SIMPLE LENGTH RIGIDITY FOR HITCHIN REPRESENTATIONS

MARTIN BRIDGEMAN, RICHARD CANARY, AND FRANCOIS LABOURIE

AssTRACT. We show that a Hitchin representation is determined by the spectral radii of the
images of simple, non-separating closed curves. As a consequence, we classify isometries of
the intersection function on Hitchin components of dimension 3 and on the self-dual Hitchin
components in all dimensions. As an important tool in the proof, we establish a transversality
result for positive quadruples of flags.

1. INTRODUCTION

Any discrete faithful representation of the fundamental group 71(S) of a closed oriented
surface S of genus greater than 1 into PSL,(IR) is determined, up to conjugacy in PGL,(R), by
the translation lengths of (the images) of a finite collection of elements represented by simple
closed curves. More precisely, a collection of 6g — 5 simple closed curves will be enough but
6g — 6 simple closed curve will not suffice, see Schmutz [33] and Hamenstadt [18]. In PSL,(R)
the translation length of an element is determined by the absolute value of the trace (which
is well-defined, although the trace is not), so one may equivalently say that a discrete faithful
representation of 1;(S) into PSL,(IR) is determined by the (absolute values of) the traces of a
finite collection of elements represented by simple closed curves.

We establish analogues of this result for Hitchin representations. The fact that traces of simple
closed curves determine the representation is more surprising in the Hitchin setting as the trace
does not even determined the conjugacy class of an element in PSL4(R) if d > 3.

In the proof, we use Lusztig positivity to establish transversality properties for limit curves of
a Hitchin representations, and more generally for positive quadruples of flags. We also establish
a rigidity result which depends on correlation functions associated to triples of simple closed
curves. We hope that these transversality and rigidity results are of independent interest and
that this paper will serve as an introduction to the beautiful algebraic ideas for mathematicians
with a more geometric background.

Hitchin representations. A Hitchin representation of dimension d is a representation of m(S)
into PSL;(IR) which may be continuously deformed to a d-Fuchsian representation that is the
composition of the irreducible representation of PSL,(IR) into PSL;(IR) with a discrete faithful
representation of 771(S) into PSL,(IR). The Hitchin component Hy(S) of all Hitchin representations

of m1(S) into PSL;(IR), considered up to conjugacy in PGL;(IR), is homeomorphic to R-@-Dx(S),
In particular, H>(S) is the Teichmdiller space of S — see Section 2 for details and history.
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A Hitchin representation is said to be self dual if it is conjugate to its contragredient. Self
dual Hitchin representations take values in PSp(2n,R) and PSO(n,n + 1), when d = 2n or
d = 2n+1 respectively. The set SH 4(S) of self dual representations into PSL;(IR) is a contractible
submanifold of H;(S) (see [19]).

Spectrum rigidity. The spectral length of a conjugacy class y in 71(S) — or equivalently a free
homotopy class of curve in S — with respect to a Hitchin representation p is

L, (p) := log A(p(»))

where A(p(y)) is the spectral radius of p(y).
The marked length spectrum of p is the function from the set of conjugacy classes in 71(S)
defined by

L(p) : y = L,(p).

Similarly, the marked trace spectrum is the map

y = | Tr(p(V))I,

where | Tr(A)| is the absolute value of the trace of a lift of a matrix A € PSL;(IR) to SL;(IR).
Our first main result is then

Theorem 1.1. [StmpLE MARKED LENGTH Ricipity] Two Hitchin representations of a closed orientable
surface of genus greater than 2 are equal whenever their marked length spectra coincide on simple
non-separating curves.

The restriction on the genus may not only reflect the limit of our methods: we have extended
this result to surfaces with boundary, see Section 11, and it is clear that simple length rigidity
fails for the pair of pants when d > 2.

We obtain a finer result for the trace spectrum

Theorem 1.2. [StmpPLE MARKED TRACE Ricipity] Two Hitchin representations of a closed orientable
surface of genus greater than 2 are equal whenever their marked trace spectra coincide on simple
non-separating curves. Furthermore, if S is a closed orientable surface of genus greater than 2 and d > 2,
then there exists a finite set L;(S) of simple non-separating curves, so that two Hitchin representations
of 1(S) of dimension d are equal whenever their marked trace spectra coincide on L(S).

Dal’bo and Kim [11] earlier proved that Zariski dense representations of a group I' into a
semi-simple Lie group G without compact factor are determined, up to automorphisms of G, by
the marked spectrum of translation lengths of all elements on the quotient symmetric space G/K.
Similar results were obtained by Charette and Drumm [8] for subgroups of the affine Minkowski
group. Bridgeman, Canary, Labourie and Sambarino [6] proved that Hitchin representations,
are determined up to conjugacy in PGL;(IR) by the spectral radii of all elements. Bridgeman and
Canary [5] proved that discrete faithful representations of 7t1(S) into PSL(2, C) are determined
by the translation lengths of simple non-separating curves on S. Duchin, Leininger and Rafi [12]
showed that the simple marked length spectrum determines a flat surface, but that no collection
of finitely many simple closed curves suffices to determine a flat surface. On the other hand,
Marché and Wolff [26, Section 3] gave examples of non-conjugate, indiscrete, non-elementary
representations of a closed surface group of genus two into PSL,(IR) with the same simple
marked length spectra.
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In Section 11 we establish a version of Theorem 1.1 for Hitchin representations of compact
surfaces with boundary which are “complicated enough,” while in Section 10 we establish an
infinitesimal version of Theorem 1.1.

Isometry groups of the intersection. We apply Theorem 1.1 to characterize diffeomorphisms
preserving the intersection function of representations in H;(S).

In Teichmiiller theory, the intersection I(p, o) of representations p and ¢ in 7 (S) is the length
with respect to ¢ of a random geodesic in H?/p(m1(S)) — where H? is the hyperbolic plane.
Thurston showed that the Hessian of the intersection function gives rise to a Riemannian metric
on 7 (S), which Wolpert [34] showed was a multiple of the classical Weil-Petersson metric — see
also Bonahon [2], McMullen [29], and Bridgeman [4] for further interpretation. As a special
case of their main result, Bridgeman, Canary, Labourie and Sambarino [6] used the Hessian
of a renormalized intersection function to construct a mapping class group invariant, analytic,
Riemannian metric on H;(S), called the pressure metric — see Section 8 for details.

Royden [31] showed that the isometry group of 7(S), equipped with the Teichmiiller metric,
is the extended mapping class group, while Masur and Wolf [28] established the same result for
the Weil-Petersson metric.

In our context, the intersection isometry group — respectively self dual intersection isometry group—
is the set of those diffeomorphisms of H;(S) — respectively SH ;(S) — preserving 1.

Theorem 1.3. [SELF DUAL ISOMETRY GROUP] For a surface of genus greater than 2, the self dual
intersection isometry group coincides with the extended mapping class group of S.

We have a finer result when d = 3.

Theorem 1.4. [IsoMETRY GRouUP IN DiMENsioN 3] For a surface S of genus greater than 2, the
intersection isometry group of Hz(S) is generated by the extended mapping class group of S and the
contragredient involution.

Since, as we will see in the proof, isometries of the intersection function are also isometries of
the pressure metric, we view this as evidence for the conjecture that this is also the isometry
group of the pressure metric — See Section 8.1 for precise definitions.

Our proof follows the outline suggested by the proof in Bridgeman—Canary [5] that the
isometry group of the intersection function on quasifuchsian space is generated by the extended
mapping class group and complex conjugation.

A key tool in the proof of Theorem 1.4 is a rigidity result for the marked simple, non-separating
Hilbert length spectrum for a representation into PSL(3, R), see Section 9. Kim [20], see also
Cooper-Delp [10], had previously proved a marked Hilbert length rigidity theorem for the full
marked length spectrum.

Positivity and correlation functions. Every element of the image of a Hitchin representation is
purely loxodromic, i.e. diagonalizable with real eigenvalues of distinct modulus. We introduce
correlation functions which record the relative positions of eigenspaces of elements in the image
and give rise to a rigidity result for the restrictions of Hitchin representation to certain three
generator subgroups. This new rigidity result relies crucially on a new transversality result for
eigenbases of images of disjoint curves.
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If p is a Hitchin representation of dimension 4, and y is a non-trivial element, a matrix
representing p(y) may be written —see Section 2 — as

d
PO =Y A (e pi (p)),
i=1

where A1 (p()) > ... > Az (p(y)) > 0 are the eigenvalues (of some lift) of p(y) and p; (p(y)) are the
projectors onto the corresponding 1-dimensional eigenspaces. Let

o A= (n,...,ay) be an n-tuple of non-trivial elements of m(S),

-----

The associated correlation function Ti(A) on Hy(S) is defined by

n
Ti(A) : p Tr[H pz-j<p<aj>>].
j=1

We show that finitely many of these correlation often suffice to determine the restriction of
a Hitchin representation to a three generator subgroup. One may use this result to give an
embedding of H;(S) in some RY and we hope that a refinement of these ideas could yield new
parametrisations of H;(S). In the statement below, recall that a pair of disjoint simple closed
curves is said to be non-parallel if they do not bound an annulus.

Theorem 1.5. [RIGIDITY FOR CORRELATIONS FUNCTIONS] Let p and o be Hitchin representations in
H;(S). Suppose that o, B, 6 € m1(S) — {1} are represented by based loops which are freely homotopic to a
collection of pairwise disjoint and non-parallel simple closed curves. Assume that

(1) for any n € {a, B, 0}, p(n) and o(n) have the same eigenvalues,
(2) foralli,jkin{l,...,d}

Tijela,p,0)  Tijila,p,0)
Tjx(B, 0) P Tix(B,0)
then p and o are conjugate, in PGL4(RR), on the subgroup of 11(S) generated by a, p and y.

(0),

Before even stating that theorem, we need to prove the relevant correlation functions never
vanish. This will be a corollary of the following theorem. First recall that a Hitchin representation
in H;(S) defines a limit curve in the flag manifold of R?, so that any two distinct points are
transverse. Recall also that any transverse pair of flags a and b in R? defines a decomposition of
R? into a sum of d lines L;(a, b), ... La(a, b).

Theorem 1.6. [TRANSVERSE BASEs] Let p be a Hitchin representation of dimension d. Let (a, x, y, b) be
four cyclically ordered points in the limit curve of p, then any d lines in

{Li(a,b),...,La(a,b),L1(x, y), ..., La(x, v)}
are in general position.

This last result is a consequence of the positivity theory developed by Lusztig [24] and used
in the theory of Hitchin representations by Fock—-Goncharov [13] and is actually a special case of
a more general result about positive quadruples, see Theorem 3.6. Theorem 3.6 may be familiar
to experts but we could not find a proper reference to it in the literature.
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We also establish a more general version of Theorem 1.5, see Theorem 4.4.

Structure of the proof. Let us sketch the proof of Theorem 1.1. The proof runs through the
following steps. We first show, in Section 6, that if the length spectra agree on simple non-
separating curves, then all the eigenvalues agree for these curves. This follows by considering
curves of the form a"f when o and  have geometric intersection one and using an asymptotic
expansion. A similar argument yields that ratio of correlation functions agree for certain triples
of curves that only exist in genus greater than 2, see Theorem 7.1, and a repeated use of Theorem
1.5 concludes the proof of Theorem 1.1. Theorem 1.6 is crucially used several times to show that
coefficients appearing in asymptotic expansions do not vanish.

Acknowledgements. Section 3 usesideas that are being currently developed by the third author
in collaboration with Olivier Guichard and Anna Wienhard. We have benefitted immensely
from discussions with Yves Benoist, Sergey Fomin, Olivier Guichard, Andres Sambarino and
Anna Wienhard and wish to thank them here. We thank the referee for very helpful comments
on the original version of the manuscript. This material is partially based upon work supported
by the National Science Foundation while the third author was in residence at the Mathematical
Sciences Research Institute in Berkeley, CA, during the Fall 2016 semester. The authors also
gratefully acknowledge support from U.S. National Science Foundation grants DMS 1107452,
1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR
Network).

2. HITCHIN REPRESENTATIONS AND LIMIT MAPS

2.1. Definitions. Let S be a closed orientable surface of genus ¢ > 2. A representation
p : m1(S) = PSL2(RR) is said to be Fuchsian if it is discrete and faithful. Recall that Teichmiiller
space 7 (S) is the subset of

Hom(m1(S), PSLy(R))/PGL,(R)

consisting of (conjugacy classes of) Fuchsian representations.

Let 74 : PSLy(IR) — PSL4(R) be the irreducible representation (which is well-defined up
to conjugacy in PGL;(IR)). A representation o : 11(S) — PSL,(IR) is said to be d-Fuchsian if it
has the form 7 o p for some Fuchsian representation p : 711(S) = PSLy(IR). A representation
o : mi(S) — PSLy(R) is a Hitchin representation if it may be continuously deformed to a
d-Fuchsian representation. The Hitchin component Hy(S) is the component of the space of
reductive representations up to conjugacy:

Hom™4(11;(S), PSL4(R))/PGL4(RR)

consisting of (conjugacy classes of) Hitchin representations. In analogy with Teichmiiller space
T (S) = Ha(S), Hitchin proved that H;(S) is a real analytic manifold diffeomorphic to a cell.

Theorem 2.1. (Hitchin [19]) If S is a closed orientable surface of genus g > 2 and d > 2, then Hy(S) is
a real analytic manifold diffeomorphic to R@-1@g-2),

The Fuchsian locus is the subset of H;(S) consisting of d-Fuchsian representations. It is
naturally identified with 77(S).
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2.2. Real-split matrices and proximality. If A € SL;(R) is real-split, i.e. diagonalizable over
R, we may order the eigenvalues {/\Z-(A)}?:1 so that

M (A = [A2(A)] > - [Ag-1 (A)] = [Aa(A)].

Let {e,'(A)}’;l:1 be a basis for R so that ¢;(A) is an eigenvector with eigenvalue 1;(A) and let ¢'(A)
denote the linear functional so that (¢/(A)le;(A)) = 1 and (¢/(A)|e i(A)) = 0if i # j. Let pi(A) denote
the projection onto (¢;(A)) parallel to the hyperplane spanned by the other d — 1 basis elements.
Then,

Pi(A)(V) = (¢(A) | v) ei(A)

and we may write
d
A=) MAPIA).
i=1

We say that A is k-proximal if
AL (A > [A2(A)] > .. IAR(A)] > [Aksa (A)]

and we say that A is purely loxodromic if it is (d — 1)-proximal, in which case it is diagonalizable
over R with eigenvalues of distinct modulus. If A is k-proximal, then, foralli =1,...,k, pi(A)
is well-defined and e¢;(A) is well-defined up to scalar multiplication. Moreover, if A is purely
loxodromic p;(A) is well-defined and ¢;(A) and ¢'(A) are well-defined up to scalar multiplication
foralli. If A € PSL;(IR), we say that A is purely loxodromic if any lift of A to an element of SL;(IR)
is purely loxodromic.

2.3. Transverse flags and associated bases. A flag for R? is a nested family

f=UN 2 Y

of vector subspaces of R? where fi has dimension i and f* C f*! for each i. Let ¥ denote the
space of all flags for R. An n-tuple (f, ..., fx) € F | is transverse if

di g gl R
leffe..ef,=R

.....

fd(”)is an open dense subset of ¥ .

Two transverse flags (4, b) determine a decomposition of R? as sum of lines {L;(a, b)}fl:l where

Li(a,b) = a' n b1
for alli. A basis EZ = {e;} for R? is consistent with (a,b) € T;Z) ife; € Li(a, b) for all i, or, equivalently,
if
@ ={ey,...,ej) and b ={es...,e4_js1)

for all j. In particular, the choice of basis is well-defined up to scalar multiplication of basis
elements.
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2.4. Limit maps. Labourie [21] associates a limit map from dw,71(S) into F; to every Hitchin
representation. This map encodes many crucial properties of the representation.

