
Contemporary Mathematics

Pushing the boundary

Richard D. Canary

Abstract. We give a brief survey of recent results concerning the boundaries
of deformation spaces of Kleinian groups.

1. Introduction

The goal of the deformation theory of Kleinian groups is to classify and pa-
rameterize the space AH(π1(M)) of all (marked) hyperbolic 3-manifolds homo-
topy equivalent to a fixed compact 3-manifold M . The interior MP (π1(M)) of
AH(π1(M)) is well-understood, due to work of Ahlfors, Bers, Kra, Marden, Maskit,
Sullivan, Thurston and others. In this paper, we will survey some recent results
concerning the boundary of MP (π1(M)). We will attempt to largely limit ourselves
to the results which were touched on in our talk at the Ahlfors-Bers Colloquium,
so, by necessity, many exciting results will be left out.

The components of MP (π1(M)) are enumerated by topological data and each
component is parameterized by analytic data. We will begin by describing the
parameterization of MP (π1(M)). We will then survey some recent work on the
“bumping” and “self-bumping” of components ofMP (π1(M)), by Anderson, Bromberg,
Canary, Holt, McCullough and McMullen.

The Bers-Sullivan-Thurston Density Conjecture predicts that AH(π1(M)) is
the closure of its interior. Thurston’s Ending Lamination Conjecture provides a
conjectural classification of the points in AH(π1(M)) in terms of topological and
geometrical data. We will discuss Brock and Bromberg’s pioneering work on the
Density Conjecture and Minsky’s recent announcement of the solution (in collab-
oration with Brock, Canary and Masur) of the Ending Lamination Conjecture for
hyperbolic 3-manifolds with freely indecomposable fundamental group. In these
sections, we will be rather sketchy, as other recently written surveys exist of this
work and neither subject was dealt with at length in our talk. In fact, Minsky’s
announcement took place 6 months after the Ahlfors-Bers Colloquium.

Thurston’s Ending Lamination Conjecture suggests that geometrically finite
hyperbolic 3-manifolds are dense in the boundary of MP (π1(M)). This suggestion
turns out to be correct, for all compact hyperbolizable 3-manifolds, a fact whose
proof combines work of Canary, Culler, Hersonsky, McMullen and Shalen.
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We will also discuss tameness results for manifolds in the boundary ofAH(π1(M))
and the role of tameness in our understanding of the deformation theory of Kleinian
groups.

Acknowledgements: The author would like to thank John Holt, Yair Minsky and
Peter Storm for helpful comments on early versions of this manuscript.

2. Definitions

We will assume throughout that M is a compact, oriented, hyperbolizable
3-manifold with non-empty boundary. In order to simplify matters, we will
also assume that ∂M contains no tori. All the results we describe have analogues
for manifolds with toroidal boundary components and more generally for pared
manifolds.

Let D(π1(M)) ⊂ Hom(π1(M),PSL2(C)) denote the set of all discrete faithful
representations of π1(M) into PSL2(C). Then,

AH(π1(M)) = D(π1(M))/PSL2(C)

where PSL2(C) acts by conjugation on D(π1(M)). AH(π1(M)) sits inside the
character variety

X(M) = Hom(π1(M)),PSL2(C))//PSL2(C)

which is the algebro-geometric quotient of Hom(π1(M)),PSL2(C)) (see Morgan-
Shalen [51] for details). We define MP (π1(M)) to be the interior of AH(π1(M))
in X(π1(M)).

Given ρ ∈ D(π1(M)), Nρ = H3/ρ(π1(M)) is a hyperbolic 3-manifold and there
exists a homotopy equivalence hρ : M → Nρ, called the marking of Nρ, such
that (hρ)∗ = ρ where we think of ρ as giving an identification, well-defined up to
conjugation, of π1(M) with π1(Nρ).

Alternatively, we may view AH(π1(M)) as the set of pairs (N,h) where N
is an oriented hyperbolic 3-manifold and h : M → N is a homotopy equivalence.
Two pairs (N1, h1) and (N2, h2) are equivalent if there is an orientation-preserving
isometry j : N1 → N2 such that j ◦ h1 is homotopic to h2.

