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ABSTRACT. We obtain upper and lower bounds on the difference between the
renormalized volume and the volume of the convex core of a convex cocompact
hyperbolic 3-manifold which depend on the injectivity radius of the boundary
of the universal cover of the convex core and the Euler characteristic of the
boundary of the convex core. These results generalize results of Schlenker
obtained in the setting of quasifuchsian hyperbolic 3-manifolds.

1. INTRODUCTION

Krasnov and Schlenker [16, 17] studied the renormalized volume of a convex
cocompact hyperbolic 3-manifold. Renormalized volume was introduced in the
more general setting of infinite volume conformally compact Einstein manifolds as
a way to assign a finite normalized volume in a natural way (see Graham-Witten
[11]). Krasnov and Schlenker’s renormalized volume generalizes earlier work of
Krasnov [15] and Takhtajan-Teo [21] for special classes of hyperbolic 3-manifolds.
In particular, it is closely related to the Liouville action functional studied by
Tahktajan-Teo [21] and the renormalized volume gives rise to a Kéhler potential
for the Weil-Petersson metric (see Krasnov-Schlenker [16, Section 8]).

Schlenker [20] showed that there exists K > 0 such that if M is a quasifuchsian
hyperbolic 3-manifold, then

Vo (M) — K[x(OM)| < Vr(M) < Vo (M)

where Vi(M) is the renormalized volume of M and Vo (M) is the volume of the
convex core C(M) of M. This inequality, along with a variational formula for the
renormalized volume, was used by Kojima-McShane [14] and Brock-Bromberg [7]
to give an upper bound on the volume of a hyperbolic 3-manifold fibering over the
circle in terms of the entropy of its monodromy map.

In this paper, we use the work of the authors [3, 4, 5, 6, 8] to generalize Schlenker’s
result to the setting of all convex cocompact hyperbolic 3-manifolds. We exhibit
bounds on the difference between V(M) and V(M) in terms of the injectivity
radius of the boundary of the universal cover of the convex core and the Euler char-
acteristic of the boundary of the convex core. We will see that, even if |x(0C(M))]
is bounded, this difference can be arbitrarily large.

The convex core C(M) of a complete hyperbolic 3-manifold M (with non-abelian
fundamental group) is the smallest convex submanifold of M whose inclusion into
M is a homotopy equivalence. Its boundary 9C(M) is a hyperbolic surface in
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its intrinsic metric (see Epstein-Marden [10, Theorem I1.1.12.1] and Thurston [23,
Proposition 8.5.1]). A complete hyperbolic 3-manifold M (with non-abelian funda-
mental group) is said to be convexr cocompact if C(M) is compact.

Our results, and their proofs, naturally divide into two cases, depending on
whether the boundary of the convex core is incompressible. We recall that 0C'(M)
is incompressible if whenever S is a component of C (M), then m1(S) injects into
m1(M). Equivalently, the boundary of the convex core is incompressible if and only
if w1 (M) is freely indecomposable. In particular, if M is a quasifuchsian hyperbolic
3-manifold, the boundary of its convex core is incompressible. In this case, we get
the following generalization of Schlenker’s result.

Theorem 1.1. If M = H3/T is a convex cocompact hyperbolic 3-manifold and
OC(M) is incompressible, then

Vo (M) = 6.89x(0C(M))| < Vr(M) < Vo (M).
Moreover, Vr(M) = Vo (M) if and only if 0C (M) is totally geodesic.

In Proposition 5.1 we construct examples demonstrating the necessity of a linear
dependence on |x(0C(M))| in Theorem 1.1.
If the boundary of the convex core is compressible, then the boundary of the

universal cover C(M) of the convex core is not simply connected and it is natural
to consider its injectivity radius 7, in its intrinsic metric. Equivalently, 7 is half the
length of the shortest homotopically non-trivial curve in dC(M) which bounds a
disk in C(M).