Theorem 2.2. (Labourie [21]) If p € H;(S), then there exists a unique continuous p-equivariant map
&p 1 deom1(S) — Fy, such that:

(1) (Proximality) If y € 1t1(S) — {1}, then p(y) is purely loxodromic and

g0 = (e, - eilp(y)

for all i, where y* € doom1(S) is the attracting fixed point of y.
(2) (Hyperconvexity) If x1,...,Xx € deom1(S) are distinct and my + ... + my = d, then

EM(xy) @... @ EM(x) @ ... ®E™(x;) = RY.

Notice that if y € 111(S) — {1} and y* € dwo711(S) are its attracting and repelling fixed points,
then p(y) is diagonal with respect to any basis consistent with (£,(y*), £,(y7)). Moreover, if o
is in the Fuchsian locus, then o(y) has a lift to SL;(IR) all of whose eigenvalues are positive.
Therefore, if p € H;(S), then p(y) has a lift to SL;(IR) with positive eigenvalues and we define

AM(p(y) > A2(p(y) > -+ > Aa(p(y)) > 0

to be the eigenvalues of this specific lift.
It will also be useful to note that any Hitchin representation p : 711(S) — PSL;(IR) can be lifted
to a representation p : 71(S) — SL;(IR). Moreover, Hitchin [19, Section 10] observed that every

Hitchin component lifts to a component of Hom™(711(S), SL4(R))/SLy(R).

2.5. Other Lie groups and other length functions. More generally, if G is a split, real simple
adjoint Lie group, Hitchin [19] studies the component

H(S,G) c Hom™(1(S), G)/G

which contains the composition of a Fuchsian representation into PSL>(IR) with an irreducible
representation of PSL,(IR) into G and shows that it is an analytic manifold diffeomorphic to
R(28-2)dim(G)_

If p € Hy(S), then we define the contragredient representation p* € Hy(S) by p*(y) = p(y™1)T
for all y € m1(S). The contragredient involution of H;(S) takes p to p*.

We define the self dual Hitchin representations — and accordingly the self dual Hitchin component
SH;(S) — to be the fixed points of the contragredient involution. Since the contragredient
involution is an isometry of the pressure metric (see Proposition 8.3), SH;(S) is a totally geodesic
submanifold of H(S).

Observe then that if p is a self dual Hitchin representation and y € m1(S), then the eigenvalues
M(pD), ..., Aa(p(y)) satisty Al._l(p(y)) = A4-i+1(p(p)) for all i. On the other hand, Theorem 1.2 in
[6] implies that if AIl (p(y)) = Aa(p(y)) for all y, then p is conjugate to its contragredient p*. Notice
that the contragredient involution fixes each point in H(S, PSp(24, R)), H (S, PSO(d, d + 1)), and
H(S, Gy,0) considered as subsets of H(S, PSL(2d, R)), H(S,PSL(2d + 1, R)), and H(S, PSL(7, R))
respectively. Conversely, a self dual representation, being conjugate to its contragredient, is
not Zariski dense, hence belongs to such a subset by a result of Guichard [16]. In particular,
SHyi(S) = H(S,PSp(2d, R)) and SHy4.1(S) = H(S,PSO, d + 1)).
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In our work on isometries of the intersection function, it will be useful to consider the Hilbert
length Lg(p) of p(y) when y € mt1(S) and p € Hy(S), where

Lip) = logh(p(y)) —logAa(p(»)),

and similarly the Hilbert length spectrum as a function on free homotopy classes.' Notice that
L;I (p) = Ll;_l (p) = Lg,{ (p*)- One readily observes that a representation is self dual if and only if

L)Ij( (p) = 2L, (p) for all non-trivial y € 7t1(S).

3. TRANSVERSE BASES

In this section, we prove a strong transversality property for ordered quadruples of flags in the
limit curve of a Hitchin representation, which we regard as a generalization of the hyperconvexity
property established by Labourie [21] (see Theorem 2.2). (Recall that any pair (a, b) of transverse
flags determines a decomposition of R? into a sum of d lines Li(a,b) @ --- @ Ly(a, b) where
Li(a,b) = a' N bp31+1)

Theorem 1.6. Let p be a Hitchin representation of dimension d and let (a, x, y, b) be four cyclically
ordered points in the limit curve of p, then any d lines in

{Ll(ﬂ, b)/ ey Ld(ﬂ, b)/ Ll(xl y)/ ey Ld(x/ y)}
are in general position.

The proof of Theorem 1.6 relies on the theory of positivity developed by Lusztig [24] and
applied to representations of surface groups by Fock and Goncharov [13]. It will follow from a
more general result for positive quadruples of flags, see Theorem 3.6.

Remark: When p € H3(S), there exists a strictly convex domain Q, in RP? with C! boundary
so that p(711(S)) acts properly discontinuously and cocompactly on €, see Benoist [1] and
Choi-Goldman [9]. If &, is the limit map of p, then E; identifies doo71(S) with dQ,,, while E%(z)
is the plane spanned by the (projective) tangent line to J(, at éé(z). In this case, Theorem 1.6 is
an immediate consequence of the strict convexity of (), since if x and y lie in the limit curve,
then L1 (x, y) = x?, L(x, y) = y' and Ly (x, y) is the intersection of the tangent lines to Q, at x! and
y!. Moreover, one easily observes that the analogue of Theorem 1.6 does not hold for cyclically
ordered quadruples of the form (a, x, b, ).

3.1. Components of positivity. Given a flag a, we define the Schubert cell B, C F; to be the set
of all flags transverse to a. Let U, be the group of unipotent elements in the stabilizer of 4, i.e.
the set of unipotent upper triangular matrices with respect to a basis {e;} consistent with a. If
b € B,, we can assume that {e;} is consistent with (a, b), so it is apparent that the stabilizer of b in
U, is trivial. The lemma below follows easily.

IThis is called the Hilbert length, since when d = 3 it is the length of the closed geodesic in the homotopy class
of y in the Hilbert metric on the strictly convex real projective structure on S with holonomy p, see, for example,
Benoist [1, Proposition 5.1].
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Lemma 3.1. If b € B,, then B, = U,(b). Moreover, the map
hb : Uu - Ba
defined by hy,(u) = u(b) is a diffeomorphism.

Suppose that (2,b) € Td(z) and ¢ is a basis consistent with the pair (4, b). Recall that A € SL,;(RR)
is totally positive with respect to ¢}, if every minor in its matrix with respect to the basis ¢} is
positive. Similarly, we say that A € SL4(IR) is totally non-negative with respect to ¢}, if every
minor in its matrix with respect to the basis ¢} is non-negative. Let U(¢j)>0 C U, be the set of
totally non-negative unipotent upper triangular matrices with respect to ¢;. We say that a minor
is an upper minor with respect to ¢ if it is non-zero for some element of U(¢})>0. We then let
U(&})>0 be the subset of U(e})>o consisting of elements all of whose upper minors with respect
to ¢} are positive. Moreover, let A(¢7)>0 be the group of matrices which are diagonalizable with
respect to ¢; with positive eigenvalues. Notice that although U(¢j)-0 and U(¢})50 depend on

the choice of basis ¢}, A(¢})>0 depends only on the pair (4, b). Lusztig [24] proves that

Lemma 3.2. (Lusztig [24, Sec. 2.12, Sec. 5.10] If (a,b) € Td(z) and s‘; is a basis consistent with the
pair (a, b), then
U(ey)oU(ey)so € U(ey)so and  U(ey)so = U(ey)so0 € Ua.

Ifi# jand f € R, the elementary Jacobi matrix Ji;(f) with respect to ¢; = {e;} is the matrix such
that Jij(t) = ej + te; and Jij(t)(ex) = ex if k # j. If i < jand t > 0, then Jj;(t) € U(ej)>0. Moreover,
U(e})s0 is generated by elementary Jacobi matrices of this form (see, for example, [14, Thm. 12]).
So,

(1) the semigroup U(e})so is connected, and
(2) if g € A(e), then gU(eZ)>0g‘1 = U(&})>0-
We define the component of positivity for ¢} as
V(ep) == U(ep)>o(b).

Lusztig [24, Thm. 8.14] (see also Lusztig [25, Lem. 2.2]) identifies V(¢}) with a component of
the intersection B, N By, of two opposite Schubert cells.

Lemma 3.3. (Lusztig [24, Thm. 8.14]) If (a,b) € 77;2) and &; is a basis consistent with the pair (a, b),
then V(&) is a connected component of B, N By,

3.2. Positive configurations of flags. We now recall the theory of positive configurations of
flags as developed by Fock and Goncharov [13].
A triple (a,x,b) € fd(a) is positive with respect to a basis ¢ consistent with (g, b) if x = u(b) for
some u € U(ey)>o. If x € V(¢}), we define
V(a,x,b) = V(e})
and notice that V(a, x, b) is the component of B, N B, which contains x. A triple (a,x,b) € 7-;(3) is
then positive if it is positive with respect to some basis ¢ consistent with (a, b).

More generally, a (n+2)-tuple (a4, x,...,x1,b) € T;’HZ) of flags is positive if there exist a basis EZ
consistent with (4, b) and u; € U(e})>0 so that x, = uy - - - up(b) for all p. By construction, the set of
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(n + 2)-tuples of flags is connected. Since U(¢7)> is a semi-group, (4, x;, b) is a positive triple for
all i and, more generally, (a, x;,, ..., x;, b) is a positive (k + 2)-tuple whenever 1 <i; <--- < i, < n.

Fock and Goncharov showed that the positivity of a n-tuple is invariant under the action of
the dihedral group on n elements.

Proposition 3.4. (Fock-Goncharov [13, Thm. 1.2]) If (a1, ..., a,) is a positive n-tuple of flags in F,
then (ap, a3, ...,ay,a1) and (ay,ay—1, .. .,a1) are both positive as well.

As a consequence, we see that every sub k-tuple of a positive n-tuple is itself positive.
Corollary 3.5. If (a1,...,a,) is a positive n-tuple of flags in Fyand 1 < iy <ip <--- < i <n, then
(ai,,aiy, . ..,a;) is positive.

Proof. It suffices to prove that every sub (n — 1)-tuple of a positive n-tuple is positive. By
Proposition 3.4, we may assume that the sub (n — 1)-tuple has the form (45,43, ...,a,) and we
have already seen that this (1 — 1)-tuple is positive. m|

The main result of the section can now be formulated more generally as a result about positive
quadruples. Its proof will be completed in Section 3.7.

Theorem 3.6. [TRANSVERSE BASES FOR QUADRUPLES] Let (a, x, y, b) be a positive quadruple in F;, then
any d lines in

{Li(a,b),...,La(a,b),L1(x, y), ..., La(x, v)}
are in general position.
3.3. Positive maps. If L is a cyclically ordered set with at least 4 elements,amap y : £ — ¥,
is said to be positive if whenever (z1,22,23,24) is an ordered quadruple in X, then its image

(y(z1),7(22), 7(z3), Y(z4)) is a positive quadruple in ?;(4).
For example, given an irreducible representation

74 : PSL2(R) — PSL;(IR)
the 74-equivariant Veronese embedding
vy : 0H? = PY(R) — F

(where v, takes the attracting fixed point of g € PSL>(IR) to the attracting fixed point of 74(g)) is
a positive map. More generally, Fock and Goncharov, see also Labourie-McShane [22, Appendix
B], showed that the limit map of a Hitchin representation is positive.

Theorem 3.7. (Fock-Goncharov [13, Thm 1.15]) If p € Hy(S), then the associated limit map
&p 1 deom1(S) — Fy is positive.

Notice that Theorem 1.6 follows immediately from Theorems 3.6 and 3.7.

We observe that one may detect the positivity of a n-tuple using only quadruples, which
immediately implies that positive maps take cyclically ordered subsets to positive configurations.

Lemma 3.8. If n > 2, then an (n + 2)-tuple (a, Xy, . .., x1,b) is positive if and only if (a, xi1, x;, b) is
positive foralli=1,...,n—1.
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Proof. Corollary 3.5 implies that if (a, x,, ..., x1, ) is positive, then (a, x;11, x;, b) is positive for all
i.

Now suppose that (a, x;41, x;, b) is positive forall i = 1,...,n — 1. Since (g, x, x1, b) is positive,
there exists uq,uy € U(EZ)>0 so that x; = u1(b) and x» = uquy(b). If we assume that there
exists u; € U(EZ)>0, for all i < k < n, so that x, = uy---uy(b) for all p < k, then, since
(a, xk41, Xk, b) is positive, there exists 141, vk € U(eg)>o such that x;,1 = 41 () and x; = ve(b).
However, Lemma 3.1 implies that vy = 1y - - - u. Iteratively applying this argument, we see that
(a,xn,...,x1,b) is positive. O

Corollary 3.9. If X is a cyclically ordered set, f : ¥ — F; is a positive map and (a1,...,a,) is a
cyclically ordered n-tuple in ¥, then (f(a1), f(a2), f(a3), ..., f(an)) is a positive n-tuple in F.

The following result allows one to simplify the verification that a map of a finite set into ; is
positive, see also Section 5.11 in Fock-Goncharov [13]

Proposition 3.10. Let P be a finite set in dooH? and T~ be an ideal triangulation of the convex polygon
spanned by P. A map f : P — ¥ is positive if whenever (x, y,z, w) are the (cyclically ordered) vertices
of two ideal triangles in T which share an edge, then (f(x), f(y), f(z), f(w)) is a positive quadruple.

Proof. Suppose 7 is obtained from 7 by replacing an internal edge of 7 by an edge joining the
opposite vertices of the adjoining triangles. In this case, we say that 7 is obtained from 7 by
performing an elementary move. Label the vertices of the original edge by 2 and b and the vertices
of the new edge by x and y, so that the vertices occur in the order (g, x, b, y) in doH2. If the
edge (v, a) abuts another triangle with additional vertex z, then (4, x, y, z) is a cyclically ordered
collection of points in P which are the vertices of two ideal triangles in 7 which share an edge.
By our original assumption on 7, (f(a), f(x), f(b), f(y)) and (f(a), f(b), f(y), f(z)) are positive, so,
by Proposition 3.4, (f(y), f(a), f(x), f(b)) and (f(v), f(2), f(a), f(b)) are positive. Lemma 3.5 then
implies that (f(v), f(z), f(a), f(x), f(b)) is positive. One may similarly check that all the images
of cyclically ordered vertices of two ideal triangles which share an edge in 7" have positive
image. Since any two ideal triangulations can be joined by a sequence of triangulations so that
consecutive triangulations differ by an elementary move, any ordered sub-quadruple of P has
positive image. Therefore, f is a positive map. m|

3.4. Complementary components of positivity. If (a,b) € 7-;(2) and ¢ = {e;} is a basis consistent
with (4, D), then one obtains a complementary basis o(¢}) = {(=1)’e;} which is also consistent with
(a,b). We ftirst observe that for a positive sextuple (x, y,4,u,v,b), then the the components of
positivity for (a, b) containing {u, v} and {x, y} are associated to complementary bases. The proof
proceeds by first checking the claim for configurations in the image of a Veronese embedding
and then applying a continuity argument.

Lemma 3.11. If (x,y,a,u,v,b) is a positive sextuple of flags and &} is a basis consistent with (a, b) so
that V(e}) contains {u, v}, then V(a(ep)) contains {x, y}.

Proof. Consider theirreducible representation 7, : PSL(IR) — PSL;(IR) taking matrices diagonal
in the standard basis for R? to matrices diagonal with respect to ¢;- This gives rise to a Veronese

embedding v, : JH? = S! — ¥, taking oo toa and 0 to b.
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The involution of #; induced by conjugating by the diagonal matrix D, in the basis ¢}, with

entries ((—1)’) interchanges the components of v(S') — {a, b} and interchanges V(e7) and V(a(ep)).
Therefore, our result holds when x, y, u and v lie in the image of v-.

