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1 Introduction

First, some notation. I will denote all categories by bolded words and terms, and all fields/spaces
with blackboard letters. For example, the category of graded Abelian groups will be denoted
grAbGroup, and the real numbers will be denoted R. Following Professor Bhatt, I will use cap-
ital letters X,Y, Z, ... for topological spaces, and lower-case letters x, y, z... for points. I = [0, 1]
will denote the unit interval throughout. The set Maps(X,Y ) will denote the set of (continuous)
maps between objects X and Y , which in our class will normally denote topological spaces. The
word “map" will nearly always implicitly assume continuity. For a point y ∈ Y , we will denote
by cy : X → Y the constant map with value y. All notation will be made clear, or will be clear
from context.

We will start by motivating the ensuing discussions. Some of the very broad goals of algebraic
topology include

• studying topological spaces. Some of the significant ones in this course will be S1, R,
S1 × S1, S2.

• More precisely, studying topological spaces via “algebraic invariants". That is, functors
Top→ {algebraic objects}, where an algebraic object could be a group, an Abelian group,
a commutative ring, etc.

An example is a functor H∗ : Top → grAbGrp called singular homology which
satisfies:

S1 −→ Z⊕ Z⊕ 0⊕ · · ·

R −→ Z⊕ 0⊕ · · ·

S1 × S1 −→ Z⊕ Z⊕2 ⊕ Z⊕ 0⊕ · · ·

S2 −→ Z⊕ 0⊕ Z⊕ 0⊕ · · · .

We will study singular homology more in depth later in the course.
Some of the main functors we will study in 592 include

• fundamental groups: π1 : pointedTop→ Group, which takes as an argument a topolog-
ical space with a choice of point. These are studied in two main ways, via loops, and via
covering spaces. We will introduce both viewpoints. There are other, higher homotopy
groups (πn for any n), and these are also important, but notoriously difficult to compute.

• singular homology: H∗ : Top→ grAbGrp.

• singular cohomology H∗ : Top→ grRing.

All of these functors will be defined on a homotopy category, i.e. the space of topological spaces
up to homotopy equivalence. We will see this notion in the first proposition in the next section.

2 Fundamental Groups and Covering Spaces

2.1 Homotopy

Definition 2.1. Given maps f, g : X → Y , a homotopy h : f ' g is a map h : X × I → Y
such that for each x ∈ X, h(x, 0) = f(x) and h(x, 1) = g(x). We say that two maps f, g are
homotopic when there exists a homotopy h : f ' g.

Definition 2.2. A map f : X → Y is nullhomotopic if f ' cy for some y ∈ Y .

Definition 2.3. A space X is contractible if the identity map on X is nullhomotopic.
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Example. We claim that Rn is a contractible topological space. Indeed, let f(x) = x and g(x) = 0
for x ∈ Rn; define the map h : Rn × I → Rn that takes x 7→ (1 − t)x. h satisfies all of the
necessary requirements of a homotopy, so the claim follows.
Example. Let X be a one-point space and Y be a two-point space. The two obvious maps
X → Y are not homotopic, and proving this is left as an exercise.
Example. Let f : S1 → S1 be the map taking (x, y) 7→ (−x,−y). We claim that this is homotopic
to the identity map on S1. Indeed, viewing things in polar coordinates, a desired homotopy is
h : S1 × I → S1 taking (eit, θ) 7→ ei(t+πθ), where t ranges over R.
Remark. f is not homotopic to the map (x, y) 7→ (−x, y). We will be able to prove this when
we have more tools.
Remark. X is contractible implies that X is path-connected. This is also left as an exercise.

Proposition 2.4. Homotopy equivalence defines an equivalence relation on the set Maps(X,Y ).

Proof. To show the relation is reflexive, consider the trivial homotopy (x, t) 7→ x. To show it is
symmetric, given two homotopic maps f, g : X → Y and a homotopy h : f ' g, replace h with
the map h′ : (x, t) 7→ (x, 1− t). One readily checks that this is a desired homotopy g ' f . To see
that it is also transitive, let f ' g, g ' q be homotopic and choose corresponding homotopies
h1 and h2. Then we define the map

H : x 7→

{
h1(x, 2t) 0 ≤ t ≤ 1/2,

h2(x, 2t− 1) else.

Again, one readily checks that this is a desired homotopy f ' q.

2.1.1 Paths and loops

Let X ∈ Top and x, y ∈ X.

Definition 2.5. A path f from x to y, which we will always denote f : x  y, is a map
f : I → X such that f(0) = x and f(1) = y. A loop based at x is a path from x to itself. A
homotopy of paths between paths f, g : x  y is a homotopy h : I × I → X such that for each
s ∈ I, h(s, 0) = f(s), h(s, 1) = g(s), and h(0, s) = x, h(1, s) = y.

A brief remark on notation: there is a useful diagrammatic way of approaching statements
about homotopy. Namely, a homotopy of maps h : f ' g can be represented by a square in the
following way1: In the figure, f , g, and h are maps x  w, and the sloped lines represent a

homotopy between the compositions f(gh) ' (fg)h; see below.
Remark. Homotopy of paths defines an equivalence relation on the set of paths between points
x and y. This is left as an exercise. See Figure 1.

Example. Let X = R2 and Y = S1, and consider the points (-1,0) and (1,0), with paths α and
β between them, which trace out, respectively, upper and lower semicircles between the two
points. In X, these maps are homotopic, but in Y they are not. It will take us some time to
build up the machinery for the proof of the second statement, while the first is clear.

1All such images are lifted from Peter May’s A Concise Course in Algebraic Topology, available on the web.
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Figure 1: A homotopy between two paths (bolded lines) between two points (cusps).

2.1.2 Operations on Paths

1. Composition: given f : x  y, g : y  z paths in X, get a new path gf = g ◦ f : x  z.
Equations for this are given by

(gf)(t) =

{
f(2t) 0 ≤ t ≤ 1/2,

g(2t− 1) else.

2. Inversion: given f : x  y, get a new path f−1 : y  x by reversing the direction.
Symbolically this is f−1(t) = f(1− t).

Remark. This composition law is not associative. This is because in the two compositions f(gh)
and (fg)h for compatible paths f, g, h in X, paths are traversed in different times. In the first,
f takes place over time 0 to 1/2, and in the second, in time 0 to 1/4.

For a path f in X, we will denote by [f ] its homotopy class.

Theorem 2.6. 1. Composition is well-defined, and associative up to homotopy. That is,
[h(gf)] = [(hg)f ]. This implies that there is a well-defined map

{paths x y}
homotopy ×

{paths y z}
homotopy

{paths x z}
homotopy

2. Inversion factors through homotopy: [f ]−1 := [f−1] is well-defined. Similarly, we have a
map

{paths x y}
homotopy

{paths y x}
homotopy

3. Constant maps give left and right identities: for a path f : x y in X, [f ] · [cx] = [f ·cx] =
[f ] = [cy · f ] = [cy] · [f ].

4. Inversion gives inverses: [f ] · [f−1] = [cy] and [f−1] · [f ] = [cx].

Corollary 2.7. The set of loops based at a fixed point x up to homotopy on a topological space
X forms a group under composition, with identity element cx, with inverses given by inverting
paths.

Definition 2.8. π1(X,x) is the group defined in the above corollary. It is called the fundamental
group of X based at x.

Proof of Theorem. In order:
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1. We need to prove that given paths f, g : x y, i : y  z, if f ' g then if ' ig. To do so,
choose a homotopy of paths h : f ' g and let k : i ' i be the constant homotopy. Then
the desired homotopy H : if ' ig is given by

H(s, t) =

{
h(2s, t) s ≤ 1/2

k(2s− 1, t) s ≥ 1/2.

Diagrammatically, if one has a homotopy square for h and one for k, this is equivalent to
placing them next to one another.

Now to prove associativity, we are given paths f : x  y, g : y  z, i : z  w, and
we need to show that [i(gf)] = [(ig)f ]. The diagram and corresponding formula for the
desired homotopy are then given by the following.

H(s, t) =


f(2s, t) s ≤ t/4 + 1/4

g(s, t) t/4 + 1/4 ≤ s ≤ t/4 + 1/2

h(s/2, t) s ≥ t/4 + 1/2

2. We need to prove that given f, g : x  y, then [f ] = [g] implies [f−1] = [g−1]. To do so,
choose a homotopy h : f ' g. Then the diagram is: and we leave the symbolic expression

as an exercise.

3. For a path f : x y we want: cy · f ' f and f · cx ' f . To do this, use the same trick as
in 2).

4. Given f : x  y, we need to show that f−1 · f ' cx and f · f−1 = cy. For the first
composition, we have a homotopy given by the formula

h : I × I −→ X

(s, t) 7−→


f(2s) s ≤ t/2
f(2t) t/2 ≤ s ≤ 1− t/2
f(2− 2s) s ≥ 1− t/2

The diagram is:
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2.2 Fundamental groups

Theorem 2.9 (Properties of π1.). 1. π1 is (essentially) independent of choice of basepoint:
for fixed x, y ∈ X and a path a : x y, there is an isomorphism Φa : π1(X,x)→ π1(X, y)
given by conjugating elements of π1(X,x) by [a]. That is, [α] 7→ [a] · [α] · [a]−1 is an
isomorphism.

2. π1 is functorial: for a map f : X → Y and a point x ∈ X, we obtain a map f∗ : π1(X,x)→
π1(Y, f(x)) by f∗(α) = f ◦ α.

3. Homotopy invariance: fix f, g : X → Y such that h : f ' g is a homotopy. We set
a = h(x,−) : I → Y , which induces a : f(x) y making the following diagram commute:

π1(X,x)

π1(Y, f(x)) π1(Y, g(x))

g∗f∗

Φa

where the bottom arrow is an isomorphism, as in (1).

Proof. 1. It is obvious that Φa is well-defined. Φa is a homomorphism simply because con-
jugation is a homomorphism. (One might like to write out the statements necessary for
this line to notice how the statements in ?? are being used.) Φa is an isomorphism since
its inverse is clear, and it is given by (Φa)

−1 = Φa−1 .

2. The given map is a homomorphism: given α, β ∈ π1(X,x) parametrized by maps h, g :
I → X respectively, we have

f∗(αβ) = f ◦ (αβ)

=

{
f(h(2t)) 0 ≤ t ≤ 1/2

f(g(2t− 1)) 1/2 ≤ t ≤ 1

=

{
(f ◦ h)(2t) 0 ≤ t ≤ 1/2

(f ◦ g)(2t− 1) 1/2 ≤ t ≤ 1

= (f ◦ h)(f ◦ g)

= f∗(α) · f∗(β)

as required. Now we check that the composition X
f→ Y

g→ Z induces equal maps
(f ◦ g)∗ = f∗ ◦ g∗. This follows from a similar string of equalities as given above, where the
key step is simply that function composition is associative.

3. Fix α : x x. We need to show that Φaf∗(α) = g∗(α). This is equivalent to af∗(α)a−1 =
g∗(α), i.e. af∗(α) = g∗(α)a as paths f(x) g(x), up to homotopy. That is, we require a
homotopy realizing this equality. To do this, define a homotopy h′ as follows
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I × I Y

X × I
α×id

h′

h

Symbolically, this is h′(s, t) = h(α(s), t). This gives a desired homotopy af∗(α) ' g∗(α)a.

Corollary 2.10. If X is path-connected, π1(X,x) is independent of x up to isomorphism. Thus
we may write π1(X) for the fundamental groups of path-connected spaces.

We are interested now in computing π1(X,x) for the topological spaces of interest.

Example (The fundamental group of Rn). Let X = Rn and x = 0 ∈ Rn. We claim that
π1(X,x) = 0. To show this, choose a path α : 0 0. By transitivity of homotopy equivalence,
it is enough to show that α ' c0. Set h : I × I → Rn to be h(s, t) = α(s) · (1− t). h gives the
desired homotopy.

This is true more generally for all contractible spaces, with the same proof carrying over.

Example (The fundamental group of S1). Let X = S1. Then π1(S1) = Z. In particular, idS1 is
a generator. This is our first example of a space with a nontrivial fundamental group.

The facts necessary to the proof are the following: S1 = {z ∈ C | |z| = 1}. With this
definition it is clear that S1 is a topological group under multiplication (of complex numbers).
We have a covering map given by exp : R → S1 where t 7→ e2πit; it is a group homomorphism
from the additive group of R. Its kernel is (isomorphic to) Z. See Figure 2. Further we have
exp−1(S1 r {1}) = R r Z =

∐
Z(S1 r {1}). We have exp : (i, i + 1)

∼7−→ S1 r {1}. Note that
the choice of 1 here is not special, and choosing any other point x ∈ S1 gives the analogous
statement (since exp is a homomorphism).

Figure 2: The covering exp = p : R→ S1.

We isolate a key lemma.

Lemma 2.11. Let X ⊂ Rn be compact and convex about x0 ∈ Rn. Fix f : X → S1, t0 ∈ R such
that exp(t0) = f(x0). Then there exists a unique map f̃ : X → R satisfying: exp ·f̃ = f and
f̃(x0) = t0.

The diagram is

(R, t0)

(X,x0) (S1, exp(t0))

exp
∃!f̃

f
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Remark. The same statement is true when “convex" is replaced with “star-convex around x ∈ X".

Let f : I → S1 be a loop through 1 ∈ S1. Now, we have that there is a unique f̃ : I → R
lifting 1 ∈ S1 to 0 ∈ R such that exp f̃ = f and f̃(0) = 0. Moreover, f̃(1) ∈ R is another lift of
1 ∈ S1, since (exp f̃)(1) = f(1) = 1. As exp−1(1) = Z ⊂ R, we obtain a map

d̃eg : {loops at 1 ∈ S1} −→ Z
f 7−→ f̃(1).

