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1. Introduction

In a very influential paper [16] Gehring and Palka introduced the
notions of quasiconformally homogeneous and uniformly quasiconfor-
mally homogeneous subsets of Rn. Their motivation was to provide
a characterization of quasi-disks, i.e. domains in Rn which are quasi-
conformally homeomorphic to the unit disk in Rn. (This paper also
introduced the important concept of the quasihyperbolic metric on a
domain in Rn.) As a generalization, Bonfert-Taylor, Canary, Martin
and Taylor [5] initiated the study of uniformly quasiconformally homo-
geneous hyperbolic manifolds.

In this paper, we review the theory of quasiconformally homogeneous
subsets of Rn and uniformly quasiconformally homogeneous hyperbolic
manifolds. We finish with a discussion of open problems in the theory.

The authors have all benefitted from the inspiration, mathematical
and personal, of Fred Gehring’s mathematical career. Petra Bonfert-
Taylor was a postdoctoral assistant professor under Fred’s supervision,
Dick Canary was a colleague for many years and Ed Taylor was also
a postdoctoral assistant professor at the University of Michigan. It is
our pleasure to review the impact of one of Fred Gehring’s papers on
the field.

2. Quasiconformally homogeneous subsets of Rn

A domain D ⊂ Rn is said to be quasiconformally homogeneous if for
all x, y ∈ D, there exists a quasiconformal map f : D → D such that
f(x) = y. In their paper, Gehring and Palka [16, Lemma 3.2] observed
that every domain is quasiconformally homogenous. We will sketch the
proof as variations of the proof will appear later.

Proposition 2.1. (Gehring-Palka [16, Lemma 3.2]) Every domain in
Rn is quasiconformally homogeneous.

Richard Canary was partially supported by NSF grant DMS -1306992.
1



2 P. BONFERT-TAYLOR, R. CANARY AND E. TAYLOR

Sketch of proof: The proof is based on the following simple lemma
which is proved by normalizing and exhibiting an explicit quasiconfor-
mal map.

Lemma 2.2. (Gehring-Palka [16, Lemma 3.1]) If B is a round ball in
Rn and a, b ∈ B, then there exists a K-quasiconformal map f : Rn → Rn

such that f(a) = b, f |Rn−B = id, and

logK = dB(a, b)

where dB is the Poincaré metric on B.

If now D is an arbitrary domain in Rn and x and y lie in D, then
there exists a finite collection {Bi}ni=0 of open round balls in D such
that x ∈ B0, y ∈ Bn and Bi−1 ∩ Bi is non-empty for all i. We then
choose xi ∈ Bi−1∩Bi for all i = 1, . . . , n−1 and set x0 = x and xn = y.
Lemma 2.2 implies that for all i = 1, . . . , n there exists a quasiconformal
map fi : D → D such that f(xi−1) = xi. So, if f = fn ◦ · · · ◦ f1, then
f : B → B is quasiconformal and f(x) = y. �

Thus, it is natural to require that there is a uniform upper bound
on the dilatation of the quasiconformal map. A domain D ⊂ Rn is
said to be K-quasiconformally homogeneous if for all x, y ∈ D, there
exists a K-quasiconformal map f : D → D such that f(x) = y. If
D is K–quasiconformally homogeneous for some K, we say that it is
uniformly quasiconformally homogeneous.

A domainD ⊂ Rn is aK-quasi-disk if there exists aK-quasiconformal
homeomorphism f : Rn → Rn such that f(∆n) = D where ∆n is the
unit disk in Rn. Gehring and Palka observed that every K-quasi-disk
is K2-quasiconformally homogeneous. They further show

Theorem 2.3. (Gehring-Palka [16, Theorem 5.5]) If D ⊂ Rn is a
uniformly quasiconformally homogeneous domain with boundary ∂D,
then either

(1) ∂D consists of 0, 1 or 2 points,
(2) ∂D is a non-degenerate continuum, or
(3) every neighborhood of every point in ∂D contains infinitely many

components of ∂D.

Since all simply connected domains in the plane are conformally
equivalent to the unit disk, one must further strengthen these condi-
tions to obtain a characterization of quasi-disks. One says that a subset
R ⊂ Rn is K-ambiently quasiconformally homogeneous if there exists
K > 0 such that for all x, y ∈ R, there exists a K-quasiconformal
map f : Rn → Rn such that f(R) = R and f(x) = y. It is said to
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be ambiently quasiconformally homogeneous if it is K-ambiently qua-
siconformally homogeneous for some K. Notice that here our subsets
need not be domains.

