PRESSURE METRICS FOR CUSPED HITCHIN COMPONENTS
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ABSTRACT. We study the cusped Hitchin component consisting of (conjugacy classes of)
cusped Hitchin representations of a torsion-free geometrically finite Fuchsian group I into
PSL(d,R). We produce Riemannian pressure metrics associated to the first fundamental
weight and the first simple root. We produce a pressure path metric associated to the
Hilbert length and describe its degeneracy.
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1. INTRODUCTION

In this paper, we construct pressure metrics on the cusped Hitchin component of Hitchin
representations of a torsion-free Fuchsian lattice into PSL(d, R). The first two metrics are
mapping class group invariant, analytic Riemannian metrics. These metrics are associated
to the first fundamental weight and the first simple root. Our third pressure metric is
based on the Hilbert length. It is a mapping class group invariant path metric which is
an analytic Riemannian metric off of the self-dual locus. These constructions are based
on earlier constructions of Bridgeman, Canary, Labourie and Sambarino [7, 8, 9] in the
case of Hitchin components of closed surface groups.

The main new technical difficulties involve the fact that while the geodesic flow of a
closed hyperbolic surface may be coded by a finite Markov shift, there is no finite Markov
coding of the geodesic flow of a geometrically finite hyperbolic surface. Stadlbauer [44]
and Ledrappier-Sarig [27] provide a countable Markov coding of the (recurrent portion
of the) geodesic flow of a finite area hyperbolic surface. In a previous paper, we used
these codings, work of Canary-Zhang-Zimmer [11] on cusped Hitchin representations, and
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the Thermodynamic Formalism for countable Markov shifts, to establish counting and
equidistribution results for cusped Hitchin representations. In this paper, we apply the
theory developed in that paper to construct our pressure metrics.

The long-term goal of this project is to realize these metrics as the induced metric
on the strata at infinity of the metric completion of the Hitchin component of a closed
surface group with its pressure metric. In the classical setting, when d = 2, Masur [31]
showed that the metric completion of Teichmiiller space of a closed surface S, with the
Weil-Petersson metric, is the augmented Teichmiiller space. The strata at infinity in
the augmented Teichmiiller space come from Teichmiiller space of, possibly disconnected,
surfaces obtained from pinching S along a multicurve. We hope that the Hilbert length
pressure metric when d = 3 may be more natural to study given its connection to Hilbert
geometry. When d = 3, the Hitchin component of a closed surface is the space of holo-
nomy maps of convex projective structures on the surface. The strata at infinity of the
augmented Hitchin component would then be cusped Hitchin components consisting of
finite area convex projective structures obtained from pinching the surface along a multi-
curve. We hope to eventually establish an analogue of Masur’s result in the higher rank
setting. (See [10] for a more detailed description of the conjectural geometric picture of
the augmented Hitchin component.)

We now discuss our results more precisely. We recall that if T" is a torsion-free, geo-
metrically finite Fuchsian group (i.e. a discrete non-abelian finitely generated subgroup of
PSL(2,R)), then a Hitchin representation is a representation p : I' — PSL(d, R) which ad-
mits a positive equivariant limit map & : A(T') — F4 where A(T') C OH? is the limit set of
I' and Fy is the space of d-dimensional flags. As in the closed case, they all arise as type-
preserving deformations of the restriction of an irreducible representation of PSL(2,R)
into PSL(d, R).

The Hitchin component Hq(T') is the space of conjugacy classes of Hitchin representa-
tions of I' into PSL(d,R). Fock and Goncharov, see the discussion in [14, Sec 1.8], show
that the Hitchin component is topologically a cell. (When d = 3, H3(I") is parameter-
ized by Marquis [30], when I' is a lattice, and more generally by Loftin and Zhang [28].
Bonahon-Dreyer [2, Thm. 2| and Zhang [47, Prop. 3.5] explicitly describe variations
of the Fock-Goncharov parametrization when I' is cocompact, and their analyses should
extend to our setting.) More generally, if G is a real-split Lie subgroup of PSL(d, R),
let H(T',G) be the space of Hitchin representations with image in G. (In particular,
Hq(T) = H(I',PSL(d,R)) in this notation.) Fock-Goncharov [14] and Hitchin [19] (see
also [16, §9.3]) show that H(I', G) is topologically a cell.

Theorem 1.1. If I' C PSL(2,R) is torsion-free and geometrically finite and G is a real-
split Lie subgroup of PSL(d,R), then the cusped Hitchin component H(I',G) is an analytic
manifold diffeomorphic to R™ for some m € N.

If

a:{feRd]in:O}
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is the standard Cartan algebra for PSL(d, R), let

d—1
A:{¢:Zaiai|ai20va Zai>0}cu*
i=1

where «; is the simple root given by «a;(Z) = z; — z;_1. Notice that A is exactly the
collection of linear functionals which are strictly positive on the interior of the Weyl
chamber
a+:{f€a|x1>...>xd}.
Consider the Jordan projection v : PSL(d,R) — a™ given by
v(A) = (log A\ (A),...,log A\s(A))

where A\j(A) > --- > A\g(A) are the (ordered) moduli of generalized eigenvalues of A.
If ¢ € A and p € Hy4(T'), denote by £9(y) = ¢(v(p(v))) the ¢-length of v € . We may
define the ¢-entropy of p as
¢
é _ % # 17 (p)
=
where [I',,] is the set of conjugacy classes of hyperbolic elements in I', and

R7(p) = {[] € [Ty | £5(7) < T}
Moreover, if p,n € Hq(I'), we may define the ¢-pressure intersection

@
Pl =Jm by 40

C Toe Rd) E(’b ’
| T(P)| ERS () p(V)

and a renormalized ¢-pressure intersection

J%(p,m) = ZZ—EZiI‘z’(,O, m).

Our key tool in the construction of the pressure metric will be results of Bray, Canary,
Kao and Martone [5] and Canary, Zhang and Zimmer [11] which combine to prove that all
these quantities vary analytically. See [7, Section 8.1] for the analogous statement when
I' is cocompact.