Theorem 1.2. If M is a convex cocompact hyperbolic 3-manifold, dC (M) is com-

—_~—

pressible and n > 0 is the injectivity radius of the intrinsic metric on OC(M),
then

1
Vo) = (@) (15105 (ot ) +67) < V(M) < V()
Furthermore, if n < sinh™'(1), then
Vr(M) < Ve (M) — wlog (1> —1.79.
n

If M = H3/T, then the domain of discontinuity (') is the largest open subset
of C = 9H? which I acts properly discontinuously on. The quotient §,M = Q)T
is called the conformal boundary of M. The manifold M is convex cocompact if
and only if

M= MUd.M = (H>UQI))/T
is compact. (') admits a unique conformal metric of curvature —1, called the
Poincaré metric. Since the Poincaré metric is conformally natural, it descends to
a hyperbolic metric on the conformal boundary. We also obtain a version of our

theorem where the bounds depend on the injectivity radius of the Poincaré metric
on Q(I).

Theorem 1.3. If M = H3/T is a convex cocompact hyperbolic 3-manifold, OC (M)
is compressible and v > 0 is the injectivity radius of the Poincare metric on Q(T),

then

Ve(o1) - (@) (22 +202) < Va(a) < V(o)
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Furthermore, if v < %, then

Ve(t) < Vo) - (2 ~9)

One may loosely reformulate Theorem 1.2 as saying that Vo (M) — Vr(M) is

comparable to log W when n(M) is small, where n(M) is the injectivity radius

of 9C(M). Similiarly, one may reformulate Theorem 1.3 as saying that Vo (M) —
Vr(M) is comparable to W when v(M) is small, where v(M) is the injectivity
radius of Q(T") in the Poincaré metric.

We note that one may obtain slightly more precise forms of our results by giving
exact forms for the constants involved, but the expressions for the constants would
be rather unpleasant and it seems unlikely that the constants obtained by our
techniques are sharp. However, our estimates are of roughly the correct asymptotic
form as v or i approach 0.

Acknowledgements: The authors would also like to thank Curt McMullen and
Greg McShane for useful conversations related to this work. This material is based
upon work supported by the National Science Foundation under grant No. 0932078
000 while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, CA, during the Spring 2015 semester.

2. RENORMALIZED VOLUME

In this section, we recall the work of Krasnov-Schlenker ([16, 17]) and Schlenker
([20]) on renormalized volume for convex cocompact hyperbolic 3-manifolds. We
will assume for the remainder of the paper that M = H3/T" is convex cocompact.

If N is a compact, C™! strictly convex submanifold such that the inclusion of N
into M is a homotopy equivalence, the W -volume of N is given by

W(N)=V(N) - HdA

ON

where H is the mean curvature function.! (We recall that a submanifold N is
strictly convex if the interior of any geodesic in M joining two points in N lies in
the interior of N.)

Notice that if N is C*!, then the curvature and mean curvature of ON are defined
almost everywhere and the integral of mean curvature is well-defined and well-
behaved. This is the natural regularity assumption, since a metric neighborhood
of the convex core is C1'! (see Epstein-Marden [10, Lemma I1.1.3.6]), but need not
be C2.

If » > 0 and N, is the closed r-neighborhood of IV, then N, is C'! and strictly
convex, and {S, = IN,},>¢ is a family of equidistant surfaces foliating the end
of M. In particular, N, is homeomorphic to M for all » > 0. The following
fundamental lemma relates W(N,.) to W(N).

Lemma 2.1. (Krasnov-Schlenker [16, Lemma 4.2], Schlenker [20, Lemma 3.6]) If
M s a convex cocompact hyperbolic 3-manifold and N is a strictly convex, C11,

We are using the convention that the mean curvature H is the average of the principal
curvatures, while Krasnov and Schlenker [16, 17] use the convention that H is the sum of the
principal curvatures, so our definition, although apparently different, agrees with theirs.
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compact submanifold such that the inclusion of N into M is a homotopy equivalence,
then
W(Ny) = W(N) = rmx(9C(M)).

Lemma 2.1 follows from the fact that

— d _ i _}1 - _1 "
We= SW(N) = V(N = 5 (/S thAt) = A(t) - A"(1)

where A(t) is the area of S;. The general solution to the equation y” — 4y = 0 is
ae® + be~2!. Therefore as the exponential terms in A(t) are of this form, they do
not contribute to a change in W-volume. Further analysis shows that the remaining
terms give W; = —mx(N).
If I, is the intrinsic metric on S, the normal map identifies S, with the conformal
boundary d.M and one may define the limiting conformal metric I* on 0.M by
I* = lim 4e "I,

