group of biholomorphisms. If T is strongly irreducible, then A;(I") contains a projective
frame (see [28, Lemma 2.17]), so the action of an element of Z on P(C%) is determined by its
action on A;(I'). Hence, Z is an irreducible copy of PSL(2,C) and we obtain the following
rigidity theorem.

Theorem 4.5. (Canary-Zhang-Zimmer [38]) IfT" C PSL(d, C) is (1, 1, 2)-hyperconvezr and strongly
irreducible and §*1 (') = 2, then T is the image of a uniform lattice in PSL(2, C) by an irreducible
representation of PSL(2,C) into PSL(d,C).
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Menal-Ferrer and Porti [100, 107] previously showed that if I" is a uniform lattice in PSL(2, C)
and 74 : PSL(2,C) — PSL(d,C) is an irreducible representation, then every small deformation
of 74(T") is conjugate to 74(I"). Since every small deformation of a (1, 1, 2)-hyperconvex group is
(1,1, 2)-hyperconvex, one may view Theorem 4.5 as a global version of the local rigidity theorem
of Menal-Ferrer and Porti.

Historical remarks: The results in this section also hold for k-hyperconvex groups, see [62] and
[38]. A group I' C PSL(d,K) is k-hyperconvex if it is Py k k41,d—k—1,d—k,d—k+1)-Anosov and
whenever x,y, z € OI" are distinct, then

(€@ neE@®) @ ¢(2) D) N (69 NEE)ED) @ g(2)* D) = £(z)* D,

Notice that a group is (d — 1)-hyperconvex if and only if it is (1, 1,2)-hyperconvex. With the
exception of Theorem 4.5, one may recover these more general results quickly from the results for
(1,1, 2)-hyperconvex groups by a careful study of the exterior power representation. The proof
of Theorem 4.5 requires additional Lie-theoretic arguments in the general case. We originally
had a more complicated dynamical proof of Theorem 4.5 but Andres Sambarino pointed out
that we could use Chow’s theorem to simplify the proof.

One can define a notion of (1, 1, 2)-hypertransversality for finitely generated transverse groups
and prove that if I" is (1,1, 2)-hypertransverse, then §**(I") is the Hausdorff dimension of the
conical limit points in A;(I"), see [34, Thm. 8.1]. The proof contains ideas from a proof of
analogous result for all finitely generated Kleinian groups by Bishop and Jones [15] with ideas
from the work of Pozzetti-Sambarino-Wienhard [108].

Suppose that I' C PSL(d,K) is Pyp-Anosov, ¢ € aj and 6?(T) < +oo. If ¢ is symmetric
with respect to the obvious involution on aj (which takes wy to wg—x), then Dey and Kapovich
[50] construct a Gromov pre-metric on Fy so that Ag(I') has Hausdorff dimension §%(T"). Dey,
Kim and Oh [55] proved that in this same setting that the ¢-Patterson-Sullivan measure is
§%(T)-Ahlfors regular with respect to the pre-metric.

In a sequel paper [63], Farre, Pozzetti and Viaggi produce an analogue of Bers’ Simultaneous
Uniformization Theorem [13] for spaces of marked k-hyperconvex groups isomorphic to the fun-
damental group of a closed surface. They also show that if I' C PSL(d, C) is fully hypererconvex,
i.e. k-hyperconvex for all k£, and isomorphic to the fundamental group of a closed surface, then
its full limit set Ay; . 4—1) has Hausdorff dimension 1 if and only if it is conjugate into PSL(d,R).
One may view this last result as a generalization of Bowen’s famous rigidity theorem [23], which
asserts that the limit set of a quasifuchsian group has Hausdorff dimension 1 if and only if it is
Fuchsian.

5. COMBINATION THEOREMS AND THEIR CONSEQUENCES

Combination theorems arose in the study of Kleinian groups as a way of building new Kleinian
groups from old. The first general combination theorem was stated by Klein [86] in 1883. We
recall that if I is a discrete subgroup of PSL(2,C), then I' acts properly discontinuously on the
complement Q(T), in CP!, of its limit set A(T"). The set Q(T) is called the domain of discontinuity
and may be empty.