Since v, is positive and the set of positive sextuples is connected, there is a family of positive
maps & ¢ {x, y,a,u,v,b} — F;s0that the image of &g lies on the image of the Veronese embedding
and &1 = Id. Since PSL;(RR) acts transitively on space of pairs of transverse flags, we may assume
that &4(a) = a and &(b) = b for all t. Notice that each of &:({x, y}) and &:({u, v}) lies in a component
of B, N By, for all . Since &1(fu, v}) € V(e}), &({u, v}) € V(ey) for all £. Since &o({u, v}) € V(e)) and
&o(x, y,a,u,0,b) lies in the image of an Veronese embedding, &o({x, y}) C V(O(EZ)), which in turn
implies that & ({x, y}) € V(o(¢})) for all £. m|

We next observe that the closures of complementary components of positivity intersect in at
most one point within an associated Schubert cell.

Proposition 3.12. If (a,b) € 7—’;2) and &} is a basis consistent with (a, b), then
B, N V(eh) N V(o(ey)) = {b}.

Proof. By Lemma 3.1,
V(ey) = hp(U(ey)>0) € hp(U(ep)s0) € hy(Ua) = Bg
and h,(U(e))>0) is a closed subset of B, since hj, is a diffeomorphism. So
BaNV(ep) € hy(U(ep)s0) and B, N V(a(ey)) < hyp(U(a(ey))so)-
Thus, again since h;, is a diffeomorphism,
BN VED N V) € Iy(U(eD)s0) N by (Ulo(ed))so)
Iy (U(e0)s0 0 U(0(e]))50)

(U(el)s0 N U(o(£5)50) (B)

So Proposition 3.12 follows from the following lemma:

Lemma 3.13.
U(ep)so N Ulo(ey))zo0 = {I}.
Proof. Let A = (a;}) € U(ep)z0 N U(a(g;))s0 be written with respect to the basis €. Notice that if

we let g;; be the matrix coefficients for A with respect to the basis o*(e‘g), then a;; = (—1)i+ja_1-]-. It
follows immediately that a;; = 0 if i + j is odd.

If A # I, leta;; > 0 be a non-zero off-diagonal term which is closest to the diagonal, i.e. 4;; =0
ifl # jand [ >ianda; =0if [ # iand ! < j. Then, by the above, j # i + 1. If | € (i, j), we consider

the minor
ag aij| _ |0 ajj
ap El[j 1 0

which has determinant —a;;, so contradicts the fact that A is totally non-negative.
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3.5. Nesting of components of positivity. We will need a strict containment property for
components of positivity associated to positive quintuples.
Proposition 3.14. If (a,x,z,y,b) is a positive quintuple in F;, then
Vix,z,y) c V(a,zDb).

We begin by establishing nesting properties for components of positivity associated to positive
quadruples.

Lemma 3.15. If (4, x, y, D) is a positive quadruple in Fy, then
V(x,%,b) C V(a,y,b) and V(s,xy)C V(,xb)

Proof. Since (a, x, y, b) is a positive quadruple, there exists a basis EZ for (a,b)and u,v € U(e‘;)>o SO
thaty = u(b) and x = u(v(b)). Since U(¢})>o is a semi-group, uv € U(ej)>0 and x, y € V(¢&}) = U(ep)>0(b).
Notice that e‘; = u(ey) = {u(e;)} is a basis consistent with (a, y) since u(a) = a, u(b) = y and
(e;) = al N b¥=*1 g0
(u(en) = u(@’) Nu®™*1) = a' Ny
Let W = uU(sZ)>0u'1, soW = U(s‘]”/)>0. Therefore,
V(el) = W(y) = ull(eD)so(™ (1)) = (ull(ed)0) (b) C Uel)so(b) = Vi)

where the inclusion follows from the fact that U(e})>o is a semi-group and u € U(ey)>o. Moreover,
x € V(eh) = (uli(ef)»0) (b) C V(ef)
since uv € ull(e})>0 and x = u(v(b)), so
V(a,x,y) = V(ey) € V(ey) = V(a,x,b).

Since (b, y, x, a) isalso a positive quadruple, the same argument shows that V(b, y, x) C V(b, y, a).
Since V(b,y,x) = V(x,y,b) and V (b, y,a) = V(a, y, b), we conclude that

V(x,y,b) c V(a,y,b).

We now analyze the limiting behavior of sequences of components of positivity.

Lemma 3.16. Let {c,} and {z,} be sequences of flags so that to {c,} converges to a flag b and (cy, zn, b) is
a positive triple of flags for all n. Then the Hausdorff limit of {V(c,, z4, b)} is the singleton {b}.

Proof. We note that we can choose flags y1, a and yo such that (y1,4, yo, s, zn, b) is a positive
sextuple of flags. Since (a, ¢u, 2y, b) and (cy, z4, b, a) are positive, Lemma 3.15 implies that

V(cn,zn,b) € V(a,z,,b) N V(cy, z4,a)

for all n, so

V(cn, zn, b) € V(a, z,, b) N V(cy, zn, a).

After extracting a subsequence, we may assume that {V(cn, Zn, b)} converges to a Hausdorff

limit H. It is enough to prove that H = {b}. Notice that, since each V(c;, z, b) is connected, H
must be connected.
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Notice that, for all n, V(a,z,,b) = V(a, yo, b), since (a, yo, z4, b) is positive, and V(c,, z,,a) =

V(cn, y1,a), since (cu, zy, Y1,4a) is positive. Since {B,} converges to B, { V(cn,zn,a)} = { Vicn, yl,a)}

converges to V(b, y1,a). Therefore,

{by cH C V(a,yo,b) N V(b,11,a).
However, Lemma 3.11 and Proposition 3.12 together imply that

Bﬂ N V(ﬂ, Yo, b) N V(b/ ylla) = {b}

Since B, is an open neighborhood of b and H is connected, we conclude that H = {b}. m]

Proof of Proposition 3.14. We note that if (a, x,, . .., x1, b) is positive with respect to the basis s”bl with
x, =vbforve U(EZ)>0, ifue U(eﬁ)>0 then (a,vu(x1), xy, ..., x1,b) is positive. Since positivity is
invariant under cyclic permutations, we may add flags in any position to a positive n-tuple to
obtain a positive (1 + 1)-tuple.

Choose c and e so that (a,¢,x,z,y,¢,b) is positive and let ¢ be an element in A(&f)so. We
observe that (4, ¢, g(v), g(2), €, b) is positive.

Lemma 3.17. If (a,c, x,z,e,b) is a positive sextuple in F; and g € A(e)>o, then (a,c, §(x), §(z),e,b) is
positive.

Proof. 1dentify (a, ¢, g(x), §(2), e, b) with the cyclically ordered vertices of an ideal hexagon in H?
and consider the triangulation 7~ all of whose internal edges have an endpoint at e. Proposition
3.10 implies that it suffices to check that (c, g(x), g(z), e), (¢, §(x),e,a), and (a, c, ¢, b) are positive
quadruples, to guarantee that (g, c, g(x), g(z), ¢, b) is positive.

Since (c, x, z, e) is positive, there exists u, v € U(e5)>o so that x = vu(e) and z = v(e). If we let
u' = gqug'and v’ = gvg~!, then v/, v’ € U(e)s (see property (2) in Section 3.1). One checks that

o'’ (e) = (gug )(gug™) = gou)(g™'(e)) = g(oule)) = g(x), and

v'(e) = (gug71)(e) = gu(g ™' (0) = 8(v(e)) = g(2),
so (c, g(x), g(z), e) is a positive quadruple.
Since (c, x, e, a) is a positive quadruple, there exists 1, v € U(e5)>0 so that x = vu(a) and e = v(a).
Notice that v(€) = €5, so v™!gv € A(€S), which implies that u’ = (v™! go)u(v~1gu)! € U(S)so.
Notice that

g(x) = gou(a) = v(v~! go)u(a) = v(v~! gv)u(v_l gv)_l(a) =ou'(a) and e = v(a),

so (c, g(x), e, a) is positive. Since we already know that (g, c, ¢, b) is positive, this completes the
proof. O

Since (x,z,y,¢e) and (c, x, z, e) are positive, Lemma 3.15 implies that
V(x,z,y) C V(x,z,e) C V(c,ze).

We may further choose g so that e is an attractive point, in which case, its basin of attraction is
Bc. In particular, since x,z € V(c, z,e) C B,

lim ¢"(x) = lim ¢"(z) =e.
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Proposition 3.16 and Lemma 3.17 then imply that
(V(s"(x), 87(@), 0)}) — lel,
asn — oo. Since V(x,z,y) C V(x,z,e),

V(g"(x),8"(2), 8" () = §"(V(x,z,y) C §"(V(x,z,e) = V(¢"(x), §"(2), e),

SO

(V(g"(), 8" @), g"(y)} — le).
Since B, contains a neighborhood of ¢, we see that

V(g"(x), §"(2), 8" (y)) C B,

for all large enough n. So,

V(x,z,y) = g (V(g"(x), 8"(2), 8"())) < §"(Bc) = B.

Symmetric arguments show that

V(x,2,y) C B,
So, V(Tz,y) is a connected subset of B. N B, which contains z. Therefore,
V(Tz,y) c V(,z,e).
Since (a,¢c,z,e) and (a,z, e, b) are positive, Lemma 3.15 gives that
Vi(c,z,e) c V(a,z,e) Cc V(a,zDb)

which completes the proof. O

3.6. Rearrangements of flags. Given a pair (x,y) of transverse flags in ¥;, one obtains a
decomposition of R into lines {L;(x, y)}. By rearranging the ordering of the lines, one obtains
a collection of flags including x and y. Formally, if P is a permutation of {1,...,d}, then one
obtains flags Fo(P(x, y)) and F1(P(x, y)) given by

Fo(P(x, y))" = (Lpa)(x,y), - -, Lpp(x, ¥))
and
Fi(P(x,v)" = (Lp@)(x, ¥), - -, Lp@a—r+1)(x, ¥))

for all r.
We will see that if (4, x, y, ) is positive, then (a, F1(P(x, y)), b) is also positive. We begin by
considering the case where P is a transposition.

Lemma 3.18. If (x,z,y,) is a positive triple in ¥, i < j and P; ; is a transposition interchanging i and j,
then

F1(Pij(x, y)) € V(x,2, )
In particular, if (a,x, z, y, b) is a positive quintuple in ¥, then F1(P; j(x, y)) € V(a, z,b).
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Proof. Let ¢ be a basis for (x, y) so that V(x,z,y) = V(¢;) and let ¢} = {e;}. Let Jij(f) be the
elementary Jacobi matrix with respect to {e;}, i.e. Jij(t)(ej) = e; +te; and J;;(t)(ex) = ex if k # j. Since

d—k
y :<ek+1/~--/ed>/

we see that

T ™) = egats - €1, e +tei, ... en) = Y5 = Fi(Py j(x, y)

forall k <1,
T ™) = exsr, - - ea) = '™ = Fi(Py jx, ) *
forallk > j, and
i) = Cexer, ... e+ tei, ... eq)
for all i < k < j. Therefore,

tll)n; ]l](t)(yd_k) = <€k+1, sy 6]'_1, i, €j+1/ ey ed) = Fl(Pi,j(xl y))d_k'

foralli <k < j,so
Lim Jij(£)(y) = F1(Py (x, ).
Since J;;(t) € U(€§)>0 forallt > 0and U(€§)>0U(e§)>o C U(e’y‘)>0,by Lemma 3.2, J;i(t)(y) € V(x,z,Y)

for all t > 0, so F1(P;j(x,y)) € V(x,zy). Lemma 3.14 implies that V(x,z,y) C V(a,z,b), so
F1(P;j(x,y)) € V(a,z,Db). O

With the help of an elementary group-theoretic lemma, we may generalize the argument
above to handle all permutations.

Lemma 3.19. If (4, x,z, y, b) is a positive quintuple in F; and P is a permutation of {1,...,d}, then

Fi(P(x,y)) € V(x,z,y) C V(a,z,D).

Proof. Let &y be a basis for (x, y) so that V(x,z,y) = V(e’y‘) and let € = lei}. Suppose that Q is a
permutation such that

F1(Q(x, y) € V(x,z,y) € V(a,zD).
We first observe, as in the proof of Lemma 3.18, that if n > m, then

lim [, (HF1(Q(x, ) = F1(Q(x, )
where Q = Qif Q7'(m) > Q~'(n) and Q = P, ,Q otherwise. Since [, (t) € U(E;)>Q if t > 0and
U(eD)sol(e)s0 € U(Ed)so,

]mn(t)(V(x, z, y)) C V(.’X, z, y) ’
for all t > 0, which implies that

Jinn(t) (V(x, z, y)) cV(x,zy)
for all t > 0. Therefore,
F1(Q(x,y) € V(x,z,y) € V(a,zD).
We use the following elementary combinatorial lemma.
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Lemma 3.20. If P is a permutation of {1,...,d}, then we may write

P=P Py ji -

i
So that ij < j; for all | and moreover
QL (i) < QLG

where Q1 == P P

iy T i

We now complete the proof using Lemma 3.20. Let P = P
Lemma 3.18 implies that

- Py, j; as in Lemma 3.20.

ik " i

F1(Qi(x,v) € V(x,z,y) € V(a,z,b)

and we may iteratively apply the observation above to conclude that

Fl(Ql(x/ y)) € V(x,z, y) c V(a,z, b)

for all /, which implies that

Fi1(P(x,y)) € V(x,z,y) € V(a,z,b)

which completes the proof of Lemma 3.19. m]

Proof of Lemma 3.20. We proceed by induction on d. So assume our claim hold for permutations
of {1,...,d—-1}.
Letr = P71(1) and, if r # 1, let

P1=P1,P1,-1---P1p

and let P1 = id if r = 1. Notice that P has the desired form, Pl‘l(l) =randifm,nefl,..., d} —{r}
and m < n, then Pl‘l(m) < Pl‘l(n). Let P, be the restriction of PPl‘1 to {2,...,d}. By our inductive
claim, P, = Py - - P;, j where i, < jiforallland if Qi := Py ;. --- Py j,, then Q7 (i) < Q7 (j))-
One may extend each 151-,,]-1 to a transposition P; j of {1,...,d} by letting 1 be taken to itself. We
then note that

P = (Pij. " Piy,j)P1P1r-1--- P12
has the desired form. O

Remark Notice that Lemma 3.18 is enough to prove Theorem 3.6 in the case that you choose
exactly one line from {L;(x, y)} and d — 1 lines from amongst {L;(a, b)}. (If we choose z so that
(a,x,z,y,b) is an positive quintuple of flags, Lemma 3.18 implies that F;(P id(x,y) € Vg, z, b), so
(a,F1(P;4(x, y)),b) is a transverse triple of flags. So, for any jandk, d1oF (P id(x, y) @b’k = RY,
which is enough to establish the special case of Theorem 3.6.) This simple case is enough to
prove all the results in section 4. The full statement is only used in the proof of Lemma 6.3, and
this use of the general result may be replaced by an application of Labourie’s Property H, see
[21].
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3.7. Transverse bases for quadruples. We now restate and prove Theorem 3.6.

Theorem 3.6 Let (a, x, y, b) be a positive quadruple in F4, then any d lines in
{Li(a,b),...,Ls(a,b),L1(x, y), ..., La(x, v)}

are in general position.

Proof. 1f
1€l ={(,...,iK)) €ZF|1<iy < <ip <d).
Let
ef(a,b) = e (a,b) A--- Nej(a,Db).

Then our claim is equivalent to the claim that ej(a,b) Aej(x,y) # 0if I,J € T and |I| + |]| = d
(where (i1, . . ., ir)| = k). ‘ ‘

Let A be the matrix with coefficients Al]. =(e'(a,b)lej(x, y)). If I, K € I and |I| = K], then let A%
be the submatrix of A given by the intersection of the rows with labels in I and the columns

with labels in K.
IfI,] € I and |I| + |]| = d, then, since

d
ej(x,y) = ) Alei(a,b),
i=1

we see that
er(a,) A ey, ) = = det(A]ep(a, b

where D = (1,2,...,d). So, it suffices to prove that all the minors of A are non-zero. Notice that
since our bases are well-defined up to (non-zero) scalar multiplication of the elements, the fact
that the minors are non-zero is independent of our choice of bases.