Step 1. d̃eg factors through homotopy. To show this, say f, g : I → S1 are loops through 1
which are homotopic. Choose h : f ' g realizing this. We need to show that f̃(1) = g̃(1).

Applying the lemma to X = I × I with x0 = (0, 0) and t0 = 0, we obtain a unique map
h̃ : I × I → R such that exp h̃ = h with h̃(0, 0) = 0.

Via the uniqueness statement in the lemma (applied twice), we obtain that f̃(1) = g̃(1) = c1.
We obtain after this a map deg : π1(S1, 1)→ Z which is well-defined up to homotopy.

Step 2. deg is a group homomorphism. For two loops f, g : I → S1 based at 1, we need to
show that f̃(1) + g̃(1) = (̃gf)(1). Set g′ = g̃ + f̃(1). This is the unique path lifting g with base
point f̃(1) (instead of 0). Now we can compose g′ · f̃ , which is a path lifting gf based at 0. The
uniqueness statement in the lemma dictates that g′ · f̃ = (̃gf).

We obtain now that (̃gf)(1) = (g′ · f̃)(1) = g̃(1) + f̃(1) as required.
Step 3. deg is an isomorphism. To show that it is injective, choose f : I → S1 is a loop

through 1 such that f̃(1) = 0 (i.e. f ∈ ker(deg)). We want to show f ' c1. As f̃(1) = 0 = f̃(0),
the map f̃ is a loop through 0 ∈ R. Since R is contractible (see 2.2) we have that f̃ ' c0, and
applying exp we obtain a homotopy f ' c1.

To show surjectivity, fix n ∈ Z. Consider the map F : I → R defined by t 7→ nt. F (0) =
0, F (1) = n. Set f = exp ·F . f(0) = f(1) = 1, so f is a loop. By uniqueness in the key lemma
we obtain F = f̃ . Then deg(f) = f̃(1) = F (1) = n.

We still have to prove the lemma 2.11. We do that now.

Proof of Lemma. By translation, we allow x0 = 0 ∈ X and f(0) = 1, and we aim to conclude
the uniqueness and existence of f̃ with exp ·f̃ = f and f̃(0) = 0.

We prove uniqueness first. Suppose that f̃1 and f̃1 are two lifts as in the lemma. Consider
the difference f̃1 − f̃2, which has image contained in exp−1(1) = ker(exp) = Z. Since X is
connected (it is convex) and Z is discrete, continuity implies that f̃1 − f̃2 is constant. To show
that this is constantly zero, recall that f̃1(0) = f̃2(0) by hypothesis.

Now we show existence. We apply the intuition given by the description of the kernel of exp
given above. Fix ε > 0 such that for all points x, y ∈ X we have

|x− y| < ε⇒ |f(x)− f(y)| < 2

which we can choose by appealing to compactness and then uniform continuity. The second
inequality implies that f(x) and f(y) are not antipodal, i.e. that f(x) 6= −f(y). Fix N ≥ 0 such
that |x/N | ≤ ε for all x ∈ X. Observe that when α ∈ I, x ∈ X, then α · x ∈ X by convexity
(we implicitly use a parametrization between 0 and x here). For all 0 ≤ j ≤ n− 1, define

gj(x) =
f
(
j+1
n x

)
f
(
jx
n

) ∈ S1.

By hypothesis, gj(x) 6= −1 ∈ S1, since we prohibited antipodal images. We obtain a map
gj : X → S1 r {−1}. Now consider g0(x) · g1(x) · · · gn−1(x) = f(nx/n)

f(0) = f(x)/f(0) = f(x).
Now we are done: define f̃(x) :=

∑
i g̃i(x) =

∑
i log(gi(x)) where log : S1 r {−1} →

(−1/2, 1/2) is inverse to exp |(−1/2,1/2) : (−1/2, 1/2)
∼→ S1 r {−1}.
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Remark. Observe that S1 z 7→zn−→ S1 is a degree n loop on S1. We will use this in the proof of the
fundamental theorem of algebra.

Now we consider applications of the example.

Theorem 2.12 (Brouwer fixed point theorem). Let D ⊂ R2 be the closed unit disk. Then any
(continuous) f : D → D has a fixed point.

Proof. Assume not, i.e. that there is f such that f(x) 6= x for all x ∈ D. Define F : D → S1 by
Figure 3, i.e. by continuing the ray connecting f(x) to x to the boundary S1.

Figure 3: The Brouwer fixed point theorem.

We have further that F (x) = x for each x ∈ S1. Now we have a retraction S1 ↪→ D � S1

whose composite is the identity. Applying the functor π1 we obtain Z→ 0→ Z whose composite
is the identity, a contradiction. This finishes the proof.

Theorem 2.13 (Fundamental theorem of algebra). Every nonconstant polynomial p ∈ C[x] with
complex coefficients has a root in C.

Proof. Fix n > 0 and write p(z) = zn+an−1z
n−1 + · · ·+a0 for the coefficients ai ∈ C. It suffices

by induction to find a single root.
For a contradiction, assume there is no root, i.e. that p(z) 6= 0 for any z ∈ C. Then we may

think of p as a map C→ Cr{0}, and we will use the fact that the punctured plane is homotopic
to a circle. We set XR = {z ∈ C : |z| = R}. p restricts to a map pR : XR → Cr {0} ' S1.

We know that π1(Xr) = π1(C r {0}) = Z, and we set (pR)∗(1) =: deg(pR) ∈ Z. We will
calculate this in two different ways.

First, pR factors as XR ⊂ C p→ C r {0}, so applying π1 we obtain Z → 0 → Z, from which
we conclude that (pR)∗ is the zero map, from which it follows that deg(pR) = 0.

Second, we will show that deg(pR) = deg(p) = n to finish the contradiction. Consider
h′ : XR × I → C defined by h′(z, t) = zn + t(p(z) − zn). We see that h′(z, 0) = zn, and
h′(z, 1) = p(z). We would like to know that h′ takes values in C r {0}; elementary analysis
implies that for sufficiently large R, h′(z, t) 6= 0. Thus we obtain a similar map h : XR → Cr{0},
and h gives a homotopy (z 7→ zn) ' p, and therefore deg(pR) = deg(z 7→ zn) = n.

2.2.1 Calculating π1

In this section we introduce some tools for computing fundamental groups. Two versions of Van
Kampen’s theorem will tell us how to calculate fundamental groups of spaces that are obtained
by gluing two spaces (whose fundamental groups we know) together along a shared subspace,
when that subspace is path-connected in one case and in general in the other. It is an important
theorem for calculating fundamental groups. We will state and prove Van Kampen’s theorem
below.

A non-example where Van Kampen’s theorem does not apply, then, is the gluing of two in-
tervals at their endpoints to obtain S1. As the intersection along which we glue is not connected,
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Van Kampen’s theorem does not hold, and we required other tools for computing π1. For this
reason, we introduce groupoids.

Definition 2.14. A category C is a groupoid if all maps in C are isomorphisms. A map
(equivalence) of groupoids C1 → C2 is a functor (equivalence) of the underlying categories. We
denote by Grpd the category of groupoids with maps of groupoids.

We begin by giving some examples of groupoids.
Example. For G a group we obtain BG a groupoid such that: ob(BG) = {∗}, with Aut(∗) =
HomBG(∗, ∗) = G. Morphisms compose via enforcing the commutativity of

HomBG(∗, ∗)×HomBG(∗, ∗) HomBG(∗, ∗)

G×G G

=

composition

=

multiplication

It is left as an exercise to prove an equivalence of categories between the category of groupoids
with a single object and the category of groups.
Example. For X a topological space, we define τ≤1X which we call the fundamental groupoid of
X, where ob(τ≤1) = {x ∈ X}, and for x, y ∈ X, Hom(x, y) = {paths x y}

homotopy . The composition law
is given by composing paths (up to homotopy). It follows from associativity of composition of
paths that this is a category, and from inversion of paths that it is a groupoid.

We obtain a functor Top → Grpd taking X → τ≤1X, with the obvious way of sending
continuous maps X → Y to paths. We call this functor the fundamental groupoid functor.

Note also that for x ∈ X we have an isomorphism π1(X,x) ∼= Autτ≤1X(x).

Definition 2.15. ForC a groupoid and x ∈ C an object, we define the sets π0(C) = ob(C)/isomorphism,
and for x ∈ X, π1(C, x) = AutC(x).

We isolate a lemma that we will use later.

Lemma 2.16. For C a connected groupoid and x ∈ C, the natural map

F : Bπ1(C, x)→ C

is an equivalence of categories.

Proof. We use the following fact: a functor F : C → D is an equivalence if it satisfies the
following two conditions. For every d ∈ D there is c ∈ C such that F (c) ∼= d (F is essentially
surjective), and the natural map HomC(c1, c2)→ HomD(F (c1), F (c2)) is a bijection (F is fully
faithful).

Both requirements are trivial to check. F is essentially surjective since C is connected, and
F is fully faithful in a similar way. It follows that F is indeed an equivalence of categories.

One can also construct the inverse functor explicitly, as we do now. On the level of objects,
we are forced to send each object in C to the unique object in Bπ1(C, x). For morphisms, in
every object y ∈ C, choose an isomorphism γy ∈ HomC(y, x) such that γx = idx. Now for a
sufficient map on the level of morphisms, use

HomC(y, z) −→ HomBπ1(C,x)(x, x)

defined by (α : y → z) 7→ γz ◦ α ◦ γ−1
y . We leave it as an exercise to prove that this is a functor,

i.e. it is compatible with composition.

Corollary 2.17. For X a path-connected space and x ∈ X, Bπ1(X,x) ' τ≤1(X) (an equivalence
of categories) by applying the preceding lemma.

Now we arrive at the Seifert-van Kampen theorem. We will present two versions, one in a
standard topological setting and a version using groupoids. The second version will be useful
when the space along which we are gluing the two larger spaces is not path-connected, and it
does not depend on a choice of base point. We will need the following construction.
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2.2.2 Pushouts of groups

Theorem 2.18. Group is cocomplete, i.e. has all (small) colimits.

In what follows we will only need that Group has all coproducts and cofibered coproducts,
so that is what we will prove.

Proof. For coproducts: choose groups G,H ∈ Group. We define G ∗ H, the coproduct of G
and H, to be the free product of G and H. We require that for any K ∈ Group, giving a map
G ∗H → K is equivalent to giving maps G→ K and H → K. That is, HomGroup(G ∗H,K) '
HomGroup(G,K)×HomGroup(H,K).

We leave it as an exercise to verify the universal property, so that G ∗H gives the coproduct
of G and H.

For cofibered coproducts (pushouts): given a diagram

K G

H

we need to be able to extend it to a diagram

K G

H G ∗K H

such that G ∗K H is universal with respect to this property. Note that when K is trivial, this is
given by the free product of G and H. In general, for maps as above α : K → G, β : K → H,
and inclusions iG : G→ G ∗H and iH : H → G ∗H, we set

G ∗K H := “amalgamated product of G and H over K” =
G ∗H

〈iGα(k) = iHβ(k)〉
.

By construction, and as one can check, we obtain the necessary extension of the first diagram,
and this extension commutes.

In general one would need to check that Group has all filtered colimits as well, but we will
not need this. The existence of all colimits is a formal consequence of the existence of these
smaller cases.

Example. Z ∗ Z = aZ ∗ bZ is the free group on two generators. More generally, for any set S, we
obtain a free group F (S) on the set S: at least when S is finite, F (S) = Z ∗ · · · ∗Z, on |S|-many
copies of Z. Now for the projections Z→ Z/2,Z/3, we obtain Z/2∗ZZ3

∼= 0; using the universal
property, we see that the amalgamated products needs to be generated by an element of order
2 that also has order 3, so the equality follows. We won’t prove this, but it is also true that
Z/2 ∗ Z/3 ∼= PSL2(Z). (This is a straighforward application of something called the ping-pong
lemma, which we will not see in this course.)

To prove the groupoid version of Van Kampen, we will use the following lemma.

Lemma 2.19. Given a diagram of groups

K G

H

β

α

the diagram

12



BK BG

BH B(G ∗K H)

β

α

is a pushout of groupoids. That is, the functor B takes pushouts to pushouts.

Theorem 2.20 (Seifert-van Kampen). For a space X = U ∪ V for U, V ⊂ X open subsets, we
have the following two statements.

(1) (Groupoid version) The square

τ≤1(U ∩ V ) τ≤1(U)

τ≤1(V ) τ≤1(X)

is a pushout in the category Grpd.

(2) (Group version) If U, V, U ∩ V are all path-connected, and x ∈ U ∩ V , then

π1(U ∩ V, x) π1(U, x)

π1(V, x) π1(X,x)

is a pushout in Group. That is, π1(X,x) ' π1(U, x) ∗π1(U∩V,x) π1(V, x).

Before proving the theorem, we give some applications.

Example (Fundamental group of Sn). Choose U = northern hemisphere “ + ε” (which passes a
bit below the equator), and V = southern hemisphere +ε. When n ≥ 2 the intersection U ∩V is
a path-connected annulus (or a higher-dimensional analogue). Each of U and V is homotopic to
Rn via stereographic projection, and the intersection is homotopic to Sn−1. Applying the group
version of the theorem, we obtain π1(Sn, x) ' π1(Rn, x)∗π1(Sn−1,x) π1(Rn, x) ' 0, for x ∈ U ∩V ,
since Rn is contractible.