Similarly, the Teichmüller space T (F ) of a closed surface F is the set of pairs
(S, h) where S is a Riemann surface and h : F → S is an orientation-preserving
homeomorphism, where two pairs (S1, h1) and (S2, h2) are equivalent if there is a
conformal map j : S1 → S2 such that j ◦ h1 is homotopic to h2.

In a topological vein, let A(M) consist of the set of pairs (M ′, h′) where M ′

is a compact, oriented irreducible 3-manifold and h′ : M → M ′ is a homotopy
equivalence, where two pairs (M1, h1) and (M2, h2) are equivalent if there is an
orientation-preserving homeomorphism j : M1 →M2 such that j ◦ h1 is homotopic
to h2. We think of A(M) as the set of all marked, oriented, irreducible, compact
3-manifolds homotopy equivalent to M (If M has toroidal boundary components,
we would further insist that elements of A(M) be atoroidal, so that they would all
be hyperbolizable.)

It will be useful to consider the conformal extension of a hyperbolic 3-manifold

Nρ. The domain of discontinuity Ω(ρ) is the largest open subset of Ĉ on which
ρ(π1(M)) acts properly discontinuously. The limit set Λ(ρ) is the complement in

Ĉ of Ω(ρ). The conformal boundary is the quotient ∂cNρ = Ω(ρ)/ρ(π1(M)). Then

N̂ρ = Nρ ∪ ∂cNρ = (H3 ∪ Ω(ρ))/ρ(π1(M))
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is the conformal extension of Nρ. It has a complete hyperbolic structure on its
interior and a conformal structure on its boundary.

We say that ρ (or Nρ) is convex cocompact if N̂ρ is compact. More generally,

ρ (or Nρ) is geometrically finite if N̂ρ is homeomorphic to M̂ − P̂ where M̂ is

a compact 3-manifold and P̂ is a finite collection of disjoint annuli and tori in

∂M̂ . Geometrically finite hyperbolic 3-manifolds are the best understood class of
hyperbolic 3-manifolds.

3. The parameterization of MP (π1(M))

In this section we review the parameterization of MP (π1(M)) which was com-
pleted in the 1960’s and 1970’s through work of Ahlfors, Bers, Kra, Marden, Maskit,
Sullivan and Thurston. A more extensive treatment from this viewpoint is given in
[22]. Bers [8] wrote an excellent survey of much of this theory from a more analytic
viewpoint.

If one combines Marden’s Stability Theorem [39] and results of Sullivan [58]
one sees that ρ ∈ MP (π1(M)) if and only if M is convex cocompact. Therefore,

we can define a map Θ : MP (π1(M))→ A(M) by setting Θ(ρ) = [(N̂ρ, hρ)]. Mar-
den’s Isomorphism Theorem [39] implies that ρ1, ρ2 ∈MP (π1(M)) lie in the same
component of MP (π1(M)) if and only if Θ(ρ1) = Θ(ρ2). Thurston’s Geometriza-
tion Theorem (see [54]) implies that Θ is surjective. Therefore, components of
MP (π1(M)) are in a one-to-one correspondence with the space A(M) of all marked,
oriented, atoroidal, irreducible 3-manifolds homotopy equivalent to M .

Let B be a component of MP (π1(M)), ρ0 ∈ B and N = Nρ0 . If ρ ∈ B, then

there exists an orientation-preserving homeomorphism j : N̂ → N̂ρ such that j∗ :

π1(N̂) → π1(N̂ρ) induces the same identification, well-defined up to conjugation,

as ρ ◦ ρ−10 . This homeomorphism gives rise to a point

(∂cNρ, j|∂N̂ ) ∈ T (∂cN).

One may apply work of Ahlfors, Bers [7], Kra [36] and Maskit [40] to see that

B ∼= T (∂cN)/Mod0(N)

where Mod0(N) is the group of (isotopy classes of) homeomorphisms of N̂ which
are homotopic to the identity. (This makes sense since the homeomorphism j is
really only well-defined up to an element of Mod0(N).) Maskit [40] proved that
Mod0(N) acts freely and properly discontinuously on T (∂cN), so B is always a
manifold. We summarize this discussion in the following theorem:

Parameterization Theorem: If M is a hyperbolizable compact oriented 3-mani-
fold with no torus boundary components, then MP (π1(M)) is homeomorphic to the
disjoint union ⊔