T—>00
C. Epstein [9] showed that given any conformal C''! metric h on d.M, there
exists an (asymptotically) unique family of equidistant submanifolds N,.(h), called
the Epstein submanifolds whose limiting conformal structure is h. Explicitly, let
Q C C be a hyperbolic domain in the Riemann sphere and let g be a C! conformal
metric on Q. Given z € Q, let H(z, g) be the horoball bounded by the horosphere

h(z,9) = {z € B | v,(2) = g(2) }
where v, is the visual metric on C obtained by identifying C with T)H?. Then

S(g) = 0 (U H(z,g>> .
z€Q)
is the outer envelope of the collection of horospheres {h(z, g)}.cq-

If h is a conformal metric on 8.M, then h lifts to a metric & on Q(T') . For
all sufficiently large r, E(eriz) descends to a C1! surface S, bounding a strictly
convex submanifold N,.(h) of M. Lemma 2.1 indicates that it is natural to define
the W-volume of h as

W (h) = W(N,(h)) + rax(0N,(h))
for any r large enough that N,.(h) is well-defined, strictly convex and C*1.

The renormalized volume Vr(M) = W (p) where p is the Poincaré metric on the
conformal boundary 9.(M). Krasnov and Schlenker [16, Section 7] showed that the
renormalized volume is the maximum of W (h) as h varies over all smooth conformal
metrics on 9. M with area 27|y (9.M)].

The W-volume satisfies the following linearity and monotonicity properties,
which will be very useful in establishing our bounds.

Lemma 2.2. (Schlenker [20, Proposition 3.11,Corollary 3.8]%) Let M be a convex
cocompact hyperbolic manifold. Then

(1) (Linearity) If s € R and h is a CY1 conformal metric on d.M, then
W(e*h) = W(h) — smx(OM).
2The references here and elsewhere in the paper are to the revised version of [20] which appears

at arXiv:1109.6663. In particular, the assumption that g and h are non-positively curved is omitted
from the published version.
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(2) (Monotonicity) If g and h are non-positively curved, C*t, conformal met-
rics on 0.M and g(x) < h(z) for all x € 0. M, then

W(g) < W(h).

The proof of (1) follows nearly immediately from the definitions. We note that
from the definition of N,.(h) that N,.(e*h) = N,s(h). Therefore,
W(e*h) = W(Ny(e*h)) +mrx(M) = W(Nyys(h)) + mrx(0M)
(W(Ny(h)) — msx(OM)) + mrx(OM)
= (W(N,(h)) +mrx(OM)) — wsx(OM)
= Wi(h) — msx(OM).

= 0
0

The proof of (2) is more involved. One first observes that if g < h and r is large
enough that N,(¢g) and N,(h) are both defined, then N,(g) C N,(h). Schlenker
then defines a relative W-volume of the region N,.(h) — N,(g), which agrees with
W(N,(h)) — W(N,(g)), and uses a foliation of N,.(h) — N,.(g) by strictly convex,
CY', non-positively curved surfaces to prove that this relative W-volume is non-
negative.

3. THE THURSTON METRIC ON THE CONFORMAL BOUNDARY

The Thurston metric 7 = 7(z)|dz| on a hyperbolic domain Q c C is defined by
letting the length of a vector v € T,(2) be the infimum of the hyperbolic length
of all vectors v' € H? such that there exists a Mdbius transformation f such that
f(H?) C Q and df (v') = v. The Thurston metric is clearly conformally natural and
conformal to the Euclidean metric. Therefore, if M = H?/T is convex cocompact,
then the Thurston metric 7 on Q(T") descends to a conformal metric on 9.M which
we will again denote 7 and call the Thurston metric. Kulkarni and Pinkall [18,
Theorem 5.9] proved that the Thurston metric is C1'! and non-positively curved
(see also Herron-Ibragimov-Minda [12, Theorem CJ).

We recall that the Poincaré metric p = p(z)|dz| on Q can be similarly defined
by letting the length of a vector v € T (€2) be the infimum of the hyperbolic length
over all vectors v’ such that there exists a conformal map f : H? — C such that
f(H?) € Q and df (v') = v. So, by definition,

p(z) < 7(2)
for all z € . So, by the monotonicity lemma, Lemma 2.2,
Vr(M) = W(p) < W(r).