Klein’s combination theorem: Suppose that I'y and T's are discrete subgroups of PSL(2,C) with
non-empty domains of discontinuity. If D; is a fundamental domain for the action of I'; on
Q(T;) and the closure of the exterior of D; is contained in D;y1 (where we interpret the indices
modulo 2), then the group I' = (I'y,T'2) generated by I'y and T'y is discrete and equal to T'y * I'a.
Moreover, D1 N Dy is a fundamental domain for the action of T' on Q(T).



KLEINIAN VIEWPOINTS ON HIGHER RANK WORLDS 9

The proof of this theorem has now been immortalized as the ping-pong lemma. Notice that
the analogous theorem where one considers fundamental domains for the action on H? also holds
(with the same argument).

When one attempts to generalize this to the setting of Anosov groups, technical difficulties
arise due to the fact that I' does not act properly continuously on the complement of the limit
set. However, Dey and Kapovich establish the following analogue.

Theorem 5.1. (Dey-Kapovich [51]) Suppose that 'y and T’y are Py-Anosov subgroups of PSL(d, K),
that A; (fori=1,2) is a compact subset of Fy with non-empty interior and that every flag in A;
is transverse to every flag in Ajy1. If vi(Aiv1) C A; for all v; € Ty (for i =1,2), then (I'1,T'2)
18 Py-Anosov and equal to I'y % I's.

In this formulation, one should think of A; as playing the role of CP! — int(D;) in the original
Klein combination theorem.

As a corollary one can show that any free product of Anosov groups is isomorphic to an
Anosov group.

Corollary 5.2. (Douba-Tsouvalas [57, Thm. 3], Danciger-Guéritaud-Kassel [47, Cor 1.26]) Sup-
pose that I'; is a Py,-Anosov subgroups of PSL(d;,K), then there exists a Py 4—1-Anosov subgroup
I’ of PSL(d,K) so that T is isomorphic to 'y x T's.

Danciger, Guéritaud and Kassel [47] derive their proof of Corollary 5.2 as a consequence of
their more general combination theorems for projectively convex cocompact, but not necessarily
Anosov or even hyperbolic, subgroups of PSL(d,R). Douba and Tsouvalas [57, Thm 3.1] used
an early version of Theorem 5.1 due to Dey-Kapovich-Leeb [53] in their proof.

Douba and Tsouvalas use Corollary 5.2 in their proof that there exist Anosov groups not
admitting discrete faithful representations into any free product of rank one Lie groups.

Theorem 5.3. (Douba-Tsouvalas [57, Thm. 1/2]) Suppose that I'1 is a uniform lattice in F4(_20)
and 'y is a uniform lattice in F4(_20) or Sp(n, 1) withn > 51. Then I is isomorphic to a Py g_1-
Anosov subgroup of PSL(d,R), for some d, but does not admit a discrete faithful representation
into any finite product of rank one Lie groups.

Maskit generalized Klein’s combination theorem to allow for amalgamation along cyclic groups,
free groups and surface groups. We say that a closed subset A C CP! is precisely invariant for a
subgroup H of a Kleinian group I" if h(A) = Aforallh € H and y(A)NA=( forally e T'— H.
We state Maskit’s theorem in the simpler setting of convex cocompact groups.

Theorem 5.4. (Maskit [98]) Suppose that T’y and T's are convex cocompact subgroups of PSL(2,C)
and that H = I'y N9 is a convex cocompact subgroup which has infinite index in both I'y and
[y. Suppose that the limit set A(H) is contained a Jordan curve J, and let Ay and Ag be the
components of CP — J. If A; is precisely invariant for H in T'; (fori=1,2), then T = (I'1,T)
1s discrete and isomorphic to I'1 g I's.