Gehring and Palka constructed the first non-trivial examples of am-
biently quasiconformally homogeneous domains by observing that any
component of the domain of discontinuity of a convex cocompact sub-
group of Isom+(Hn+1) is an ambiently quasiconformally homogeneous
domain in Rn = ∂Hn+1 (see [16, Lemma 4.3]). In particular, by con-
sidering Schottky groups, they showed that there exists an uniformly
quasiconformally homogeneous domain in Rn whose complement is a
Cantor set (see [16, Example 4.4]). (In each case, Gehring and Palka
only claim uniform quasiconformal homogeneity, but the proofs they
offer immediately establish ambient quasiconformal homogeneity.)

Erkama [12] proved that a Jordan curve in the plane is ambiently
quasiconformally homogeneous if and only if it is a quasi-circle (i.e.

it is the image of the unit circle under a quasiconformal map of Ĉ).
Brechner and Erkama [10] extended this result from Jordan curves to
non-degenerate continua.

Sarvas [27] obtained a characterization of quasi-disks.

Theorem 2.4. (Sarvas [27]) A domain D ⊂ R2
is a quasidisk if and

only if it is an ambiently quasiconformally homogeneous Jordan do-
main.

Sketch of Proof: Gehring and Palka [16] observed that K-quasi-disks
are K2-ambiently quasiconformally homogeneous, since the unit disk
is ambiently conformally homogeneous and the product of two K-
quasiconformal maps is K2-quasiconformal.

Now suppose that a Jordan domain D is not a quasi-disk, but is
K-ambiently quasiconformally homogeneous. We may assume that D
is a bounded domain in C. Ahlfors [2] showed that if D is not a quasi-
disk, then there exists a sequence {(un, vn, wn)} of triples of distinct
points in ∂D so that if Jn and J ′n are the components of ∂D−{un, vn},
and diam(Jn) ≤ diam(J ′n), then wn ∈ Jn and

lim
|wn − vn|
|un − vn|

=∞.

We may pass to a subsequence, and possibly choose new triples
{(un, vn, wn)}, so that either (a) the open line segment (un, vn) and
the round half-disk Dn with partial boundary (un, vn) (on the same
side of (un, vn) as Jn) are both contained in D for all n, or (b) (un, vn)
is contained in C−D for all n.
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In case (a), fix a point a ∈ D and let fn : Ĉ→ Ĉ be aK-quasiconformal
map so that fn(D) = D and fn(a) = yn where yn is the point inDn mid-

way “above” the midpoint of (u,vn). Let Ln : Ĉ→ Ĉ be the extension
of an affine map of C so that Ln(un) = −1, Ln(vn) = 1 and Ln(yn) = 1

2
i.

Then, {gn = Ln ◦fn} is a normal family, since gn(D) always misses −1,
1 and ∞, so, up to subsequence, it converges to a K-quasiconformal

map g : Ĉ→ Ĉ. (Notice that g must be non-constant, since gn(a) = 1
2
i

for all n and {diam(gn(D))} → ∞.) Now, for each n, choose zn ∈ J ′n so
that |zn−vn| ≥ 1

2
|wn−vn|, and pass to a subsequence so that the follow-

ing limits all exist: lim f−1n (un) = û, lim f−1n (vn) = v̂, lim f−1n (wn) = ŵ
and lim f−1n (zn) = ẑ. Then g(û) = −1, g(v̂) = 1 and g(ŵ) = g(ẑ) =∞
(since lim |wn−vn|

|un−vn| = ∞). This is impossible since it implies that û, v̂,

and ŵ are all distinct, but ẑ = ŵ. However, ŵ and ẑ lie in distinct
components of ∂D − {û, v̂}. The argument to handle case (b) uses
similar techniques. �

Hjelle [20] showed that the assumption that D is a Jordan domain
is necessary in Sarvas’ theorem by giving an example of an ambiently

quasiconformally homogeneous simply connected subset of Ĉ which is
not a quasi-disk. The domain of discontinuity of a purely hyperbolic
degenerate group also provides such an example (see Bonfert-Taylor-
Canary-Martin-Taylor-Wolf [6, Theorem 1.5]).

MacManus, Näkki, and Palka [23, Theorem 3.1] characterize the
possible topological types of ambiently quasiconformally homogeneous

compact subsets of Ĉ.

Theorem 2.5. (MacManus-Näkki-Palka [23, Theorem 3.3]) If R is

an ambiently quasiconformally homogeneous compact subset of Ĉ, then
either

(1) R = Ĉ,
(2) R is a finite set of points,
(3) R is a finite union of disjoint quasicircles bounding a domain

in Ĉ, or
(4) R is a Cantor set of Hausdorff dimension less than 2.