One may combine estimates of Beardon-Pommerenke [2], Canary [8, Corollary
3.3] and Kulkarni-Pinkall [18, Theorem 7.2] to establish the following relationship
between the Poincaré metric and the Thurston metric of a uniformly perfect hy-
perbolic domain (see Bridgeman-Canary [6, Section 3]). Notice that if M = H?/T’
is convex cocompact, then I' acts cocompactly by isometries on (T"), so there is a
lower bound on the injectivity radius of Q(T") in the Poincaré metric.

Theorem 3.1. Let Q be a hyperbolic domain in C and let v > 0 be the injectivity
radius of the Poincare metric p on Q. If T is the Thurston metric on  and
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k=4 +log(3 + 2V2) ~ 5.76, then
7(2)

2V2(k + )
for all z € Q. Moreover, p = 7 if and only if Q is a round disk.

<p(z) <7(2)

If Q is a simply connected hyperbolic domain, then the Thurston metric and the
Poincaré metric are 2-bilipschitz.

Theorem 3.2. (Anderson [1, Thm. 4.2], Herron-Ma-Minda [13, Lemma 3.2]) If
Q is a simply connected hyperbolic domain with Poincare metric p and Thurston
metric T, then

7(2)

= < p(z) < 7(2)

for all z € Q.

It will be useful to be able to pass back and forth between lower bounds on the

—_~—

injectivity radius of the boundary 0C(M) of the universal cover of the convex core,
in the intrinsic metric, and lower bounds on the injectivity radius bound of the
Poincaré metric on the domain of discontinuity.

Proposition 3.3. Suppose that M = H3/T is a convex cocompact hyperbolic 3-
manifold and that OC (M) is non-empty.

(1) (Bridgeman-Canary [4, Lemma 8.1]) If v > 0 is a lower bound for the
injectivity radius of Q(T) in the Poincaré metric, then

e Me 2y

2

P

is a lower bound for the injectivity radius of OC (M) in its intrinsic metric,
where m = cosh™* (e?) ~ 2.68854.
(2) (Canary [8, Theorem 5.1)) If n > 0 is a lower bound for the injectivity

radius of OC(M) in its intrinsic metric, then

. [1 n
win 3 13
is a lower bound for the injectivity radius of Q(T') in the Poincaré metric.

Remark: The Thurston metric is also known as the projective (or grafting) metric,
as it arises from regarding () as a complex projective surface and giving it the metric
Thurston described on such surfaces (see Tanigawa [22, Section 2] or McMullen
[19, Section 3] for further details). Kulkarni and Pinkall [18] defined and studied a
generalization of this metric in all dimensions and it is also sometimes called the
Kulkarni-Pinkall metric.

4. THE BENDING LAMINATION AND RENORMALIZED VOLUME

The boundary of the convex core of a convex cocompact hyperbolic 3-manifold
M = H3/T is a hyperbolic surface in its intrinsic metric. It is totally geodesic except
along a lamination By, called the bending lamination. The bending lamination
inherits a transverse measure which records the degree to which the surface is bent
along the lamination. The length L(55s) of the bending lamination then records
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the total amount of bending of the convex core (see Epstein-Marden [10, Section
I1.1.11] for details on the bending lamination).

If N, is the closed r-neighborhood of C'(M) for all » > 0, then one can easily
check that {ST = GNT}T>0 is a family of Epstein surfaces for the Thurston metric on
Q(T) (see Bridgeman-Canary [6, Lemma 3.5] for example). Using this observation,
one may establish the following equality:

Lemma 4.1. (Schlenker [20, Lemma 4.1]) If M is a convex cocompact hyperbolic
3-manifold, 0C (M) is non-empty and By is the bending lamination, then

1
W(r) = V(M) — ZL(ﬂM)~
where T is the Thurston metric on 0.M.

Furthermore, we have the following bounds on the length of the bending lami-
nation of the convex core in terms of the injectivity radius of the Poincaré metric
on the domain of discontinuity.

Theorem 4.2. (Bridgeman-Canary [5, Theorem 1, Theorem 2']) If M = H3/T is
a convex cocompact hyperbolic 3-manifold and v > 0 is the injectivity radius of the
Poincare metric on Q(T'), then

L(Bur) < [x(9M)) <827 + 771> .

Furthermore, if v < 1/2, then

L(Bn) > 377 — 36.