Theorem 1.2. If ' C PSL(2,R) is torsion-free and geometrically finite and ¢ € A, then
h®(p) varies analytically over Hq(T') and I¢ and J® vary analytically over Hq(T') x Hq(T).
Moreover, if p,n € Hq(T'), then

T (p,m) > 1

. , s
and J*(p,n) = 1 if and only if €5(v) = Zq,—gzgﬁﬁ(y) for all v €T.
Given ¢ € A, we define a pressure form on the Hitchin component, by letting

P¢‘Tpﬂd(r) = Hess(J%(p,-)).

Since J? achieves its minimum along the diagonal, P? will always be non-negative. How-
ever, it will not always be non-degenerate. Typically, the most difficult portion of the proof
of the construction of a pressure metric is to verify non-degeneracy, or, more generally, to
characterize which vectors are degenerate.
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We first consider the first fundamental weight w; € A, given by wy(Z) = z;. As a
consequence of a much more general result, Bridgeman, Canary, Labourie and Sambarino
[7] prove that P is non-degenerate on the Hitchin component of a convex cocompact
Fuchsian group. We recall that the mapping class group Mod(T") is the group of (isotopy
classes of) orientation-preserving self-homeomorphisms of H?/T..

Theorem 1.3. If ' C PSL(2,R) is torsion-free and geometrically finite, then the pressure
form P“' is non-degenerate, so gives rise to a mapping class group invariant, analytic
Riemannian metric on Hq(T).

Bridgeman, Canary, Labourie and Sambarino [8] later expanded their techniques to
show that the first simple root gives rise to a non-degenerate pressure metric on the
Hitchin component of a closed surface group. We implement their outline in the cusped
setting. We make crucial use of a result of Canary, Zhang and Zimmer [12] which assures
us that simple root entropies are constant on the Hitchin components of Fuchsian lattices
(which generalizes a result of Potrie and Sambarino [37] for Hitchin components of closed
surface groups).

Theorem 1.4. [f " C PSL(2,R) is a torsion-free lattice, then the pressure form P! is
non-degenerate, so gives rise to a mapping class group invariant, analytic Riemannian
metric on Hq(T).

Finally, we consider the functional wy associated to the Hilbert length given by wy (%) =
x1 — xq. It is easy to see that if C': Hy(I") — Hy(T') is the contragredient involution and
U € THq(T) is anti-self-dual, i.e. DC(¥) = —, then P“# (¢, 7) = 0 (see [9, Lem. 5.22]).
In particular, P“# is not globally non-degenerate. However, one can still show that the
pressure form gives rise to a path metric. Bridgeman, Canary and Sambarino [9, Sec. 5.8]
previously remarked that this is the case when I' is a closed surface group.

Theorem 1.5. [fI" C PSL(2,R) is torsion-free and geometrically finite, then P“H gives rise
to a mapping class group invariant path metric on Hq(T') which is an analytic Riemannian
metric off of the self-dual locus.

When d = 3, cusped Hitchin representations of a torsion-free lattice are holonomy
maps of finite area convex projective surfaces and the Hilbert length is the translation
length with respect to the Hilbert metric. In this case, the analogy with the augmented
Teichmiiller space is most compelling and we expect that this case may be the easiest
case in which to begin the analysis of the augmented Hitchin component. Notice that our
proposed augmented Hitchin component would be a proper subspace of the augmented
Hitchin component introduced and studied in [28].

Theorems 1.3 and 1.5 are derived by generalizing the main result of [7, Thm. 1.4] into
the cusped setting.

Let Pﬁqu}(ra d) be the set of irreducible Py 4_13-Anosov representations into PSL(d, R)

and let Pf", (T, d) = Py, 1, (T, d)/PSL(d,R). If H is a reductive subgroup of PSL(d, R),
then an element h € H is H-generic if its centralizer is a maximal torus in H. If
H = PSL(d,R), then an element is H-generic if and only if it is diagonalizable over C
with distinct eigenvalues. A representation into H is said to be H-generic if its image
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contains an H-generic element. In particular, all Hitchin representations are PSL(d, R)-
generic.

Theorem 1.6. Suppose that I' C PSL(2,R) is torsion-free and geometrically finite. If W
is an analytic submanifold of Pfgfd_l}(F,d), H is a reductive subgroup of PSL(d,R) and
every representation in W has image in H and is H-generic, then P“! |ty is an analytic
Riemannian metric on W. Moreover, if W is invariant under a subgroup M of the

mapping class group, then P!ty is M -invariant.

Finally, we remark that if I" is geometrically finite but has torsion, then it has a finite
index normal subgroup I'y which is torsion-free. One may identify I'/Ty with a finite
index subgroup G of the mapping class group of H?/T'y and then identify H4(T') with the
submanifold of H4(I'g) which is stabilized by G. It follows that one obtains mapping class
group invariant analytic Riemannian metrics P“* and P* on H,4(I") and a mapping class
group invariant path metric on Hy(I") which is analytic Riemannian off of the self-dual
locus.

Historical remarks. Thurston described a metric on Teichmiiller space which was the
“Hessian of the length of a random geodesic.” Wolpert [46] showed that this metric
gives a scalar multiple of the classical Weil-Petersson metric. Bonahon [1] reinterpreted
Thurston’s metric in terms of geodesic currents. McMullen [33] showed that one may
interpret Thurston’s metric in terms of Thermodynamic Formalism, as the Hessian of
a pressure intersection function. Bridgeman [6] generalized McMullen’s construction to
the setting of quasifuchsian space. Bridgeman, Canary, Labourie and Sambarino [7] then
showed how to use his construction to produce analytic Riemannian metrics at “generic”
smooth points of deformation spaces of projective Anosov representations, and in partic-
ular on Hitchin components. Pollicott and Sharp [36] gave an alternate interpretation of
this metric.

Kao [20] used countable Markov codings to construct pressure metrics on Teichmiiller
spaces of punctured surfaces. Bray, Canary and Kao [4] generalized this to the setting of
cusped quasifuchsian groups.

Acknowledgement. We thank the referee for their helpful comments, which allowed us to
simplify our proofs and improve our results.

2. BACKGROUND

2.1. Linear algebra. The Jordan projection v: SL(d,R) — a™ is the map which associates
to A € SL(d,R) the list (log A(A),...,log A\g(A)) of logarithms of moduli of generalized
eigenvalues of A in decreasing order.