All sets of type (a), (b) and (c) are ambiently quasiconformally ho-
mogeneous, but there is no known characterization of which Cantor
sets are ambiently quasiconformally homogeneous. However, they show
that the middle-1

3
-Cantor set (see [23, Example 3.5]) and limit sets of

Schottky groups (see [24, Theorem 1.2]) are ambiently quasiconformally
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homogeneous. Therefore, there exist ambiently quasiconformally ho-
mogeneous Cantor sets with any Hausdorff dimension in (0, 2) (see also
Gong-Martin [18]).

MacManus, Näkki, and Palka [24] further define a subset E ⊂ Ĉ
to be uniformly quasiconformally bi-homogeneous if there exists K so
that if (a, b), (c, d) ∈ E×Ec then there exists a K-quasiconformal map

f : Ĉ→ Ĉ such that f(E) = E, f(a) = c and f(b) = d. They show [24,

Theorem B] that a non-empty compact subset of Ĉ is uniformly qua-
siconformally bi-homogeneous if and only if it either (a) consists of at
most two points, (b) is a quasi-circle or (c) is an image of the middle-1

3
-

Cantor set under a quasiconformal homeomorphism of Ĉ. They further
show [24, Theorem D] that a Cantor set E is uniformly quasiconfor-
mally bi-homogeneous if and only if E is uniformly perfect and Ec is a
uniform domain.

Bonfert-Taylor and Taylor [9, Theorem 1.1] show that if E is a Can-

tor set in Ĉ and both E and its complement Ec are ambiently quasi-
conformally homogeneous, then E is quasiconformally bi-homogenous.
Therefore, E must be uniformly perfect and Ec must be a uniform do-
main. Moreover, they exhibit Cantor sets E and F such that (a) E is
ambiently quasiconformally homogeneous and Ec is not (see [9, Exam-
ple 3.3]), and (b) F is not ambiently quasiconformally homogeneous,
but F c is (see [9, Example 3.1]).

3. Uniformly quasiconformally homogeneous hyperbolic
manifolds

Inspired by the work of Gehring and Palka [16], Bonfert-Taylor, Ca-
nary, Martin and Taylor [5] initiated the study of uniformly quasicon-
formally homogeneous hyperbolic manifolds. In this paper, all mani-
folds will be orientable.

A (complete) hyperbolic manifoldN = Hn/Γ is said to be K-quasiconformally
homogeneous if for all x, y ∈ N , there exists a K-quasiconformal home-
omorphism f : N → N such that f(x) = y. It is said to be uni-
formly quasiconformally homogeneous if it is K-quasiconformally ho-
mogeneous for some K. We define the quasiconformal homogeneity
constant of N to be

K(N) = min{ K | N is K−quasiconformally homogeneous }.

It is an immediate consequence of compactness theorems for families
of K-quasiconformal maps that we may take minimum, rather than
simply infimum, in this definition (see [5, Lemma 2.1]).
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One may use the geometry of quasiconformal homeomorphisms to
obtain some basic restrictions on the geometry of uniformly quasicon-
formally homogeneous hyperbolic manifolds. Let `(N) denote the in-
fimum of the set of lengths of homotopically non-trivial closed curves
in N and let d(N) denote the supremum of the set of diameters of
embedded hyperbolic balls in N .

Theorem 3.1. (Bonfert-Taylor-Canary-Martin-Taylor [5, Theorem 1.1])
For all n ≥ 2 and K ≥ 1, there exists m(n,K) > 0 such that if
N = Hn/Γ is a K-quasiconformally homogeneous hyperbolic n-manifold,
other than Hn, then

(1) `(N) is positive and d(N) is finite. In particular,

d(N) ≤ K`(N) + 2K log 4.

(2) `(N) ≥ m(n,K), and
(3) every non-trivial element of Γ is hyperbolic and the limit set

Λ(Γ) of Γ is all of ∂Hn.

Sketch of proof: Suppose that x lies on a closed homotopically non-
trivial curve α of length ` and that y is the center of an embedded hyper-
bolic ball B of radius r. Let f : N → N be a K-quasiconformal home-
omorphism such that f(x) = y. Since every K-quasiconformal homeo-
morphism is a (K,K log 4)-quasi-isometry (see Vuorinen [29, Theorem
11.2]) and there exists z ∈ α such that f(z) is not contained in B (since
f(α) is homotopically non-trivial), we see that

r ≤ d(f(x), f(z)) ≤ Kd(x, z) +K log 4 ≤ Kl/2 +K log 4

and (1) follows.
Since there is a uniform positive lower bound dn on d(N) which

depends only on n, property (2) follows similarly from the fact, again
see [29, Theorem 11.2], that if f is K-quasiconformal, then

tanh

(
d(f(x), f(y))

2

)
≤ λ1−Jn

(
tanh

(
d(x, y)

2

))J

where J = K1/(1−n) and λn ∈ [4, 2en−1] is the Grötzsch constant. In
particular, one may take m(n,K) = 2 tanh−1

(
λJ−1n tanh(dn/2)1/J

)
.