Maskit’s theorem played a crucial role in Thurston’s proof of his hyperbolization theorem, see
Morgan [103].

Dey and Kapovich also obtained an analogue of Maskit’s theorem. Moreover, Danciger,
Guéritaud and Kassel [47] establish a version for projectively convex cocompact groups.
Theorem 5.5. (Dey-Kapovich [52]) Suppose that 'y and T’y are Py-Anosov subgroups of PSL(d, K),
H =T1NTy is quasiconvex in either I'y or I's. If A1 and Ay are compact subsets of Fy so that

(1) Every flag in the interior of Ay is transverse to every flag in the interior of As,



10 CANARY

(2) A; is precisely invariant for H in T'; and
(3) Every flag in A; is transverse to every flag in Ag(T'iv1) — Ag(H),
then (I'1,T'a) is Py-Anosov and equal to T'y g .

Dey and Tsouvalas used Theorem 5.5 and a separability result due to Tsouvalas [126] to
produce many new Anosov groups by amalgamating along cyclic subgroups. The following
example is especially relevant.

Theorem 5.6. (Dey-Tsouvalas [54]) If I is a uniform lattice in Sp(n,1) and H is an infinite
abelian subgroup of T, then there exists a finite index subgroup I of ' containing H, so that
IV sy I admits a Py 4_1-Anosov representation into SL(d,C) for some d.

Combining this with earlier work of Tholozan and Tsouvalas [121] produces many examples of
one-ended hyperbolic groups which are isomorphic to Anosov groups, but do not admit discrete,
faithful representations into any rank one Lie group.

Corollary 5.7. (Dey-Tsouvalas [54]) There exist one-ended Anosov groups which do not admit
any discrete, faithful representation into a rank one Lie group.

Historical remarks: Traaseth and Weisman [123] proved combination theorems for geometrically
finite convergence group actions. Tsouvalas and Weisman [127] proved combination theorems
for quasi-isometrically embedded groups. As a consequence they see that if I'y and I's are quasi-
isometrically embedded subgroups of PSL(d;,K) and PSL(dg,K), then I'y * 'y admits a quasi-
isometric embedding into some PSL(d,K). Both Dey-Kapovich [52] and Danciger-Guéritaud-
Kassel [47] also establish combination theorems for HNN extensions in the spirit of Theorem
5.4.

Recall that a domain © in P(R?) is properly convex if it is a convex bounded subset of some
affine chart for P(R?). If a subgroup I' C PSL(d, R) preserves and acts properly discontinuously
on a properly convex domain, then its full orbital limit set Aq(T") C 9f2 is the set of accumulation
points of any orbit, i.e. z € Aq(T") if and only if there exists x € Q and {v,} C I" so that
Yn(x) — z. We say that T' is (projectively) convex cocompact if I' acts cocompactly on the
convex hull, in ©, of Aq(T"). Convex cocompact Kleinian groups are also convex cocompact in this
definition where we take € to be the round ball in P(R*) preserved by PO(3,1). More generally,
any Anosov subgroup of PSL(d,R) which preserves a properly convex domain is projectively
convex cocompact, see Danciger-Guéritaud-Kassel [46, Thm 1.4] or Zimmer [137, Thm 1.27].
However, projectively convex cocompact groups need not be Anosov or even word hyperbolic.

6. PROPER AFFINE ACTIONS

In this section we will discuss the affine group Aff(V') of a finite-dimensional K-vector space
V. The affine group Aff(V) may be identified with the semidirect product of GL(V) and V,
where the action is given by

(A, V) (W) = A(wW) + v.
The affine group is not semi-simple so does not fit into the framework of the previous sections,
but its development has been heavily influenced by ideas from Fuchsian and Kleinian groups.
For a fuller treatment of this subject we recommend the survey paper by Danciger, Drumm,
Goldman and Smilga [42].