The Cartan projection k: SL(d,R) — a™ is

k(A) = (logoi(A),...,logoy(A))

where {0;(A)}L, are the singular values of A labelled in decreasing order. Recall that
each element of SL(d,R) may be written as A = KDL where K,L € SO(d) and D is
the diagonal matrix with (7,7)-entry given by o;(A). If ax(k(A)) > 0, then Ug(A) =
K({e1,...,ex)) is well-defined and is the k-plane spanned by the first £ major axes of
A(S4Y).



6 BRAY, CANARY, KAO, AND MARTONE

Suppose that 6 is a symmetric subset of {1,...,d—1},i.e. k € fif and only if d—k € 6.
Define the 0-Cartan subspace as

ap={d€a:a;(@=0ifj &0}
and let Ay denote the set of functionals which are positive on aj = a* N ay.
The 0-Cartan projection kg: SL(d,R) — ap is the unique map so that wy(ke(A4)) =

wi(k(A)) for all A € SL(d,R) and all k € 6.
If 0 ={ky,..., k,} we define the 6-flag variety

Fo={(F" F* . Ff)y:Fb c F* c ... c F*}

where each F* is a vector subspace of R? of dimension k;. In particular, the full flag
variety JFg is the same as Fy 2. 4—1) in this notation.
Quint [38] introduced a vector valued smooth cocycle, called the 0-Twasawa cocycle,

By :SL(d,R) x Fy — ay

with the defining property that if £ € §, A € SL(d,R), F' € Fy, U} is a non-trivial vector

in E*(F*) c E*(RY), where E* denotes the k' exterior power, then
EFA(©)
wi(Bo(A, F)) = log W

Note that the Jordan and Cartan projections (resp. #-Iwasawa cocycle) descend to well-
defined functions on PSL(d,R) (resp. PSL(d,R) x Fp).

2.2. Thermodynamic Formalism. In this section, we recall the background results we will
need from the Thermodynamic Formalism for countable Markov shifts as developed by
Gurevich-Savchenko [18], Mauldin-Urbanski [32] and Sarig [43].

Given a countable alphabet A and a transition matrix T = (t,) € {0, 1}*** a one-sided
Markov shift is

St={z=(x;) € AV | ty,,, = 1 for all i € N}

equipped with a shift map o : X7 — X1 which takes (z;);en to (7i11)ien. One says that
(3T, o) is topologically mizing if for all a,b € A, there exists N = N(a,b) so that if n > N,
then there exists © € ¥ so that x; = a and z,, = b. The shift (X7, ) has the big images
and pre-images property (BIP) if there exists a finite subset B C A so that if a € A, then
there exists by, by € B so that tp, o =1 =t44,.

Given a one-sided countable Markov shift (X7 o) and a function ¢g : ¥7 — R, we say
that g is locally Hélder continuous if there exists C' > 0 and n € (0,1) so that if z,y € 3T
and x; = y; for all 1 <i <n, then

l9(z) — g(y)|l < Cn™.
If n € N, the n'"-ergodic sum of g at x € X" is

Sugla) = 3" g(o"™ (@)

and Fix" = {z € ¥7 | 0"(x) = x} is the set of periodic words with period n.
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The pressure of a locally Holder continuous function ¢ : ¥ — R is defined to be

P(g):sup{ho(m)+/ g dm:m e M, and —/ gdm<oo}
s+ st

where M, is the space of o-invariant probability measures on X and h,(m) is the
measure-theoretic entropy of o with respect to the measure m.

A o-invariant Borel probability measure m on X1 is an equilibrium measure for a locally
Holder continuous function g : ¥ — R if

P(g) = ho(m) + /E+ g dm.

We remark that there are several different but equivalent definitions of pressure and
equilibrium measure in the current setting. Readers can find a more detailed discussion
of this in Bray-Canary-Kao-Martone [5, pg. 11]. Mauldin-Urbanski ([32, Thm. 2.6.12,
Prop. 2.6.13 and 2.6.14]) and Sarig ([42, Cor. 4], [43, Thm 5.10 and 5.13]) prove that the
pressure function is real analytic in our setting and compute its derivatives. Recall that
{gu : X — R}yen is a real analytic family if M is a real analytic manifold and for all
r € X", u— g,(x) is a real analytic function on M.

Theorem 2.1 (Mauldin-Urbanski, Sarig). Suppose that (37, 0) is a one-sided countable
Markov shift which has (BIP) and is topologically mizing. If {g, : Xt — R}yen is a real
analytic family of locally Hélder continuous functions such that P(g,) < oo for all u, then
u — P(gy) is real analytic.

Moreover, if v € T,,,M and there exists a neighborhood U of ug in M so that if u € U,
then — [5. gudmg, < oo, then

DsP(g.) = | Dilgu(e)) dm,,.
>+
In the case of finite Markov shifts, the assumption that P(g,) < oo is automatically
satisfied and Theorem 2.1 is due to Ruelle [39] and Parry-Pollicott [35].

Bowen and Series [3] constructed a finite Markov coding for the action of a convex
cocompact group I' on its limit set A(I"). Dal’bo and Peigné [13], when I' is geometrically
finite but not a lattice, and Stadlbauer [44] and Ledrappier-Sarig [27], when I is a lattice,
constructed a countable Markov coding for the action of I" on its conical limit set A.(T").
We summarize their crucial properties below (see [4] for a more complete description in
our language). If a € A, then G(a) is the associated element of I" and log r(a) is “coarsely”
the translation distance (of some fixed basepoint) of G(a).

Theorem 2.2 (Bowen-Series [3], Dal’bo-Peigné [13], Ledrappier-Sarig [27], Stadlbauer
[44])). Suppose that T' is a torsion-free geometrically finite Fuchsian group. There ex-
ists a topologically mizing Markov shift (X7, o) with countable alphabet A with (BIP) and
maps

G:A—T, w:¥" = AT), and r: A— N
with the following properties.
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(1) w is locally Holder continuous, finite-to-one and w(X) = A (T), i.e. the com-
plement in A(I") of the set of fixed points of parabolic elements of I'. Moreover,
w(z) = G(x1)w(o(x)) for every x € X7

(2) If x € Fix", then w(x) is the attracting fived point of G(x1) - - - G(xy,). Moreover, if
~v € T"is hyperbolic, then there exists x € Fix" (for some n) so that v is conjugate
to G(xy1) -+ - G(xy,) and x is unique up to cyclic permutation.

(3) There exists D € N so that 1 < #(r~'(n)) < D for alln € N.