(M ′,h′)∈A(M)

T (∂M ′)/Mod0(M ′)

IfM has incompressible boundary, thenMod0(M ′) is always trivial andMP (π1(M))
is a union of topological balls. McCullough [43] proved that if Mod0(M) is finitely
generated, then M is “almost incompressible” and Mod0(M) is abelian. Canary
and McCullough [22] have completely characterized when MP (π1(M)) has infin-
itely many components. Assuming that M has no toroidal boundary components,
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then MP (π1(M)) has infinitely many components unless M has incompressible
boundary or M is homeomorphic to a handlebody, a boundary connected sum of
two I-bundles or is obtained by attaching a single handle to an I-bundle.

Examples: 1) If M = S × I, then A(M) has a single element, and

MP (M) = QF (S) ∼= T (S)× T (S)

is called quasifuchsian space. (Historically, this was the first quasiconformal de-
formation space to be completely understood, through Bers’ work on simultaneous
uniformization [5].)

2) If M is a handlebody, then again A(M) has a single element, and

MP (π1(M)) ∼= T (∂M)/Mod0(M)

is known as Schottky space, and Mod0(M) is infinitely generated.

3) We will give a more complicated family {Mn} of examples such that MP (π(Mn))
has (n− 1)! components. Let n ≥ 3. We first form a 2-complex Xn which embeds

in R3. Begin with S1× [0, 1] and to each curve S1×{ jn} (with j = 1, . . . , n) attach
a once-punctured surface of genus j. Let Mn be the regular neighborhood of Xn in
R3. Mn is an example of a book of I-bundles. Notice that one may also think of
Mn as being constructed from a solid torus V , which is a regular neighborhood of
S1 × I, by attaching I-bundles along parallel longitudinal annuli in ∂V .

If τ ∈ Sn (the permutation group of {1, . . . , n}), then we may form a homo-
topy equivalent, but not necessarily homeomorphic, 3-manifold Mτ . Let Xτ be
constructed from S1 × [0, 1] by attaching a once-punctured surface of genus τ(j)

to S1 × { jn} (for each j = 1, . . . , n). Then Mτ is simply a regular neighborhood

of Xτ . If you collapse S1 × I to a circle, then Xn and Xτ become homeomorphic
2-complexes, so Mτ and Mn are homotopy equivalent. It turns out that Mτ is
homeomorphic to Mn (by an orientation-preserving homeomorphism) if and only if
τ is a power of the cyclic permutation (123 · · ·n). In fact, A(Mn) is in a one-to-one
correspondence with Sn/Zn, so MP (π1(Mn)) has (n−1)! components (see Lemma
3.2 in Anderson-Canary [2]).

Remarks: There are also conjectural parameterizations of a component ofMP (π1(M))
by more geometric data. One expects that the bending laminations on the ends of
the convex core parameterize MP (π1(M)). Bonahon-Otal [10] and LeCuire [38]
have given complete descriptions of which bending laminations can occur. Keen
and Series, see for example [34], have extensively studied this proposed parameter-
ization in a variety of special cases. One also expects that the conformal structure
on the boundary of the convex core provides a parameterization analogous to the
one given by the Parameterization Theorem above, but much less is known about
this conjecture.

4. Bumping of deformation spaces

We will say that two components of MP (π1(M)) bump if they have intersecting
closures. The phenomenon of bumping was first discovered by Anderson and Canary
[2] who showed that if Mn is the book of I-bundles constructed in example 3 above,
then any two components of MP (π1(Mn)) bump. In particular, this shows that
topological type does not vary continuously on AH(π1(Mn)). Holt [29] further
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showed that, in these same examples, there exists points simultaneously in the
closure of all components of MP (π1(Mn))

Anderson, Canary, and McCullough [4] gave a complete characterization of
when two components of MP (π1(M)) bump in the case that M has incompress-
ible boundary. Roughly, two components bump if and only if their corresponding
homeomorphism types differ by rearranging the way a collection of submanifolds
are glued along primitive solid torus components of the characteristic submanifold1

Σ(M) of M . A solid torus component V of the characteristic submanifold of M is
primitive if each component of V ∩ ∂M is an annulus such that the inclusion map
into V is a homotopy equivalence.