Since `(N) > 0, Γ cannot contain parabolic elements and since d(N)
is finite, the limit set Λ(Γ) must be all of ∂Hn. Property (3) follows. �

Gehring and Palka’s proof of Proposition 2.1 may be easily adapted
to show that every closed hyperbolic manifold is uniformly quasicon-
formally homogeneous. If one keeps careful track of the constants one
obtains:
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Proposition 3.2. (Bonfert-Taylor-Canary-Martin-Taylor [5, Proposi-
tion 2.4]) Every closed hyperbolic n-manifold N is uniformly quasicon-
formally homogeneous. Moreover,

K(N) ≤
(
e

`(N)
4 + 1

)2(n−1)( 4diam(N)
`(N)

+1)

where diam(N) is the diameter of N .

A similar argument shows that:

Proposition 3.3. (Bonfert-Taylor-Canary-Martin-Taylor [5, Proposi-
tion 2.7]) Every regular cover of a closed hyperbolic orbifold N is uni-
formly quasiconformally homogeneous.

As a consequence of Theorem 3.1 and Proposition 3.2 one see that a
geometrically finite hyperbolic manifold is uniformly quasiconformally
homogeneous if and only if it is closed (see [5, Corollary 1.2]).

We now discuss rigidity phenomena for uniformly quasiconformally
homogeneous hyperbolic n-manifolds where n ≥ 3. The key tool is
McMullen’s version of Sullivan’s rigidity theorem.

Theorem 3.4. (McMullen [26, Theorem 2.10]) Suppose that N = Hn/Γ
is a hyperbolic n-manifold where n ≥ 3 and there is an upper bound on
the radius of an embedded hyperbolic ball in N . If f : N → N is a qua-
siconformal homeomorphism, then f is homotopic to an orientation-
preserving isometry.

We may then combine Proposition 3.3, Theorem 3.1 and Theorem
3.4 to show that:

Theorem 3.5. (Bonfert-Taylor-Canary-Martin-Taylor [5, Theorem 1.3])
If n ≥ 3, a hyperbolic n-manifold is uniformly quasiconformally homo-
geneous if and only if it is a regular cover of a closed hyperbolic orbifold.

Sketch of proof: We may assume that N 6= Hn, since the result is
clearly true when N = Hn. Proposition 3.3 shows that all regular
covers of closed hyperbolic orbifolds are uniformly quasiconformally
homogeneous.

Now suppose that N = Hn/Γ is K-quasiconformally homogeneous.
Recall that if N = Hn/Γ is a hyperbolic manifold and the limit set Λ(Γ)
of Γ contains more than three points, then the group Θ of orientation-
preserving isometries of N acts properly discontinuously on N . There-
fore, since Λ(Γ) = ∂Hn, by Theorem 3.1, N is a regular cover of the
hyperbolic orbifold N/Θ. We will observe that N/Θ has bounded di-
ameter, so is closed.
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If x, y ∈ N , then there exists a K-quasiconformal map f : N → N
such that f(x) = y. McMullen’s Rigidity Theorem 3.4 implies that
there exists an orientation-preserving isometry g : N → N which is ho-
motopic to f . We may then choose lifts f̃ : Hn → Hn and g̃ : Hn → Hn,
such that ϕ = g̃−1◦f̃ is K-quasiconformal and ϕ extends to the identity
map on Λ(Γ) = ∂Hn.

The family of K-quasiconformal homeomorphisms of Hn which re-
strict to the identity on ∂Hn is compact, so one sees immediately that:

Lemma 3.6. ([5, Lemma 4.1]) For all n ≥ 2, there exists an in-
creasing function ψn : (1,∞) → (0,∞) such that if ϕ : Hn → Hn

is K-quasiconformal and extends to the identity on ∂Hn, then

d(x, ϕ(x)) ≤ ψn(K)

for all x ∈ Hn. Moreover, limK→1+ ψn(K) = 0.