Auslander [9] conjectured that if I' ¢ Aff(R?) acts properly discontinuously and cocompactly
on R? by affine transformations, then I' is virtually solvable. The conjecture remains open, but
has been proven in all dimensions up to six, see Abels-Margulis-Soifer [1]. Milnor [102] asked
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whether something similar might be true for actions which are not cocompact, in analogy with
the Bieberbach theorems for groups of Euclidean isometries.

Margulis [94, 95] produced the first examples of proper affine actions by non-abelian free
groups on R3, which are now called Margulis space-times. His examples may be viewed as
arising from a one-parameter family of convex cocompact representations {p; : F,, — SL(2,R)}
where we identify sl(2,R) with R® and v € F}, acts by

7%<Mmmm(iwaQmwrv

where Ad : SL(2,R) — sl(2,R) is the adjoint representation. The crucial geometric feature of
the deformation is that if £(p;()) denotes the translation length of p;(), then there exists ¢ > 0
so that

&1 o) < —elpo(x)

for all v € F,.

Drumm [59] and Drumm-Goldman [60] introduced a geometric viewpoint on Margulis’ con-
struction, produced large classes of new examples and exhibited fundamental domains for their
examples. Danciger, Guéritaud and Kassel [43, 44] gave a complete classification of Margulis
space-times with convex cocompact linear part and showed that their quotients are all homeo-
morphic to the interior of a handlebody.

Goldman, Labourie and Margulis [66] gave an exact criterion for when affine actions of free
groups on R? are proper. Smilga [118] extended Margulis’ construction to any noncompact
semisimple Lie group G. He constructed a proper affine action of a non-abelian free group on
the Lie algebra g whose linear part is Zariski dense in Ad(G). Abels, Margulis and Soifer [2]
showed that if the linear part of a proper action is a Zariski dense subgroup of O(p,q) with
p > q > 1, then (p,q) = (2n,2n — 1). Smilga [117] described fundamental domains for some
proper affine actions of free groups on R*"~! whose linear part lies in SO(2n,2n — 1).

Zager Korenjak [132] generalized the strip deformations of Danciger, Guéritaud and Kassel to
produce further proper affine actions of free groups on R**~! whose linear part lies in SO(2n, 2n—
1). Burelle and Zager Korenjak [31] showed that the image of every positive representation of
a free group into SO(2n,2n — 1) arises as the linear part of a proper action on R*~1. They
also exhibited fundamental domains for actions arising from strip deformations which generalize
Drumm’s crooked plane description [59] from the n =1 case.

It is natural to ask which other groups admit proper affine actions. In a major breakthrough,
Danciger, Guéritaud and Kassel [45] proved that many geometrically natural groups admit
proper affine actions, including surface groups, all hyperbolic 3-manifold groups, and groups of
arbitrarily large cohomological dimension.

Theorem 6.1. (Danciger-Guéritaud-Kassel [45]) Any right-angled Coxeter group on k generators
admits a proper affine action on RF(F—1)/2,

In this setting, they construct families {p;} of representations of the right-angled Coxeter
group into O(p,q + 1) where p + ¢ + 1 = k and obtain actions on o(p,q + 1) where the linear
part is the (image under the adjoint representation) of pp and the translational part is given by
the derivative of the deformation. They develop a contraction property which guarantees that
the resulting affine action is proper and verify their criterion holds for their construction.

Danciger, Guéritaud and Kassel [45, Prop. 1.6] also show that every hyperbolic surface group
admits a proper affine action on R® 2 s(2, C). For comparison, Mess [101] had previously shown
that a closed surface group cannot have a proper affine action on R3. In the surface case, they
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begin with a subgroup of Isom(H?) which is the reflection group of a right-angled (2g + 2)-gon
P in H?, which contains the fundamental group of a closed surface of genus g as an index 4
subgroup. They extend P to a right-angled polyhedron P in H® which also has 2g + 2 faces.
They explicitly describe a smooth one-parameter family of deformations of P within H? which
remain right-angled and hence generate reflection groups in H3. They show that in a small
neighborhood of the Fuchsian group (but not at the Fuchsian group itself) the derivatives of the
elements of the group have the contraction property guaranteeing that they give rise to proper
affine actions.