Example (Fundamental group of the figure-8). For U and V we take one circle “plus ε" (which
is open) in the figure-8. U ∩ V is an “open X". We have π1(U, x) ' π1(V, x) ' Z for x ∈ U ∩ V .
The intersection has trivial fundamental group. The group version of the theorem gives us
π1(S1 ∨ S1, x) ' F2, the free group on two generators.

Now we prove the theorem for groupoids. We will specify how this version will imply the
group version. We will need a lemma from point-set topology.

Lemma 2.21. For a compact metric space (Y, d) and an open cover {Ui}i∈I of Y , there exists
a δ > 0 such that A ⊂ Y with diam(A) < δ, then A ⊂ Ui for some i ∈ I.

The proof is left as an exercise.

Proof of Seifert-van Kampen for groupoids). We directly verify the universal property. Fix a
diagram

τ≤1(U ∩ V ) τ≤1(U)

τ≤1(V ) C

g

f

13



for a groupoid C. We need to show that there is a unique map h : τ≤1(X) → C making the
following diagram commute:

τ≤1(U ∩ V ) τ≤1(U)

τ≤1(V ) τ≤1(X)

C

g

f

h

We specify h on objects: let x be an object in τ≤1(X). We define h(x) = f(x) if x ∈ τ≤1(V ) and
g(x) if x ∈ τ≤1(U). The commutativity of the above diagram shows that his is well-defined, i.e.
both definitions agree on τ≤1(U ∩ V ).

To specify h on morphisms, we apply the lemma. Fix a path α : x → y in X. Via the
lemma, we may write α = α0 · α1 · · ·αm such that the image of each αi lies entirely in either U
or V . The metric space in the lemma is the unit interval. Therefore, define h(αi) = f(αi) or
g(αi) depending on the containment αi ⊂ U, V . This is well-defined again by commutativity of
the first given diagram.

We define h on morphisms via h(α) = h(α0) · h(α1) · · ·h(αm). One needs to check that this
is really a functor, i.e. compatible with composition. This is left as an exercise.

Now we show that h factors through homotopy. Fix φ : α ' β a homotopy of paths in X.
Then φ is a map I × I → X satisfying the necessary properties. The lemma implies that one
may subdivide I × I into subsquares Mi,j such that φ(Mi,j) ⊂ U or V . Mi,j is defined by a
bottom path a and a path b which is the composition of the left, top, and right paths, and these
paths are homotopic. As φ(Mi,j) lies in either U or V , h(a) = h(b) for each subsquare Mi,j .
Repeating this many times we obtain h(α) = h(β), so h does indeed factor through homotopy.
The result follows.

Now for the group version:

Proof. We are in the same setting as in the previous proof, with a choice of x ∈ U ∩ V . We
verify the universal property directly again.

Step 1. We have a natural diagram

Bπ1(U, x) Bπ1(U ∩ V, x) Bπ1(V, x)

τ≤1(U) τ≤1(U ∩ V ) τ≤1(V )

iU iU∩V iV

We showed above in 2.16 that the downward arrows are equivalences of categories, via path-
connectedness. We choose inverses P− for each i− such that the induced diagram

Bπ1(U, x) Bπ1(U ∩ V, x) Bπ1(V, x)

τ≤1(U) τ≤1(U ∩ V ) τ≤1(V )

iU iU∩V iVPU PU∩V PV

commutes. To do so: for all y ∈ X choose a path γy : y  x such that γx = cx, and γy ⊂ U if
y ∈ U , γy ⊂ V if y ∈ V , and similarly for the intersection. In this way we obtain

PU : τ≤1(U) −→ Bπ1(U, x)

objects: y 7−→ x

morphisms: (y
α→ z) 7−→ (x

γ−1
y→ y

α→ z
γy→ x).
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and similarly for PV , PU∩V . The diagram commutes by construction, as one can check.
Now we aim to show that the diagram

π1(U ∩ V, x) π1(U, x)

π1(V, x) π1(X,x)

β

α

is a pushout. That is, given a commuting diagram

π1(U ∩ V, x) π1(U, x)

π1(V, x) G

g

f

there is a unique h : π1(X,x) → G such that hα = f and hβ = g. Applying the functor
B : Group→ Grpd, we obtain

Bπ1(U ∩ V, x) Bπ1(U, x)

Bπ1(V, x) BG

Bg

Bf

and now precomposing with the P−, obtain

τ≤1(U ∩ V ) τ≤1(U)

τ≤1(V ) BG.

Bg◦PU
Bf◦PV

Applying the groupoid version of the theorem, we obtain via the universal property a map
h′ : τ≤1(X) → BG making the necessary diagram commute. Take the map on automorphism
groups induced by h′ at the point x ∈ τ≤1(X) to obtain h : π1(X,x)→ G as required. Uniqueness
of h is still not proved, but one can readily check it using uniqueness in the groupoid version,
which we’ve already shown.

We give some examples of Seifert-van Kampen in action. In the following 〈a1, ..., an〉 will
denote the free group on n letters. The free group with relations will be denoted 〈a1, ..., an |
f1 = g1, ..., fm = gm〉, i.e. the free group on n letters quotiented out by a normal subgroup
enforcing the relations fi = gi. For example, 〈a, b | ab = ba〉 ∼= Z2 is the abelianization of the
free group on two letters.

Example (Fundamental group of the (punctured) 2-torus). π1(S1 × S1). We’ve shown that π1

commutes with products, so we know that this is Z × Z. Now we will use van Kampen to
determine the fundamental group of the punctured 2-torus.

Consider (S1×S1)r{small disc}. Observe that when constructing the 2-torus as a quotient
of a unit square, up to homotopy we have the identity (S1 × S1) r {small disc} ' S1 ∨ S1. See
Figure 4.

We still haven’t used van Kampen. Now we do:

Example (Fundamental group of a genus 2 surface). Express the genus 2 surface as the connect
sum of two punctured tori along an annulus (homotopy equivalent to S1). We are in the setting
of the group version of van Kampen: we have
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Figure 4: A retraction of the unit square (with identifications) minus a disk with the square
(with identifications), i.e. the wedge of two circles. This image came from math.se.

π1(V ) π1(U ∩ V ) π1(U)

〈a2, b2〉 cZ 〈a1, b1〉

= = =

c7→[a1,b1]−1[a2,b2]← [c

Thus Seifert-van Kampen dictates that π1(X) = 〈a1, b1, a2, b2 | [a1, b1][a2, b2] = 1〉. We note for
now that π1(X)ab = Z⊕4.

2.3 Covering Spaces

We establish some notation: fix maps f : X → Y and α : Z → Y . A lifting of α along f is a
map α̃ : Z → X such that fα̃ = α. For example, we saw that any map I → S1 lifts along the
exponential R→ S1.

Definition 2.22. A map f : X → Y is a covering space provided that f is surjective, and
there exists a cover {Ui} of Y such that there is a homeomorphism f−1(Ui) ∼=

∐
i Ui which is

compatible with the projection maps to the Ui. That is, the following triangle commutes:

f−1(Ui)
∐
n Uj

Ui

∼

f |Ui proji

for some n ≥ 2.

Example. A cover of S1 corresponding to the exponential is given by S1 r {1} and S1 r {−1}.
Example. Consider αn : S1 → S1 taking z 7→ zn. For n = 2, we see that α−1

n (S1 r {0}) =
S1 r {1,−1} ∼=

∐
Z/2(S1 r {x}) (where ∼= denotes a homeomorphism). In general, α−1

n (S1) =

S1 r {nth roots of 1} =
∐

Z/n(intervals).

Example. For any set S and any space X, the obvious map
∐
S X → X is a covering space.

Example. Let X = Sn and Y = RPn = Sn/(Z/2) where the Z/2-action is given by x 7→ −x.
Then the quotient map X → Y is a covering space.

Theorem 2.23 (Path/homotopy lifting property.). Let f : X → Y be a covering space, with
x ∈ X and y = f(x) ∈ Y . Then

(1) For α : I → Y with α(0) = y, there is a unique lift α̃ : I → X such that α̃(0) = x.

(2) For h : I×I → Y such that h(0, 0) = y, there is unique h̃ : I×I → X such that h̃(0, 0) = x.

Remark. For a bit of motivation, recall 2.2.
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Proof. Fix a cover {Ui} of Y that splits f (i.e. f−1(Ui) =
∐
Ui).

First we lift paths. The topological lemma above, applied to the open cover f−1(Ui) of I,
implies that there is a factorization 0 = s1 ≤ s1 ≤ · · · ≤ sm = 1 ∈ I such that α|[si,si+1] has
image in some Uj .

Step 1. Assume α(I) ⊂ Uj for some j. Then it is obvious that there exists a unique α̃ : I → X
as required.

Step 2. By step 1, there is a unique lift α̃0 : [s0, s1] → X such that α̃0(s0) = x and α̃0 lifts
α|[s0,s1]. Again by step 1, there exists unique α̃1, analogous to α̃0, such that α̃0(1) = α̃1(0) and
α̃1 lifts α|[s1,s2]. Inductively we may construct such lifts for each α|[si,si+1] which are mutually
compatible. We set α̃ = α̃m−1 · · · α̃0. Uniqueness essentially carries over from the uniqueness
from step 1.

Now we lift homotopies. Avoiding the pain of being precise with indices, say h : I×I → Y is
such that I×I admits a decomposition into four squares V1, ..., V4, such that for all i, h(Vi) ⊂ Uj
for some j.

Construct h̃1 : V1 → X by choosing a sheet f−1(Ui) containing x. Proceeding as in the case
of paths, we may glue such lifts together compatibly to obtain h̃ which lifts h as required.

Corollary 2.24. If f : X → Y is a covering space, and x ∈ X with y = f(x) ∈ Y , then
f∗ : π1(X,x)→ π1(Y, y) is injective.

Proof. Choose α : x  x such that f∗([α]) = 0. Choose a homotopy h : f∗(α) ' cy; apply
homotopy-lifting to obtain a homotopy h̃ : I×I → X. Uniqueness of homotopy lifting gives that
h̃ gives a homotopy α ' cx, as required.

For what follows, choose a covering space f : X → Y with x ∈ X and y = f(x) ∈ Y . If
we suppose that the induced map f∗ : π1(X,x) → π1(Y, y) is injective, then we obtain a map
φ̃ : π1(Y, y) → f−1(y) given by α 7→ α̃(1), where α̃ is the unique lift of α based at x. Indeed,
we obtain a well-defined map (of sets) φ : π1(Y, y)/f∗π1(X,x) → f−1(y), as when α = f∗β, we
have α̃ = β so that α̃(1) = β(1) = β(0) = x.

Theorem 2.25. φ is injective. When X is path-connected, φ is a bijection.

Example. Consider again the cover S1 → S1 given by z 7→ zn. We have #π1(S1)/(f∗π1(S1)) =
#f−1(1) = n.

Proof. Choose α1, α2 ∈ π1(Y, y) with φ(α1) = φ(α2). Then φ(αi) = α̃i(1); as α1 and α2 are
paths x  α̃i(1), we have that α̃2

−1α̃1 is a loop in X based at x. In particular, we have
f∗([α̃2

−1α̃1]) = α−1
2 α1 ∈ f∗π1(X,x), as required.

For the second statement, assume that X is path-connected. Choose x′ ∈ f−1(y) and a path
β : x  x′ and set α = f∗(β) ∈ π1(Y, y). Uniqueness of path-lifting dictates that α̃ = β. Then
we have α̃(1) = β(1) = x′, implying that φ(α) = x′.

Definition 2.26. A space X is simply connected if X is path-connected and π1(X) = 0.

Corollary 2.27. If a covering space f : X → Y is given with X simply connected, then π1(Y, y)
is in natural bijection with f−1(y).

Example. For X = Sn, n ≥ 2 and Y = RPn, we have a covering map f : X → Y . The corollary
implies that #π1(RPn) = 2, so we have π1(RPn) ∼= Z/2.

For Y 3 y a reasonable topological space, we aim to establish a dictionary{
covering spaces f : X → Y
x ∈ X,X path-connected

}
∼←→ {subgroups of π1(Y, y)}

(X,x)←→ f∗π1(X,x)

As an application of such a dictionary, we would immediately see that all subgroups of free
groups are free. We will have to develop more tools in order to construct this correspondence.
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2.3.1 Classification of covering spaces

In what follows, all spaces will be path-connected and locally path-connected.

Definition 2.28. Two covering spaces f1 : X1 → Y , f2 : X2 → Y are equivalent provided that
there exists a homeomorphism g making the triangle

X1 X2

Y

g

f1 f2

commute. We have a similar definition for pointed topological spaces, where we require all maps
to preserve the base points.

We will show that for Y 3 y path-connected, we have
 pointed path-connected

covering spaces (X,x)→ (Y, y)


pointed equivalence {subgroups of π1(Y, y)}

 path-connected
covering spaces X → Y


equivalence

{subgroups of π1(Y, y)}
conjugation

∼

∼

We have the following key lifting lemma.

Lemma 2.29. Fix a (path-connected and locally path-connected) space Z pointed with z ∈ Z
and a map α : Z → Y . With X,Y as above, then we have a lift α̃ : Z → X lifting α, with
α̃(z) = x if and only if we have inclusions α∗π1(Z, z) ≤ f∗π1(X,x) ≤ π1(Y, y) of groups. The
diagrams are

(X,x)

(Z, z) (Y, y)

f
α̃

α

⇔
π1(X,x)

π1(Z, z) π1(Y, y)

f∗

α∗

Further, when α̃ exists, it is unique.

Remark. When Z = I, this gives the path lifting lemma. When Z = I × I, this gives the
homotopy lifting lemma.