Lemma 3.6 then implies that d(y, g(x)) ≤ ψn(K). Therefore, N/Θ
has diameter at most ψn(K), so N is a regular cover of the closed
hyperbolic orbifold N/Θ. �

Since, for all n, there is a uniform positive lower bound rn on the
diameter of a closed hyperbolic n-orbifold, and limK→1+ ψn(K) = 0,
we see that there is a uniform lower bound on the quasiconformal ho-
mogeneity constant of a hyperbolic n-manifold other than Hn.

Theorem 3.7. (Bonfert-Taylor-Canary-Martin-Taylor [5, Theorem 1.4])
If n ≥ 3, there exists Kn > 1 such that if N is a uniformly quasicon-
formally homogeneous hyperbolic n-manifold other than Hn, then

K(N) ≥ Kn.

One can completely characterize uniformly quasiconformally hyper-
bolic homogeneous hyperbolic 3-manifolds with finitely generated fun-
damental group.

Theorem 3.8. (Bonfert-Taylor-Canary-Martin-Taylor [5, Theorem 7.1])
If N is a non-compact uniformly quasiconformally homogeneous hyper-
bolic 3-manifold with finitely generated fundamental group, then there
exists a closed hyperbolic 3-manifold M which fibers over the circle such
that N is the cover of M associated to the fiber.

4. Quasiconformally homogeneous surfaces

It is natural to ask whether Theorems 3.5 and 3.7 generalize to the
setting of hyperbolic surfaces. Since every diffeomorphism of a closed
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hyperbolic surface is quasiconformal, it is clear that McMullen’s rigid-
ity Theorem 3.4 fails for hyperbolic surfaces. Therefore, the proofs
outlined in the last section do not extend.

We first review attempts to address the following question:

Question 1: Does there exists K2 > 1 such that if S is a uniformly
quasiconformally homogeneous surface, then K(S) ≥ K2?

Kwakkel and Markovic [22] have resolved the question for planar sur-
faces. (Bonfert-Taylor, Canary, Martin, Taylor and Wolf [6] had earlier
produced a lower bound, greater than 1, on the ambient quasiconformal
homogeneity constant of a planar hyperbolic surface.)

Theorem 4.1. (Kwakkel-Markovic [22]) There exists Kplanar > 1 so
that if S is a planar uniformly quasiconformally hyperbolic surface, then

K(S) ≥ Kplanar.

Bonfert-Taylor, Bridgeman, Canary and Taylor [4] exhibited a lower
bound on the uniform quasiconformal homogeneity constant of any
hyperelliptic surface. We recall that a closed hyperbolic surface S of
genus g is hyperelliptic if it admits a conformal involution with 2g + 2
fixed points. Hyperelliptic surfaces are known to form a (2g − 1) −
complex dimensional subvariety of the Moduli space Mg of all (isome-
try classes of) closed hyperbolic surfaces of genus g.

Theorem 4.2. (Bonfert-Taylor-Bridgeman-Canary-Taylor [4]) There
exists a constant Khyp > 1, such that if S is a closed hyperelliptic
hyperbolic surface, then

K(S) ≥ Khyp.

Sketch of proof: If not, there exists a sequence {Sj} of closed hyper-
elliptic surfaces such that limK(Sj) = 1. We may assume that {Sj}
converges geometrically to a surface S∞. It is easy to check, using com-
pactness results for families of quasiconformal maps, that K(S∞) = 1,
so that S∞ = H2. In particular, lim `(Sj) = +∞.

We next observe that on any hyperelliptic surface there exist disjoint

embedded hyperbolic balls of radius
l(Sj)

4
about each fixed point of

the hyperbolic involution ϕj : Sj → Sj. The balls are embedded by
definition of `(Sj), so it remains to check that they are disjoint. If β is
a geodesic arc joining any two fixed points, then β ∪ ϕ(β) is a closed
geodesic, so β has length at least `(Sj)/2. Since Sj has 2gj + 2 fixed
point, where gj is the genus of Sj,

(2gj + 2)area(B(`(Sj)/4)) ≤ area(Sj) = 4π(gj − 1)
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where B(`(Sj)/4) is the ball of radius of `(Sj)/4 in H2. Therefore,
there is an upper bound on `(Sj) which is a contradiction. �

More generally, we say that a closed surface S of genus g is c-fixed
point full, for c ∈ (0, 2], if there exists a non-trivial conformal au-
tomorphism of S having c(g + 1) fixed points. In particular, every
hyperelliptic surface is 2-fixed point full. The argument outlined above
easily generalizes to show:

Theorem 4.3. (Bonfert-Taylor-Bridgeman-Canary-Taylor [4]) For each
c ∈ (0, 2] there exists Kc > 1 so that if S is a c-fixed point full closed
hyperbolic surface, then K ≥ Kc.