We first show that all initial minors are non-zero. A square submatrix Af is called initial

if both | and K are contiguous blocks in D and ] U K contains 1, i.e. it is square submatrix
which borders the first column or row. An initial minor is the determinant of an initial square
submatrix.

If AID‘I is initial and | contains 1, then

J=@,....,) and I=(1,2,...,r,d=s+1,d—s+2,...,d)
where r + s + [ = d. (Notice that either  or s may be 0.) Since (a,b, x) € 7';(3),
deobex =R,
SO
er(a,b) Nej(x,y) #0

which implies that det(A}J Iy £ o0.
If D — I contains a 1 and | does not contain a 1, then

I = (+1,1+2,...,4d)
D-1 = (1,...,D,
] = (G+1,j+2,...,j+]),
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where j,/ > 1and j +1 < d. Let P be any permutation such that

F1(P(x, ) = (ejs1(x, ), .., eji(x, 1)) -
Then, by Lemma 3.19, (2, F1(P(x, v)), b) is a transverse triple of flags. It follows that

V' e F(P(x,y)) = RY,

and hence that
er(a,b) Aej(x,y) # 0,

so again det(A? ~1) # 0. Therefore we have shown that all the initial minors of A are non-zero.

We claim thatif £y = v, is the Veronese embedding with respect to an irreducible representation
74 and (ag, Xo, Yo, bo) is an ordered quadruple in &y (P!(R)), then one may choose bases {e;(ao, bo)}
and {e;(xo, yo}} so that all the initial minors of the associated matrix Ay are positive. We may
assume that ag = {o(00), xo = &o(t), yo = So(1) and by = &o(0) where t > 1. Observe that one can

choose bases {e;(0, o)} and {¢;(1, t)} for R? so that My = ((ei(O, Dle;j(1, t))) is totally positive. If we
choose the bases

{ei(@0, bo) = €1(0,00)"7ep(0,00) "1} and  {ei(x0, yo) = e1(1, ) ea(1, )1

for R?, then Ay = 74(Mp). The claim then follows from the fact that the the image under 74 of a
totally positive matrix in PSL,(IR) is totally positive in PSL;(IR), see [13, Prop. 5.7].

We can now continuously deform (a4, x,y,b) = (a1, x1, y1, b1), through positive quadruples
(at, xt, yi, by), to a positive quadruple (ap, xo, Yo, bo) in the image of o = v;. One may then
continuously choose bases {e;(a;, by)} and {e;(x:, y:)} beginning at {e;(ag, bp)} and {e;(xo, yo} and
terminating at bases {e;(a, b)} and {e;(x, y)} which we may assume are the bases used above. One
gets associated matrices {A;} interpolating between Ay and A. Since the initial minors of A; are
non-zero for all t and positive for t = 0, we see that the initial minors of A must be positive.

Gasca and Pena [15, Thm. 4.1] (see also Fomin-Zelevinsky [14, Thm. 9]) proved that a matrix
is totally positive if and only if all its initial minors are positive. Therefore, A is totally positive,
so all its minors are positive, hence non-zero, which completes the proof. m]

4. CORRELATION FUNCTIONS FOR HITCHIN REPRESENTATIONS

We define correlation functions which offer measures of the transversality of bases associated
to images of collections of elements in 711(S). The results of the previous section can be used to
give conditions guaranteeing that many of these correlation functions are non-zero. We then
observe that, if we restrict to certain 3-generator subgroups of 711(S), then the restriction of the
Hitchin representation function to the subgroup is determined, up to conjugation, by correlation
functions associated to the generators and the eigenvalues of the images of the generators.

If {a1, ..., ay} is a collection of non-trivial elements of 711(S), i; € {0,1,...,d} forall 1 < j <,

and p € H;(S), we define the correlation function *

2The name “correlation function” does not bear any physical meaning here and just reflects the fact that the
correlation function between eigenvalues of quantum observables is the trace of products of projections on the
corresponding eigenspaces.
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n
Ty, i,(a1,...,an)(p) == Tr [H Pij(P(aj))]-
j=1
where we adopt the convention that

Po(p(a)) = p(a).
Notice that if all the indices are non-zero, then T;,, ; (a1,...,a,)(p) is well-defined, while if
some indices are allowed to be zero, T;,,_; (a1, ...,a,)(p) is only well-defined up to sign. These
correlations functions are somewhat more general than the correlation functions defined in the
introduction as we allow terms which are not projection matrices.

4.1. Nontriviality of correlation functions. We say that a collection {«ay, ..., a,} of non-trivial

elements of 71(S) has non-intersecting axes if whenever i # j, (a;)+ and (;)- lie in the same

component of dem1(S) — {(aj)+,(j)—}. Notice that {ay,...,a,} have non-intersecting axes

whenever they are represented by mutually disjoint and non-parallel simple closed curves on S.
Theorem 1.6 has the following immediate consequence.

Corollary 4.1. If p € Hy(S), a, € 11(S) — {1} and a and B have non-intersecting axes, then any d
elements of

ter(p(a)), .- . ea(p(@)), er(p(B)), - - -, ealp(B)))
span R%. In particular,

(e'(p())lej(p(B))y # 0.

One can use Corollary 4.1 to establish that a variety of correlation functions are non-zero.
Notice that the assumptions of Lemma 4.2 will be satisfied whenever a is represented by a
simple curve and a and y are co-prime, i.e. a" # y" for any m,n € Z — {0}.

Lemma4.2. Ifp € Hy(S), a,y € 1(S)—{1}, a and yay =" have non-intersecting axes,andi € {1,...,d},
then
Tio(a, 7)(p) = Tr (pi(p(a)p(y)) # 0.

Proof. Since
Te(pi(p(@)p(y) = (€ (p(@)lp()(ei(p(@))) = (e (p(@)lei(p(yay ™)),

the lemma follows immediately from Corollary 4.1 m]

The next result deals with correlation functions which naturally arise when studying
configurations of elements of 71(S) used in the proof of Theorem 1.1, see Figure 1.

Proposition 4.3. Suppose that p € Hy(S) , a,B,0 € m1(S) — {1} have non-intersecting axes, and
i,jkefl,...,d}. Then

D

Tij(a, B)(p) = Tr(pi(p(a))pi(p(B))) # O,
and
2)
Tijx(a, B,0)(p) = Tr(pi(p(a))p;(p(B)PK(p(5))) # O.
Moreover, if y € 11(S) — {1} and  and y5y~" have non-intersecting axes, then
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®)
Tio,j(B, v, 0)(p) = Te(pi(p(B))p(y)p;(p(0))) # O,

and

(4)
Tiji(a, B, 5)(9)) 0

Tij0x(, B,7,0)(p) = Tjox(B,7,6)(p) ( T;(8,5)(p)

Proof. Notice that

Tr(pi(p(a))p;(p(B) = (¢'(p(@))lej(p(B)) (e (p(B)leip(e)))

for all i and j. Both of the terms on the right-hand side are non-zero, by Corollary 4.1, so

Tij(, )(p) = Tr(pi(p(a)p(p(B))) # 0.

Similarly,

T jx(a, B,0)(p) = (& (p(@)le;(p(B))) (¢! (p(Blex(p(©))) (" (p(®)lei(p(a))

and Corollary 4.1 guarantees that each of the terms on the right hand side is non-zero, so (1)
and (2) hold.
Since

(E(PB)p() (PO (X (p(®))lei(p(B)))
E(pB)le(p(ysy™)) (! (p(d))lei(p(B)))

Tr(pi(p(B)p(y)p(p(0)))

Corollary 4.1 again guarantees that each of the terms on the right hand side is non-zero, so (3)
holds.
Recall that if P, Q, A € SL4(IR) and P and Q are projections onto lines, then

_ Tr(PAQ)
~ Tr(PQ)

if Tr(PQ) # 0. (Suppose that P projects onto the line (v) with kernel the hyperplane V and Q
project onto the line (w) with kernel the hyperplane W, then both PAQ and PQ map onto the
line (v) and have W in their kernel and are therefore multiples of one another. The ratio of the
traces detects this multiple.)

So, since Tr(p;(p(B))px(p(0)) # O,

PAQ PQ

Tr(pi(p(B)p(y)Pk(p(0)))
Tr(p;(p(B))pr(p(9)))

Pi(e(B)p(y)pr(p(0)) = ( pi(p(B)pr(p(6)).
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Therefore,
Ti,j,O,k(ar ﬁ/ YV, 6)(P)

Tr(pi(p(a)p;(p(B)P(r)Pr(p(9))
' Tr(pj(p(ﬁ))p(y)pk(p(é))) . )
Tr(Pl(p(a))( T Ep(®) ) P/ PEIRLE)
Tr(pi(p(a)p;(p(B))Pi(p(0))
Tr(pj<p<ﬁ>>p<y>pk<p<6»( ) - o )
T (e, B, 5)(P))
Tix(B,0)p) |

Tjok(B, 7, 0)(p) (

Since all the terms on the right hand side have already been proven to be non-zero, the entire
expression is non-zero, which completes the proof of (4). m|

4.2. Correlation functions and eigenvalues rigidity. We now observe that correlation func-
tions and eigenvalues of images of elements determine the restriction of a Hitchin representation
up to conjugation. Theorem 1.5 is a special case of Theorem 4.4.

Theorem 4.4. Suppose that p,c € Hy(S) and a, B, 6 € 111(S) — {1} have non-intersecting axes. If

(1) Ai(p(m) = Ai(o(n)) for any n € {a, B, 6} and any i € {1,...,d}, and
(2) foralli,jkin{1,...,d}

T jk(a, B, 6) B T; jx(e, B, 0)
Tjx(B,0) P T (B, )
then p and o are conjugate, in PGL;(RR), on the subgroup {«a, B, 6) of m1(S) generated by a, p and 6.

(0),

Proof. We will work in lifts of the restrictions of p and o to {(a, 8, 6) so that the images of , f and
o all have positive eigenvalues. We will abuse notation by referring to these lifts by simply p
and o. With this convention, A;(p(1)) = Ai(o(n)) for all i and any 7 € {a, , 6}. It suffices to prove
that these lifts are conjugate in GL4(RR).

Let a; = ei(p(a)), a' = é'(p(a)), bj = ej(p(P)), b = e/(p(B)), dix = ex(p(6)) and d* = &*(p(©)) for
all i, j, k. Similarly let 4; = e;(a(q)), &' = €i(a(a)), b; = ej(0(B)), b = el(0(B)), d = ex(0(5)) and
d* = ék(a(5)) for all i, j, k. With this notation,

Ti (e, B,0)(p)  (a'lby) Wldy) (dlai)  (a'lbj)(d"lay)
Ti(B,0)0p) — ildy (kb)) (dklby)

and .
Tijk(a, B, 6)(0) _ (@')b;) ()
T;(B, 0)(0) (d¥|b;)

so, by assumption,
(@lbjy (i) (@1by) (d¥la)
@by (dby)
WEE may conjugate ¢ and choose 4;, 4;, b; and by so that a; = 4; for all i (so a' = 4 for all i),
b1 = by and (a'|b;) = 1 for all i. (Notice that this is possible since, by Corollary 4.1, b; does not lie

(1)
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in any of the coordinate hyperplanes of the basis {4;} and similarly b; does not lie in any of the
coordinate hyperplanes of the basis {4;} = {a;}.) Therefore, since A;(p(a)) = A;(c(a)) for all i, we
see that p(a) = o(a).

Corollary 4.1 also assures us that (d¥|byy and (d¥|b;) are non-zero, so we may additionally
choose {d*} and {d*} so that (d*|b;) = 1 and (d¥|b;) = 1 for all k. Therefore, taking j = 1 in
Equation (1), we see that

(dMazy = (dla) = (d|as)
for all i and k. It follows that d = d for all k, which implies that di = dy for all k. Again, since
Ai(p(0)) = Ai(0(0)) for all i, we see that p(8) = 0(0).
Equation (1) then reduces to

@by _ @by (aly)
(@d¥bjy - (d¥byy  (dilby)

We may assume, again applying Corollary 4.1, that {b;} and {Bj} have been chosen so that
@'y = (@'lb) = 1
for all j, so, by considering the above equation with i = 1, we see that
(b)) = (@b
for all j and k, which implies that b; = b j for all j, and, again since eigenvalues agree, we may
conclude that p(B) = o(f), which completes the proof. m]
5. ASYMPTOTIC EXPANSION OF SPECTRAL RADII

In this section we establish a useful asymptotic expansion for the spectral radii of families of
matrices of the form A”B.

Lemma 5.1. Suppose that A, B € SL;(IR) and that A is real-split and 2-proximal. If (bj.) is the matrix

of B with respect to {rzi(A)};.’l:1 and b%, b;, and b% are non-zero, then

M@A™B) ., bbi (A2<A>)” ((Az(fn)")
n@ - (e P\ @) )

We begin by showing that the spectral radius is governed by an analytic function.

Lemma 5.2. Suppose that A, B € SL4(R) and that A is real-split and proximal. If (bj.) is the matrix of B

with respect to {el-(A)}fl:1 and b% is non-zero, then there exists an open neighborhood V.C R~ of the
origin and an analytic function f : V. — R such that, for all sufficiently large n,
A (A"B)
A(A)"

=f@@,.,25 )

where z; = ’\){*11(%) forall i.

Moreover, there exists an analytic function X : V. — RY such that X(z],...,2}_,) is an eigenvector of
A"B with eigenvalue A1 (A" B) for all sufficiently large n.
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Proof. The proof is based on the following elementary fact from linear algebra. A proof in the
case that U is one-dimensional is given explicitly in Lax [23, Section 9, Theorem 8] but the proof
clearly generalizes to our setting.

Lemma 5.3. Suppose that {M(u)},cu is analytically varying family of d X d matrices, where U is an open
neighborhood of 0 in R". If M(0) has a simple real eigenvalue Ay # 0 with associated unit eigenvector
Xo, then there exists an open sub-neighborhood V' C U of 0 and analytic functions f : V — R, and
X : V — R? such that f(0) = Ao, X(0) = Xo and f(v) is a simple eigenvalue of M(v) with eigenvector
X() forallveV.

Let U = R*! and, for all u € U, let D(u) be the diagonal matrix, with respect to {e;(A)}, with
entries (1,uq,...,u4_1) and let M(u) = D(u)B for all u € U. Then M(0) has b% as its only non-zero
eigenvalue with associated unit eigenvector e1. So we may apply Lemma 5.3 with Ag = b; and
X(0) = eg. Let V be the open neighborhood and f : V - Rand X : V — R? be the analytic
functions provided by that lemma. Further, as M(0) has only one non-zero eigenvalue, we
can choose V such that the eigenvalue f(u) is the maximum modulus eigenvalue of M(u). For
sufficiently large n, (z’ll, z_ 1) e V,and AA( /P" = M(z ..,zg_l). So, for all sufficiently large n,
f@,...,25_ ) is the eigenvalue of maximal modulus of A"B/A1(A)" with associated eigenvector
X, .20 ) ]
Proof of Lemma 5.1. Since A is 2-proximal,

[M(A)] > [A2(A)] = A3(A)l.... = Aa(A)l.

Let f : V — R be the function provided by Lemma 5.2. If z; = A;41(A)/A1(A), then
(z’ll,...,zs_l) eV,so

A1(A"B)

A (A)" = fEzin)

for all large enough 7. Since f is analytic

fln, ... ug-0) = FO) + Z S O + O,

If
blob) b ... bl
sby sby sb3 ... sb§ o
g(s) = f(s,0,.. = A(D@1,s,0,...,00B)=A¢{|0O 0 O ... O (|sb]2 sz])
0 0 0 ... 0

then we see, by examining the characteristic equation, that
g(s)? — (b1 + sb3)g(s) + s(bjbs — byb?) = 0
Differentiating and applying the fact that g(0) = f(0) = b; yields
0 = 2g(0)g’(0) ~ b1g'(0) — b38(0) + (115 — byb7) = big’(0) — byb3,
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S0 -
af ’ bzbl
Since |z;| < |z1| for all i > 2,
d-1
M(A"B) ; . of . )
- Gz = fO+ Zl', S 0= + o)
1b2
by + %z’f + o(zg’).