Proof. The forward implication is clear. For the backward implication, given z′ ∈ Z, choose a
path β : z  z′ in Z. We obtain a path α∗(β) : y  α(z′). Path lifting via f gives us a path
α̃∗(β) in X, lifting α∗(β), based at x. Set α̃(z′) = α̃∗(β)(1).

We want to show that this is independent of the choice of β. That is, given β, β′ : z  z′, we
want that α̃∗(β)(1) = α̃∗(β′)(1). So, consider the loop (β′)−1β ∈ π1(Z, z); we have α∗(β′)−1β ∈
α∗π1(Z, z) ≤ f∗π1(X,x). Now say that α∗(β′)−1β = f∗γ for γ ∈ π1(X,x). By uniqueness of
path lifts, we see that ˜α∗(β′)−1β = γ, as both lifts are based at x.

Thus, α̃∗(β′)
−1
· α̃∗β is a loop. It follows that α̃∗β(1) = α̃∗(β′)(1) as required. We obtain a

well-defined lift α̃ of α. It follows immediately that α̃(z) = x (use the constant path β : z  z)
and that α̃ is continuous.

To prove the second statement, simply apply the uniqueness of path lifting.
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Remark. The lemma implies that covering spaces are monomorphisms in the category of pointed
topological spaces.

Theorem 2.30 (Classifying covering spaces via π1). Let f1 : X1 → Y and f2 : X2 → Y be
path-connected covering spaces, with compatible basepoints xi ∈ Xi, y ∈ Y such that fi(xi) =
y. There exists an equivalence h of covering spaces preserving the basepoints if and only if
(f1)∗π1(X1, x1) = (f2)∗π1(X2, x2).

In other words, we have an embedding of categories

{pointed covering spaces}
equivalence

−→ {subgroups of π1(Y, y)}.

Proof. The forward direction is clear, after noting that π1 is functorial. For the reverse direction,
we apply the key lemma 2.29 to obtain a lift h : X1 → X2 of f1; since (f1)∗π1(X1, x1) =
(f2)∗π1(X2, x2), we have a lift g going in the other direction as well. We need to show that this
is an equivalence. However by uniqueness in the lifting lemma implies that g ◦ h and h ◦ g are
both the necessary identities on the Xi, finishing the proof.

We would like to excise basepoints from our arguments.

Lemma 2.31. If f : X → Y is a covering space (where we assume all spaces are path-connected).
Fix y ∈ Y and x1, x2 ∈ f−1(y). If α : x1  x2 is a path, then f∗(α) ∈ π1(Y, y) and f∗(α) ·
f∗π1(X,x1) · f∗(α)−1 = f∗π1(X,x2). Moreover, if f∗π1(X,x1) = gHg−1 for g ∈ π1(Y, y) and
H ≤ π1(Y, y), then there is x3 ∈ f−1(y) such that H = f∗π1(X,x3).

The proof is left as an exercise. With the lemma in hand, we have the following classification
of non-pointed covering spaces.

Theorem 2.32. Say f1 : X1 → Y and f2 : X2 → Y be covering spaces and fix xi ∈ Xi basepoints
lying over y ∈ Y . Then f1 is equivalent to f2 if and only if (f1)∗π1(X1, x1) = g(f2)∗π1(X2, x2)g−1

for some g ∈ π1(Y, y).
In other words, we have an embedding of categories

{covering spaces}
equivalence

−→ {subgroups of π1(Y, y)}
conjugation

.

Proof. For the forward direction, let h : X1 → X2 be an equivalence. Then (f1)∗π1(X1, x1) =
(f2)∗π1(X2, h(x1)). The second group is conjugate to (f2)∗π1(X2, x2) by the previous lemma.

For the reverse direction, assume that (f1)∗π1(X1, x1) is conjugate to (f2)∗π1(X2, x2). The
previous lemma implies that (f1)∗π1(X1, x1) = (f2)∗π1(X2, x3) for some x3 ∈ X. The previous
theorem says that there exists pointed equivalence (X1, x1) ' (X2, x3), and forgetting basepoints
gives a non-pointed equivalence.

Example. If Y is simply connected, the above imply that Y has no nontrivial covering spaces.

Example. For Y = S1 and a path-connected covering space f : X → Y , the above imply that
(Y, f) = (S1, z 7→ zn) or (R, t 7→ exp(t)).

Theorem 2.33. Let f : X → Y be a covering space with X simply connected and basepoints
x ∈ X, y = f(x) ∈ Y . Then π1(Y, y)op ' AutY (X) := {h : X

∼→ X : fh = f}. The right-hand
side we call the group of deck transformations of Y over X.

Proof. Given ψ ∈ AutY (X), define ρ(ψ) ∈ π1(Y, y) as follows: ρ(ψ) = f∗(β : x ψ(x)) for some
path β. Then ρ(ψ) ∈ π1(Y, y) as fψ(x) = f(x) = y. ρ(ψ) is well-defined, that is, independent
of choice of β, as X is simply connected. We obtain a map of sets ρ : AutY (X)→ π1(Y, y).
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We need to check that this is an isomorphism into the opposite group of π1(Y, y). First,
note that ρ(1Y/X) = f∗(cx) = cy. Now, to check the homomorphism property, choose paths
β1 : x ψ1(x) and β2 : x ψ2(x). Then

ρ(ψ2)ρ(ψ1) = f∗(β2)f∗(β1)

= f∗(x
β1 ψ1(x)

ψ1(β2)
 ψ1ψ2(x)) (f∗ψ1(β2) = f∗(ψ1)∗(β2) = f∗β2)

= ρ(ψ1ψ2).

To show that ρ is injective, choose ψ ∈ AutY (X) such that ρ(ψ) = cy. It suffices to show
that ψ(x) = x by uniqueness of lifting. For any path β : x  ψ(x), ρ(ψ) = cy, so β = cx
by uniqueness. It follows that x = ψ(x). Surjectivity implies existence of lifts rather than
uniqueness, and this argument is left as an exercise.

We may also construct an inverse, namely an isomorphism π1(Y, y)op → AutY (X), where
α 7→ the unique automorphism of X taking α to α̃(1), where α̃ is the unique lift of α to X
guaranteed by the “key lifting lemma".

Remark. We have the following.

1. Bijections AutY (X)
∼→ π1(Y, y) and π1(Y, y)

∼→ f−1(y) (via α 7→ α̃(1)). We obtain a
bijection AutY (X)

∼→ f−1(y) via ψ 7→ ψ(x).

2. Any X as in the above theorem is unique up to equivalence. Such a cover is called the
universal cover of Y .

Example. exp : R→ S1 is a universal cover. So is π : Sn → RPn for n ≥ 2.

We use universal covers to construct all covering spaces:

Theorem 2.34. Let f : X → Y be a universal cover, with basepoints x ∈ X, y = f(x) ∈ Y .

1. AutY (X) acts properly discontinuously on X, i.e. for each x ∈ X there exists U 3 x open,
such that ψ(U) ∩ U = ∅ for all ψ ∈ AutY (X).

2. If H ≤ AutY (X) is any subgroup, then we obtain the map π : X/H → Y , which is also a
covering space, and π∗π1(X/H, x̄) = H, under the correspondence AutY (X) ∼= π1(Y, y)op.

3. Every connected covering space of X arises by the construction in (2).

Corollary 2.35. We obtain a correspondence

{pointed covering spaces}
pointed equivalence

←→ {subgroups of π1(Y, y)}.

Proof. In order:

1. We have a bijective correspondence AutY (X) ' f−1(y). Choose an open neighborhood V
of y such that f−1(V ) ∼=

∐
x′∈f−1(y) Ux′ , where Ux′

∼→ V is a homeomorphism. We claim
that Ux provides the desired neighborhood of x. Note now that ψ(Ux) = Uψ(x), and as the
automorphism group acts simply transitively on the fiber of y, whenever ψ 6= id, we have
that ψ(Ux) ∩ Ux = ∅.

2. We have H ≤ AutY (X). As the action of H on X is properly discontinuous, the quotient
map q : X → X/H is, by a result from homework, a covering space. We also have
the induced map π : X/H → Y . Fix y ∈ V ⊂ Y as in (1). We saw that f−1(V ) =∐
x′∈f−1(y) Ux′ . Thus π−1(V ) = f−1(V )/H ∼=

∐
x̄′∈f−1(Y )/H Ux′ . It follows that π is a

covering space.

Additionally we have
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π∗π1(X,x) π1(Y, y)

{α ∈ π1(Y, y) | unique lift of α to X/H based at x̄ is a loop}

{α ∈ π1(Y, y) | unique lift of α to X based at x ends at H · x}

H

=

⊆

=

=

where the vertical equalities follow from identifying AutY (X) ∼= π1(Y, y) ∼= f−1(y).

3. Say g : Z → Y is any connected covering space, z ∈ g−1(y). We want to show that
Z ∼= X/H for some H ≤ AutY (X), where ∼= denotes covering space equivalence. Choose
H = g∗π1(Z, z) ≤ π1(Y, y). Apply the lifting lemma to the triangle

Z X/H

Y

g π

in both directions to obtain a : Z → X/H and b : X/H → Z, and we use the lifting lemma
again to obtain that these are mutually inverse homeomorphisms.

Example. We may classify all covering spaces of S1 × S1 in this way: they are all of the form
(R×R)/H for H ≤ Z⊕2 ⊂ R×R. Compactness of the cover is dependent on the index of H in
Z⊕2, as one can check.

2.4 Applying covering space theory

2.4.1 Existence of universal covers

The fundamental question will be: for a path-connected space Y , when does there exist a
universal cover Z → Y ? We have the following necessary condition: for all y ∈ Y , there must
exist U 3 Y an open neighborhood such that π1(U, y)→ π1(Y, y) is the zero map. This follows
from the fact that when there exists a universal cover f : Z → Y , then there exists an open
neighborhood U of y in Y such that f−1(U) =

∐
I U so that we have a factorization

Z

U Y.

f∃

In this case we say that Y is semi-locally simply connected. We have, without proof:

Theorem 2.36. If Y is semi-locally simply connected then it admits a universal cover.

2.4.2 Galois theory and covering space theory

Here is a brief dictionary. Let k be a field, and L/k an extension. Let X be a topological space,
and Y → X a covering space.
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Algebra Topology
1. the separable closure k/k the universal cover X̃ → X

2. finite extensions of k connected covering spaces over X
3. Gal(L/k) AutY (X)

4. open subgroups of Gal(L/k) subgroups of π1(Y, y)

5. correspondence between 2. and 4. (same)
6. Galois extensions L/k regular/Galois covering spaces
7. each finite, separable L/k embeds all covering spaces are

into the algebraic closure k quotients of universal coverX̃

2.4.3 Subgroups of free groups are free

We prove that any subgroup of a free group is itself free; however we note as a warning that the
rank is not bounded: F2 contains free groups of arbitrarily high rank as subgroups.

We realize Fn as the fundamental group of the wedge
∨n
i=1 S

1. We “break down" this wedge
as a graph. We will largely play it fast and loose with the terminology in this section, assuming
some background or intuition for simple graphs.

Definition 2.37. A graph G is a triple (V,E, φ) where V and E are sets, and φ : E →
{subsets of V with 1 or 2 elements}. V is the vertex set, E the edge set, and φ(e) is the set of
endpoints of e.

Construction. For a graph G = (V,E, φ), we obtain a geometric realization of the graph, |G|,
the top space obtained from V by attaching edges for all e ∈ E. That is,

|G| =
V t (

∐
e∈E Ie)

0 ∈ Ie ∼ x ∈ V 1 ∈ Ie ∼ y ∈ V

where Ie ∼= I = [0, 1], and φ(e) = {x, y}.

Example. Consider the graph |G| given by

Definition 2.38. A graph is a tree if it is connected and (any two vertices are linked by a
sequence of edges) has no cycles. (We haven’t defined a cycle, but we mean the intuitive thing.)

Examples abound. We establish a few lemmas.

Lemma 2.39. Every connected graph G contains a maximal tree T , in the sense that no larger
tree properly contains T as a subgraph. Moreover, every vertex of G lies in T .

Proof. We will assume that G has finite vertex and edge sets. In particular, this means that |G|
is compact as a topological space (exercise). In this case G has only finitely many subgraphs,
so the existence of a maximal tree T is clear. However we need to show that T contains each
vertex.

To do so, suppose not. First we note that T is nonempty, as then any tree defined by a
single vertex would be supermaximal. If T does not contain every vertex. If T does not contain
a vertex u, then there is an edge between a vertex in T and u, as G is connected. Extending T
via this edge gives a supermaximal tree, a contradiction.

In the infinite case, one can apply Zorn’s lemma for a similar result.

Lemma 2.40. If G is a graph and T is a maximal subtree, then |G| → |G|/|T |, the retraction
of |T | in |G| to a single vertex, is a homotopy equivalence.
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We will not prove this. One can find a proof in Hatcher’s book Algebraic Topology.

Lemma 2.41. For G a connected graph and T ⊂ G a maximal subtree, then |G|/|T | ∼=
∨
e∈J S

1,
where ∼= is a homeomorphism, and J is the set of edges not contained in T .

We haven’t proved a lot in this section and we won’t start now.

Lemma 2.42. For G a connected graph with a covering space f : X → |G|, there exists a graph
G′ such that X ∼= |G′|.

Proof. We set

V ′ := f−1(V (G)) E′ := {lifts of paths given by edges in |G|} φ′ = obvious.

We let G′ = (V ′, E′, φ′), and leave it as an exercise to check that X ∼= |G′|.

And now:

Corollary 2.43. Subgroups of free groups are free.