2.3. Anosov representations of geometrically finite Fuchsian groups. We next recall the
definition of a FPy-Anosov representation of a geometrically finite Fuchsian group and the
results of Bray-Canary-Kao-Martone [5] and Canary-Zhang-Zimmer [11] which will play
a crucial role in our work.

Let I' be a geometrically finite Fuchsian group and let # be a symmetric subset of
{1,...,d — 1}. We say that a representation p : I' — PSL(d,R) is Py-Anosov, if there
exists a continuous p-equivariant map £, : A(I') = F so that

(1) &, is transverse, i.e. if v # y € A(l') and k € 0, then

&) @& (y) =R,
(2) &, is strongly dynamics preserving, i.e. if {v,} is a sequence in I" so that =, (by) —
z € A(T) and 7, *(by) = y € A(T") for some basepoint by € H?, then if F' € Fy is
transverse to &,(y), then p(y,)(F) — &,(x).

We denote the space of Py-Anosov representations of I' into PSL(d,R) by Py(I,d). We
will need the following observation, which follows immediately from the above definition.

Lemma 2.3. If p: T' — PSL(d,R) is in 75{1@_1}(11, d) and Ty is a Schottky subgroup of T,
then plr, is a projective Anosov representation of the convexr cocompact subgroup T'y.

Canary, Zhang and Zimmer establish fundamental properties of Py-Anosov representa-
tions of geometrically finite Fuchsian groups which generalize the properties of classical
Anosov representations.

Theorem 2.4 (Canary-Zhang-Zimmer [11]). Suppose that I" is a geometrically finite Fuch-
sian group, p: I' — PSL(d,R) is a Py-Anosov representation.

(1) If v € T is hyperbolic and k € 0, then p(v) is Py-prozimal.

(2) If a € T is parabolic, then p(«) is weakly unipotent in PSL(d,R), i.e. its Jordan-
Chevalley decomposition has elliptic semi-simple part and non-trivial unipotent
part.

(3) There exist A,a >0 so that if y € ' and k € 0, then

Led01(b0)) > park(ro(p(1))) L, 2b02tto)

- —A
where by is a basepoint for H2.

(4) p has the Pp-Cartan property, i.e. whenever {v,} is a sequence of distinct elements
of T' such that ~y,(bo) converges to z € A(T), then £5(z) = lim Uy(p(yn)) for all
ked.

They also show that limit maps of Anosov representations vary analytically.
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Theorem 2.5 (Canary-Zhang-Zimmer [11]). If {p, : I' = PSL(d,R) }venr s a real analytic
family of Pyp-Anosov representations of a geometrically finite Fuchsian group and z € A(T"),
then the map from M to Fy given by u — £,,(2) is real analytic.

If p € Py(, d), the 6-Benoist limit cone of p is

Bip)=() U Ruirslp() Caf.

n20 [[kg (p(7)) | 2n

The positive dual to the #-Benoist limit cone is given by

Bolp)" = {0 €0 | & (Balp) — {0}) € (0,00} 1)

In previous work [5], we constructed potentials on the Markov shift which encode the
spectral properties of Anosov representations of geometrically finite, torsion-free Fuchsian
groups. First we use the 0-Iwasawa cocycle to define a vector-valued roof function 7, :
- Qg by

7p(x) = By (p(G(21)), p(G(21)) 7 (§p(w(2))))
If ¢ € By(p)* one defines the roof function 7§ = ¢o7,. Notice that since By(p) is contained
in the interior of the positive Weyl chamber a;, the set Ay is contained in By(p)™.

We use the Thermodynamic Formalism for countable Markov shifts to analyze these
potentials. In particular, we use a renewal theorem of Kessebohmer and Kombrink [24]

to generalize arguments of Lalley [26] to establish counting and equidistribution results
in our setting. We summarize the results we will need from our work below.

Theorem 2.6 (Bray-Canary-Kao-Martone [5]). Suppose that T' is a torsion-free, geomet-
rically finite Fuchsian group which is not convex cocompact, p : I' — PSL(d,R) is a
Py-Anosov representation and ¢ € By(p)™. Then, there exists a locally Holder continuous
function T;)b =¢oT,: T — R such that

(1) 79 is eventually positive, i.e. there exist N € N and B > 0 such that S,7¢(x) > B
for alln > N and x € X+.

(2) There exists d(¢) > 0, so that h — P(—h7¢) is finite, proper and strictly monotone
on (d(¢),00) and infinite otherwise.

(3) There exists C, > 0, and for all x; € A, c(p,¢,x1) > 1/d(¢) so that if x € XF,
then

7

() — c(p, ¢, x1) logr(z1)| < C,.

(4) If x =71 T, is a periodic element of X%, then
SnT;f(x) = éff(G(xl) e G(:vn))
(5) The ¢-entropy h?(p) of p is the unique solution of P(—h7?) = 0. Moreover,

i TR (p)

Too0  eh*(0)T =1

(6) There is a unique equilibrium measure mﬁ’ for —h¢’(p)7'g’.
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We also established a rigidity theorem for renormalized pressure intersection and use
our equidistribution result to give a thermodynamical reformulation of the pressure inter-
section.

Theorem 2.7 (Bray-Canary-Kao-Martone [5]). If p,n : I' — PSL(d,R) are Py-Anosov
representations of a geometrically finite Fuchsian group and ¢ € Ay, then

J(p,n) =1
with equality if and only if
he(n)
(oY) = 75200y
P = R 1)
for all v € I'. Moreover,
J. T¢’ dm¢
I*(p,n) = =——5——=~
f2+ Tp dmp
and —I%(p,n) is the slope of the tangent line at (h®(p),0) to
C%(p,n) = {(a,b) € R* | P(—ar) —b1) =0,a > 0,b>0,a+b > 0}.
2.4. Hitchin representations. We say that a basis b = (b1, ..., by) is consistent with a pair

(F,G) of transverse flags if (b;) = F' N G for all i. We denote by U(b)so C SL(d,R)
the subsemigroup of upper triangular unipotent matrices which are totally positive with
respect to b, i.e. A € U(b)s¢ if, in the basis b, A is upper triangular unipotent and the
determinants of all the minors of A are positive, unless they are forced to be zero by the
fact that A is upper triangular.