1

6. SIMPLE LENGTHS AND TRACES

We show that two Hitchin representations have the same simple non-separating length
spectrum if and only if they have the same simple non-separating trace spectrum. Moreover, in
either case all eigenvalues of images of simple non-separating curves agree up to sign.

Theorem 6.1. If p € Hy, (S) and o € Hy,(S), then | Tr(p(a))| = | Tr(o(a))| for any o € 111(S) represented
by a simple non-separating curve on S if and only if L,(p) = Lo(0) for any a € 11(S) represented by
a simple non-separating curve on S. In either case, di = dy, and Ai(p(a)) = Ai(o(a)) for all i and any
a € m1(S) represented by a simple non-separating curve on S.

Theorem 6.1 follows immediately from Lemma 6.2, which shows that one can detect the
length of a curve from the traces of a related family of curves, and Lemma 6.3, which obtains
information about traces and eigenvalues from information about length. (Notice that every non-
separating curve on S has geometric intersection number one with some other non-separating
curveon S.)

Lemma 6.2. Suppose that o and f are represented by simple based loops on S which intersect only at the
basepoint and have geometric intersection one. If p € Hy, (S), 0 € Hy, (S)and | Te(p(a”B))| = | Tr(o(a”B))|
forall n, then di = dp and Ly(p) = La(0). Moreover, Ai(p(a)) = Ai(o(a)) for all i.

Proof. We assume that d; < dy. It suffices to prove our lemma for lifts of the restriction of p and
o to (&, B) so that the all the eigenvalues of the images of « are positive. We will abuse notation
by calling these lifts p and o.

Since Tr(p(a”B)) = e(n) Tr(o(a"B)) for all n, where e(n) € {1}, we may expand to see that

dq dy
Y A(p(@) Te(pip(@)p(B) = €(n) Y . A2(0(@)) Te(pi(o(a))o(p))
i=1 i=1

for all n. Lemma 4.2 implies that Tr(p;(p(a))p(B)) and Tr(p;(c(a))o(B)) are non-zero for all i. There
exists an infinite subsequence {1} of integers, so that e(n;) = € is constant. Passing to limits as
n — oo, and comparing the leading terms in descending order, we see that A;(p(a)) = Ai(o(a)) if
1 <i<dj. Inparticular, Ly(p) = Lo(0). If di < d, then

% Ai(p(a)) = T2, Ai(o()) = 1
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which is impossible, since A;(p(a)) = Ai(o(a)) if 1 < i < dq and

Ai(o(@)) < Ag,(0(a)) = Ag, (p(@)) < 1

if d; <i < dy. Therefore dy = d». O
Lemma 6.3. Suppose that y and 0 are represented by simple based loops on S which intersect only at the
basepoint and have geometric intersection one. If p € Hy,(S), 0 € Hy,(S) and Ly(p) = La(0) whenever
a € (y,0) is represented by a simple non-separating based loop, then di = d, | Tr(p(a))| = | Tr(o(a))|
and Ai(p(a)) = Ai(o()) for all i whenever a € (y, ) is represented by a simple non-separating based
loop.

Proof. We assume that d; < d. If a € (y,0) is represented by a simple, non-separating based
loop, then there exists f € (), ) so that § is represented by a simple based loop which intersects
a only at the basepoint and « and g have geometric intersection one, so a”'f is simple and
non-separating for all n. It again suffices to prove our lemma for lifts of the restriction of p and
o to (a, B) so that the all the eigenvalues of the images of a are positive.

Let A = p(a), B = p(B), A = o(a), and B = 6(B). Let A; = A;(A) and A; = A;(A). Lete; = ¢;(A)
and &; = ¢;(A) and let (b;) be the matrix of B with respect to {ei}’l.t1 and (f);) be the matrix of B
with respect to {éi}?jl. LetQ =e; Aex A... Aeg, # 0be the volume form associated to the basis
{1}, for R%.

We begin by showing that A, = A,. Notice that A and A"B are real-split and 2-proximal for
all n. We need the result of the following lemma to be able to apply Lemma 5.1.

Lemma 6.4. Suppose that a and p are represented by simple based loops on S which intersect only at
the basepoint and have geometric intersection one. If p € Hy(S) and B = (bZ]. ) is a matrix representing
p(B) in the basis {ej(p(a)}, then b}, b, and b2 are all non-zero.

Proof. Notice that B(e1) A (e2 A ... A eg) = b1 Q. So, if b = 0, then B(e), which is a non-trivial
multiple of e;(p(Baf™')), lies in the hyperplane spanned by {ey, ..., es} = {e2(p(@)), .. -, ea(p(a)},
which contradicts Corollary 4.1 (and also hyperconvexity). Notice that the fixed points of faf™!
must lie in the same component of & p(Sl) —{a*, a7}, since a is simple. Therefore, b% # 0.

Similarly, B(e1) A (e1 A ez A ... Aeg) = =b?Q. So, if b2 = 0, then ei(p(Bap™)), lies in the
hyperplane spanned by {e1(p(«)), e3(p(@)), . . ., es(p(a))}, which again contradicts Corollary 4.1.
Therefore, b% # 0.

Moreover, B(e2) A (e2 Aes A ... Aeg) = byQ. So, if b} = 0, then ex(p(Bap™")), lies in the
hyperplane spanned by {e1(p(a)), e3(p(a), ..., es(p(a)}, which again contradicts Corollary 4.1.
Thus, b; # 0. O

By assumption [A;(A"B)| = I)\l(A”B)I for all n. Lemma 5.1 then implies that

bib? (), \" |, BB (A,) 1\
b%+%(&) +o((&)) b+ El(g) +0((¥))
bt A A bt \Ay A

S0 Ib%l = I?%I. Comparing the second order terms, we see that

la

7

/\1 ;\1 .
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Since, by assumption, A; = )A\l, we see that 1, = A,.

We now assume that for some k = 2,...,d; — 1, Ai(p(B)) = Ai(o(B)) for all i < k whenever
B € (y,6) is represented by a simple, non-separating based loop. We will prove that this
implies that A;(p(B)) = Ai(o(B)) for all i < k + 1 whenever § € (), 0) is represented by a simple,
non-separating based loop. Applying this iteratively will allow us to complete the proof.

Let EX(p) be the k-exterior product representation. If a € (y, §) is represented by a simple
non-separating based loop, we again choose 8 € (), 6) so that f3 is represented by a simple based
loop which intersects « only at the basepoint and « and  have geometric intersection one. We
adapt the notations and conventions from the second paragraph of the proof.

Let C = Ek(p)(a), D = EX(p)(B), C = Efo)(@) and D = Ek(a)(ﬁ). Notice that C is diagonal
with respect to the basis basis {¢;(C)} given by all k-fold wedge products of {e;, ..., e;} where
e; = ¢j(A) for all i. In particular, A1(C) = A1(A)---Ak(A), A12(C) = A1(A) -+ A1 (A)Aks1(A),
e1(C) =e1(A)A---Aex(A) and ex(C) = e1(A) A+ - - Aeg—1(A) Aegy1(A). Since A3(C) is given by either
AM(A) - A=1(A)Ags2(A) or A (A) - - - A—2(A)Ak(A)Ak41(A), C is 2-proximal. Similarly, ¢, CD" and
CD" are real-split and 2-proximal for all 7.

Let (d?) be the matrix for D in the basis {¢;}. We define é; and (cf;) completely analogously.

Notice that D(e; A e A ... Aeg) A (€1 A ... Aeg) = dQ. So,if di =0, then
B(S’;(%)) ® 5Z_k(0¢—) = 51,{)(,3(0@)) ® 5g_k(01—) # R%.

which would contradict the hyperconvexity of &,. Therefore, d% # 0.
Furthermore, D(ey Aex A ... Aep) A (e Aea A ... Aeg) = —d3€Q). So, if d3 = 0, then

(L1(pBap™), .., Le(p(Bap ™), Li(p(@), Lis2(p(@)) - ., Ly, (p(@)))

does not span R%, which contradicts Corollary 4.1. Therefore, d% #0
Similarly, D(e1 A ez A ... A ko1 A egsr) A (eker Aka A ... Aeg,) = dyQ. So, if d) = 0, then

{Ll (P(ﬁaﬁ_l))/ ceey Lk—l (P(ﬁaﬁ_l))/ Lk+1 (p(ﬁaﬁ_l))r Lk+1(P(“))/ ceey Ld1 (P(a))}

does not span R%, which contradicts Corollary 4.1. Thus d; # 0.

: 71 42

Analogous arguments imply that dl, d1
assumption

and dg are all non-zero. Moreover, by our iterative

41(C"D)| = 1A1(A"B) - - - A(A"B)| = [A1(A"B) - - A(A"B)| = | (C"D)|
for all n. We may again apply Lemma 5.1 to conclude that

AL©)| _
A1(C)

Ak+1 _

— _ )A\k+l
Ak '

_;\k

Az(é)‘
()
Since, by our inductive assumption, Ay = Ak, we conclude that Agy; = Agyq. Therefore, after

iteratively applying our argument, we conclude that A;(p(a)) = Ai(o(a)) forall 1 <i < d;. Asin
the proof of Lemma 6.2 it follows that d; = d,. Therefore, | Tr(p(a))| = | Tr(o(a))|. m|
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Ficure 1. Curves a,f3,7,0

7. SIMPLE LENGTH RIGIDITY

We are now ready to establish our main results on simple length and simple trace rigidity.
We begin by studying configurations of curves in the form pictured in Figure 1.

Theorem 7.1. Suppose that F is an essential, connected subsurface of S, and that o, B, 0 € m1(F) — {1}
are represented by based simple loops in F which intersect only at the basepoint, and are freely homotopic
to a collection of mutually disjoint and non-parallel, non-separating closed curves in F which do not
bound a pair of pants in F. If p, o € Hy(S) and | Tr(p(n))| = | Tr(a(n))| whenever n € 11(S) is represented
by a simple closed curve in F, then p and o are conjugate, in PGL;4(IR), on the subgroup < a, 8,6 > of
111(S).

Proof. We first show that we can replace @, f and 6 with based loops in F, configured as in
Figure 1, which generate the same subgroup of 71(S). We then show that if @, §, y and 6 have
the form in Figure 1, then p and o are conjugate on («, §, 6).

Lemma 7.2. Suppose that F is an essential, connected subsurface of S, and that o, §, 6 € 11(F) — {1} are
represented by based simple loops in F which intersect only at the basepoint, and are freely homotopic to a
collection of mutually disjoint and non-parallel, non-separating closed curves in F which do not bound a
pair of pants in F. Then there exist based loops &, B, 7 and § in F which intersect only at the basepoint so
that &,  and § are freely homotopic to a collection of mutually disjoint and non-parallel, non-separating
closed curves, each has geometric intersection one with ¥ and

(@&,B,0) = (a,B,0).

Proof. We first assume one of the curves, say 3, has the property that the other two curves lie on
opposite sides of 5, i.e. there exists a regular neighborhood N of 5, so that « intersects only one
component of N —  and 6 only intersects the other (see Figure 2). (Notice that since the curves
intersect exactly once and can be homotoped to be disjoint, @ and 6 each intersect exactly one
component of N — {8}, if N is chosen small enough.)

Let F1 be a regular neighborhood of T = a U g U 6. Then F is a four-holed sphere and each
component of F; — T is an annulus. We label the boundary components A, D, | and K, where
A is parallel to a, D is parallel to §, | is parallel to the based loop fa‘! and K is parallel to the
based loop 6 for some €1, €2 € {£1}.
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Ficure 2. A regular neighborhood of a U g U 6 when f locally separates a and 6

If A and D lie in the boundary of the same component of F — Fy, then one may extend an arc in
F — F1 joining A to D to a closed curve  which intersects T only at the basepoint and intersects
each of a, f and 6 with geometric intersection one. In this case, we simply take & = «a, 6 =pfand
5 = 6. We assume from now on that A and D do not lie in the same boundary component of
F—F;.

Since a is non-separating, A must lie in the boundary of a component G of F — F; which
also has either | or K in its boundary. If the boundary of G contains ] but not K, then  would
separate F which would contradict our assumptions, so the boundary of G must contain K.
(Recall that by assumption, the boundary of G cannot contain D.)

We may then extend an arc in G joining A to K to a closed curve Y which intersects T only at
the basepoint and has geometric intersection one with a, g and K. Moreover, we may choose
a based loop 6 in the (based) homotopy class of f5¢ which intersects a, f and y only at the
basepoint. In this case, let @ = @ and § = . A,  and K are simple, disjoint non-separating
curves freely homotopic to &, E and 6. If K is parallel to A, then disjoint representative of a, 3
and 6 would bound a pair of pants, which is disallowed. Moreover, since K is homotopic to
B6°? and B and 6 are non-parallel simple closed curves, K cannot be parallel to g or 6. Since A
and f are non-parallel, by assumption, A, f and K are mutually non-parallel as required.

We may now assume that if v € {a, §, 0}, then there is a regular neighborhood of v, so that the
other two based loops only intersect one component of the regular neighborhood. Let F; be a
regular neighborhood of T. Again, F; is a four-holed sphere and each component of F; — T is an
annulus. We label the components of the boundary of F1 by A, B, D and E, where A is parallel
to a, B is parallel to 8, and D is parallel to 6 (see Figure 3). Since « is non-separating in F, there

Ficure 3. A regular neighborhood of a U U 6 when no curve locally separates
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exists a component G of F — F; whose boundary contains A and at least one other component of
the boundary of Fy. If the boundary of G contains B, then one may extend an arc in G joining
A to B to a curve y which intersects T only at the basepoint and has geometric intersection
one with @ and  and geometric intersection zero with 6. Let d be a simple based loop in F;
in the (based) homotopy class of ad¢ for some € € {1} which intersects y and T only at the
basepoint. Since § has algebraic intersection +1 with 7, it must have geometric intersection one
with . Let & = a and ﬁ = B, then &, ﬁ and 6 are freely homotopic to the collection {A, B, 5} of
mutually disjoint, non-separating curves. Notice that A and B are non-parallel by our original
assumption, while if Sis parallel to A or B, then our original collection of curves would be freely
homotopic to the boundary of a pair of pants, contradicting our original assumption. Therefore,
A, B and § are non-parallel as required.

If the boundary of G, contains D, then we may perform the same procedure reversing the
roles of § and 6. Therefore, we may assume that the boundary of G contains both A and E, but
not B or D. Since f is non-separating and B is not in the boundary of G, there must be another
component H of F — F; which has both B and D in its boundary. We then simply repeat the
procedure above to construct a curve Y which intersects T only at the basepoint which has
geometric intersection one with  and 6 and geometric intersection zero with @. We then let &
be a simple based loop in F; intersecting 7 only at the basepoint, in the based homotopy class of
Bac for some € € {+1}, which has geometric intersection one with y. Letting f = g and 6 = 6, we
may complete the proof as in the previous paragraph. m]

Notice that we may always re-order the curves produced by Lemma 7.2 so that &’ f795" is
represented by a simple non-separating curve in F for all p, g, v € Z. Moreover, our assumptions
imply that &, ﬁ and 4 have non-intersecting axes and that B and yA,BA)?_l have non-intersecting
axes. Theorem 7.1 will then follow from the following result.

Proposition 7.3. Suppose that o, , 7,06 € 111(S) — {1}, a, p and 6 have non-intersecting axes and that
B and yBy ! have non-intersecting axes. If p, o € Hy(S) and | Tr(p(aP By d"))| = | Tr(o(a? B1y0"))| for
allp,q,r € Z, then p and o are conjugate, in PGL;4(IR), on the subgroup < a, 8,6 > of m1(S).