Proof. We restrict ourselves to the finite case. Say Fn is the free group on n letters, and H ≤ Fn
is a subgroup. We know that Fn ∼= π1(

∨n S1) ∼= |G|, where G has a single vertex and n edges.
Covering space theory implies that H is realized as π1(X) for some covering space X → |G|. By
the lemmas above, X is itself realized as a geometric realization of a graph G′. Contracting a
maximal subtree in G′ and applying an above lemma, we see that π1(G′) is free, and the result
follows.

3 Homology

We still have basic questions in topology that we are not equipped to answer with covering
spaces and fundamental groups. Such as:

Question: How to show Sn 6∼= Sn+1 for n large? We may use π1 up to n = 2, but then we get
stuck.

We aim to construct generalizations of π1. We could construct πn, i.e. homotopy classes of
(pointed) maps Sn → X for n ≥ 0, however these are famously difficult to compute. It turns
out that some funny things happen. For example, it is true that π3(S2) = Z/2. Instead, we
will introduce the homology groups Hn. For an initial observation, we note that πab1 is easier
to compute, in general, than π1: this is how we will construct homology groups. (Warning:
Hn 6= πabn in general.)

3.1 Introduction to homological algebra

The setting is the following: Ab will denote the category of abelian groups, Vectk will denote
the category of k-vector spaces, and ModR will denote the category of R-modules.

Definition 3.1. Say we have maps A α→ B
β→ C in Ab (so this will work in ModR as well).

We say that this is a sequence when βα = 0, i.e. image(α) ⊂ ker(β).

Example. Consider Z/4→ Z/4→ Z/4 where both maps are multiplication by 2.

Definition 3.2. We say a sequence is exact when image(α) = ker(β).

Example. The above example is exact.

Example. If A = 0, then the sequence A α→ B
β→ C is exact if and only if β is surjective, and if

C = 0, if and only if α is surjective.
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Definition 3.3. A set of maps

A1
f1→ A2

f2→ · · · fn+1→ An
fn+2→ An+1

is a sequence provided that the composition of any two adjacent maps is zero, and is exact at
the mth entry provided that image(fm−1) = ker(fm).

Definition 3.4. A short exact sequence is a sequence

0→ A→ B → C → 0

which is exact at each entry.

Remark. In this case, we have that the first (nonzero) map is injective, and the second is
surjective.

Example. The doubly-composed multiplication by 2 map in Z/4 is not a short exact sequence.

Example. 0→ Z→ Z⊕ Z/p→ Z/p→ 0 with the obvious maps is exact. This is an example of
a split exact sequence, where the analogue of B decomposes as the direct sum A⊕ C.

Definition 3.5. A chain complex K• is a sequence of the following sort

· · · di→ Ki+1
di+1→ Ki → Ki−1 → · · ·

in Ab, where Ki is called the degree i term, and the di are called the differentials of K•.

Remark. By abuse of notation, we will often denote each di by d. Now a chain complex is defined
by the equation d2 = 0. Unwritten entries will always be 0, for example:

Z ·2→ Z→ Z/2

is a chain complex with zeros populating the left- and right-hand sides.

Definition 3.6. A morphism of chain complexes K• → L• consists of morphisms pi : Ki → Li
for each i such that the diagram obtained from K•, L•, and the pi commutes.

We obtain then a category Ch(Ab) of chain complexes.

Example. Given A ∈ Ab, obtain a chain complex A[0] ∈ Ch(Ab) with A in the degree 0 term.

Example. In the same way, for a map A → B ∈ Ab, we obtain a chain complex A → B ∈
Ch(Ab).

Example. Consider the sequence

· · · → Z/4→ Z/4→ Z/4→ · · ·

with each map multiplication by 2. This is a chain complex.

Example. Say M1 ∈ Matm,n(Z),M2 ∈ Matm,`(Z) such that M1 ·M2 = 0. We obtain a chain
complex

Z⊕` M2→ Z⊕m M1→ Z⊕n.
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3.1.1 Homology of chain complexes

We aim to measure the “failure of complexes to be exact".

Definition 3.7. For K• ∈ Ch(Ab), i ∈ Z. We define Zi(K•) = ker(d : Ki → Ki−1), the
i-cycles of K•, and Bi = image(d : Ki+1 → Ki), the i-boundaries of K•. Then in general we
have Bi ⊂ Zi. We define Hi(K•) = Zi(K•)/Bi(K•), the ith homology of K.

Remark. Hi(K•) = 0 if and only if K• is exact in degree i.

Example. Consider K = A
α→ B︸︷︷︸

deg 0

∈ Ch(Ab). Then H0(K) = coker(α) = B/image(α), and

H1(K) = ker(α).

Example. Consider
K = · · · → Z ·2→ Z pr→ Z/2→ 0→ · · · .

Then H0(K) = H1(K) = H2(K) = 0. All other homologies are also trivially zero.

Definition 3.8. We say that K is acyclic or exact when all of its homology groups are 0.

Example. Consider the multiplication-by-2 complex 0 → Z/4 → Z/4 → Z/4 → 0. H0 = Z/2,
H1 = 0, and H2 = Z/2.
Remark. Say f : Ab → Ab is an additive functor, i.e. Hom(X,Y ) → Hom(f(X), f(Y )) is a
homomorphism. This induces a functor F := Ch(f) : Ch(Ab)→ Ch(Ab).

Warning : F does not commute with taking homology.

Example. Say f(A) = A/2A. Then K = 0 → Z ·2→ Z pr→ Z/2 → 0 becomes 0 → Z/2 → Z/2 →
Z/2→ 0 under f ; H2(K) = 0 however H2(f(K)) = Z/2.

Definition 3.9. Given morphisms f, g : K → L of chain complexes, a homotopy h : f ' g is
given by maps sn : Kn → Ln+1 such that fn − gn = dsn + sn−1d.

· · · Kn+1 Kn Kn−1 · · ·

· · · Ln+1 Ln Ln−1 · · ·
sn sn−1

Definition 3.10. A morphism f : K → L is called nullhomotopic provided that it is homotopic
to 0.

Definition 3.11. A morphism f : K → L is a homotopy equivalence provided that there exists
g : L→ K such that g ◦ f ' idK and f ◦ g ' idL.

Lemma 3.12. If f, g : K → L are homotopic, then for all i,∈ Z, Hi(f) = Hi(g) (as maps of
abelian groups Hi(K)→ Hi(L)).

Proof. Pick (sn : Kn → Ln+1)n such that fn − gn = dsn − sn−1d, and a cycle α ∈ Zi(K). Then
dα = 0. Then fi(α) = gi(α) + dsi(α) + si−1d(α)︸ ︷︷ ︸

=0

. It follows that fi(α)− gi(α) = dsi(α), so that

[fi(α)] = [gi(α)] in homology.

Corollary 3.13. f : K → L is nullhomotopic implies that Hi(f) = 0 for all i. Also, when
f : K → L is a homotopy equivalence, the Hi(f) give isomorphisms.

The proof of the second statement follows after applying the lemma, so that Hi(fg) =
Hi(f)Hi(g) = Hi(id), and symmetrically.
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Example. Consider K = (Z 1→ Z); then idK ' 0. (Note: if we extend K via 0 on the left and
right, it is not nullhomotopic.)

Example. Consider K = (Z⊕ Z pr2→ Z), L = (Z → 0), with the map (f : K → L) : Z⊕ Z pr1→ Z,
Z→ 0. We claim that f is a homotopy equivalence.

We specify maps Z→ Z⊕Z by inclusion into the first factor, and 0→ Z by the only possible
map. We use s : Z → Z ⊕ Z defined by m 7→ (0,−m). Then (gf − id)(a, b) = (0,−b), and
ds(a, b) = (0,−b).
Remark. The converse to the corollary is false: when Hi(f) = 0, f is not necessarily nullhomo-
topic. However when we consider Ch(Vectk), it becomes true.

Theorem 3.14. Let
0→M

α→ K
β→ L→ 0

be a SES of chain complexes. Then there exist canonical maps δ : Hi(L)→ Hi−1(M) such that

Hi(M) Hi(K) Hi(L)

Hi−1(M) Hi−1(K) Hi−1(L)

δ

is exact.

Warning: the following proof needs to be corrected. Do not read it.

Proof. First we check exactness at Hi(K). The inclusion image ⊂ ker follows from functoriality
of Hi. Take x ∈ Zi(K) such that the image of x in Hi(K) maps to zero in Hi(L). Then
β(x) ∈ Bi(L), so we may write βi(x) = dy for some y ∈ Li+1. Choose x̂ ∈ Ki+1 such that
β(x̂) = y, and consider βi(x − dx̂) = βi(x) − dβi(x̂) = dy − dy = 0. Thus by exactness in the
given sequence, x − dx̂ ∈ image(αi), so write x − dx̂ = αi(z) for some z ∈ Mi. Then we have
[x− dx̂] = [x] = Hi(α)([z]) in homology, as required.

Now we define δ. For [y] ∈ Hi(L), we may choose y ∈ Li to represent [y], with dL(y) = 0.
We refer to the following diagram throughout:

0 Mi Ki Li 0

0 Mi−1 Ki−1 Li−1 0

αi

dM

βi

dK dL

αi−1 βi−1

Since βi is surjective, there is x ∈ Ki such that βix = y; we would like to show that
dKx ∈ image(αi−1) so that we could pull it back along αi−1. By exactness of the rows it suffices
to show that βi−1(dKx) = 0. This follows from commutativity of the right-inner square in the
diagram, after noting that dLβix = dLy = 0. Now choose z ∈Mi−1 such that αi−1z = dKx. We
would like to prove that the assignment [y] 7→ [z] suffices to define δ.

First, we check that dMz = 0, i.e. that z determines an element of Hi−1(M). For this, it
suffices to show that dKαi−1z = 0, as α is injective. This is dKαi−1z = d2

Kx = 0, as required
(recall the choices of x, y, z in the above paragraph).

Second, we check that [z] is independent of the choices of x and y. Say we have x, x′ ∈ Ki

such that βix = βix
′ = y. Then βi(x − x′) = 0, so x − x′ ∈ ker(βi) = image(αi), so there

is u ∈ Mi such that x − x′ = αiu. We have dKx − dKx
′ = dK(αi(u)) = dMu ∈ Bi−1(M).

We obtain z via the equation αi−1z = dKx, and similarly a z′ via αi−1z
′ = dKx

′, so since α
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is injective we have αi−1(z − z′) = αi−1dMu, so that [z] = [z′] in Hi−1(M). Now if there are
[y] = [y′] ∈ Hi(L), then y − y′ = dLv for some v ∈ Li+1. We write y = βix and y′ = βix

′,
as β is surjective, so y − y′ = β(x − x′); we write v = βi+1w for some w ∈ Ki+1. Then
βidKw = dLβi+1w = dLv = y − y′. Thus x − x′ − dKw ∈ ker(β) = image(α). Choose a lift
s ∈Mi for x− x′ − dKw

We leave it as an exercise to check that δ is a homomorphism of abelian groups.
Now we check exactness at Li. To see that image(Hiβ) ⊂ ker δ, i.e. δHi(β[x]) = 0 ∈

Hi−1(M). We note that δ[βx] = z for some z such that αz = dKx. ...
For the reverse inclusion, say δ([y]) = [0] ∈ Hi−1(M). We want to show that [y] ∈

imageHi(β). We have x ∈ Ki such that βx = y, and u ∈ Mi such that dKx = αdMu. We
naively claim that Hi(β)([x]) = [y]; this is always true when [x] is actually well-defined, so
we proceed in checking this. However we have dKx = αdMu 6= 0, so we modify x. We have
dKx = αdMu = dKαu, so dK(x−αu) = 0. The correct claim, thus, is that Hi(β)([x−αu]) = [y].
This is well-defined by construction, and we have [β(x−αu)] = [β(x)]− [βαu] = [y], as βα = 0.

We leave the rest of the exactness checks as exercises as well, to close the proof.

Example. If we have the SES 0→ A→ B → C → 0 of abelian groups, we consider the induced
SES of chain complexes

0→ (A
·2→ A)→ (B

·2→ B)→ (C
·2→ C)→ 0.

We let X[2] = {x ∈ X | 2x = 0} be the 2-torsion part of X. Then we obtain the LES

0 A[2] B[2] C[2]

A/2A B/2B C/2C 0.

When we let A = B = C = Z, we obtain

0→ 0→ 0→ Z/2 δ=id−→ Z/2→ Z/2→ Z/2→ 0

and you may check that indeed δ = id here.

Corollary 3.15 (Snake Lemma). When we have two SESs and maps between them in the
following arrangement:

0 A B C 0

0 D E F 0

f g h

then we have the associated long exact sequence

0 ker(f) ker(g) ker(h)

coker(f) coker(g) coker(h) 0.

3.2 Simplicial Homology

Definition 3.16. An n-simplex in Rm is the convex hull of n + 1 points {v0, ..., vn} not all
lying in a hyperplane. Equivalently, and sometimes preferably, {v1− v0, ..., vn− v0} is a linearly
independent set.

Definition 3.17. An n-simplex is oriented when an ordering on the vi has been specified.
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Example. Here is a 1-simplex in R2:

And here is a 2-simplex in R2 (which we think of as being filled in):

A 0-simplex is a point.

Example. The standard n-simplex in Rn+1 is ∆n = {t0, ..., tn ∈ Rn+1 |
∑
ti = 1, 0 ≤ t ≤ 1}.

Remark. We write [v0, ..., vn] for the (oriented) n-simplex given by the convex hull of v0, ..., vn not
lying in a hyperplane. In this case there is a canonical affine homeomorphism ∆n ∼= [v0, ..., vn]
given by (ti) 7→

∑
tivi (alternatively, ei 7→ vi). In what follows, we will canonically identify all

oriented n-simplices with ∆n.