Bridgeman, Canary and Sambarino [29] recently used the deformation theory of quasifuchsian
groups to produce an open subset U of the space of quasifuchsian groups such that (the image
under the adjoint) of every quasifuchsian group in U is the linear part of a proper affine action
on s12,C) = R, We recall that the space QF(S) of marked quasi-fuchsian groups isomorphic
to m1(S) is the space of (conjugacy classes of) convex compact representations of 71(.S) into
PSL(2,C). Bers [13] showed that QF(S) is naturally identified with T(S) x 7(S) where T (S)
is the Teichmiiller space of marked conformal structures on S and S is S with the opposite ori-
entation. The space of Fuchsian representations (i.e. representations conjugate into PSL(2,R))
manifests as the diagonal in this parametrization.

If p € QF(S), then its limit set A(p) = A(p(T")) C OH? is a Jordan curve. Let CH(p) be the
convex hull in H? of A(p) and C(p) = CH(p)/p(71(S)) be the convex core of N, = H?/p(m1(S9)).
Then C(p) is homeomorphic to S x [0, 1] unless p is Fuchsian.

Thurston [122] (see also Epstein-Marden [61]) showed that each component of the boundary
of C(p) is a hyperbolic surface in its intrinsic metric. Moreover, Thurston showed that each
component of the boundary of C(p) is totally geodesic in the complement of a lamination called
the bending lamination. Moreover, the bending lamination inherits a transverse measure which
measures the total bending along an arc in the surface. If p is not Fuchsian one obtains a
pair (54, 5—) of measured laminations. Bonahon and Otal characterized exactly which pairs of
laminations can arise. Dular and Schlenker [58] recently showed that the pair (84, ) determines

p.
If a simple closed curve v separates .S into two surfaces S; and Sy and

m1(S) = m1(S1) * () 71(52).

Given p € QF(S) one can define a bending deformation of p along 7. Let A,,)(#) be the Mobius
transformation which rotates by an angle 6 in the axis of p(y). We then define py : m1(S) —
PSL(2,C) by pg = p on m1(S1) and pg = A1) (0)pA,)(0) ! on 71(S2). Notice that pg = p and
po € QF(S) for all small enough values of 6.

Kourouniotis [87] gave a formula for the derivative of the complex length of every element
under the bending deformation along a curve or multicurve. One can, by taking limits, define
a bending deformation of a quasifuchsian group along any measured lamination on the surface,
see Kourouniotis [88] and Epstein-Marden [61]. One can generalize Kourouniotis’ work to give a
formula for the derivative of the complex length of elements with respect to the bending deforma-
tion along a general measured lamination. We use techniques developed by Bridgeman-Canary-
Yarmola [30] to develop a criterion which guarantees that if {p;} is the bending deformation of
p along 54 (or along B_), then there exists ¢ > 0 so that

au tzof(Pt(V)) < —ci(v, B+)

where £(p;(7)) is the real translation length of p¢(y) and i(~, 5+ ) is geometric intersection number
of v and fB.
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Let 74+ € T,QF(S) be the tangent vectors given by the bending deformation along f4. Set
U = vy + U_ and let {p;} be a deformation of p in the direction ¥. One can show that if both
B+ and B_ satisfy our earlier criterion then there exists d > 0 so that

91 Ho) < ~dt(po() 1)

for all v € m(.9).
Results of Ghosh [64] and Kassel-Smilga [83], combined with recent work of Sambarino [113]
can then be used to guarantee that Equation (1) implies that

N <Ad(p(7)), <5t’t:0pt(v)> p('Y)_1>

gives a proper affine action of 71(S), where Ad : SL(2,C) — sl(2, C) is the adjoint representation.
We have completed the outline of the proof of the following result.