Proof. We may apply Lemma 6.2 to the pairs (a, y), (8,7) and (6, y) to conclude that A;(p(n)) =

Ai(o(n)) for alliand any 71 € {a, B, 0}. (Notice, for example, that for the pair («, y) our assumptions

imply that | Tr(p(a™y))| = | Tr(o(a™y))| for all n, so the assumptions of Lemma 6.2 are satisfied.)
Combining the expansions

d d
p@) = ) Ailp@)pi(p(@) and o(@) = ) Aio(@)pi(a(a))
i=1 i=1

with our assumption that | Tr(p(a” f7y0"))| = | Tr(c(a’ B7y0"))| for all p, g, v € Z, we see that
d

d
3 A (p(a) Tr (pi(p(@))p(B7y6)) = + Y AP((a) Tr (pi(o(@))o(pTyd"))
i=1 i=1

for all p, q,v € IN. Since p(a) and o(a) are purely loxodromic and A;(p(a)) = Ai(o(a)) for all i, we
may fix g and r, let p tend to +co and consider terms of the same order to conclude that

Tr (pi(p(@))p(BTyd")) = £ Tr (pi(o(a))a(BTy0")) )
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forallie{1,...,d} and all ¢, € IN. Similarly, we expand Equation (2) to see that, for all i,
d

d
Zl, M) T (pilp @) (pBNp(18") = + Y ANo(B) Tr (pi(a(@)p;(@(®)a(rd)
=

=1

and consider terms of the same order as g — +oo to conclude that

Tt (pilp(@)pj(p(B)p(8))) = £ Tt (pi(a(@)pi(o(B)a(yd)

foralli,j e {l,...,d} and r € N. Expanding this last equation and letting r tend to +oco, we
finally conclude that

Tr(pi(p(@)pi(P(B)p(y)Pk(p(0))) = = Tr(pi(a(a))p;(o(B))o(y)pr(a(d)))
foralli, jkefl,...,d}, ie.

Tijoxla, By, 6)(p) = £Ti joxla, B, y,0)(0) 3)
foralli, jkefl,...,d}.
We similarly expand the equation
Tr(p(BTy0")) = = Tr(a(BTy0"))
to see that
Tj0x(B,7,0)(p) = £Tjok(B, 7, 0)(0) (4)
for all j and k.
Recall, from part (4) of Proposition 4.3, that
T k(e B, 5)(P)) 0
Tix(B,0)(p)

forall p € Hy(S)and i, j k € {1,...,d}, so we may conclude from Equations (3) and (4) that
Tk, B,0)p)  Tijxla,B,0)(0)

=+

T]',k(ﬁ, 5)(P) Tj,k(ﬁ/ 0)(0)

Ti ok B,v,0)(p) = T;ox(B, v, 0)(p) (

foralli, jkefl,...,d}.
T i(@B,0)(pr) .
We may join p to o by a path {p;} of Hitchin representations. So, since —T”fk(ég)();gt) is non-zero
for all t, again by Proposition 4.3, and varies continuously, it follows that

T (e, B,0)(p)  Tijula, B, 6)(0)
T;k(B, 6)(p) T;k(B, 6)(0)
foralli, jk €{1,...,d}. Therefore, since we have already seen that A;(p(1)) = A;(c(n)) for all i

if n € {a, B, 7}, Theorem 4.4 implies that p and ¢ are conjugate, in PGL4(IR), on the subgroup
<a,p, 6> of my(S). O

O

We are now ready to establish that the restriction of the marked trace spectrum to the simple
non-separating curves determines a Hitchin representation.
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Theorem 7.4. Let S be a closed orientable surface of genus g > 3. If p € Hy (S), 0 € Hy,(S) and
| Tr(p(a))l = | Tr(o(a))| whenever a € 111(S) is represented by a simple non-separating curve, then
dy =dyand p = o.

Proof. Notice that Theorem 6.1 immediately implies that d; = d», so we may assume that
d = dy = dp. Consider the standard generating set

S = {al,ﬁl,...,ag,ﬁg}

for 11(S) so that Hle[ai, Bil = 1, each generator is represented by a based loop, and any two
such based loops intersect only at the basepoint.

Notice that the generators are freely homotopic to simple, non-separating closed curves so
that the representative of a; is disjoint from the representative of every other generator except
Bi and that the representative of g; is disjoint from the representative of every other generator
except a;. Moreover, no three of the representatives which are disjoint bound a pair of pants.
Therefore, Theorem 7.1 implies that we may assume that p and o agree on < ay, a, a3 >.

If n € S—{a1, a2, 1, B2}, then Theorem 7.1 implies that there exists C € PGL4(RR) so that p and
CoC™1! agree on < aq, a2, 1 >. Since p and o agree on a1 and «ay, the following lemma, which we
memorialize for repeated use later in the paper, assures that C = I, so p(n) = o(n).

Lemma 7.5. Suppose that S is a closed surface of genus at least two, p : 11(S) — PSLy(R) and
o : m1(S) — PSL;(R) are Hitchin representations, and there exists a subgroup H of m1(S) and
C € PSL4(R) so that plg = ColgC~1. If there exists vi,vo € H with non-intersecting axes, so that
p(v1) = o(vy) and p(v2) = 0(v2), then C =1, so p|y = oly.

Proof. Since p and ¢ agree on v; and v, C must commute with p(v1) and p(v2). Thus C is
diagonalizable over R with respect to both {e;(p(v1))} and {ei(p(v2)}. If C # I, then R? admits a
non-trivial decomposition into eigenspaces of C with distinct eigenvalues. Any such eigenspace
W is spanned by a sub-collection of {e;(p(v1))} and by a sub-collection of {ej(p(v2))}. In particular,
some ¢;(p(v1)) is in the subspace spanned by a subcollection of {¢;(p(v2))}. Since v1 and v, have
non-intersecting axes, this contradicts Corollary 4.1. Therefore, C = I. m]

In order to prove that p(81) = 0(f1), we similarly apply Theorem 7.1 and Lemma 7.5 to the
elements ay, a3 and 81, while to prove that p(f2) = 0(B2) we consider the elements a4, a3 and
B2. Since we have established that p and ¢ agree on every element in the generating set S, we
conclude that p = 0. m|

Marked simple length rigidity, Theorem 1.1, is an immediate consequence of Theorems 7.4
and 6.1.

We may further use the Noetherian property of polynomial rings to prove the final statement
in Theorem 1.2, which asserts that Hitchin representations of the same dimension are determined
by the traces of a finite set of simple non-separating curves.

Proof of Theorem 1.2. We consider the affine algebraic variety
V(S) = Hom(71(S), SLa(R)) x Hom(11(5), SL4(R)).

Let {y:}72, € m1(S) be an ordering of the collection of (conjugacy classes of) elements of 711(S)
which are represented by simple, non-separating curves, and define, for each n,

Vu(S) = {(p,0) € V(S) | Tr(p(y1)) = Tr(a(y)) if i < nj
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and let

Voo = ﬁvn.

n=1

Then each V,,(S) is a subvariety of V(S) and by the Noetherian property of polynomial rings,
there exists N so that Vy = V. We define £;(S) = {yi}ﬁ 1

There exists a component &’v{d(S) of Hom(m;1(S), SL;(IR)) consisting of lifts of Hitchin repre-
sentations so that #;(S) is identified with the quotient of VT(d(S) by SL;(IR), see Hitchin [19].
Since traces of elements in images of (lifts of) Hitchin representations are non-zero, for all
y € m1(S), Tr(v(y)) is either positive for all v € ?{d(S) or negative for all v € ;(d(S), for all
y € mi(S). rl}lerefore, if the marked trace spectra of p, o € H;(S) agree on L4(S), they admit lifts

p and & in H;(S) so that (p, 5) € V. Since Vi = V., the marked trace spectra of p and ¢ agree
on all simple, non-separating curves. Therefore, by Theorem 7.4, p = o € H(S). ]

Remark: The set £,;(S) contains at least dim(7;(S)) = —x(S)(d% — 1) curves, but our methods do
not provide any upper bound on the size of £4(S).

8. ISOMETRIES OF INTERSECTION

In this section, we investigate isometries of the intersection function which is used to construct
the pressure metric on the Hitchin component. Our main tool will be Bonahon’s theory of
geodesic currents and his reinterpretation of Thurston’s compactification of Teichmdiller space
in this language, see Bonahon [2].

8.1. Intersection and the pressure metric. Given p € H;(S), let

Rr(p) ={[y] € [m(S)]|Ly(p) < T}

be the set of conjugacy classes of elements of 71(S) whose images have length at most T. One
may then define the entropy

log(#R7(p))

o) = i =557

Given p, 0 € H;(S), their intersection is given by

I(p,0) = lim Ey(0)
1o #R1(P) () L (P)
and their renormalized intersection is given by
h(o)
,0) = —=I(p,0).
J(p. o) = 3 5 1(6,0)

One may show that all the quantities above give rise to analytic functions.

Theorem 8.1. (Bridgeman-Canary-Labourie-Sambarino [6, Thm. 1.3]) If S is a closed surface
of genus greater than 1, the entropy h, the intersection 1, and renormalized intersection J are analytic
functions on Hy(S), Hy(S) X Hy(S) and Hy(S) x Hy(S) respectively.
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Let J, : Ha(S) — R be defined by J,(0) = J(p,0). The analytic function J, has a minimum
at p (see [6, Thm. 1.1]) and hence its Hessian gives rise to an non-negative quadratic form
on T,(H;(S)), called the pressure metric. Bridgeman, Canary, Labourie and Sambarino proved
that the resulting quadratic form is positive definite. A result of Wolpert [34] implies that the
restriction of the pressure metric to the Fuchsian locus is a multiple of the classical Weil-Petersson
metric. (See [7] for a survey of this theory.)

Theorem 8.2. (Bridgeman—Canary-Labourie-Sambarino [6, Cor. 1.6]) If S is a closed surface of
genus greater than 1, the pressure metric is a mapping class group invariant, analytic, Riemannian
metric on Hy(S) whose restriction to the Fuchsian locus is a multiple of the Weil-Petersson metric.

Recall that a diffeomorphism f : Hy(S) — H,(S) is said to be an isometry of intersection if
I(f(p), f(0)) = I(p,0) for all p,c € H;(S). Let Isomy(H;(S)) denote the group of isometries of
I. Notice that, by construction, the extended mapping class group Mod(S) is a subgroup of
Isomp(H;(S)). (The extended mapping class group Mod(S) can be identified with the group
Out(m1(S)) of outer automorphisms of 711(S) and acts naturally on H;(S) by pre-composition.)

The entire discussion of intersection, renormalized intersection and the pressure metric
restricts to H(S, G) when G is PSp(2d, R), PSO(d, d + 1), or Gy .

8.2. Basic properties. We first show that isometries of intersection preserve entropy and hence
preserve renormalized intersection, so are isometries of the pressure metric.

Proposition 8.3. If S is a closed orientable surface of genus greater than 1, G is PSL;(R), PSp(24, R),
PSO(d,d + 1), or Gy and f : H(S,G) — H(S, Q) is an isometry of intersection I, then h(p) = h(f(p))
forall p € H(S, G). Therefore, J(f(p), f(0)) = J(p,0) for all p,c € H(S,Q), and f is an isometry of
H (S, G) with respect to the pressure metric.

Proof. Suppose that p € H(S,G), v € Ty(H(S,G)) and v = %L:o o zbo for a smooth path
{pthte-1,1) in Hy(S). Then,
L(pr) = Ip, pr) = I(f(p), f(p(1)) = L) (f(pr)),

SO
DIP(U) = le(p)(Dfp(U)).
Since J, has a minimum at p, DJ,(v) = 0, so

Dh h Dh
DJ,(v) = ﬁ()v)lp(p) + %DIP(U) = #()U) + DI, (v) =0
which implies that
DL(0) = — 2@ _ h
P(U) - h(P) == (Og )(U)

Thus, for all p € H(S,G) and v € T,(H(S, G))

D(log h)(v) = D(log(h o f))(v),

so (h o f)/h is constant, since H(S, G) is a connected manifold. If (ko f)/h = c # 1 then either
ho f"orho f~" grows to infinity with n. However, since & is a bounded positive function, it
must be the case thatc=1and ho f = h.
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It follows, by the definition of renormalized intersection, that f preserves renormalized
intersection. Since the pressure metric is obtained by considering the Hessian of renormalized
intersection, f is also an isometry of H(S, G) with respect to the pressure metric. m]

Potrie and Sambarino [30] proved that the entropy function achieves its maximum exactly on
the Fuchsian locus, so we have the following immediate corollary.

Corollary 8.4. If S is a closed orientable surface of genus greater than 1, G is PSL;(IR), PSp(2d, R),
PSO(d,d + 1), or Gy and f : H(S, G) — H(S, G) is an isometry of intersection 1, then f preserves the
Fuchsian locus.

8.3. Geodesic currents. We identify S with a fixed hyperbolic surface H?/T, which in turn
identifies 71 (S) with T and deo71(S) with deH?. One can identify the space G(H?) of unoriented
geodesics in H? with (dwH? X deH? — A)/Z,, where A is the diagonal in deHZ X dooH? and Z,
acts by interchanging coordinates. A geodesic current on S is a I'-invariant Borel measure on
G(H?) and C(S) is the space of geodesic currents on S, endowed with the weak™ topology.

If a is a closed geodesic on S, one obtains a geodesic current 6, by taking the sum of the
Dirac measures on the pre-images of a. The set of currents which are scalar multiples of closed
geodesics is dense in C(S), see Bonahon [2, Proposition 2]. If p € 7(S) = H>(S) has associated
limit map &, : drt1(S) — JHy, one defines the Liouville measure of p by

(£p(@) = £0(0))(p0) — £p(@))
(£0(@) = &5 @)(E0(0) = £,0)) |

Theorem 8.5. (Bonahon [2, Propositions 3, 14, 15]) Let S be a closed oriented surface of genus g > 2
and p € T(S) = Ha(S). Then there exist continuous functions €, : C(S) — Rand i : C(S) X C(S) — R
which are linear on rays such that if a and  are closed geodesics, then

my([a, b] X [c,d]) = |log

i(mp/ Oa) = fp(a)/ i(mp/ mp) = 7_(2|X(S)|/
and i(a, B) is the geometric intersection between o and f.

Moreover, Bonahon defines an embedding
Q:T(S) —» PC(S)

of Teichmiiller space into the space of projective classes of geodesic currents given by Q(p) = [m,].
Bonahon shows that the closure of Q(7(S)) is homeomorphic to a closed ball of dimension 6g -6,
and the boundary of Q(77(S)) is the space P ML(S) of projective classes of measured laminations.
(Recall that a measured lamination may be defined to be a geodesic current of self-intersection 0.)
In particular, the geodesic current associated to any simple closed curve lies in the boundary of
Q(7 (S)). Moreover, Bonahon [2, Theorem 18] shows that this compactification of Teichmdiller
space agrees with Thurston’s compactification.

8.4. Length functions for Hitchin representations. If p € H;(S), then there is a Holder function
fo: T'S — R, such that if « is a closed oriented geodesicon S = H?/T, then

Lﬁﬂ=h@
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where dt is the Lebesgue measure along a C T1(S), see [6, Prop. 4.1] or Sambarino [32, Sec. 5].
Given u € C(S), one may define a I'-invariant measure fi on T'H? which has the local form u X dt
where dt is Lebesgue measure along the flow lines of T'H? (which are oriented geodesics in H?),
so i descends to a measure 2 on T!(S). One may then define a length function tp : C(S) —» Rby
letting

o(u) = ) fodp.
Notice that if a is a simple closed geodesic on S, then

€p(0a) = L (p) = La(p) + Lo-1(p)

since d, is Dirac measure support on the closed orbits of geodesics associated to & and a™.
Moreover, by the definition of the weak® topology, £, is clearly continuous, since T'S is compact.
Recall that (see Bowen [3] or Margulis [27]) if 6 € 7(S) = H>(S) then the Liouville current
satisfies - . 5 , 5
o . a . a
Ly~ R 2 o PR IR L o)
7(0) R1(0)

Since 7; multiplies the logarithm of the spectral radius by d — 1, if p € H;(S), then

Gow) 1 g 1
Lo(mg) T Tow #R7(0) k(o) 2Ly (0)
= @-1) Jim L)

T—co #R (4-1)7(T4 © 0) La(tg4 0 0)

(d-1) Itz 00,p).