—_~—

We also have a bounds on L(Sj) in terms of the injectivity radius of 9C (M) in
its intrinsic metric.

Theorem 4.3. (Bridgeman-Canary [5, Theorem 1, Theorem 2]) If M = H3/T is
a convex cocompact hyperbolic 3-manifold and n > 0 is the injectivity radius of the

intrinsic metric on 0C (M), then

L(Bar) < |x(OM)] (16410g (mm{11,77}> +218) .
Furthermore, if n < sinh™'(1), then
2sinh ™t (1)
1 ) ‘

If C(M) has incompressible boundary, we obtain the following bound which
improves on the bound obtained in Theorem 3 in [5]. (A similar argument is given
in the proof of Theorem 6.7 in Anderson [1].)

L(Bn) > 4mlog (

Theorem 4.4. If M is a convex cocompact hyperbolic 3-manifold, OC(M) is in-
compressible, and By is the bending lamination, then

L(Bar) < 67[x(0C(M))].
Proof. Recall that, by Theorem 3.2, 7(z) < 2p(z) for all z € Q(T"), so

Area.(OM) = /

% < 4/ p? = 4Area,(OM) = 4(27|x(OM))).
oM oM
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A simple calculation shows that Area,(OM) = 27|x(OM)| + L(Br) (see Schlenker
[20, Section 4.2]). Therefore,

2m|x (OM)| + L(Bar) < 4(27|x(OM)]),

which implies that

L(Bur) < 6m|x(M)].
O

Remark: One may use the proof of Theorem 4.4 and the estimate from Theorem
3.1 to bound the length of the bending locus in the compressible case. However, in
this situation the argument gives that

2\ 2
L(Bu) < (167r <k + ;) - 27r> Ix(0M))|
which is significantly worse than the bound obtained in Theorem 4.2.

5. PROOFS OF MAIN RESULTS

We have now assembled the necessary ingredients to prove our main results. We
begin by proving Theorem 1.1 which gives the bounds in the simplest case where
the convex core has incompressible boundary.

Proof of Theorem 1.1: Suppose that M is a convex cocompact hyperbolic
3-manifold such that dC(M) is incompressible. Let p be the Poincaré metric on
0.M and let 7 be the Thurston metric on .M. Theorem 3.2 implies that

T <p<

5 = P=T,
so the monotonicity lemma, Lemma 2.2, implies that

W(r) + mlog(2)x(OM) = W () < W(p) < W(r).
Theorem 4.4 implies that
L(Bu) < 6m[x(0C(M))|
and Lemma 4.1 implies that
1
W(r) =Ve(M) - ZL(ﬁM) < Ve(M).
It follows that
6m
Ve(or) - (wlog) + °F ) @CON)| < W) < Voo,
Since V(M) = W (p) and mlog(2) + && < 6.89, it follows that
Ve(M) = 6.89|x(0C(M))| < Vr(M) < Ve(M)

as claimed.

If 0C (M) is totally geodesic, then every component of Q(I') is a round disk, so
p=rm, Lg(M) =0 and W(r) = Vo(M) = Vg(M) = W(p). On the other hand,
if Vo(M) = Vr(M), then L(Bpr) = 0, so C(M) is totally geodesic. Therefore,
Vr(M) = V(M) if and only if 0C(M) is totally geodesic. O
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Proposition 5.1. There exists a sequence {M,} of quasifuchsian hyperbolic 3-
manifolds such that
lim Ve (M) — Vr(M,) = +o0

n— oo

and there exists D > 0 such that
VC(Mn) - VR(Mn)
Ix(0M,,)]

>D

for all n.

Proof. Let M be a quasifuchsian hyperbolic 3-manifold such that L(Sys) # 0. Let
{mn : M, = M} be a sequence of finite covers of M whose degrees {d,,} tend to
infinity. The convex core C'(M,,) = m, *(C(M)) and similarly the bending lamina-
tion By, is the pre-image of Sys. It follows that |x (OC(M,)| = dn|x(OC(M))| and
L(Bwm, ) = dnL(Bar) for all n. Since, as we saw in the above proof,

V(M) = W(pn) < W () = Ve(My) — 1 L(5w,)

where p,, is the Poincaré metric on 0.M,, and 7, is the Thurston metric on 0,M,,
it follows that
Vo (M) = Vr(My) > ~L(Bum,) = — L(Bm) = a0 X (OC(My)].
(M) = VM) = G L(50s,) = G L) = Bl OO
The result follows if we choose D = %. ([l

We now prove Theorem 1.3 which bounds V(M) in terms of x(0C(M)) and the
injectivity radius of the domain of discontinuity in its Poincaré metric.