Theorem 6.2. (Bridgeman-Canary-Sambarino [29]) If S is a closed surface of genus g > 2, then
there exists an open neighborhood U of the Fuchsian locus in QF(S) so that if p € U is not
Fuchsian, then Ad(p) is the linear part of a proper affine action of w1(S) on sl(2,C) = RS,

Our original motivation for studying bending deformations was the entropy functional on
quasifuchsian space. Here the entropy of p € QF(S) is given by 0% (p(71(S)). Ruelle [110]
showed that the entropy functional is analytic on QF(S) and Bowen [23] showed that it achieves
its global minimum of 1 only along the Fuchsian locus. Bridgeman [27] showed that the Hessian
of the entropy functional is positive definite on at least a half-dimensional subspace, so the
entropy functional has no local maxima.

Work of Sambarino [113] shows that if {p;} is a smooth path in QF(S) and

d d
— < — 3
o tzoé(pt(v)) < 0 for all v € m1(S) and o tzof(pt(a) < 0 for some « € 71(9),

then pg is not a critical point of the entropy functional. Therefore, if p € QF(.S) is not Fuchsian
and either bending lamination, S84 or S_, satisfies our early criterion, then we may bend along
that bending lamination to show that p is not a critical point of the energy functional.

Theorem 6.3. (Bridgeman-Canary-Sambarino [29]) If S is a closed surface of genus g > 2, then
there exists an unbounded open neighborhood U of the Fuchsian locus in QF(S) so that if p € U
s not Fuchsian, then p is not a critical point of the energy functional.

7. OTHER ADVANCES

In this section, we very briefly discuss a few other recent developments motivated by ideas
from the world of Kleinian groups.

Analogues of geometric finiteness: It is well-established that Anosov groups are the analogue in
higher rank of convex cocompact groups in rank one. It is then natural to ask for the higher rank
analogue of geometrically finite subgroups of rank one Lie groups. Here there are two competing
notions.

Kapovich and Leeb [78] were the first to develop the theory of what is now known as relatively
Anosov groups. This theory was further developed by Zhu [134] and Zhu-Zimmer [135, 136].
Given a relatively Anosov groups one can show that if the critical exponent of a linear functional
is finite, then its Poincaré series diverges at its critical exponent, see [36]. (The proof follows
the outline of Dal’bo, Otal and Peigné [41] but in higher rank substantial difficulties arise in
showing that the Poincaré series of any peripheral subgroup diverges at its critical exponent,
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and we must employ Hironaka’s theorem [70] on resolution of singularities in the proof.) One
may further construct a BMS measure on the geodesic flow associated to the linear functional
which one can show is finite and that the flow is mixing, see Blayac-Canary-Zhu-Zimmer [16]
and Kim-Oh [84]. One may thus derive counting theorems, see [16]. Counting and mixing results
were previously established for images of relatively Anosov representations of geometrically finite
Fuchsian groups, see Bray-Canary-Kao-Martone [26], for rank one properly convex projective
structures, see Blayac-Zhu [17], and for properly (but not strictly) convex closed projective
3-manifolds, see Bray [24, 25].

The main disadvantage of the theory of relatively Anosov groups is that it does not cover
many of the examples which one would naturally like to call geometrically finite. The restrictions
largely arise from the fact that relatively Anosov subgroups of PSL(d, K) are relatively hyperbolic
groups whose peripheral subgroups consist of weakly unipotent elements (i.e. elements all of
whose eigenvalues have modulus 1). This feature, along with the fact that there limit sets are
transverse, allows for the dynamical analysis discussed in the previous paragraph.