To give a feeling for this characterization, we construct a new manifold M ′n
similar to Mn such that the closures of any two components of MP (π1(M ′n)) are
disjoint. Let V be a solid torus and let {A1, . . . , An} be a family of incompressible,
parallel, disjoint annuli in the boundary of V such that the inclusion of Ai into V is
not a homotopy equivalence, i.e. the core curve of Ai wraps more than once around
the core of V . We form M ′n by attaching Fj×I to Aj , where Fj is a once-punctured
surface of genus j, along ∂Fj × I. Again, A(M ′n) may be identified with Sn/Zn.
However, in this case no two components of MP (π1(M ′n)) bump. As a hint at why
one cannot make the components bump, note that V is not primitive in M ′n, so one
cannot construct a hyperbolic structure on the interior of M ′n such that the core
curve of V is homotopic into a cusp.

We now develop the formalism to allow us to state our bumping criterion pre-
cisely. Given two 3-manifolds M1 and M2 with nonempty incompressible boundary,
a homotopy equivalence h : M1 → M2 is a primitive shuffle if there exists a finite
collection V1 of primitive solid torus components of Σ(M1) and a finite collection V2
of solid torus components of Σ(M2), so that h−1(V2) = V1 and so that h restricts
to an orientation-preserving homeomorphism from the closure of M1 − V1 to the
closure of M2 − V2. (Recall that Σ(Mi) denotes the characteristic submanifold of
Mi.)

If M is a compact, hyperbolizable 3-manifold with nonempty incompressible
boundary, we say that two elements [(M1, h1)] and [(M2, h2)] of A(M) are prim-
itive shuffle equivalent if there exists a primitive shuffle s : M1 → M2 such that
[(M2, h2)] = [(M2, s ◦ h1)]. In section 7 of [4] it is established that primitive shuffle

equivalence gives an equivalence relation on A(M) and we let Â(M) be the quotient
of A(M) by this equivalence relation.

Theorem 4.1 (Anderson-Canary-McCullough [4]). Let M be a compact, hyper-
bolizable 3-manifold with nonempty incompressible boundary, and let [(M1, h1)] and
[(M2, h2)] be two elements of A(M). The associated components of MP (π1(M))
have intersecting closures if and only if [(M2, h2)] is primitive shuffle equivalent to
[(M1, h1)].

1The characteristic submanifold of a compact, irreducible 3-manifold with incompressible
boundary is a minimal collection Σ(M) of disjoint essential Seifert fibered spaces and I-bundles

in M such that every essential annulus and torus in M is homotopic into Σ(M). In the case of
a hyperbolizable 3-manifold, all the Seifert fibered components of Σ(M) are either solid tori or

thickened tori. The characteristic submanifold was introduced by Jaco-Shalen [32] and Johannson

[33]. For a discussion of the characteristic submanifold in the setting of hyperbolic 3-manifolds
see [22].
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One immediate consequence of this theorem is a topological enumeration of the
components of the closure of MP (π1(M)).

Corollary 4.2. If M has incompressible boundary, then the components of

the closure of MP (π1(M)) are in one-to-one correspondence with Â(M).

We also note that if two components of MP (π1(M)) bump then AH(π1(M))
is not a manifold.

Holt further showed that if a collection of components of MP (π1(M)) all bump
one another, then there is a point in the closure of all the components.

Theorem 4.3 (Holt [30]). Let M be a compact hyperbolizable 3-manifold with
non-empty incompressible boundary. If {B1, . . . , Bn} are components of MP (π1(M))
and Θ(Bi) is primitive shuffle equivalent to Θ(Bj) for all i and j, then

⋂
Bi is non-

empty.

Remark: IfM is allowed to have toroidal boundary components, thenMP (π1(M))
is the space of geometrically finite, marked hyperbolic 3-manifolds all of whose cusps
have rank two. All of the theorems in this section remain true in this setting. If M

has incompressible boundary, the sets A(M) and Â(M) have infinitely many ele-
ments if and only if M has double trouble (i.e. there is a thickened torus component
W of the characteristic submanifold of M such that W ∩ ∂M has at least 3 com-
ponents), see Canary-McCullough [22]. In particular, the closure of MP (π1(M))
can have infinitely many components.