Then, a k-tuple (Fi,..., Fy) in F, is positive if there exists a basis b consistent with
(F1, Fy) and there exists {us,...,up_1} € U(b)so so that F; = ug_q1---u;Fy for all i =
2,...,k—1. If X is a subset of S, we say that a map & : X — F, is positive if whenever
(x1,...,2x) is a consistently ordered k-tuple in X (ordered either clockwise or counter-
clockwise), then (£(x1),...,&(zx)) is a positive k-tuple of flags.

Let T be a geometrically finite Fuchsian group and let A(T') C OH? be its limit set.
Following Fock and Goncharov [14], a Hitchin representation p : ' — PSL(d,R) is a
representation such that there exists a p-equivariant positive map &, : A(I') — Fy. If S is
closed, Hitchin representations are just the traditional Hitchin representations introduced
by Hitchin [19] and further studied by Labourie [25]. When I" contains a parabolic element,
we sometimes refer to these Hitchin representations as cusped Hitchin representations to
distinguish them from the traditional Hitchin representations.

Canary, Zhang and Zimmer [11] proved the following important structural results.
(Sambarino [41] independently showed that Hitchin representations are strongly irre-
ducible.)

Theorem 2.8. If p € Hy(I'), then p is {1,...,d — 1}-Anosov and strongly irreducible.

We recall that Sambarino [41, Theorem A] classified the possible Zariski closures of
images of Hitchin representations.

Theorem 2.9 (Sambarino [41]). Suppose thatI' C PSL(2,R) is a geometrically finite Fuch-
sian group, and p : I' — PSL(d,R) is a Hitchin representation. Then the Zariski closure
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of p(I') either lies in an irreducible image of PSL(2,R) or is conjugate to either PSL(d, R),
PSp(2n,R) when d = 2n, PSO(n,n — 1) when d = 2n — 1, or Gy when d = 7.

Historical remarks: The results in this subsection generalize earlier results in the case
when I is convex cocompact. More precisely, when I' is convex cocompact, Theorem 2.4
follows from work of Labourie [25], Fock and Goncharov [14], Guichard and Wienhard
[17], Kapovich, Leeb and Porti [22, 23], Guérituad, Guichard, Kassel, and Wienhard [15]
and Tsouvalas [45], Theorems 2.5 and 2.7 are due to Bridgeman, Canary, Labourie, and
Sambarino [7] and Theorem 2.6 is due to Sambarino [40]. Finally, Theorem 2.8 is due to
Labourie [25].

Anosov representations of geometrically finite Fuchsian groups are also relatively Anosov
in the sense of Kapovich and Leeb [21] and relatively dominated in the sense of Zhu [48].
In particular, one can derive Theorem 2.4 in either of their settings. The approach in
[11] was motivated by the need to prove Theorem 2.5, whose proof was not clear from
either pre-existing viewpoint. Zhu and Zimmer [49] have now generalized the techniques
of [11] to establish a generalization of Theorem 2.5 to the setting of all relatively Anosov
representations.

3. ENTROPY, INTERSECTION AND THE PRESSURE FORM

Our pressure form is defined as the Hessian of a renormalized intersection function, so
it is crucial to show that this function is analytic (or at least C?). Let Py(T',d) be the
space of Pyp-Anosov representations of I' into PSL(d, R).

Theorem 3.1. IfW s an analytic submanifold of Pg(F d) and ¢ € Ay, then h®(p) varies
analytically over W and I® and J® vary analytically over W x W. Moreover, if p,n € W,
then

T (p.

)
and J*(p,n) = 1 if and only if €5(v) = —(g ﬁ( ) for all vy € T.

Proof. 1f T" is convex cocompact, then this result is established in [7]. So we will assume
that I' is geometrically finite but not convex cocompact for the rest of this proof.

Theorem 2.5 implies that the limit map &, varies analytically over W. Since T,(x) =
By(p(G (1)), p(G(z1)) M (&p(w(x)))) and By is analytic we see that 7,, and hence 7¢ =
¢oT,, varies analytically over . It then follows from Theorem 2.6 and Theorem 2.1 that
(h,p) = P(—ht?) is analytic on (d(¢), 00) x W. Since P(—h?(p)7¢) = 0 and

d
=— [ 72 dm? <0
t=h?(p) /Tp e

dt
for all p € W, the Implicit Function Theorem implies that h®(p) varies analytically over
W.
Let

— P(—t7])

R=WxW xD,  where Dy={(a,b)€R?|a+b>d¢)}
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and let Pg : R — R be given by Pr(p,n,a,b) = P(—ar$ — br?). Mauldin and Urbanski
[32, Thm. 2.1.9] show that if f is locally Holder continuous, then P(f) is finite if and
only if Z;(f) < 400, where

Zl(f) _ Zesup{f(ac) : x1=s} < 400.
seA
By grouping the terms so that r(s) = n, Theorem 2.6 implies that

o0

Zl(—CLTg) _ bT Z (a+b d(@ logn—max{C, Cn})

so P(—at§ — br) < 400 if a +b > d(¢). Therefore, Pg is finite on R, and hence,
by Theorem 2.1, analytic on R. As above, Py is a submersion on P;'(0), so P5'(0) is
an analytic submanifold of R. Moreover, by Theorem 2.7, —I¢(p,n) is the slope of the
tangent line to P5(0) N {(p,n) x Dy} at the point (p,n, (h(p),0)), so I?(p,n) is analytic.
Since entropy is analytic, it follows immediately that J¢(p,n) is analytic.

The final claim follows directly from Theorem 2.7. U

Let ﬁé’"’"(F, d) be the set of irreducible representations in Py(T", d) and let Pim(T,d) =
Pirr(D, d)/ PSL(d,R). The argument of [7, Proposition 7.1] shows that the action of
PSL(d,R) on Pg”(f‘ d) is free, proper and analytic. It follows that if T is an analytic
submanifold of P} (I, d), then its pre-image W is an analytic submanifold of Po(T', d).

In this setting, we get the following result which generalizes Theorem 1.2 from the
introduction.

Corollary 3.2. If W is an analytic submanifold of Pi™ (T, d) and ¢ € Ay, then h?(p) varies
analytically over W and I and J® vary analytically over W x W. Moreover, if p,n € W,
then

T (p.m) =

and J*(p,n) = 1 if and only if €5(v) = % ?(7) for ally € T.