Weisman [128] introduced the more general class of extended geometrically finite groups.
His class of groups still consists of relatively hyperbolic groups but their limit sets need not be
transverse and the elements of their peripheral subgroups need not be weakly unipotent. His class
of groups includes all relatively Anosov groups, all projectively convex cocompact groups which
are relatively hyperbolic and holonomies of many convex projective manifolds with generalized
cusps, see Weisman [129]. (Islam and Zimmer [71, 72] gave necessary and sufficient conditions
for a projectively convex cocompact group to be relatively hyperbolic.) Impressively, Weisman
[128] is able to prove a strong stability theorem in his setting. Extended geometrically finite
groups have not been as extensively studied as relatively Anosov groups, but seem likely to
become an important organizing principle for this larger class of groups.

Limits of Anosov groups: As the theory of Kleinian groups matured, it began to focus on the
study of limits of geometrically finite groups. This theory is in its infancy in the higher rank
setting. Schwartz [114] constructed discrete subgroups of PSL(3,R) which are isomorphic to
PSL(2,Z). Barbot, Lee and Valério [10] showed that these groups arise as algebraic limits of
Anosov groups, and the limiting behavior was further analyzed by Schwartz [116]. These groups
are now known to be relatively Anosov. Lahn [90, 91] has extensively studied limiting behavior
of families of reducible representations.

Very recently, Bobb and Farre discovered representations of surface groups into PSL(4,R)
which are limits of Anosov representations but not even extended geometrically finite (and are
un-related to geometrically infinite Kleinian groups). They associate an “ending lamination” to
these representations which encodes the failure of the Anosov property. They also analyze and
draw pictures of the limit sets. This discovery was an outgrowth of their work in [18] on the
convex core of surface groups acting convex compactly on P(R*). This discovery suggests many
exciting new avenues for research.

It is known that every word hyperbolic Kleinian group is an algebraic limit of convex cocom-
pact Kleinian groups, see Namazi-Souoto [104] and Ohshika [105]. Tsouvalas [125] decisively
proved that the analogue is not true in general in higher rank. He exhibited a hyperbolic group
I' and an open set in Hom(I", PSL(d,K)) (for both K = R and K = C) consisting of discrete,
faithful representations which are quasi-isometric embeddings whose images are Zariski dense
but not Anosov.

Dehn filling: Thurston [122] famously showed that all but finitely many Dehn fillings of a one-
cusped finite volume hyperbolic 3-manifolds admit hyperbolic structures. Moreover, as the Dehn
surgery coefficients diverge to infinity the resulting Dehn filled hyperbolic manifolds converge
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to the original one-cusped hyperbolic 3-manifold. Choi, Lee and Marquis [39] established a
generalized Dehn filling theorem for certain convex projective manifolds in dimensions 4 through
7. Schwartz [115] and Acosta proved a Dehn filling theorem for certain classes of sugroups of
SU(2,1).

Weisman [130] recently proved a surprisingly strong generalization of Thurston’s theorem
which includes Thurston’s results and the results of Choi-Lee-Marquis as special cases. (It ap-
pears likely that the results of Acosta and Schwartz are also special cases.) As a first application,
in collaboration with Danciger, he constructs exotic new representations of 3-manifolds groups
into PU(3,1).

Other topics: Here I briefly mention a few topics that I ran out time, space or expertise to
discuss properly.

(1) Pleated surfaces: Maloni, Martone, Mazzoli and Zhang [92, 93] have developed a theory of
d-pleated surfaces associated to representations of surface groups into PSL(d, C). Mazzoli
and Viaggi [99] also develop a theory of pleated surfaces in H?" in their study of maximal
representations into SOg(2,n + 1).

(2) Surface subgroups: Inspired by the solution of the surface subgroup problem for hyper-
bolic 3-manifolds by Kahn and Markovic [74], Kahn, Labourie and Mozes [73] showed
that uniform lattices in center-free complex semi-simple Lie groups contain surface sub-
groups.

(3) Anti deSitter 3-manifolds: There is a long history of techniques from Teichmiiller the-
ory and the theory of quasifuchsian manifolds influencing the study of anti deSitter
3-manifolds, beginning with the seminal work of Mess [101], see also [8]. For a recent
survey of related work see Bonsante-Seppi [22].
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