5. Self-bumping

More recently, it has been discovered that individual components ofMP (π1(M))
may self-bump. A component B of MP (π1(M)) is said to self-bump if there exists a
point ρ ∈ ∂B such that if V is any sufficiently small neighborhood of ρ, then B ∩V
is disconnected. McMullen [45] used Anderson and Canary’s construction and the
theory of complex projective structures on surfaces to show that quasifuchsian space
self-bumps.

Theorem 5.1 (McMullen [45]). If S is a closed surface and M = S × I, then
MP (π1(M)) self-bumps.

In a remarkable breakthrough Bromberg and Holt [17] proved that if M con-
tains a primitive essential annulus2, then every component of MP (π1(M)) self-
bumps. They conjecture that if M contains no primitive essential annuli, then no
component of MP (π1(M)) self-bumps.

Theorem 5.2 (Bromberg-Holt [17]). Let M be a compact hyperbolizable 3-
manifold. If M contains a primitive essential annulus, then every component B of
MP (π1(M)) self-bumps.

Notice that Bromberg and Holt’s result applies even if M has compressible
boundary. Moreover, it implies that AH(π1(M)) is not a manifold if M contains a
primitive essential annulus.

2A properly embedded annulus A is the image of an embedding of a closed annulus into M

such that A ∩ ∂M = ∂A. An annulus A is primitive and essential if π1(A) maps onto a maximal
infinite cyclic subgroup of π1(M) and A is not properly homotopic into the boundary of M .
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Corollary 5.3 (Bromberg-Holt [17]). Let M be a compact hyperbolizable 3-
manifold. If M contains a primitive essential annulus, then AH(π1(M)) is not a
manifold.

Of course, one expects that AH(π1(M)) is a rather exotic object, but the bump-
ing results only indicated that it is not a manifold. There are some very intriguing
pictures of slices of the space of projective structures on a surface produced by
Komori, Sugawa, Wada and Yamashita which may be viewed at:

http://www.kusm.kyoto-u.ac.jp/complex/Bers/

These pictures of this related space give some idea of the “fractal nature” of
AH(π1(M)). See also the related work on the space of projective structures by
Komori-Sugawa [37], Miyachi [50], Ito [31] and Bromberg-Holt [18].

6. Bers-Sullivan-Thurston Density Conjecture

Bers [6] conjectured that every hyperbolic manifold which “belongs” in the
boundary of a Bers slice actually lies in the boundary of a Bers slice. Recall that if
S is a closed surface and M = S × I, then MP (π1(M)) = QF (S) ∼= T (S)× T (S).
A Bers slice is a subset of the form {σ} × T (S) (or T (S) × {σ}) for some fixed
σ ∈ T (S). An element of AH(π1(M)) “belongs” in the boundary of a Bers Slice if
∂cNρ contains exactly one surface homeomorphic to S. It “belongs” in the boundary
of {σ}×T (S) or T (S)×{σ} if the conformal structure on that surface is equivalent
to σ.

In a stunning breakthrough, Bromberg [16] used the cone manifold techniques
developed by Craig Hodgson and Steve Kerckhoff (see [28]) to prove Bers’ original
conjecture for hyperbolic 3-manifolds without cusps. (A hyperbolic 3-manifold Nρ
is said to be without cusps if ρ(π1(M)) contains no parabolic elements.)

Sullivan [58] and Thurston [60] generalized Bers’ original density conjecture.
They conjecture that every hyperbolic 3-manifold with finitely generated funda-
mental group is a limit of geometrically finite hyperbolic 3-manifolds.

Bers-Sullivan-Thurston Density Conjecture: AH(π1(M)) is the closure of
MP (π1(M)).

Brock and Bromberg [12] strengthened Bromberg’s techniques to prove that if
M has incompressible boundary, ρ ∈ AH(π1(M)) and Nρ is without cusps, then ρ
lies in the closure of MP (π1(M)). For a survey article on this very important work
see Brock-Bromberg [13].

7. Thurston’s Ending Lamination Conjecture

Thurston’s Ending Lamination Conjecture (see [60]) provides a conjectural
classification of hyperbolic 3-manifolds with finitely generated fundamental group.