Definition 3.18. A face of an oriented n-simplex [v0, ..., vn] is a subsimplex [w0, ..., wk] for some
subset {w0, ..., wk} ⊂ {v0, ..., vn}.

Example. [vi] is a face of [v0, ..., vn]. So is [vi, vj ], for i 6= j. These are the vertices and the edges,
respectively, of [v0, ..., vn]. [v0, ..., vn] is a face of itself. We will not require that the empty set
is a face.

Remark. Some notation: if [v0, ..., vn] is an n-simplex, and 0 ≤ i ≤ n, then [v0, ..., v̂i, ..., vn] is
the (n− 1)-simplex obtained by removing vi.

For ∆n, we write ∂i∆n = [e1, ..., êi, ..., en+1], where ej is the jth basis vector in Rn+1.

3.2.1 ∆-complexes

We want to creates spaces by gluing simplices together along their faces; these are called ∆-
complexes.

Remark. Our convention for defining the interior of a simplex will be Int(∆n) = ∆nr
⋃
i ∂i∆

n.

Definition 3.19. A ∆-complex structure on a topological space X is a collection A of maps
{σnα : ∆n → X}α∈A satisfying the following conditions:

1. σnα|Int(∆n) is a homeomorphism onto its image, and each x ∈ X lies in the image of exactly
one such map.

2. U ⊂ X is open if and only if (σnα)−1(U) ⊂ ∆n is open, for all α.

3. If ∆m ⊂ ∆n is a face, then σnα|∆m ∈ A.

That is, X has the quotient topology induced by the map
∐
α∈A ∆n → X induced by the σnα.

Example. Here are ∆-complex structures on the 2-torus S1 × S1, RP2, and the Klein bottle K,
all given by standard edge identifications of a unit square.

The specification of the 0-, 1-, and 2-simplices is left as an exercise. (Image stolen from
math.se.)

Let A be a ∆-complex structure on X.
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Definition 3.20. C∆
• (X) ∈ Ch(Ab) is the simplicial chain complex associated to (X,A),

defined to be the free abelian group on n-simplices in A, with differential maps given by

d : C∆n

• (X) −→ C∆n−1

• (X)

(σnα : ∆n → X) 7−→
n∑
i=0

(−1)iσnα|∂i∆n .

Example. If ∆2 = [v0, v1, v2]
σ2
α−→ X then d(σnα) = σ2

α|[v1,v2] − σ2
α|[v0,v2] + σ2

α|[v0,v2].

Definition 3.21. We define H∆
i (X) := Hi(C

∆
• (X)).

Lemma 3.22. We need to check that C∆
• (X) is a complex, i.e. that d2 = 0.

Proof. Let A = {σnα : ∆n → X} be a ∆-complex structure on X.

d(d(σnα)) = d

(
n∑
i=0

(−1)iσnα|[v0,...,v̂i,...,vn]

)

=
n∑
i=0

(−1)id(σnα|[v0,...,v̂i,...,vn])

=
n∑
i=0

(−1)i

 i−1∑
j=0

σnα|[v0,...,v̂j ,...,v̂i,...,vn] +
n∑

j=i+1

(−1)j(−1)σnα|[v0,...,v̂i,...,v̂j ,...,vn]


= 0

where the final equality comes after cancelling like terms.

Example. Consider X = S1. We give X a ∆-complex structure by specifying a point v = ∗ ∈ X
(a 0-simplex) and a = X r {∗} (a 1-simplex). Then

C∆
• (X) = Z · a d→ Z · v

a 7→ v − v = 0.

Thus we have

H∆
i (X) =


Z i = 0

Z i = 1

0 else.

Example. Consider Y = S1 × S1. We recall the ∆-complex structure on Y given above. We
label the 2-simplices by T1 and T2; we have

C∆
• = Z·T1 ⊕ Z · T2 → Z · a⊕ Z · b⊕ Z · c→ Z · v
d(T1) = b− c+ a d(T2) = a− c+ b

d(a) = d(b) = d(c) = v − v = 0

d(v) = 0.
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Forgetting generators, we see that we have

C∆
• = Z⊕2 → Z⊕3 → Z 1 1

1 1
−1 −1

 0

Thus

H∆
i (Y ) =


Z i = 0

Z⊕2 i = 1

Z · (T1 − T2)

where the second entry follows from the following fact: (1, 1,−1)T ∈ Z⊕3 is unimodular, i.e.
the greatest common denominator of its entries is 1. It follows that Z⊕3/(Z · (1, 1,−1)T ) is a
torsion-free abelian group, and comparing ranks we see that it must be Z⊕2.

3.3 Singular Homology

Simplicial homology requires choices, and it was not clear that it is a functor. As this is unsat-
isfactory, we want a better program. Thus we introduce simplicial homology, with the goal of
making it independent of all choices. To do so, we will “quantify over all possible choices."

Definition 3.23. For X a topological space, we define

1. Cn(X) = n-chains on X = the free abelian group on all maps σn : ∆n → X, with
d : Cn(X)→ Cn−1(X) defined by the same equation as above:

d(σn) =
n∑
i=0

(−1)iσn|∂i∆n

Note that we still have d2 = 0.

2. Bn(X) = image(d : Cn+1(X)→ Cn(X)) = n-boundaries on X

3. Zn(X) = ker(d : Cn(X)→ Cn−1(X)) = n-cycles on X

4. Hn(X) = Zn(X)/Bn(X) = nth singular homology of X.

Example. Consider a one-point space X = {∗}. Then Cn(X) is the free abelian group on a
1-element set, so Cn(X) = Z · σin with

C•(X) = (· · · → Zσ2 → Zσ1 → Zσ0 → · · · )

where

d(σn) =

{
1 n even
0 else.

Thus we see that we have

C•(X) = (· · · → Zσ2
0→ Zσ1

1→ Zσ0
0→ · · · )

whereafter computing the singular homology is easy.

Remark. We may choose the coefficients in any abelian group A (where above it was done with
Z); we write C∗(X;A) for the singular chains with coefficients in A. In this setting we have
Cn(X;A) =

⊕
σ:∆n→X A · σ.
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Remark. C∗(X) and H∗(X) only depend on the homeomorphism type of A.
Remark. H∗ and C∗ are functorial, in that if f : X → Y is a continuous map of spaces, composing
with f gives maps f∗ : C∗(X)→ C∗(Y ) a map of chain complexes and Hi(f∗) : Hi(X)→ Hi(Y ).
Checking the functoriality conditions is left as an exercise.

We obtain functors

Top Ch Ab

∆−Top Ch

C∗(−) Hi(−)

Hi(−)

where the dotted arrows represent functors which are as-of-yet undefined (∆ −Top represents
the category of topological spaces with ∆-complex structures).
Remark. If X =

∐
iXi, then C∗(X) =

⊕
iC∗(Xi). As ∆n is connected, we obtain

{n-simplices ∆n → X} =
∐
i

{n-simplices ∆n → Xi}

Proposition 3.24. For any locally path-connected space X, we have H0(X) =
⊕

π0(X) Z (where
π0 denotes the set of path-connected components).

Note that applying the final remark above, it is enough to show that path-connectedness of
X implies that H0(X) = Z.

Proof. We define the map

C0(X) =
⊕
x∈X

Z · x φ−→ Z
∑
x∈X

ax · x 7→
∑
x∈X

ax ∈ Z

as we work with direct sums, the summations written are all finite. We claim that φ induces an
isomorphism H0(X) := C0(X)/dC1(X)

∼→ Z.
First we check that the image of the boundaries lies in the kernel of φ. Given σ : ∆1 → X ∈

C1(X) (corresponding to basis elements 0, 1 ∈ C0(X)), φ(dσ) = φ(σ(0) − σ(1)) = 1 − 1 = 0.
Thus we denote the induced map on the quotient by φ̄.

Second we show that φ̄ is surjective. Pick x ∈ X; then φ̄(x ∈ C0(X)) = 1. Third we check
injectivity. For

∑
i aixi ∈ C0(X) such that

∑
i ai = 0, we need to prove that

∑
i aixi = d(τ) for

some τ ∈ C1(X). Choose x0 ∈ X and paths σi : xi  x0. We obtain a 1-simplex τ :=
∑

i aiσi ∈
C1(X). We see that dτ =

∑
i aidσi =

∑
i ai(xi − x0) =

∑
i aixi − (

∑
i ai)x0 =

∑
i aixi, as

required.

Remark. The proof of the proposition gives a chain complex

C̃∗(X) = (· · · → C2(X)→ C1(X)→ C0(X)
φ→ Z)

where Z sits in the degree -1 position. We define H̃i(X) := Hi(C̃∗(X)), the reduced homology of
X. You may check that when X is nonempty,

H̃i(X) =


Hi(X) i ≥ 1

ker(φ̄ : H0(X)→ Z) i = 0

0 else.

therefore, when X is path-connected,

H̃i(X) =

{
Hi(X) i ≥ 1

0 i = 0.

It follows that H̃i({pt}) = 0 for all i.
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Remark. If α : I → X is a loop based at x ∈ X, then α : ∆1 → X is a cycle (as dα =
α(0)− α(1) = 0). We obtain a map

{loops based at x} −→ {H1(X)}

α 7−→ α

Further, we will prove a theorem (due to Hurewicz) that this map induces an isomorphism
π1(X)ab

∼−→ H1(X) for X path-connected.

Theorem 3.25 (Homotopy invariance). If f, g : X → Y are homotopic maps, then f∗, g∗ :
C∗(X)→ C∗(Y ) are homotopic (as maps of chain complexes). It follows that the induced maps
Hi(f∗) and Hi(g∗) on homology are the same, via 3.12.

Corollary 3.26. It follows that if X is contractible then

Hi(X) =

{
Z i = 0

0 else.

We will use the fact that homotopic chain maps a, b : K → L induce homotopic maps ca ' cb
when c : L→M is a chain map.

Proof. First, we reduce to the case where Y = X × I and f = i0 : X → X × I is the map
x 7→ (x, 0) and g = i1 : X → X × I is the map x 7→ (x, 1). To deduce the general case from this,
given homotopic f ′, g′ : X → Z, let h : X × I → Z be a homotopy realizing this equivalence.
We obtain that h(x, 0) = f ′(x) and h(x, 1) = g′(x). The maps in question are

X X × I Z
i0

f ′

g′

i1

h

So given a homotopy (i0)∗ ' (i1)∗ we obtain a homotopy f ′∗ ' h∗(i0)∗ ' h∗(i1)∗ = g′∗.
Second, we will construct a homotopy h : (i0)∗ ' (i1)∗ functorially inX. That is we construct

maps hn : Cn(X) → Cn+1(X × I) such that dh + hd = (i0)∗ − (i1)∗. It suffices to check that
dh(σ) + hd(σ) = (i0)∗(σ)− (i1)∗(σ), for each σ : ∆n → X ∈ AX .

We establish some notation: write ∆n = [v0, ..., vn] generally, and ∆n × {0} = [v0, , ..., vn] ⊂
∆n × I and ∆n × {1} = [w0, ..., wn] ⊂ ∆n × I. We leave it as an exercise to check that each
[v0, ..., vi, wi, ..., vn] is an (n+ 1)-simplex in ∆n × I.2

We define

hn : Cn(X) −→ Cn+1(X × I)

σ 7−→
n∑
i=0

(−1)i(σ × id)|[v0,...,vi,wi,...,wn].

To show that this works as required, we show (as above) that (i0)∗ − (i1)∗ = dh+ hd3.
We close the proof now in lieu of actually working though the messy details. See Hatcher.

Remark. Speaking categorically, this is a special case of the Yoneda Lemma.

Remark. These homotopies are universal in the sense that if f : X → Y is a map of spaces, then
2Or one can find this in Hatcher.
3One can find detailed examples of these computations in low dimensions in Hatcher.
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Cn(X) Cn+1(X)

Cn(Y ) Cn+1(Y × I)

hXn

f∗ (f×id)∗

hYn

commutes.

3.4 Relative Homology and Excision

Definition 3.27. A pair (X,A) is a space X with a subspace A ⊂ X. A map of pairs (X,A)→
(X,B) is a map X → Y such that f(A) ⊂ B. A homotopy h : f ' g between two maps of pairs
(X,A) → (Y,B) is a homotopy of maps f, g : X → Y that restricts to a homotopy of maps
f |A, g|A : A→ B.

Example. We’ve seen many examples of these while looking at pointed topological spaces, where
the pair in question is (X, {x ∈ X}). π1 classifies maps of pairs (S1, 1)→ (X,x).

Definition 3.28. For a pair (X,A), define Cn(X,A) = Cn(X)/Cn(A). Observe that d :
Cn(X) → Cn−1(X) takes Cn(A) → Cn+1(A), so we obtain a chain complex C∗(X,A). We
define Hi(X,A) = Hi(C∗(X,A)).

Theorem 3.29. Given a pair (X,A) we have a LES

· · · → Hi(A)→ Hi(X)→ Hi(X,A)
∂→ Hi−1(A)→ · · ·

Proof. Use the LES induced by

0→ C∗(A)→ C∗(X)→ C∗(X)/C∗(A)→ 0.

Example. We consider the example of A = {x}. In this case Hi(X,x) = H̃i(X) for each i. One
sees this from the LES in homology, which is

· · · H1(x) = 0 H1(X) H1(X,x)

H0(x) H0(X) H0(X,x) · · ·

∂

As Hi(x) = 0 for all i ≥ 2, we obtain that ker(Hi(X) → Hi(X,x)) = coker(Hi(X) →
Hi(X,x)) = 0, so Hi(X) ' Hi(X,x) for each i ≥ 2.