Proof of Theorem 1.3: Suppose that M = H?/T is a convex cocompact
hyperbolic 3-manifold such that OC (M) is compressible. Let v > 0 be the injectivity
radius of (T") in its Poincaré metric. Let p be the Poincaré metric on 9. M and let
7 be the Thurston metric on .M.

Theorem 3.1 implies that

.
< p<rT
2V2(k + )

so the monotonicity lemma, Lemma 2.2, implies that

W (r) + 7 log (2\/5 (k; + 7;)) X(OM) =W (W) <W(p) < W(r).

Lemma 4.1 implies that
1
W(r) =Ve(M) — 7 L(Bu) < Vo(M)

while Theorem 4.2 implies that

L(ew) < @) (57 +71)

and, if v < 1/2, then
37
L(Bu) = — = 36.

Since W (p) = Vr(M), we may combine the above estimates to see that
Vo (M) — Ki(v)[x(0M)| < Vr(M) < Ve (M)
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where
2 1
K1(v) = 7log (Né <k + ”)) += (807 + 771)
2v 4 v

As log(a + b) <log(a)+b/aif a > 1 and b > 0 we have

2 202
Ki(v) < = <1og(2k\/§) + 27;”) + % +193
3 1
< o =
< <202 + %) (V) + (mlog(2kv2) + 193)
< 2 op
14

Moreover, if v < 1/2, then

Ve0n) < Ve(r) - 1 (£ -36) < vewan) - (2 -9).

v

O

Remark: One may apply the technique of proof of Proposition 5.1 to produce a se-
quence {M,, = H3/T',,} of Schottky hyperbolic 3-manifolds such that the injectivity
radius v(M,,) of Q(T',,) is constant, yet

. Ve(My) — VeR(M,)
Vo(M,) — Vr(M,) = o0 and liminf X (OC(M,0))]

Such a sequence demonstrates the dependence on |x(9C(M))] is necessary in The-
orem 1.3. We recall that a convex cocompact hyperbolic 3-manifold M is called
Schottky if w1 (M) is a free group.

> 0.

One may derive a version of Theorem 1.2 directly from Theorem 1.3 and Propo-
sition 3.3. However, we will obtain better estimates by giving a more direct proof.

Proof of Theorem 1.2: Suppose that M = H?/T" is a convex cocompact
hyperbolic 3-manifold such that OC (M) is compressible. Let 77 > 0 be the injectivity

radius of 9C(M) in its intrinsic metric. Let p be the Poincaré metric on 9.M and
let 7 be the Thurston metric on .M. We will consider the two bounds separately.
As before we have

Va(M) < W(r) = Ve (M) ~ 11(Bar) < Vo(M).

If 7 < sinh™*(1), then Theorem 4.3 implies that

2sinh—1(1))

Va(M) < VC(M)—WIOg( :

= Vo(M)—mnlog (QSinhfl(l)) — mlog (;)

IN

1
Vo (M) —1.79 — 7 log ()
n
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Proposition 3.3 implies that min{1/2,7/.153} is a lower bound for the injectivity
radius of Q(T") in the Poincaré metric. Theorem 3.1 then implies that
T

2J1k+ﬂﬁﬁﬁﬁﬁm>

so Lemma 2.2 implies that

<p<m,

T

2v2 (k+ mrraromey )
2

= i) - miog (22 (k4 ) Y o)

Va(M)=V(p) = W

Theorem 4.3 gives that

L(Bur) < [x(OM)] <16410g (M) + 218) ,

VR(M) = Vo (M) = K1 (n)|x(0M)]

where

Ki(n) = nlog 2< mln{lﬂaj/076}>> 1(164log(m)+218>

&
< 7log (2\@< mmﬁ n})> i <16410g <mln{1177}> +218)
< nlo g( —reh }) +rlog (2f(kmm{1 )+ )) +
7 (10010 (i) +21)
< (log (220 + %)) + 2%8 + (w + ?‘) log (M)
<

1
451 _— .
Slog <min{1,n}) o7
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