Given ¢ € Ay, we define a pressure form on any analytic submanifold W of Py (T, d)
by letting
IF"i)‘T W= Hess(J%(p, ).

If v = %‘tzo [pe] where {p;}ie(—c,e) is a one-parameter analytic family in W, then
d2
PO(T,7) = |
(9,9) dt? li=o
We note that the exact same definitions apply when I" is a cocompact lattice, see [9,
Sect. 5.5]. We observe the following immediate properties.

J¢(p07 Pt) .

Proposition 3.3. If W is an analytic submanifold of Py (L,d) and ¢ € Ay, then P? is
analytic and non-negative, i.e. if v € TW, then P?(¥,7) > 0. Moreover, if M is a
subgroup of the mapping class group of I' and W is M -invariant, then P? is M -invariant.
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Proof. The pressure form P? is analytic, since J? is analytic and is non-negative since J¢
achieves its minimum along the diagonal, see Theorem 2.7. If 1) € M, then Eii(p o)) =

055y (p), 50 RY(powy) = ¢~ (R%(p)) and h¢(p) = h¢(vop), so J*(p,n) = J*(poth, nor)),
which implies that P? is ¢-invariant. 0

The following degeneracy criterion for pressure metrics is standard in the setting of
finite Markov shifts, see for example [9, Cor. 2.5], but requires a little more effort in the
setting of countable Markov shifts. In our setting, this criterion is established exactly as
in Lemma 8.1 in [4].

Proposition 3.4. Suppose that W is an analytic submanifold of Py (T, d) and ¢ € Ng. If
7€ TW and ¢ € Ny, then P?(T,7) = 0 if and only if

Dy (h?€2) =0
forall v €T
We next observe that Dz log Ef is independent of v if ¥ is degenerate and ~ is hyperbolic.

Lemma 3.5. Suppose that W is an analytic submanifold of Py (T,d) and ¢ € Ng. If
7€ TW and P?(0,7) = 0, then,
Dyl? = K(2

<

Dgh

for all v € ', where K = — 0

=

Proof. By Proposition 3.4, if ¢ is degenerate, then
h?(p)Dgts = —(Dsh?) €2

for all hyperbolic v € T', so Dgﬁﬁ = Kfﬁ for all hyperbolic v € I'. If v € I' is parabolic,
then Eﬁ is the zero function, so the condition holds trivially. 0

Recall that if M is a real analytic manifold, an analytic function f : M — R has
log-type K at v € T,M if f(u) # 0 and

Dylog(]f])(v) = Klog(| f(w)]).

In this language, Lemma 3.5 implies that if Aﬁ’; is the function defined by p — e and
P?(7, %) = 0 then there exists K so that A?y’ has log-type K at ¢ for all v € T".

4. THE SPECTRAL RADIUS PRESSURE METRIC
We are now ready to establish our generalization of the main theorem of [7].

Theorem 1.6. If W is an analytic submanifold of P{fg_l(F, d), H is a reductive subgroup
of PSL(d,R) and every representation in W has image in H and is H-generic, then P“' |ty
1s an analytic Riemannian metric on W. Moreover, if W is invariant under a subgroup
M of the mapping class group, then P“'|1y is M-invariant.

Since every cusped Hitchin representation is irreducible and SL(d, R)-generic, Theorem
1.3 follows immediately from Theorem 1.6.
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Proof of Theorem 1.0. Proposition 3.3 implies that we only need to prove that every non-
zero vector U € TW is non-degenerate. Suppose 0y € T, W is a degenerate vector. Lemma
3.5 implies that there exists K so that A%* has log-type K at vp for all v € I'. Our first
step consists of showing that K = 0.

Let po(«) be an H-generic element. We claim that « is hyperbolic and, consequently
that po(«) is biproximal. If not, «v is parabolic, and py(«) is weakly unipotent, see Theorem
2.4 part (2). In particular, po(a) is not diagonalizable over C, so its centralizer cannot be
a maximal torus, which contradicts the assumption that po(«) is H-generic.

Let B be an element of I', so that a and 3 generate a free convex cocompact subgroup
[y of I Lemma 2.3 then implies that the restriction po|r, is Py g-13-Anosov in the
traditional sense. One may then choose an open neighborhood Wy of py in W so that if
p € Wy, then plp, is Ppq-13-Anosov and p(a) is H-generic. We then can consider the
analytic family {p|r,},ew, and apply [7, Lemma 9.8] to conclude that K = 0.

Next, we show that if A% is log-type zero at @ for all v € I', then v = 0.

Recall that Labourie defines a continuous cross-ratio b on pairs of mutually transverse
hyperplanes (P;, P,) and lines (L, Ly) by setting

_ 61(5)62(5)
¢1(02)2(V1)
where ¢; and ¢, are linear functionals with kernel P; and P, and ¢} and 9, are non-zero

vectors in L; and Ls. One may then define a continuous cross-ratio b, : A(I')® — R,
where A(I")@ is the set of pairwise distinct quadruples in A(T), by setting

by(z,y, 2,w) = (g, (2), &7 (1), &,(2), £ (w).

Note that b, is well-defined because p is Py 4-13-Anosov. Suppose that («a, 3) is a pair of
hyperbolic elements of I" generating a rank two Schottky subgroup of I, then (p(«a), p(5))
generate a projective Anosov Schottky group, so [7, Prop. 10.4] gives that

Agis(p)
b,(a™, 87, 8%, at) = lim 22X
P( ) n—ro0 Aa”(p>

b(Pla P27 L17 L2>

It follows that b,(a~, 87, 8T, a™) is of log-type zero (since ratios of log-type zero functions
are log-type zero, as are limits of log-type zero functions). Since such quadruples are dense
in A(T')®, it follows that b,(z,y, 2, w) is log-type zero for all quadruples in A(T")®.