Rg-1r(t400)

Here we use the fact that, since 0 € 7(S), Ly(0) = L,-1(0), so

i)  LELO) Lap) | Lea(p)
2L4(0)  2L,1(0)  La(0)  Lyi(o)

for all & € 11(S).

8.5. Isometries of intersection and the simple Hilbert length spectrum. We next observe that
any isometry of intersection preserves the simple marked Hilbert length spectrum.

Proposition 8.6. If S is a closed surface of genus g > 2, G = PSL;(R), PSp(2d, R), PSO(d, d + 1), or
Gooand f : H(S,G) — H(S, G) is an isometry of intersection, then there exists an element ¢ of the
extended mapping class group so that if p € H(S, G), then p and f o ¢(p) have the same simple marked
Hilbert length spectrum.

Proof. Recall, from Corollary 8.4, that f preserves the Fuchsian locus. Since any isometry of
7 (S) with the Weil-Petersson metric agrees with an element of the extended mapping class
group, by a result of Masur-Wolf [28], and the restriction of the pressure metric to the Fuchsian
locus is a multiple of the Weil-Petersson metric, the restriction of f to the Fuchsian locus agrees
with the action of an element ¢ of the extended mapping class group. We can thus consider

f =fo ¢‘1, which is an isometry of the intersection function that fixes the Fuchsian locus.
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If a € 11(S) is represented by a simple curve, we may choose a sequence {0} in 7 (S) such
that {Q(0,)} converges to [0,] € PC(S), so there exists a sequence {c,} of real numbers so that
lim ¢, = +o00 and

. Mg
lim —= = 6,.

Cn
Therefore, if p € H(S, G) € Hy(S), then

LH(p) = £,(6,) = lim , (”Z_) - hm(%

Cn

I(t; 00y, p)) .
By Theorem 8.5, as a, € 7 (S), then €, (m,,) = i(m,,,ms,) = T2 (S)|. If p € H(S,G)and a € 11(S),
then since I(4 0 0,,, p) = (74 © 0, f(p)) for all n, L (p) = LH(f(p)). Therefore, p and f(p) have

the same simple marked Hilbert length spectrum. m]

Recall that if p lies in H(S, G) and G is PSp(2d, R), PSO(d, d + 1) or Gy, then Li(p) = 2L,(p)
for all @ € m1(S). Therefore, we may combine Theorem 1.1 and Proposition 8.6 to obtain:

n

Corollary 8.7. If S is a closed surface of genus g > 3, then any isometry of the intersection 1 on
H(S,PSp(2d,R)), H(S,PSO(d, d + 1)), or H(S, Go,0) agrees with an element of the extended mapping
class group.

Notice that Corollary 8.7 is a generalization of Theorem 1.3 which was stated in the introduc-
tion, since it also covers H(S, Gy ).

9. HILBERT LENGTH RIGIDITY

Proposition 8.6 suggests the following potential generalization of our main simple length
rigidity result.
Conjecture: If p,o € Hy(S) have the same marked simple Hilbert length spectrum then they either
agree or differ by the contragredient involution.

We establish this conjecture when 4 = 3.

Theorem 9.1. If S is a closed orientable surface of genus greater than 2, p, o € Hs(S) and L (p) = LI (0)
for any « € 11(S) which is represented by a simple non-separating curve, then p = o or p = 0.

The classification of the isometries of intersection on H3(S), Theorem 1.4, is an immediate
consequence of Theorem 9.1 and Proposition 8.6.

Proof. Notice that PSL3(IR) = SL3(IR) and that if y € 71;(S), then all the eigenvalues of p(y) are
positive, since eigenvalues vary continuously over H3(S) and are positive on the Fuchsian locus.
In particular, if LE (p) = LH (0), then
M(p(@) — A(o(a))
As(p(a))  As(a(a))
We first show that for individual elements the traces and eigenvalues either agree or are
consistent with the contragredient involution.

Lemma 9.2. If a and B are represented by simple, non-separating based loops on S which intersect only

at the basepoint and have geometric intersection one, and Lgﬁ ﬁ(p) = Lfn B(G) for all n, then either
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(1) Ai(p(@) = Ai(a(@)) for all i, so Tr(p(a)) = Tr(o()), or
(2) Ailp(a)) = Ai(a(a™h) = Ai(a* () for all i, so Tr(p(ar)) = Tr(0*(a)).

Proof. As in the proof of Lemma 6.3, let A = p(a), B = p(B) and A"B = p(a”p) and A;(n) = A;(A"B).
Similarly, let A = o(a), B = 6(8) and A"B = o(a"B) and let A;(n) = A;,(A"B). I (b;’.) is the matrix of

B with respect to the basis {e;(A)}, then, b%, b%, and b% are all non-zero by Lemma 6.4, so Lemma
5.1 implies that

b g B o
AT 1 b% AM Aq

where A; = A;(A). Similarly, applying Lemma 5.1 to p* and noting that Ai‘l(p*(y)) = Ma-i(p(»))
for all y € m1(S), gives that
b dr + %(E)n +o (ﬁ)n
As(m) 1 dl A A2

where (d;) is the matrix of (B™!)T in the basis {e;(A™1)T)}.
Taking the product of the previous two equations gives
(M(n)) (@) i, ikt (Az)” | hody (Ag)”
A

As(n) I bl A dl A2

/\3 n A2 n
+0((A2) )+0((A1) '
One obtains an analogous equality for o, and since the left hand sides are equal by assumption,
we see that
1 1
bldl N dlb%b% (&)ﬂ N bldéd% (ﬁ)”l o (&)n o (&)n
el ;. \Aa Az M

o ABD? (A" BLd? A5\ A5)" )"
- SRS o)) o
bto\A dl \A, Az

=

where A; = 1;(A) and (E;) and (d?) are the matrix representatives of B and (B™H)T with respect to
the bases {¢;(A)} and {e;((A™1)T)} respectively. Since lim % = 0and lim % =0fori=1,2, we

see that b%d% = E%d}.
Lemma 6.4 implies that all the coefficients in Equation (6) are non-zero. We further show that
they are all positive.

Lemma 9.3. Suppose that a and p are represented by simple based loops on S which intersect only at
the basepoint and have geometric intersection one. If p € H3(S) and B = (bZ]. ) is a matrix representing
p(B) in the basis {e;(p(ax)}, then b% and b;b% are positive.

Proof. We may normalize p so that {e;(p(a)} is the standard basis for R®. The coefficients b}, b}
and b% give non-zero functions on H3(S), so have well-defined signs. If g = 73 o py lies in the
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Fuchsian locus, then we may assume that

2
o A2 0 0
T3 =10 1 o
0 4 0 0 A2

i b a? ab b?
T3 (|c d]) =|2ac ad+bc 2bd
& d A
Since o and f intersect essentially, the fixed points z; and z; of z — % lie on opposite sides of

oo(a)

oo(p)

0inR = dooH?. Since z; and z, are the roots of cz? + (d — a)z — b = 0, we see that lz’ =-z12p >0,
so bc > 0. Therefore, b%(ao) =a?>> 0and b%bé(oo) = 2a%bc > 0. It follows that b% and b%bé are
positive on all of H3(S). O

Notice that % = %(p(a‘l)) and j\\—z = %(a(a‘l)). Then, by considering the second order terms
+1

in Equation 6, we see that there exists €1, €2 € {+1} such that

& €1)) — & €2
T = F o).
Since we have assumed that
A A
TP = L, (p) = L, 0) = [, (0) = T2(0(@)

and
(AM1A243)(p(a)) = (A1A243)(0(a?)) = 1,
we see that (11(p(@™))’ = (11(0(a))%, 50 A1(p(a*)) = A1(0(a)), hence Ai(p(a)) = Ai(o(a®))
for all i. If €1 = €3, then we are in case (1), while if €; = —e we are in case (2).
O

We next show that if Tr(p(a)) = Tr(o(a)) and Tr(p(r)) # Tr(c*(@0)), then we may control the
traces of images of simple based loops having geometric intersection one with a.

Lemma 9.4. Suppose that S is a closed orientable surface of genus greater than 1, p,o € Hz(S) and
L;I (p) = LI; (0) for any y € m1(S) which is represented by a simple, non-separating curve. If a € m1(S)
is represented by a simple, non-separating based loop,

Tr(p(a)) = Tr(o(a)) and Tr(p(a)) # Tr(c™(a))

and B € m1(S) is represented by a simple non-separating based loop intersecting o only at the basepoint
and having geometric intersection one with a, then Tr(p(p)) = Tr(a(p)).

Proof. We adopt the notation of Lemma 9.2, and notice that Lemma 9.2 implies that that
Ai = Ai(p(a)) = Ai(o(a)) = A, for all i.
If there is an infinite sequence {ny} of positive numbers such that Tr(p(a"*p)) = Tr(c(a’™p)),
then,
ATy + ASEb3 + ASb3 = ATEby + AJB5 + ALD3
for all 1. So, by considering the leading terms, we see that b; = ?J% Considering the remaining
terms, we conclude that b% = Bg and bg = Bg, so Tr(p(B)) = Tr(a(B)).
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If not, then, by Lemma 9.2, Tr(p(a”*B)) = Tr(o"(a"*p)) for all sufficiently large 7, so
Alby + Aby + A3b3 = A3"d) + A3"d3 + AT"d3

for all sufficiently large n. Since by # 0 and d} # 0, we conclude, by considering leading
terms, that A} = )\51, so A, = 1. However, this implies that A;(p(a)) = Ai(0*(a™1)) for all i, so
Tr(p(ar)) = Tr(o"(ar)), which contradicts our assumptions. m|

If Tr(p(ar)) = Tr(o(a)) for any a represented by a simple non-separating curve, then Theorem
1.2 implies that p = o. Similarly, if Tr(p(a)) = Tr(c*(a)) for any a represented by a simple non-
separating curve, then Theorem 1.2 implies that p = 0*. Therefore, we may assume that there
exists a simple non-separating based loop a so that Tr(p(«)) = Tr(o(«)) and Tr(p(a)) # Tr(o"(«v)).

Let 8 be a simple, non-separating based loop intersecting a only at the basepoint which
has geometric intersection one with . Since Tr(p(a)) # Tr(c"(«)) and Tr(p(B)) and Tr(c(pB)) are
non-zero, there exists n so that Tr(p(a"p)) # Tr(o*(a"B)). Moreover, Lemma 9.4 implies that
Tr(p(a"B)) = Tr(o(a"p)). Extend @, a"p to a standard set of generators S = {ay, f1,. .., &g, g} 5O
that @ = a; and o' = B;.

The remainder of the proof now mimics the proof of Theorem 1.2. Notice that for the
standard generators, if j > i > 1, then a;a; and aiﬁjfl can, and for the remainder of the proof

will be, represented by simple non-separating based loops which intersect a; and a; only at
the basepoint, with geometric intersection zero. There exists a based loop y which intersects
each curve in the collection {ay, az, azas, ..., azag, azfy L azﬁgl} only at the basepoint and
with geometric intersection one, see Figure 4. Moreover, if 1 is either aa; or azﬁi_l, withi > 3,
then every curve of the form r” agyaq is freely homotopic to a simple based loop, in the based

homotopy class of a7’ agy, which has geometric intersection one with a1 and intersects a1 only
at the basepoint. It then follows from Lemma 9.4 that

Tr(p(rf adya})) = Te(o(rPadyal))

for all p,q,r € Z. Proposition 7.3 then implies that p and ¢ are conjugate on (1, az,a1). In
particular, we may assume that p and o agree on (a1, az, a3) = (@23, az, a1). If n = ana;, with

Ficure 4. The curves a1, a, axaz and y on a surface of genus 3

i > 4, then, since p and o agree on (a1, a3, @3) and are conjugate on (1, az, 1), Lemma 7.5 implies
that they agree on 7 and hence on a;'n = ;. Similarly, if = azﬁi‘l, with i > 3, we can use
Lemma 7.5 to show that p and 71 agree on n and hence on ;.

It remains to check that p and o agree on 1 and 8. Recall that there exists a homeomorphism
h:S — Ssothathoa; = fiand hof; = a;. Then p = poh. and § = o o h, are Hitchin
representations. The above argument shows that p and & are conjugate on (a1, a2, a3, 3), which
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implies that p and ¢ are conjugate on (81, f2, B3, a3). Since p and ¢ agree on a3 and on zazp;"
(which have non-intersecting axes), Lemma 7.5 implies that p and o agree on 1 and f», which
completes the proof. m]

10. INFINITESMAL SIMPLE LENGTH RIGIDITY

In this section, we prove that the differentials of simple length functions generate the cotangent
space of a Hitchin component. In earlier work [6, Prop. 10.3] we showed that the differentials
of all length functions generate the cotangent space, and that result played a key role in the
proof that the pressure metric on the Hitchin component is non-degenerate.

Proposition 10.1. Suppose that S is a closed orientable surface of genus greater than 2 and p € Hy(S).
If v € Ty(Ha(S)) and DLy (v) = O for every simple non-separating curve a, then v = 0.
Moreover, if D Tr,(v) = 0 for every simple non-separating curve a, then v = 0.

Proof. We recall that there exists a component ‘7A:(d(S) of Hom(m;(S), SL4(IR)) which is an analytic
manifold, so that the projection map 7 : i{d(S) — Hy(S) is real analytic and is obtained by
quotienting out by the action of SL;(IR) by conjugation, see Hitchin [19]. Any smooth path in
H;(S) lifts to a smooth path in ﬂd(S). The real-valued functions "Fra and Xi,a on 7T(d(5) given
by ”ﬁ“;(ﬁ) = Tr(p(a)) and Z,;(p”) = Ai(p(a)) are analytic and SL;(IR)-invariant, so descend to real
analytic functions Tr, and A;, on H;(S). (Notice that if we chose a different component of
Hom(7t1(S), SL4(R)) as ﬂd(S), then Tr, and A; , could differ up to sign.)

The proof of Proposition 10.1 has the same basic structure as the proof of our simple length
rigidity result. We first establish an infinitesimal version of Theorem 6.1.

Lemma 10.2. If S is a closed orientable surface of genus more than 1, p € Hy(S) and v € THy(S)
then DL, (v) = 0 for every simple non-separating curve « if and only if D Tr,(v) = O for every simple
non-separating curve a. In both cases DA; ,(v) = 0 for all i.

Proof. Let {pt}te(-1,1) be an analytic path in H;(S) such that if f.)o = %L:opt then dn(f)o) =0.
First assume that DL,(v) = 0 for every simple non-separating curve a. Choose a simple
based loop  which intersects a only at the basepoint and has geometric intersection one with a.
Let A(t) = pi(a), B(t) = pt(B) and A;(t) = Aio(pr). Let A(n, t) = |[A1(A(t)"B(t))| and notice that our
assumptions imply that
. d
An, 0) = T tzo/\(n, t)=0

for all n. Let (b}'.(t)) be the matrix representative of B(t) in the basis {¢;(A(t))} and notice that we
may choose {¢;(A(t))} to vary analytically, so that the coefficients (b;.(t)) vary analytically.

If v € R, let D(v) € SL4(R) be chosen so that its matrix is diagonal with respect to the basis
{ei(A(t))} with diagonal entries (1,v1,...,v4-1), then M(v, t) = D(v)B(t) depends analytically on v
and t. Notice that M(6, 0) has a simple eigenvalue b%(O) with eigenvector e;. By Lemma 5.3 there

exists an open neighborhood V of the origin in R*"! X R and an an analytic function F: V — R
so that

M(M(v, 1) = F(o, 1).
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Since ; ,
AWBO) _ ((Aza)) (Ada)) t)
A ()" A1(f) RAVETGT
and
Az(t))" (Ad(t) )" )
PN BARRVA TN /t € V
(( A1(t) A1 ()
for all sufficiently large n and t sufficiently close to 0,
Al t) _ M(AYHB(H) _ " (A”(f)B(t)) _ F((/\z(f))n (/\d(t))n t)
Aq ()" Aq(£)" Ap ()" A (f) \am) )
Letting u;(t) = Aﬁ(g), we see that
A(nl t) = /\1 (t)nF (ul(t)nr sy ud—l(t)nl t) .
Since ).\1 (0) =0and /.\(n, 0)=0,
S F @ w7, = 0
for all large enough n. Therefore,
JoF — JF
SHE O 1(0),0)+ Y S (0) . a1 (0)", Oy (0) 1 £(0) = @

i=1 !
for all large enough 1, so

JF

E(O,...,O,O) =0.