One may also modify the question by considering more restrictive
forms of quasiconformal homogeneity, where the arguments of the pre-
vious section do apply. Bonfert-Taylor, Bridgeman, Canary and Tay-
lor [4] define a hyperbolic surface S to be K-strongly quasiconformally
homogenous if for any x, y ∈ S there exists a K-quasiconformal home-
omorphism f : S → S such that f(x) = y and f is homotopic to a
conformal automorphism of S. Similarly S is K-extremely quasiconfor-
mally homogenous if for any x, y ∈ S there exists a K-quasiconformal
homeomorphism f : S → S such that f(x) = y and f is homotopic
to the identity. Gehring and Palka’s Lemma 2.2 can be again used
to show that every closed hyperbolic surface is both strongly and ex-
tremely quasiconformally homogeneous

We denote the strong quasiconformal homogeneity constant of a sur-
face S by Kaut(S) and the extreme quasiconformal homogeneity con-
stant of the surface by K0(S). The following relationships are immedi-
ate (see [4, Lemma 6.1]):

(1) If S is extremely quasiconformally homogeneous, then S is also
strongly quasiconformally homogeneous, and

K0(S) ≥ Kaut(S) ≥ K(S).

(2) If S is strongly quasiconformally homogeneous, then

Kaut(S) ≥ K(S).

Lemma 3.6 implies that a hyperbolic surface is extremely quasi-
conformally homogeneous if and only if it is closed (see [4, Theorem
6.4]). The proofs of Theorems 3.5 and 3.7 immediately generalize in
the strongly quasiconformally homogeneous setting. In order to obtain
explicit bounds, we note that Yamada [31] proved that

τ = sinh−1
(

4 cosh2(π/7)− 3

8 cos(π/7) + 7

)
≈ 0.13.1467
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is a lower bound for the diameter of a closed hyperbolic 2-orbifold
and that Proposition 6.2 in [4] provides an explicit formula for ψ−12 in
terms of the modulus of the Grötsch ring, where ψ2 is the function from
Lemma 3.6.

Theorem 4.4. (Bonfert-Taylor-Bridgeman-Canary-Taylor [4, Theo-
rem 6.5]) A hyperbolic surface is strongly quasiconformally homoge-
neous if and only if it is a regular cover of a closed hyperbolic orbifold.
Moreover, if S is a strongly quasiconformally homogeneous surface,
other than H2, then

Kaut(S) ≥ ψ−12 (τ) ≈ 1.0595.

Remark: Theorem 6.4 in [4] shows that if S is a closed hyperbolic
surface, then

K0(S) ≥ ψ−12

(
sinh−1(

√
2/3)

)
≈ 1.626.

Bonfert-Taylor, Martin, Reid and Taylor [8] obtained a sharp version
of Theorem 4.4. They begin by using the isodiametric inequality to
show that the (2, 3, 7)-triangle orbifold, denoted Omin, has minimal
diameter among all hyperbolic two-orbifolds (see [8, Proposition 2.2]).

Theorem 4.5. (Bonfert-Taylor-Martin-Reid-Taylor [8, Theorem 2.3])
If S is a strongly quasiconformally homogeneous hyperbolic surface,
other than H2, then

Kaut(S) > Kaut = ψ−12 (diam(Omin)) ≈ 1.36138.

Moreover, there exists a sequence {Sj} of regular manifold covers of
Omin such that limK(Sj) = Kaut.

Sketch of proof: The argument in the previous section establishes that
if S is a strongly quasiconformally homogeneous surface, then

Kaut(S) ≥ ψ−12 (diam (Omin)) .

The proof that the inequality is strict requires a detailed analysis of
the extremal maps for Lemma 3.6. The extremal map is unique and
one demonstrates, via the line element field of this map, that it can
not be realized as a quasiconformal deformation of any non-elementary
Fuchsian group. The reader is referred to [8] for details.