Given a projective frame F' = (Ly,..., Lgy1) for P(RY) and a projective frame F* =
(P, ..., Py1) for P((R%)*), one can define a smooth injective immersion

,uF,F* . PSL(d7 R) — W(d)

where W (d) is the quotient of the space of (d + 1) x (d + 1) matrices via a multiplica-
tive action of (R — {0})%¥*1) whose action on the coefficients of the matrix is given by
(a1, ,adq41, b1, -+, bay1)(Myj) = a;bjM;; (see [7, Section 10.2]). (Recall that a projec-
tion frame for P(RY) is a collection of d + 1 lines so that no d lines are contained in any
hyperplane.) Specifically one chooses non-zero vectors v; € L; and covectors ¢; € P; so

that > v; =0 and > ¢; = 0 and defines
prr-(A) = [9:(A(7;))].
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This smooth injective immersion and the cross ratio b, are related by the following crucial
property, whose proof proceeds exactly as in [7, Lemma 10.7].

Lemma 4.1. Suppose {x1,...,xa11} and {yi,...,Yar1} are two collections of pairwise dis-

tinct points in A(T), and that F = {&} (1), ..., &) (1)} and F* = {7 (), €5 (Yar1)}
are projective frames. Then

pr e (p()) = [by(yi, 2, alz;), w)]
for arbitrary z,w € A(T") and for all « € T.

The remainder of the proof then simply mimics the proof of [7, Lemma 10.8].

Let {p:} be a path in W so that < p;|;—o = T. Since p is irreducible, see [7, Lemma 2.17],
we may choose {1,...,2q11} and {y1, ..., ya+1} so that their images F' = {&}(21), ..., &) (Tar1)}
and F* = {7 (1), ..., €4 (yag1) } are projective frames. Let Fy = {&) (x1), ..., &), (Zat1)}
and F; = {57 (1), €0 (Yar1)}. We may assume, by restricting the path, that F
and F} are projective frames, and, by conjugating, that F; = Fj for all ¢.

Then pp, mx(pi() = [bp, (s, 2, a(z;),w)], for all @ € I" and all £. So, since our cross-
ratios have log type zero, we see that

=\ e (pu(a) = 0

for all « € T'.
By construction, if B € PSL(d,R) and F' and F* are any projective frames, then
pir e+ (A) = ppp-(B7LA). So, if we choose C; € PSL(d, R) so that (C; )" Fy = Fy, then

d d
0= Gl g oula) = | prrs(Cunta)) = Dums (|, i)

for all & € T'. Since i, gy is an immersion, this implies that

dt‘ Ctpt )—0

for all « € I'; so

d
OOOEL:OPIS( (dt‘ > pr(a) =0

for all & € I'. By considering the case where o = id, we see that Cy = (%

Ct) -

pt(a) =0 for all o € I', which implies that v = 0. O

Since Cy = I, we see that %

5. THE HILBERT LENGTH PRESSURE METRIC

Theorem 1.6 has the following immediate corollary:

Corollary 5.1. If S is a simple subgroup of PSL(d,R) and W is a submanifold of Hq(T")
consisting of representations whose Zariski closure is S, then P“H is non-degenerate on
TW.
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Proof. Consider the Adjoint representation Ad : S — SL(V') where V is the Lie algebra of
S. Then H = Ad(S) is an irreducible reductive subgroup of SL(V'). Moreover, if p € W,
then Ad o p is irreducible and H-generic. Theorem 1.6 implies that the pressure form P*!
is non-degenerate on TAd(WV).

Note that Ad is an immersion as the adjoint representation ad: V' — s[(V) is injective.
Recall that wi(Ad o p(v)) = wr(p(y)). Therefore, P*# |1y is the pull-back of P! |1 a4
and hence non-degenerate. O

The proof of [7, Lemma 13.1] immediately generalizes to give the following lemma. (See
Appendix 7 for a proof.)

Lemma 5.2. Let Wy be a smooth manifold and let W,, C W,y C --- W7 C Wy be a nested
collection of submanifolds of Wy so that W; has positive codimension in W;_1 for all 1.
Suppose that g is a smooth non-negative symmetric 2-tensor g such that

e g is positive definite on T,W;_q if x € W,_1 \ W},

e the restriction of g to T, W, is positive definite if v € W,.

Then the path pseudo metric defined by g is a metric.

One thus obtains a pressure path metric on H4(I") associated to the Hilbert length
functional, by applying Sambarino’s analysis of the possible Zariski closures of Hitchin
representations (see Theorem 2.9).

Theorem 1.5. Suppose that I' C PSL(2,R) is torsion-free and geometrically finite. If
U € TH4(T') is non-zero, then P¥H(¥,7) = 0 if and only if ¥ is anti-self-dual. Moreover,
PYE  gives rise to a mapping class group invariant path metric on Hq(I') which is an
analytic Riemannian metric off of the self-dual locus.

Proof. Let Wy = Hq(T'). If n > 4 is even, let W, C H4(I') be the submanifold of repre-
sentations whose Zariski closure is conjugate into PSp(n,R) and let W5 be the Fuchsian
locus (i.e. representations contained in an irreducible image of PSL(2,R).) If n > 5 is
odd, and n # 7, let Wi C H4(T') be the submanifold of representations whose Zariski
closure is conjugate into PSO(n,n — 1). If n =7, let Wi C H4(T') be the submanifold of
representations whose Zariski closure is conjugate into PSO(4, 3), let Wy C Hy4(T") be the
submanifold of W consisting representations whose Zariski closure is conjugate into G
and let W3 be the Fuchsian locus. If n = 3, let W) be the Fuchsian locus. (Theorem 1.1
implies that W} is a manifold and that W; is always a submanifold of W;_1).

In all cases, Corollary 5.1 implies that P“# is non-degenerate on T,W;_; if x € W;_1\W,.
Therefore, Lemma 5.2 implies that P“# gives rise to a path metric on H4(I') which is
Riemannian off of W;. ]

6. THE (FIRST) SIMPLE ROOT PRESSURE METRIC

6.1. Trace functions. Recall that an element in H4(I') is a conjugacy class of Hitchin
representations of I' into PSL(d, R). It will be convenient to identify H4(I") with a subset

ﬁd(F) of the character variety
X4(I") = Hom(T', SL(d, C))//SL(d, C).
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The character variety X,(I") is the biggest Hausdorff quotient of Hom(I", SL(d, C)) by the
SL(d, C)-action by conjugation which coincides with the GIT quotient of Hom(I", SL(d, C))
by this same action (See [34]).

If T is cocompact, then Hitchin [19] showed that there is a component, Hy(I'), of X4(T)
and an analytic diffeomorphism F : H4(T') — Hy(T'), so that F([p]) is the conjugacy class
of a lift to SL(d,R) of p.