As H0(x) → H0(X) is injective (as H0(X) = Z⊕π0(X)) and H1(x) = 0, we obtain that
H1(X) ' H1(X,x). It follows as well that H0(X,x) = H0(X)/Z ' H̃0(X). To show this last
statement we claim that the composition in the following diagram is an isomorphism.

H̃0(X) Z⊕π0(X)

Z⊕π0(X)/Z · x

Remark. We have the following.

1. If f(X,A) → (Y,B) is a map of pairs, then we obtain an induced map f∗ : C∗(X,A) →
C∗(Y,B), and thus further induces f∗ : Hi(X,A)→ Hi(Y,B).
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2. If f, g : (X,A) → (Y,B) are homotopic, then f∗, g∗ : C∗(X,A) → C∗(Y,B) are also
homotopic.

Proof. The homotopies hn : Cn(X) → Cn+1(Y ) giving a homotopy between f∗ and g∗ :
C∗(X)→ C∗(Y ) were functorial in X → Y . It follows that the diagram

Cn(A) Cn+1(B)

Cn(X) Cn+1(Y )

hAn

hXn

commutes. Passing to the quotients by the complexes C∗(A), C∗(B), we obtain the com-
mutative square

Cn(X,A) Cn+1(Y,B)

Cn(X)/Cn(A) Cn+1(Y )/Cn+1(B)

h
(X,A)
n

h
(X,A)
n

Now one checks that f∗− g∗ = dh(X,A) +h(X,A)d as maps C∗(X,A)→ C∗(Y,B), using the
fact that the corresponding equality held before passing to quotients.

3. If A ⊆ B ⊆ X is a tower of spaces, then we obtain the LES

· · · ∂→ Hi(B,A)→ Hi(X,A)→ Hi(X,B)
∂→ · · ·

Proof. We have a SES

0→ C∗(B)/C∗(A)→ C∗(X)/C∗(A)→ C∗(X)/C∗(B)→ B

And proceed as is evident. We call the induced LES the LES of a triple.

Theorem 3.30 (Excision). Given Z ⊆ A ⊆ X a tower of spaces such that Z ⊂ Int(A), the
inclusion (X r Z,Ar Z)→ (X,A) induces an isomorphism on homology.

Before proving this, we will see some applications. In particular, we will identify H∗(X,A)
in terms of the quotient space X/A. We recall the following definition.

Definition 3.31. For an inclusion of spaces A ⊆ U , A is a deformation retract of U provided
that there is a homotopy h : U × I → U such that:

• h(U, 0) = idU

• h(a, t) = a for all a ∈ A, t ∈ I

• the map h(−, 1) : U → Y takes image in A.

Remark. If i : A ↪→ U is a deformation retract, then i is a homotopy equivalence. The map
h(−, 1) provides the arrow in the reverse direction to i. It follows that Hi(U,A) = 0 for all i,
from the LES on homology.

Example. The following inclusions A ⊆ U are deformation retracts: A = {∗} with U = Rn; A =
small disc with B = big disc.

For the time being, we say a pair (X,A) is good provided that there exists an open neigh-
borhood U of A in X such that the inclusion of A into U is a deformation retract.
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Example. The following pair is good: X = Dn with A = Sn = ∂X. For any (smooth) manifold
X with (embedded) submanifold A ⊆ X, the pair (X,A) is good; this follows from the tubular
neighborhood theorem.

Theorem 3.32 (LES of a good pair). For (X,A) a good pair, we have isomorphisms Hi(X,A) '
H̃i(X/A) for each i. In particular, this is compatible with the LES in homology, so that there is
a LES

· · · → Hi(A)→ Hi(X)→ H̃i(X/A)
δ→ Hi−1(A)→ · · ·

We proceed now with the proof of 3.32, assuming excision.

Proof. Using the LES of a pair, it suffices to show that (X,A) → (X/A,A/A) induces an

isomorphism H∗(X,A) ' H∗(X/A,A/A)
def' H̃∗(X/A). Choose a tower A ⊂ U ⊂ X of subspaces

with U open such that A ↪→ U is a deformation retract.
We have the following commutative diagram:

Hi(X,A) Hi(X,U) Hi(X rA,U rA)

Hi(X/A,A/A) Hi(X/A,U/A) Hi(X/Ar U/A,U/ArA/A)

d

a b

e

c

f g

We need to show that a is an isomorphism.
We first note that via excision, e and g are isomorphisms. So is d, since A ↪→ U is a

homotopy equivalence; to see this, one can use the LES of a triple A ⊂ U ⊂ X to conclude that
each Hi(U,A) = 0. It also follows that f is an isomorphism: we use the fact that A/A ↪→ U/A
is also a deformation retract, and use the same reasoning. c is an isomorphism because the
underlying spaces are homeomorphic (realized by the map of spaces inducing c). Commutativity
now implies that a is an isomorphism.

Example. We have the following examples employing the theorem. All pairs, as you can check,
are good.

1. A = S0 = ∂I ⊆ X = I. The theorem implies there is a LES

Hi(A)→ Hi(X)→ H̃i(X/A)→ · · ·

with Hi(A) = 0 for i > 0 and H0(A) = Z⊕2, Hi(X) = 0 for i > 0 and H0(X) = Z.
The quotient X/A is homeomorphic to a circle, so we obtain that H̃i(S

1) = 0 for i ≥ 2,
H0(S1) = 0, and there is a SES

0→ H̃1(S1)→ Z⊕2 → Z→ 0

with the third map being given by summing coordinates. This implies immediately that
H̃1(S1) ' Z.

2. A = Sn−1 ⊆ X = Dn. This gives X/A ∼= Sn. We have that

Hi(D
n) =

{
0 i 6= 0

Z i = 0

so we may repeat our analysis in (1) to obtain that

Hi(D
n) =

{
0 i 6= 0, n

Z i = 0, n

(and this is done inductively).
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Corollary 3.33. If Rn ∼= Rm is a homeomorphism, then n = m.

Proof. Choose such a homeomorphism φ. We obtain a homeomorphism ψ : Rnr{∗} → Rmr{∗′}
which induces a homotopy equivalence Sn−1 ' Sm−1. Comparing homologies, we see that
m = n.

Example. If ∅ 6= U ⊂ Rn and ∅ 6= V ⊂ Rm, then U ∼= V implies that m = n. To show this, we
establish a lemma.

Lemma 3.34. In this setting, with x ∈ U , we have

Hi(U,U r {x}) =

{
Z i = m

0 else.

Proof. The map of pairs (U,U r {x}) → (Rn,Rn r {x}) induces an isomorphism on H∗ via
excision for the triple Z = Rn r U , A = Rn r {x}, and X = Rn. Excision implies that
(X r Z,A r Z) → (X,A) is an isomorphism on H∗. This is (U,U r {x}) → (Rn,Rn r {x}),
where the second term’s homology is given by the above example, and the lemma follows.

The example now follows.

Definition 3.35. We define the local homology of X at x to be H∗(X,X r {x}).

Example. For an n-manifold M , we have

H∗(M,M r {x}) ' H∗(Rn,Rn r {0}) =

{
Z i = n

0 else

following the above example. Thus, we see that homology can detect the dimension of a manifold.

Definition 3.36. The generators ωx ∈ Hn(X,X r {x}) are called local orientations of X at x.

Remark. A topological manifold M is orientable if and only if there are local orientations ωx for
each x ∈M which can be chosen “compatibly", somehow, in x.

Now we will prove excision (3.30). The first step is to introduce the notion of “small chains",
which we will use in the proof. Let X be a space and U = {Ui}i∈I be an open cover such that the
interiors of the Ui also cover X. We define CUn to be the free abelian group on all σ : ∆n → X
such that σ(∆n) ⊂ Ui for some i. One checks that d takes CUn (X) into CUn−1(X), so that we
obtain a subcomplex CU• (X) of Cn(X). Denote the inclusion of complexes CU• (X)→ C•(X) by
φ.

We have the following theorem (which we use as a lemma).

Theorem 3.37 (Theorem of small chains). φ induces an isomorphism on homology. In fact, φ
is a homotopy equivalence.

Example. For X = S1 let U be the open cover whose elements are the upper and lower (closed)
hemispheres. The theorem of small chains implies that the generator of H1(S1) comes from the
generators of the homologies of the (oriented) hemispheres.

We prove excision assuming small chains:

Proof (Excision). Let Z ⊂ A ⊂ X be as in the statement of excision. Define U = {A,X r Z}.
Note that the interiors of A and X r Z also cover Z, as each is open. The theorem of small
chains implies that the morphism CU• (X) → C•(X) is an isomorphism in homology. We have
commutative diagrams
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Ar Z X r Z

A X

C• //

C•(Ar Z) C•(X r Z)

C•(A) C•(X)

from which we obtain SESs

0 C•(Ar Z) C•(X r Z) C•(X r Z,Ar Z) 0

0 C•(A) CU• (X) CU• (X)/C•(A) 0

0 C•(A) C•(X) C•(X,A) 0

c

= β γ

We claim that c induces an isomorphism on homology. Assuming this, the theorem of small
chains implies that β induces an isomorphism on homology. The 5-lemma now implies that γ is
also an isomorphism on homology. Thus γ ◦ c is an isomorphism on homology, as required.

We show now that c does indeed induce an isomorphism of homology groups. We have

CU• (X)

C•(A)
' C•(X r Z) + C•(A)

C•(A)
' C•(X r Z)

C•(A) ∩ C•(X r Z)
' C•(X r Z)

C•(Ar Z)

where the second map is induced by the second (group) isomorphism theorem.

Remark. A similar method shows that if X = U∪V is a union of open subsets, with U = {U, V },
then we obtain a SES

0→ C•(U ∩ V )→ C•(U)⊕ C•(V )→ CU• (X)→ 0

which induces the LES

· · · → Hi(U ∩ V )→ Hi(U)⊕Hi(V )→ Hi(X)
δ→ Hi−1(U ∩ V )→ · · ·

known as the Mayer-Vietoris sequence.

We now prove the theorem of small chains, which will complete the proof of excision.

Proof (Small chains). Each simplex [v0, ..., vn] ⊂ Rn has a barycentric subdivision into (n+ 1)!
subsimplices. For an example in dimension 2, see the figure.

Figure 5: Four iterations of barycentric subdivision of a 2-simplex. Image from the Wikimedia
Commons.

It is a fact taht the diameter of a “new" simplex appearing in a barycentric subdivision is
n/(n+ 1) times the diameter of the old one.
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We define the operator S : Cn(X)→ Cn(X) by

s(σ : ∆n → X) =
∑

∆′n in a barycentric subdiv

(−1)?σ|∆′n

where the ∆′n appear in a barycentric subdivision of the image of σ. We record some facts
without proof.

1. dS = Sd, so we obtain a map on chain complexes.

2. S is homotopic to the identity, so that S = id + dh + hd. (This comes from universal
homotopies)

3. S preserves small chains, so we get a map SU : CU∗ (X)→ CU∗ (X).

4. SU is homotopic to id, with homotopy given by restricting those from (2).

We proceed now with the proof of the theorem. Consider φ : CU∗ (X) → C∗(X); we show it is
surjective and injective on homology. Pick a cycle z ∈ Zi(X); for m � 0, Sm(z) is small, as S
makes things smaller and ∆n is compact. Thus Sm(z) ∈ ZUi (X) for m sufficiently large.

We claim that z = φ(Sm(z)) in Hi(X), which follows since S is homotopic to id, so the
same is true for Sm, so S(z)− z = dh(z) + hd(z) = dh(z) ∈ Bi(X) as z is a cycle, and likewise
for Sm. Thus φ is surjective on homology. φ is also injective on homology: say w ∈ ZUi (X)
is such that w = dz for some z ∈ Ci+1(X); we need to show that w = 0 in homology. We
have Smw = Smdz for each m, so that from (1) Smw = dSmz. As S makes simplices smaller,
we know that Smz ∈ CUi+1(X), which implies that w = Smw = 0 in homology, again as S is
homotopic to the identity.

3.5 Singular vs. Simplicial Homology

Let (X,A) be a pair. Assume that there exist compatible ∆-complex structures on X and A.
We get a map C∆

∗ (A)→ C∆
∗ (X). We define C∆

∗ (X,A) = X∆
∗ (X)/C∆

∗ (A).
Note that there is a natural map C∆

∗ (X,A)→ C∗(X,A) which sends a simplex to itself.

Theorem 3.38. This induces an isomorphism on homology H∆
i (X,A)→ Hi(X,A).

Proof. Define Xk to be the sub-∆-complex of X spanned by simplices of dimension at most k.
We have inclusions Xk−1 ⊂ Xk ⊂ Xk+1 ⊂ · · · ⊂ X; we assume that this is a finite tower. Call
the dimension of X the minimal such N with X = XN . We get pairs (Xk, Xk−1) for each k.

We isolate a key lemma which we will prove after using it: H∆
i (Xk, Xk−1) ' Hi(X

k, Xk−1).
Now we prove the theorem assuming it.

We induct on the dimension of X (in the above sense). When dim(X) = 0, X is a (finite)
set of points, A ⊂ X a subset. The theorem statement is clear. Assume the theorem holds for
all pairs (Y,B) when dim(Y ) < k. Consider (Xk, Xk−1); we get long exact sequences

· · · H∆
i+1(Xk, Xk−1) H∆

i (Xk−1) H∆
i (Xk) H∆

i (X) H∆
i−1(Xk−1) · · ·

· · · Hi+1(Xk, Xk−1) Hi(X
k−1) Hi(X

k) Hi(X) Hi−1(Xk−1) · · ·

The lemma implies that a and d are isomorphisms, and induction that b and e are. The 5-lemma
now implies that c is an isomorphism.