One may show that if {Sj} is a sequence of regular manifold covers
of Omin such that lim `(Sj) = +∞, then limK(Sj) = Kaut. (The exis-
tence of such a sequence of covers is guaranteed by the fact that finitely
generated Fuchsian groups are residually finite.) One may assume that
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`(Sj) >> diam(Omin). Given x, y ∈ Sj, there exists a conformal auto-
morphism g : Sj → Sj such that d(g(x), y) ≤ diam(Omin). One may
then show that there is a quasiconformal mapping h : Sj → Sj such
that h(g(x)) = y, h is the identity off of the ball of radius `(Sj) about
g(x), and

K(h) ≤ ψ−12 (diam(Omin)) + ε(`(Sj))

where ε(`(Sj))→ 0 as `(Sj)→ +∞. It follows that

K(Sj) ≤ ψ−12 (diam(Omin)) + ε(`(Sj))

so that limK(Sj) = Kaut as desired. �

In the setting of closed surfaces it is also natural to restrict the
(isotopy class of) the quasiconformal map to lie in some subgroup
of the mapping class group. We recall that the mapping class group
Mod(S) of a closed surface S is the set of (isotopy classes) of self-
homeomorphisms of S. If H is a subgroup of Mod(S) we say that S is
HK-uniformly quasiconformally homogeneous if for any x, y ∈ X there
exists a K-quasiconformal homeomorphism h : S → S so that h(x) = y
and [h] ∈ H. (See Vlamis [28]) for a more detailed discussion.) The
Torelli subgroup of Mod(S) is the subgroup consisting of homeomor-
phisms which act trivially on H1(S). Greenfield [19] and Vlamis [28]
have independently proven:

Theorem 4.6. (Greenfield [19], Vlamis [28]) There exists Ktor > 1
such that if S is a closed hyperbolic surface, H ⊂ Mod(S) is the Torelli
subgroup and S is HK-quasiconformally homogeneous, then

K ≥ Ktor.

Remark: Vlamis [28] obtains similar results for level r congruence
subgroups when r ≥ 3, finite subgroups and cyclic subgroups generated
by pure mapping classes.

We now turn our attention to the following question, which is moti-
vated by Theorem 3.5.

Question 2: Does there exist a geometric characterization of uniformly
quasiconformally homogeneous hyperbolic surfaces?

Proposition 3.3 guarantees that that all covers of closed hyperbolic
2-orbifolds are uniformly quasiconformally homogeneous. However,
one may easily construct a quasiconformal deformation X of a non-
compact regular cover S of a closed hyperbolic 2-orbifold Q which is
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not itself a regular cover of a closed hyperbolic orbifold (see Bonfert-
Taylor-Canary-Martin-Taylor [5, Example 5.1]). Then, since S is uni-
formly quasiconformally homogeneous, X is also uniformly quasiconfor-
mally homogeneous. (One may guarantee that X is not a regular cover
of a closed hyperbolic 2-orbifold by constructing it to have indiscrete
length spectrum, for example.) The key difference here is that a non-
compact regular cover of a closed hyperbolic 2-orbifold has an infinite-
dimensional quasiconformal deformation space, while a non-compact
regular cover of a closed hyperbolic n-orbifold is quasiconformally rigid
if n ≥ 3. Therefore, the immediate generalization of Theorem 3.5 does
not hold in dimension 2.

One might then optimistically hope that every uniformly quasicon-
formally homogeneous surface is a quasiconformal deformation of a reg-
ular cover of a closed hyperbolic 2-orbifold. Bonfert-Taylor, Canary,
Souto and Taylor [7] showed that this is not the case.

Theorem 4.7. ([7, Theorem 1.1]) There exists a uniformly quasicon-
formally homogeneous surface which is not a quasiconformal deforma-
tion of the regular cover of any closed hyperbolic 2-orbifold.

Sketch of proof: Given a connected countable graph X, each of whose
vertices has valence d ≥ 3, one may construct a hyperbolic surface SX

by “thickening up” X. We first choose a compact hyperbolic surface
F with geodesic boundary, such that F is homeomorphic to a sphere
with d holes and each boundary component has length 1. One then
obtains SX by replacing each vertex of X by a copy of F and gluing
boundary components which correspond to the same edge of X.

If ϕ is an automorphism ofX, then we may construct a L-quasiconformal
homeomorphism of SX which mimics ϕ, i.e. it takes a copy of F asso-
ciated to the vertex v to the copy of F associated to the vertex ϕ(v).
The quasiconformal dilatation constant L depends only on our choice
of F . Since there is a lower bound on the injectivity radius of SX and
the diameter of each copy of F is constant, we may then use a local
version of Lemma 2.2 to show that if x and y lie in a copy of F , then
there exists a M -quasiconformal homeomorphism of SX taking x to y.
Therefore, if the automorphism group Aut(X) of X acts transitively on
the vertices of X, then SX will be LM -quasiconformally homogeneous.