Let H4(I') denote the set of all Hitchin representations of I' in PSL(d,R). If ' is not
cocompact, then, since I' is a free group and ﬁd(f‘) is an analytic manifold, it is easy to
define an analytic map

F : Hy(T') — Hom(T', SL(d, C))
so that F(p) is a lift of p. Since Hitchin representations are strongly irreducible, see
Theorem 2.4, Schur’s Lemma implies that F(p) is conjugate to F'(n) in SL(d, C) if and only
p and 1 are conjugate in PSL(d, R). Then, again since Hitchin representations are strongly
irreducible, it follows that F' descends to an analytic embedding F Hq(T') = Xy4(I') whose
image lies in the smooth part of X4(I'). We then let Hy(I') = F(H4(I')). Notice that if d
is odd, then Hy(I) = Hq().

If v € I, there is a complex analytic trace function Tr, : X4(I') — C so that Tr,([p])
is the trace of p(7y). It is well-known that derivatives of trace functions generate the co-
tangent space at any smooth point, see for example Lubotzky-Magid [29]. The following
consequence will be used to verify the non-degeneracy of the first simple root pressure
form.

Lemma 6.1. If [p] € Hy(T), then {Dy Tr, | v € I'} spans the cotangent space T’[kp}ﬁd(F).

Even though Tr, is not well-defined on H4(I'), we will abuse notation by saying that
DyTrg = 0 for some 7 € THq(S) if DppesTrs = 0.

6.2. Nondegeneracy. Bridgeman, Canary, Labourie and Sambarino [8] prove that if I" is a
closed surface group, then P*! is non-degenerate on H4(I'). A key tool in their work is the
fact, due to Potrie-Sambarino [37], that the topological entropy h*'(p) = 1 if p € Hy(T).
Canary, Zhang and Zimmer [12] generalized Potrie and Sambarino’s result to the setting
of torsion-free lattices which are not cocompact.

Theorem 6.2 (Potrie-Sambarino [37] and Canary-Zhang-Zimmer [12]). If I' C PSL(2,R)
is a torsion-free lattice, and p € Hq(T'), then h* (p) = 1.

With this result in hand, we are ready to establish the non-degeneracy of the first simple
root pressure metric.

Theorem 1.4. If " C PSL(2,R) is a torsion-free lattice, then the pressure form P*' is
non-degenerate, so it gives rise to a mapping class group tnvariant, analytic Riemannian
metric on Hq(T).

Proposition 3.3 and Lemma 6.1 together imply that Theorem 1.4 follows from the
following proposition.

Proposition 6.3. If v € T,y Ha(I') and P*'(v,7) = 0, then Dy Trg =0 for all 5 € T
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Here, we will only sketch the proof, since the proof proceeds exactly as in the proof of
[8, Prop. 7.4].

Proof. We again abuse notation by identifying [p] with F([p]) € Ha(T'). Since h*1(p) = 1
for all p € Hy4(I'), Proposition 3.4 implies that D3 = 0 for all 3 € T'.

If o € T is parabolic, then Tr, is constant on ’zqd(f‘), so Dy Tr, = 0.

If B is hyperbolic, we may choose o € I', so that « is hyperbolic and « and 8 have
non-intersecting axes. We may pass to powers o” and " which generate a Schottky
subgroup of I'. We are then exactly in the setting of the proof of [8, Prop. 7.4] which
shows that DzAi(p(5")) = DaXi(p(8))" = 0 for all i. Therefore, DzX;(p(3)) = 0 for all 4,
SO Dg Tr,B =0. O

7. APPENDIX

We prove:

Lemma 5.2. Let Wy be a smooth manifold and let W,, C W,y C --- W, C Wy be a nested
collections of submanifolds of Wy so that W; has non-zero codimension in W;_y for all i.
Set W1 = (0. Suppose that g is a smooth non-negative symmetric 2-tensor on Wy such
that for every i = 0,...,n, the restriction of g to T,W; is positive definite if v € W;\ W, 1.
Then, the path pseudo-metric defined by g is a metric.

Proof. We proceed iteratively to establish the following claim:

Claim. Ifz € W; \ Wiy1, then  has a neighborhood U whose closure U lies in Wy \ Wi,
so that if u € U \ {z}, then d(x,u) > 0.

Once we have proved this claim for all 7, we will have completed the proof of the lemma.

If z € Wy \ Wi, then if U is any neighborhood of z whose closure U is disjoint from
W1, then ¢ is Riemannian on U. Therefore, our claim is true for i = 0.

Next, we suppose that the claim is true for all © = j < k, and prove the claim for i = k.
This establishes the claim for all 1.

Let n; = dim W;. If z € W\ W41, we may identify some neighborhood U of = with the
Euclidean unit ball in R™ (centered at 0) so that z is identified with 0. We may assume
that the closure U of U is compact and disjoint from Wy, and that if j < k, then W; N U
is identified with the intersection of the closure D(0, 1) of B(0,1) with R™ x {0}~ . We
will work in coordinates for the rest of this proof. We identify T'D(0, 1) with D(0, 1) x R™.

Since the restriction of g to T'(W, \ Wi41) is Riemannian, there exists r, s > 0 so that if
7 is a (Euclidean) unit vector in (W, N D(0,1)) x R™ x {0}~ then s> > ¢(7, 7) > 4r2.

Since g is continuous, it follows that, after possibly restricting to a smaller neighborhood
of , we can assume that if ¥ is a unit vector in D(0,1) x R™ x {0}~ then 4s> >
g(7,v) > r? Tt follows that the (Euclidean) projection map from 7y : D(ﬁ, 1) — W,
is K-Lipschitz where K = 2¢. Therefore, since the restriction of g to T(Wj, \ Wj1) is
Riemannian, it follows that if u € U and m(u) # 0, then d(u,z) > 0. On the other hand,
if 7 (u) = 0 and u # z, then u € W, \ Wi, so, by our iterative assumption, there exists a
neighborhood V' of u whose closure lies in Wy \ W, so that if v € V'\ {u}, then d(v,u) > 0.
It follows that there exists ¢ > 0 so that if v € OV, then d(u,v) > ¢. Since x ¢ V| this
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implies that d(z,u) > d(0V,u) > ¢ > 0. This completes the proof of the claim and hence

the lemma. ]
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