Thurston’s Ending Lamination Conjecture: If M is a compact hyperboliz-
able 3-manifold, then a hyperbolic 3-manifold in AH(π1(M)) is determined by its
(marked) homeomorphism type and its ending invariants (which encode the asymp-
totic geometry of its ends.)

We will not explicitly define ending invariants here. We recommend that the
reader see Minsky’s survey article [46]. In March 2002, Minsky announced the
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solution of Thurston’s Ending Lamination Conjecture in the case that M has in-
compressible boundary.

Theorem 7.1 (Minsky [48], Brock-Canary-Minsky [15]). If M is a compact
hyperbolizable 3-manifold with incompressible boundary, then Thurston’s Ending
Lamination Conjecture holds for AH(π1(M)).

An excellent survey of this result is given by Minsky in [49]. In outline, the
proof uses the ending invariants to construct a model for the manifold which is then
proven to be bilipschitz to the actual manifold. The key tools in the construction
of the model manifold are provided by Masur and Minsky’s analysis of the curve
complex of a surface [41, 42]. One then applies rigidity results for quasiconformal
maps, e.g. Sullivan’s rigidity theorem [57], to complete the result.

One nearly immediate consequence of this result and results in the literature
(for example, Ohshika [52]) is a full proof of the Bers-Sullivan-Thurston Density
Conjecture for manifolds with incompressible boundary.

Corollary 7.2. If M is a compact hyperbolizable 3-manifold with incompress-
ible boundary, then AH(π1(M)) is the closure of MP (π1(M)).

Since the work of Anderson, Canary and McCullough [4] gave an enumera-
tion of the components of the closure of MP (π1(M)) we immediately obtain an
enumeration of the components of AH(π1(M)). In particular, if M is allowed to
have a toroidal boundary component and has double trouble, then AH(π1(M)) has
infinitely many components.

Corollary 7.3. If M is a compact hyperbolizable 3-manifold with incompress-
ible boundary, the components of AH(π1(M)) are in one-to-one correspondence with

Â(M).

Another corollary of our result is that freely indecomposable torsion-free Kleinian
groups which are topologically conjugate are also quasiconformally conjugate. More
formally,

Corollary 7.4. If M is a compact hyperbolizable 3-manifold with incompress-

ible boundary, ρ1, ρ2 ∈ AH(π1(M)) and there exists a homeomorphism φ : Ĉ→ Ĉ
such that ρ1 = φ ◦ ρ2 ◦ φ−1, then there exists a quasiconformal homeomorphism

ψ : Ĉ→ Ĉ such that ρ1 = ψ ◦ ρ2 ◦ ψ−1.

The existence of a quasiconformal homeomorphism conjugating ρ1 to ρ2 is
equivalent to the existence of a bilipschitz homeomorphism h : Nρ1 → Nρ2 such

that h∗ : π1(Nρ1)→ π1(Nρ2) is conjugate to the identification given by ρ2 ◦ ρ−11 .

It should be pointed out that Thurston’s Ending Lamination Conjecture does
not provide a conjectural parameterization of AH(π1(M)) as the data in the clas-
sification does not vary continuously. We observed in section 4 that the topological
type does not vary continuously and it is also the case that the ending invariants
do not vary continuously, see Brock [11] and Minsky [47]. This leaves us with the
following wide-open question.

Question: Is there a “nice” parameterization of AH(π1(M))?
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8. Density of cusps

The Bers-Sullivan-Thurston Density Conjecture predicts that geometrically fi-
nite hyperbolic 3-manifolds are dense in AH(π1(M)). Thurston’s Ending Lami-
nation Conjecture further suggests that geometrically finite hyperbolic manifolds
are also dense in the boundary of MP (π1(M)). In fact, it is natural to think of
geometrically finite hyperbolic 3-manifolds with cusps as “rational points” in the
boundary of MP . This analogy is especially evocative in the case of punctured
torus groups. Let T be the punctured torus. The space AH(π1(T ), π1(∂T )) of
punctured torus groups is the set of (conjugacy classes of) discrete faithful repre-
sentations ρ : π1(T )→ PSL2(C) such that every non-trivial element of ρ(π1(∂T ))
is parabolic. The interior of AH(π1(T ), π1(∂T )) is

QF (T ) ∼= T (T )× T (T ) = H2 ×H2

which is the space of quasifuchsian punctured tori. We identify ∂H2 with R∪{∞}.
As a precursor to the full proof of Thurston’s Ending Lamination conjecture for
3-manifolds with incompressible boundary, Minsky proved:

Theorem 8.1 (Minsky [47]). AH(π1(T ), π1(∂T )) is identified with H2×H2−∆
where ∆ consists of the diagonal elements in ∂H2 × ∂H2.