Moreover, since %f is analytic,

J*F

d
8_1;(“1(0)”, -, ug1(0)",0) = Z (a Ot

(0, 0)ui(0)" + o(u; (0)"))

so, since 1 > |u1(0)] > |u;(0)] > O foralli > 2
d-1

_ 1 —— u;(0)" 0*F B
V}I_I&W T (”1(0) ,1g-1(0))",0) = lim L Sy (0T (8vi8t(0""’0'0) =0
Equation (7) then implies that
1 JF " " il ® _ OF o«
Lim W[ (“1(0) -, ug-1(0))", 0)nu;(0) uz‘(O)) = 8—01(0, .++,0,0) 111(0) =
As in the proof of Lemma 5.1, we calculate that
JF _d _d _d (0) b0
500,00 = a|S:0P(s, 0,0, 0) = =| A(D(,5,0,...,0B(0) = — L A ([sb]2 o 2 (O)D
SO -
5 b,(0)b2(0
8—F(o,0): »(0)b1( )'
vy b1(0)
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Lemma 6.4 implies :chat b%(O), b%(O) and b%(O) are non-zero, SO gF 0,...,0,0) # 0. Therefore,
21(0) = 0 and, since A;(0) = 0, we have

o=t =d| (220)_ A2(0)41(0)= A1(0)A2(0) _ 12(0)
A\ 102 LY

so A2(0) =

We may iteratively consider the 1-parameter families of representations given by {E¥(p;)} and
apply the same analysis to conclude that iila(O) = 0 for all 7, and thus that D Tr,(v) = 0

Now assume that D Tr,(v) = 0 for every a € 711(S) represented by a simple non-separating
curve. Given a simple, non-separating curve a represented by a simple based loop, we again
choose a simple based loop f which intersects a only at the basepoint and has geometric
intersection one with a. Notice that

d d
Tr(pi(@"B) = ¥ A2 (pr(@) Te(pilpr(@))pr(B) = Y hi(HAL(D)
i=1 i=1
where h;(t) = Tr(pi(pi(a@))p:(B)) # 0 for all t. Differentiating, and noting that D Trng(v) = 0 for all
n, we see that

d
0= 1(0)/\”(0 ) + nh;(0) AZ(O)/\ 0)*
=1

1

for all n. Since h;(0) # 0 and A;(0) # 0, it must be that 121 (0)=0and ).\1 (0)=0,s0DL,(v) =0. O

We next generalize the proof of Theorem 7.1 to obtain a criterion guaranteeing that v is
infinitesmally trivial on its restriction to certain 3-generator subgroups.

Lemma 10.3. Suppose that p € Hy(S), v € T,(Hy(S)) and DL, (v) = 0 for every simple non-separating
curvenon S. If a, B, 0 € m1(S) are represented by simple based loops which intersect only at the basepoint,
and are freely homotopic to a collection of mutually disjoint and non-parallel, non- sepamtzng closed

curves which do not bound a pair of pants in S, and {p;} is a path in H;(S) so that Dn(PO) = v, then
there exists a path {C;} in SLy(R), so that Co = I and if n € {a, 8, 6), then

Tilip Pt C) = 0 € sl(n, R).

Proof. Lemma 7.2 guarantees that there exist based loops &, 8, ¥ and § as in Figure 1, which
intersect only at the basepoint, so that &,  and 4 are freely homotopic to a collection of mutually
disjoint, non-parallel, non-separating curves and y has geometric intersection one with each
such that

(a,B,0) = (&, B,0).

We may thus assume that «, f and 6 already have this form.
We may also, by possibly re-ordering «,  and 6, assume that a”g7y0" is represented by a
simple non-separating curve for all p, g, 7 € Z. We next generalize the proof of Proposition 7.3

Tl‘,’, ( s /b) .
to show that D( ”r],-};({)/;f‘i) )(v) =0 forall i, jand k.
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Recall that .
Tr(p(a”BTy0") = Y Aialp) Tr (pi(p(@)p(BTyd"))
i=1

Differentiating and noting that, by Lemma 10.2, D Trapgsysr(v) = O forall p, g and rand DA, 4(v) = 0
for all i, one sees that

d
Y AialpV DTy(a, f1y8")(@) = 0
i=1

for all p. By examining terms of different orders and taking limits, we see that
DT;o(a, Ty0")(v) = 0
for all i, g and r. Repeating, as in the proof of Proposition 7.3, we find that
DT jox(, B,,0)(®) = 0
for all i, j, and k. Similarly, by considering f7y0", we see that
DTjox(B,y,0)(v) =0

for all j and k.
Recall, from part (4) of Proposition 4.3, that

Tk, B, 5)(9)) 0
Tjk(B,0)(p)

for all i, j and k. Since we have established that the two leftmost terms in this expression are
non-zero and have derivative 0 in the direction v, we conclude that

Tij(,B,0)\
(Tﬂmm Jor=0

Tijox(a, By, 0)(p) = Tjox(B, v, 0)(p) (

foralli, jand k. ' ‘ ' '

Let ai(t) = ei(p(a)), a'(t) = e'(pr(@)), bj(t) = ej(p:(B)), b/(t) = &/(p:(B)), di(t) = ex(p:(0)) and
d*(t) = & (p:(0)) for all i, j, k. We will assume throughout, by replacing {p;} by {C;p;C; '} where
{C}} is a path in SL,4(R) so that Cy = I, that 4;(t) are constant as functions of ¢ for all i, by(f)
is constant as a function of t, and by scaling the bases, that (@ (Hb1(t)y = 1 for all i and ¢,
(al(t)lbj(t)> = 1 for all j and ¢, and (d*(t)|b1(t)) = 1 for all k and t. Since a;(t) is constant and
%L:O/\i’a(pt) =0, by Lemma 10.2, %'tzopt(a) =0.

Recall, from Proposition 4.3, that

T (e, B,0)(pr) _ (a'(DIb;(1) (@ (lai(t))

= 8
T,(6,0)(py) (OB ®
By considering Equation (8) when j = 1, we see that
Ti,l,k(al .B/ 5)(,Ot) k
= (d"(D)lai(£)),
T o) O

so, since the left-hand side has derivative 0 at 0 and 4;(t) is constant for all i,

%LJ@WWﬁ»%ﬂ%@mm»=o
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for all i and k. Therefore, d(0) = 0 for all k, so c.lk = 0 for all k. Since we also know, from Lemma
10.2, that &|,_ Ais(pr) = 0 for all t, it follows that |,_ p:(5) = 0.
Considering Equation (8) when i = 1, one obtains
Tk, B,0)(pr) (@ (B)lbi(D) (d*B)lar(t))  (d(b)lay (1))
Tjk(B, 0)(p1) @ ®lb;(h) (@ (blbj(t)y”

Since the derivative of the left hand side is 0 at 0, a1 (t) is constant, and d%(0) = 0 for all k, we see
that

d*(0)]ay (0 o
LOmOD o100 = 0,
(d*(0)1b;(0))
so {(d| l.;j(O)) = 0 for all j and k, so l.;j(O) = 0 for all j. We may then argue, just as before, that
%L:Opt(ﬁ) = 0. Therefore, %'tzopt(n) =0 forall n € {a, B, 6). O

We are now ready to complete the proof of Proposition 10.1. Let S = {a1, f1,...,aq, B¢} be a
standard generating set for 711(S). By Lemma 10.3, we may choose an analytic family {p;} in

Hom(7t1(S), PSL;(R)) so that dn(f.?o) =vand C%L:Opt(y) =0 for all n € (a1, a2, a3).

For any 0 € S — {a1, a2, a3, B1, f2}, we may apply Lemma 10.3 to the triple {a, a2, 17} to show
that there exists a family {C;} in PSL;(IR) so that Cyp = I and %L:O(Ctpt(y)Ct‘l) = 0 for all
y € {ay, az,6). In particular,

° ° d ° °
Copo(a:)Cy"' = Copolai) Co + Co (a‘tzopt(ai)) Cyt =Copolai) — pole) Co =0,

SO [éo, po(a;)] = 0fori=1,2, Thus, éo is diagonalizable over R with respect to both {e;(po(a1))}
and {ei(po(az)}- .

If Co # 0, then R? admits a non-trivial decomposition into eigenspaces of Cp with distinct
eigenvalues. Any such eigenspace W is spanned by a sub-collection of {e;(po(a1))} and by a
sub-collection of {e;(po(az))}. In particular, some e;(po(a1)) is in the sub-space spanned by a
subcollection of {ej(po(a2))}. Since a; and a; are disjoint curves, this contradicts Theorem 1.6.

Thereforg, (.:0 =0.
Since Cy = 0 and %L:O(Ctpt(é)ct‘l) = 0, we calculate that

. . d d
-1 _ da -1_ 4 _
Eapo®)C5" = Copo(®) &o + Co (| @) &5 = =] i) =0.
By considering the subgroups (a2, a3, f1) and {a1, as, f2), we similarly show that
d d
SlpBn=0 and  Z| o =0

Since %L:Opt(n) =0forallnes,
Po =0 € TH,(S).

Therefore, v = Dnt (,50) = 0 as claimed. ]
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11. HITCHIN REPRESENTATIONS FOR SURFACES WITH BOUNDARY

In this section, we observe that our main simple length rigidity result extends to Hitchin
representations of most compact surfaces with boundary.

If S is a compact surface with boundary, we say that a representation p : 11(S) — PSL;(IR)
is a Hitchin representation if p is the restriction of a Hitchin representation p of 71(DS) into
PSL;(IR), where DS is the double of S. Labourie and McShane [22, Section 9] show that this is
equivalent to assuming that p is deformable to the composition of a convex cocompact Fuchsian
uniformization of S and the irreducible representation through representations so that the
image of every peripheral element is purely loxodromic. (Recall that a non-trivial element of
111(S) is peripheral if it is represented by a curve in dS.) Fock and Goncharov [13] refer to such
representations as positive representations.

Theorem 11.1. Suppose that S is a compact, orientable surface of genus g > 0 with p > 0 boundary
components, and (g, p) is not (1,1) or (1,2). If p and o are two Hitchin representations of 11(S) of
dimension d and Ly(a) = Lo(a) for any a represented by a simple non-separating curve on S, then p and
o are conjugate in PGL4(IR).

Notice that our techniques don’t apply to punctured spheres, since they contain no simple
non-separating curves. In the remaining excluded cases, there are no configurations of three
non-parallel simple non-separating closed curves which do not bound a pair of pants.

Proof. We choose a generating set

S= {alrﬁlr . . -ag/,Bg/ 61/ . . ~/6p—1}

represented by simple, non-separating based loops which intersect only at the basepoint so that
{a1,p1,..., a4, B¢} is a standard generating set for the surface of genus g obtained by capping
each boundary component of S with a disk, each 6; has geometric intersection one with f; and
zero with every other generator, as in Figure 5. Notice that any collection of 3 based loops in
S which have geometric intersection zero with each other are freely homotopic to a mutually
disjoint, non-parallel collection of simple closed curves which do not bound a pair of pants.

Throughout the proof we identify S with a subsurface of DS and apply our earlier results to
the representations p and 6 of 11(DS). Lemma 6.3 implies that if n) € 711(S) is represented by a
simple non-separating curve on S, then | Tr(p(n))| = | Tr(a(n))l and A;(p(1)) = Ai(o(n)) for all i.

If g > 3, the proof of Theorem 1.2 generalizes rather immediately. We first apply Theorem
7.1to p and 6, to see that we may assume, after conjugation in PGL;(IR), that p and 0 agree on
(aq, a2, a3). If n € S = {a1, a2, f1, B2}, we may again apply Theorem 7.1 to show that p and ¢ are
conjugate on (a1, az, ). Since p and & agree on a; and ap, Lemma 7.5 implies that p and o agree
on (a1, az, ). We then consider the triples {a2, a3, f1} and {a1, a3, 2} to show that p and o agree
on 1 and 8, and hence that p = o.

If g =2and p > 2, we again use Theorem 7.1 to show that we may conjugate p and o so
that they agree on (a1, az,61). If i > 2, we may again apply Theorem 7.1 to show that p and o
are conjugate on (a1, a2, 6;) and then Lemma 7.5 to show that p and ¢ agree on (a1, a2, 6;). We
consider the triple {a1, 61, f2} to show that p and o agree on . Therefore, p and o agree on
S — {B1}. Recall that there exists a homeomorphism /i : S — Ssuch thathoa; = g;and ho f; = a;.
The above argument implies that the Hitchin representations p o h. and o o h. are conjugate on
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(a1, a2, B2) and hence that p and o are conjugate on (f1, 2, a2). Since p and ¢ agree on f8; and a5,
Lemma 7.5 implies that they agree on 1. So, we conclude that p = 0.

If g=1andp >3, then S = {ay, B1,01,...,0p-1}. We first apply Theorem 7.1 to show that we
may conjugate p and o so that they agree on {(ay,61,02). If i > 3, we may consider the triple
{a1, 01,6} to see that p and o agree on ;. It remains to check that p and o agree on f3;.

b1

0
961

aq oy

1

B

Ficure 6. Curves on a surface of type (1,p) forp > 3

Let §; be as in Figure 6, so thatif 8" = {a1, 1, 5,..., 5,,_1}, then the based loops in &’ intersect
only at the basepoint and each §; has geometric intersection one with a; and has geometric
intersection zero with every other element of §’. Notice that a10; = éiﬁl and let u; = @16;. Then,
p and o agree on the subgroup (a1, u1, ..., u,-1). We may apply the same argument as above to
show that p and ¢ are conjugate on (81,0, ..., Sp_1). Since this subgroup contains u; and u,
p and ¢ agree on u; and uy, and u; and u; have non-intersecting axes in 71(DS), Lemma 7.5,
applied to p and &, implies that p and o agree on {1, 51,..., Sp_1) and hence on f1,s0 p = 0.

If g=2and p =1, then S = {ay, f1, a2, f2}. We will consider the based loops &; and [31- asin
Figure 7. As the based loops {a1, az, &1} are freely homotopic to a mutually disjoint, non-parallel
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collection of simple, non-separating curves which do not bound a pair of pants, Theorem 7.1
implies that we may assume that p and o agree on (a1, ay, &1). Similarly, the representations
are conjugate on (a1, az, &), and since they already agree on (a1, a2, @1) and a; and a; have
non-intersecting axes, Lemma 7.5 implies that they agree on {1, a, &1, &2). Next, by considering
the triples {a1, f2, &1} and {oq,ﬁz,ﬁz}, we see that p and ¢ are conjugate on (a1, 2, 071,,32). Since
p and ¢ agree on a; and &1, they agree on (a1, B2, &1, f2). By similarly considering the triples
{az, B1, &2} and {ay, f1, ﬁl}, we show that p and o agree on f31. Since we have shown that, after
an injtial conjugation, p and o agree on each generator, we have completed the proof in the case
that (g,p) = (2,1). O

We similarly obtain the analogue of our Simple Trace Rigidity Theorem in this setting.

Theorem 11.2. Suppose that S is a compact, orientable surface of genus g > 0 with p > 0 boundary
components and (g, p) is not (1,1) or (1,2). Then, for all d > 2, there exists a finite collection L;(S) of
elements of t1(S) which are represented by simple non-separating curves, such that if p and ¢ are two
Hitchin representations of 111(S) of dimension d and | Tr(p(n))| = | Te(o(n))| for any n € L4(S), then p
and o are conjugate in PGL4(IR).
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