On the other hand, a regular cover of a closed hyperbolic 2-orbifold
is quasi-isometric to the finitely generated Cayley graph of the group
of deck transformations of the covering map. Therefore, since quasi-
conformal maps are quasi-isometries, any quasiconformal deformation
of a regular cover of a closed hyperbolic 2-orbifold, is quasi-isometric
to the Cayley graph of a finitely generated group.
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So, in order to construct a uniformly quasiconformally homogeneous
surface which is not a quasiconformal deformation of a regular cover of
a closed hyperbolic 2-orbifold, it suffices to find a connected, countable
graph X whose automorphism group acts transitively on its set of ver-
tices, which is not quasi-isometric to the Cayley graph of any finitely
generated group. Luckily, Eskin, Fisher and Whyte [14] showed that
the Diestel-Leader graphs (see [11]) have automorphism groups that act
transitively on their vertices, but are not quasi-isometric to the Cayley
graph of any finitely generated group. This allows us to complete the
proof. �

5. Open problems

Many of the open problems in the field revolve around the motivating
questions from the previous section.

Question 1: Does there exists K2 > 1 such that if S is a uniformly
quasiconformally homogeneous surface, then K(S) ≥ K2?

Question 2: Does there exist a geometric characterization of uniformly
quasiconformally homogeneous hyperbolic surfaces?

Question 2 is intriguing, but mysterious, so we will focus on Question
1.

It follows from Theorem 3.1 and Mumford compactness, that there
exists Kg

2 > 1 such that if S is a closed hyperbolic surface of genus g,
then K(S) ≥ Kg

2 .

Problem 1: Explicitly bound Kg
2 .

If one had success with the previous problem, one might hope to find
a constant which worked for all closed surfaces.

Problem 2: Can one find a bound on Kg
2 which is independent of g?

(i.e. can one find a bound which works for all closed surfaces?)

It is natural to suspect that K2 (assuming it exists) would be strictly
less than Kaut.

Problem 3: Construct a uniformly quasiconformally homogeneous
surface S such that K(S) < Kaut.

Returning to higher dimensions, one would like to explicitly bound
Kn.

Problem 4: Explicitly bound Kn for all n ≥ 3.
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Manojlović-Vuorinen [25] and Vuorinen-Zhang [30] have obtained
analogues of Lemma 3.6 for all n, with explicit bounds on the re-
sulting functions ψn. One may use estimates of Adeboye-Wei [1] to
obtain an explicit lower bound, for all n, on the diameter of any hy-
perbolic n-orbifold. Since Theorem 3.1 and McMullen’s Rigidity The-
orem (Theorem 3.4) imply that every quasiconformal automorphism
of a uniformly quasiconformally homogeneous hyperbolic manifold is
homotopic to an isometry, one should be able to follow the proof of
Theorem 4.4 to produce a lower bound on Kn.

One might further hope to use the technique of proof of Theorem
4.5 to produce a sharp lower bound on Kn in higher dimensions.

In dimension 3, there is a natural candidate for the minimal diam-
eter hyperbolic orbifold. Gehring and Martin [15] demonstrated that,
amongst all Kleinian groups containing a torsion element of order p ≥ 4,
the unique Kleinian group of minimal co-volume is a Z2-extension of
the orientation preserving index 2 subgroup generated by reflections in
the sides of the hyperbolic tetrahedron with Coxeter diagram 3−5−3.
Gaven Martin has conjectured:

Conjecture: (Martin) The minimum diameter hyperbolic orbifold is
the Z2-extension of the orientation-preserving index 2 subgroup of the
3− 5− 3 Coxeter group described above.

This leads us to:

Problem 5: Determine K3 precisely. Is it true that if N is a qua-
siconformally homogeneous hyperbolic 3-manifold, other than H3, then
K(N) > K3?

In order to adapt the proof of Theorem 4.5, one would also have
to investigate an analogue of the Teichmüller extremal map in the
three-dimensional setting, that is, a quasiconformal mapping of mini-
mal distortion that maps ∆n to itself, moves the origin to a point x 6= 0
and extends to the identity on ∂∆n. However, in dimensions three and
above, distortion can be measured in terms of several dilatation func-
tions, e.g. the trace dilatation, the outer and inner dilatations, linear
dilatatons, and mean dilatations (in the setting of mappings with finite
distortion). The existence and uniqueness properties for such problems
depend on the choice of dilatation (see Fehlmann [13]). For instance,
it is known (see Kühnau [21]) that the extremal problem with bound-
ary data for the box problem of Grötsch admits no unique solution if
the dilatation is measured in terms of the inner and outer dilatation
functions. Progress to date on this problem includes foundational work
by Gehring and Vaisala [17] on the extremal problem in the absence of
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boundary conditions and work by Astala, Iwaneic, Martin and Onninen
[3] on the extremal problem for functions of finite distortion.
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