A hyperbolic manifold in AH(π1(T ), π1(∂T )) is geometrically finite if and only

if it is identified with a point in H2×H2 which has both coordinates lying in either
H2 or Q ∪∞.

The first proof that geometrically finite groups are dense in a boundary is due
to McMullen [44] and it takes place in the setting of a Bers slice.

Theorem 8.2 (McMullen [44]). Geometrically finite manifolds are dense in the
boundary of a Bers Slice. Moreover, “maximal cusps” are dense in the boundary of
a Bers slice.

In this restricted context, a “maximal cusp” in the boundary of a Bers slice in
MP (π1(S × I)) is a geometrically finite representation ρ ∈ AH(π1(S × I)) whose
conformal boundary ∂cNρ has one component homeomorphic to S and all other
components are thrice-punctured spheres.

In general, Nρ is a maximal cusp if its conformal extension N̂ρ is homeomorphic
to R−P where R is a compact 3-manifold and P is a maximal collection of disjoint,
incompressible, non-parallel annuli and tori in ∂R. In particular, maximal cusps
are geometrically finite. McMullen also established that maximal cusps are dense
in the boundary of Schottky space, although he never wrote up this result. Recall
that Schottky space of genus k is MP (π1(Hk)) where Hk is the handlebody of
genus k.

Theorem 8.3 (McMullen). Maximal cusps are dense in the boundary of Schot-
tky space of genus k ≥ 2.

Canary, Culler, Hersonsky and Shalen generalized McMullen’s techniques to
show that maximal cusps are dense in the boundary of any component B of
MP (π1(M)) such that the associated (marked) manifold Θ(B) has connected bound-
ary.
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Theorem 8.4 (Canary-Culler-Hersonsky-Shalen [20]). Let M be a compact hy-
perbolizable 3-manifold with no toroidal boundary components. If ρ ∈ ∂MP (π1(M))
and its domain of discontinuity Ω(ρ) is empty, then ρ may be approximated by max-
imal cusps. Moreover, if B is a component of MP (π1(M)) and Θ(B) has connected
boundary, then maximal cusps are dense in ∂B.

This line of research was completed by Canary and Hersonsky, who proved
that geometrically finite hyperbolic 3-manifolds are always dense in the boundary
of MP (π1(M)). Again, their work makes central use of the machinery developed
by McMullen [44].

Theorem 8.5 (Canary-Hersonsky [21]). Let M be a compact hyperbolizable
3-manifold with no toroidal boundary components. Geometrically finite hyperbolic
3-manifolds are dense in the boundary of MP (π1(M)).

More generally, if N = H3/Γ is a geometrically finite hyperbolic manifold,
then geometrically finite hyperbolic manifolds are dense in the boundary ∂QC(Γ)
of its quasiconformal deformation space. In other language, if (M,P ) is a pared
3-manifold, then geometrically finite hyperbolic 3-manifolds are dense in the bound-
ary of MP (π1(M), π1(P )), the space of geometrically finite hyperbolic 3-manifolds
whose relative compact cores are homotopy equivalent to (M,P ).

Historical note: McMullen’s proof that maximal cusps are dense in the boundary
of Schottky space was motivated by a question of Culler and Shalen. Culler, Shalen
and their co-authors used McMullen’s theorem about the boundary of Schottky
space as part of an extensive program to study volumes of hyperbolic 3-manifolds.
In particular, it was used to prove a quantitative version of the Margulis lemma for
free Kleinian groups.

Theorem 8.6 (Anderson, Canary, Culler, Shalen [3]). Let Γ be a Kleinian
group contained in the closure of Schottky space of genus k and freely generated by
elements {γ1, . . . , γk}. If z ∈ H3, then

k∑
i=1

1

1 + ed(z,γi(z))
≤ 1

2
.

In particular there is some i ∈ {1, . . . , k} such that d(z, γi(z)) ≥ log(2k − 1).

Here are some examples of the applications of this Margulis lemma to volumes
of hyperbolic 3-manifolds.

Theorem 8.7 (Culler-Hersonsky-Shalen [24]). The smallest volume orientable
hyperbolic 3-manifold has first Betti number at most 2. In particular, if N is a
hyperbolic 3-manifold and rank(H1(N)) is at least 3, then

vol(N) ≥ .94689.

Theorem 8.8 (Culler-Shalen [26]). If N is an orientable hyperbolic 3-manifold
and rank(H1(N)) ≥ 2, then

vol(N) ≥ .34

Theorem 8.9 (Anderson-Canary-Culler-Shalen [3]). If N is an orientable hy-
perbolic 3-manifold, rank(H1(N)) ≥ 4 and π1(N) does not contain the fundamental
group of a closed surface of genus 2, then

vol(N) ≥ 3.08
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Remark: Theorem 8.6 is a generalization of Culler and Shalen’s original result (see
[25]) which applied when k = 2. Przeworski [55] has improved the lower bound in
Theorem 8.7 to 1.105, and Agol [1] has improved the lower bound in Theorem 8.8
to .887.

9. Marden’s Tameness Conjecture

It seems unlikely that one can attack Bers’ Density Conjecture or Thurston’s
Ending Lamination Conjecture in the compressible boundary setting, without first
resolving:

Marden’s Tameness Conjecture: Every hyperbolic 3-manifold with finitely gen-
erated fundamental group is topologically tame, i.e. homeomorphic to the interior
of a compact 3-manifold.

Bonahon proved Marden’s conjecture for hyperbolic 3-manifolds with freely
indecomposable fundamental group. This seminal result underlies almost all sub-
sequent work on these manifolds.

Theorem 9.1 (Bonahon [9]). If M has incompressible boundary and ρ ∈
AH(π1(M)), then Nρ is topologically tame.

Marden’s Tameness Conjecture is known to imply a variety of conjectures about
the geometry and dynamics of hyperbolic 3-manifolds, including Ahlfors’ Measure
Conjecture.

Theorem 9.2 (Canary [19]). If ρ ∈ AH(π1(M)) and Nρ is topologically tame,
then Ahlfors’ Measure Conjecture holds, i.e. either the limit set Λ(ρ) has measure
zero or the domain of discontinuity Ω(ρ) is empty. If Ω(ρ) = ∅, then ρ(π1(M)) acts
ergodically on ∂H3.

Thurston [59] originally proved Marden’s Tameness Conjecture for many hyper-
bolic 3-manifolds with freely indecomposable fundamental group which are limits
of geometrically finite hyperbolic 3-manifolds. There have been a series of such
results in the freely decomposable case, see, for example, Ohshika [53], Canary-
Minsky [23], Evans [27] and Kleineidam-Souto [35]. The best current result is
due to Brock, Bromberg, Evans and Souto and had its genesis at the Ahlfors-Bers
Colloquium. (We recall that M is a compression body if it has a boundary compo-
nent S such that the inclusion map induces a surjection of π1(S) onto π1(M)). In
particular, this implies that π1(M) is a free product of surface groups and cyclic
groups.)

Theorem 9.3 (Brock-Bromberg-Evans-Souto [14]). If ρ lies in the boundary
of the interior of AH(π1(M)) and either M is not homotopy equivalent to a com-
pression body or Ω(ρ) is non-empty, then Nρ is topologically tame.

So we are now roughly in the same situation in the compressible boundary
setting as we were in the incompressible setting, before Bonahon’s breakthrough. I
would also like to draw attention to a beautiful paper of Souto [56] which develops
new criteria which imply topological tameness.

One hopes that Minsky’s program to prove the Ending Lamination Conjecture
can be implemented in the setting of topologically tame hyperbolic 3-manifolds3.

3In August 2003, Brock, Canary and Minsky announced the solution of Thurston’s Ending
Lamination Conjecture for topologically tame hyperbolic 3-manifolds
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A proof of Marden’s Tameness Conjecture and the desired generalization would
complete Thurston’s Ending Lamination Conjecture.
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