If Y is a ∆-complex of dimension ≤ k, then H∆
i (Y ) ' Hi(Y ). By a 5-lemma argument, we

obtain the theorem for (X,A) with dim(X) ≤ k.
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It remains to prove the lemma. Assume k > 0. Then

C∆
i (Xk, Xk−1) =

{
0 i 6= k

Z⊕Sk i = k

where Sk = {σ : ∆k → X} all k-simplices in a given ∆-complex. Thus

H∆
i (Xk, Xk−1) =

{
0 i 6= 0

Z⊕Sk i = k
.

On the other hand, Hi(X
k, Xk−1) ' H̃i(X

k/Xk−1) by the LES of a good pair. Observe that
Xk/Xk−1 =

∨
σ∈Sk S

k as ∆k/∆k−1 ∼= Sk. Comparing homologies, we have the desired isomor-
phisms.

3.6 CW complexes and cellular homology

We examine4 a homotopically and topologically significant set of spaces and the homology theory
they require; these are CW complexes and cellular homology.

A CW complex is obtained by a structured gluing of spheres to one another:

Definition 3.39. A CW complex is a topological spaceX with a sequence of subspacesX0, X1, ... ⊂
X, where Xi is the i-skeleton of X, and a decomposition X =

⋃
m∈Z≥0

Xm, where:

• X0 is a discrete set of points, and

• we obtain Xm+1 from Xm as the pushout

∐
α∈A S

n Xm

∐
α∈AD

n+1 Xm+1

jnα

∐
∂

where ∂ denotes the identification of Sn as ∂Dn+1; each map jn is an nth attaching map
for X.

This means that we obtain Xn+1 as the topological quotient of Xn−1 tα Dn
α for α ∈ A,

under the identificiations x ∼ jnα(x) for each x ∈ ∂Dn
α for each α. Thus as a set, we have

Xn+1 = Xn tα enα, where each enα is an open n-disk. Each enα is called an n-cell in X.
We give Xn the weak5 (or colimit) topology, where a subspace of X is closed if and only

if its intersection with each Xn is; when X = Xn for some n, then this is the topology on X.
We will mostly be concerned with such spaces, where we write n = dim(X) and say that X is
n-dimensional.

Example. A 1-dimensional CW complex is what is called a graph in topology. The attaching
maps dictate which vertices are connected by a “0-disk", i.e. an edge.

Example. The sphere Sn has the structure of a CW complex with two cells, e0 and en, where
the attaching map ∂Dn = Sn−1 → e0 is given by the constant map.

Example. Real and complex projective space can be given CW complex structures; this was on
the homework. Can you work them out?

4We follow Hatcher obsequiously for the duration of the section, except where noted.
5This explains the ’W’ in “CW complex". The ’C’ stands for “closure finiteness", which references a topological

fact about CW complexes which describes the behavior of their compact subspaces.
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We depart from Hatcher for a moment to define a suitable category of CW complexes.

Definition 3.40. A subcomplex A of a CW complex X is a subspace A ⊂ X of X and a CW
complex such that the composite of each cell Dn → A ↪→ X is a cell of X. Equivalently, A is
the union of cells of X.

Definition 3.41. For CW complexes X and Y , a map f : X → Y is cellular provided that
f(Xn) ⊂ Y n for each n.

Note that an inclusion of a subcomplex is a cellular map, and that composition of cellular
maps is cellular. In this way we obtain the category CW of (finite) CW-complexes and (finite)
cellular maps of CW complexes.

We aim to define a suitable homology theory on CW complexes; this is cellular homology.
We establish a lemma.

Lemma 3.42. Let X be a CW complex.

1. Hk(X
n, Xn−1) is zero if k 6= n, and free abelian when k = n, with basis in bijection with

the n-cells of X.

2. Hk(X
n) = 0 for k > n. In particular, if X is finite-dimensional, then Hk(X) = 0 for

k > dim(X).

3. The map Hk(X
n) → Hk(X

n) induced by the inclusion Xn → X is an isomorphism for
k < n and a surjection for k = n.

Proof. The first claim follows after observing that (Xn, Xn−1) is a good pair, and that the
quotient Xn/Xn−1 is a wedge sum of n-spheres, one for each n-cell of X.

Now consider the following segment of the LES of the pair (Xn, Xn−1):

Hk+1(Xn, Xn−1)→ Hk(X
n−1)→ Hk(X

n)→ Hk(X
n, Xn−1)

If k 6= n then the final term is zero by the first claim, so the middle map is surjective. If
k 6= n − 1, then the first term is zero, so the middle map is injective. Now we examine the
inclusion-induced maps

Hk(X
0)→ Hk(X

1)→ · · · → Hk(X
k−1)→ Hk(X

k)→ Hk(X
k+1)

By the above paragraph each map is an isomorphism except for the map to Hk(X
k), which

might not be surjective, and the map from Hk(X
k), which may not be injective. The second

statement now follows from the fact that Hk(X
0) = 0 when k > 0. The last part of the sequence

gives the third statement, when X is finite-dimensional. The infinite-dimensional case is more
subtle, and can be found in Hatcher.

Using the LESs for the three pairs (Xn+1, Xn), (Xn, Xn−1), and (Xn−1, Xn−2), we construct
the diagram
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0

0 Hn(Xn+1)

Hn(Xn)

Hn+1(Xn+1, Xn) Hn(Xn, Xn−1) Hn−1(Xn−1, Xn−2)

Hn−1(Xn−1)

0

jn

dn+1

δ

dn

δ jn−1

Using this diagram, we define a chain complex CCW• by CCWn := Hn(Xn, Xn−1), and define
the differential as above as the following composition:

CCWn (X) = Hn(Xn, Xn−1) Hn−1(Xn−1)

Hn−1(Xn−1, Xn−2) = CCWn−1(X)

δn

dn
jn−1

That is, dn = jn−1δn. We define the cellular homology of X to be HCW
n (X) := Hn(CCW• ).

We still need to check that d2 = 0, however this follows from the very definition of the cellular
boundary map, and a diagram chase.

Theorem 3.43. For X a CW-complex, the cellular and singular homologies of X are isomorphic.

Proof. This is a diagram chase. As in the above diagram, Hn(X) can be identified with
Hn(Xn)/im(δn+1). as jn is injective, it maps im(δn+1) isomorphically onto im(jnδn+1) =
im(dn+1), and Hn(Xn) isomorphically onto im(jn) = ker(δn). As jn−1 is injective, ker(δn) =
ker(dn). Thus jn induces an isomorphism of the quotientHn(Xn)/im(δn+1) onto ker(dn)/im(dn+1).

There are a few immediate corollaries.

1. Hn(X) = 0 if X is a CW complex with no n-cells.

2. If X is a CW complex with k n-cells, then Hn(X) is generated by at most k elements.

3. If X is a CW complex with no two of its cells in adjacent dimensions, then Hn(X) is free
abelian with basis in bijection with the n-cells of X (the boundary maps are zero). This
applies, e.g., to CPn.

We give a formula for the cellular boundary maps.

Proposition 3.44 (Cellular boundary formula). dn(enα) =
∑

β dα,βe
n−1
β , where β ranges over

the (n− 1)-cells in X, and dα,β is the degree6 of the map Sn−1 → Xn−1 → Sn−1
β , where the first

arrow is the attaching map an the second is the quotient map collapsing Xn−1 r en−1
β to a point.

The proof of the proposition is a rather large diagram chase, which can be found in Hatcher.
6We proved on homework that degree of a map Sr → Sr is identified with the integer k such that the induced

map on top-dimensional homology is multiplication by k.
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[Missing some lecture material here.]

Recall that for a finite CW complex X, we have the following:

1. We have a filtration ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X such that Xk/Xk−1 ∼=
∨
Sk,

where this wedge is taken over all k-cells in X.

2. Hence Hi(X
k, Xk−1) = Z⊕|k−cells| for i = k, and 0 otherwise.

3. We obtain a cellular chain complex as above using the LESs of associated triples, using
the cellular boundary formula.

4. We have Hi(C
CW
∗ (X)) ∼= Hi(X).

Example. Consider X = S1 × S1. Of course we realize X as a unit square with standard edge
identifications, from which we obtain a cell complex structure with one 0-cell, two 1-cells, and
one 2-cell. Thus we obtain the cellular chain complex

0→ Z→ Z⊕2 → Z→ 0

for which we need to compute the differentials. We apply the cellular boundary formula to
calculate the hardest one.

Let ∂D2 = S1 → X1 = S1
a ∨S1

b be the attaching map for our 2-cell, which identifies S1 with
aba−1b−1. Then S1 → X1 → X1/S1

a
∼= S1

b is null-homotopic (as it is given by identifying S1 to
aa−1), and likewise for b. It follows that d(T ) = (0, 0), so each of our homologies is given by the
terms of the cell complex.

3.7 Eilenberg-Steenrod Axioms

We define the axiomatic formalism which underlies all homology theories we have described and
many we have not. It is given by the Eilenberg-Steenrod axioms, which we lay out now.

A homology theory h∗ is a functor

pairs (X,A)→ grAbGrp

and maps ∂ : hi(X,A)→ hi−1(A, ∅) = hi(A), satisfying the following axioms

1. (Homotopy) If f, g : (X,A)→ (Y,B) are homotopic, then h∗(f) = h∗(g).

2. (Exactness) For a pair (X,A), the map ∂ gives a LES

· · · → hi(A)→ hi(X)→ hi(X,A)→ hi−1(A)→ · · ·

3. (Excision) Given a tower of spaces Z ⊂ A ⊂ X with Z ⊂ Int(A), the map (XrZ,ArZ)→
(X,A) induces an isomorphism on h∗.

4. (Dimension) hi(pt) = Z if i = 0 and is otherwise 0.

5. (Additivity) If X =
∐
αXα, then the map ⊕αh∗(Xα)→ h∗(X) induced by the inclusions

is an isomorphism.

Remark. Excision implies the finite additivity axiom, so it is only necessary for infinite direct
sums.

Remark. The dimension axiom is crucial! Dropping it opens up a wide world of strange homology
theories. Further, we may replace Z in the dimension axiom with any abelian group, and obtain
homology with coefficients in that group.
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Proposition 3.45. If h∗ is a homology theory in the sense of the above axioms, then it satisfies
the following:

1. LES of a triple: if A ⊂ B ⊂ X, there exists a LES

· · · → hi(B,A)→ hi(X,A)→ hi(X,B)→ hi−1(B,A)→ · · ·

where the final map is built from excision. We leave the proof as an exercise.

2. LES of a good pair: if (X,A) is a good pair, then h∗(X,A) ∼= h̃∗(X/A) := h∗(X/A,A/A).

3. Mayer-Vietoris sequence: if X = U ∪ V where U, V ⊂ X are open, then we have the LES

· · · → hi(U ∩ V )
std→ hi(U)⊕ hi(V )

std−std−→ hi(X)
δ→ hi−1(U ∩ V )→ · · ·

4. If X is a finite CW complex, then

h∗(X
k, Xk−1) '

{
Z⊕|k−cells| ∗ = k

0 else.

Proof. We prove 3. We construct δ as follows. The map (U,U ∩V )→ (X,V ) induces a diagram

hi+1(U,U ∩ V ) hi(U ∩ V ) hi(U) hi(U,U ∩ V ) hi−1(U ∩ V )

hi+1(X,V ) hi(V ) hi(X) hi(X,V ) hi−1(V )

b

a

d f

g

c e

Now U/U ∩ V ' X/V is a homeomorphism. Then a diagram chase gives

hi(U ∩ V )
(a,b)→ hi(U)⊕ hi(V )

(d,−c)→ hi(X)
gf−1e−→ hi−1(U ∩ V )

so we identify ∂ = gf−1e, and we leave it as an exercise to check that this is a LES.
The statement in 4. follows from the LES

Ch∗ (X) = · · · → hn(Xn, Xn−1)
d→ h

(
n−1X

n−1, Xn−2)→ · · ·

and the LES of a good pair implies the result. As the notion of degree is the same for h∗ and
H∗, we obtain an isomorphism Ch∗ (X) ∼= CCW∗ (X), implying hi(X) ∼= Hi(C

h
∗ (X)) with the same

computation as last time, and as we’ve shown Hi(C
CW
∗ (X)) ∼= Hi(X), we have the ...

Example. Consider the sphere Sn. Then for n = 0, the dimension and additivity axioms imply
that h0(Sn) = Z2, and when n > 0, we write Sn = Dn∪Dn where the intersection is (homotopic
to) Sn−1. Apply Mayer-Vietoris and the homotopy axiom to determine the homology groups.

Proposition 3.46. 5. If f : Sn → Sn is a map, then the degree of f with respect to h∗ is
equal to the degree of f with respect to H∗ (singular homology).

See May for a proof of the theorem. We work out some examples.

Example. If f is nullhomotopic, homotopy invariance combined with the dimension axiom force
the degree of f (with respect to h∗) to be zero. If f is the identity map, as h∗ is a functor, the
degree of f is 1. (May’s proof combines these two cases into a general argument.)
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3.8 Three interesting theorems

3.8.1 Hurewicz Theorem for π1

Theorem 3.47 (Hurewicz). Say X is path-connected, with x ∈ X. There exists a natural
isomorphism π1(X,x)ab ' H1(X).

Remark. There exists a variant of the theorem for πn: for X path-connected, with πi(X) = 0
for i < n, then πn(X) ∼= Hn(X) if n ≥ 2.

Proof of Hurewicz. Each map f : (S1, 1) → (X,x) induces a map f∗ : H1(S1) ' Z → H1(X),
so we obtain f∗(1) ∈ H1(X). Homotopy invariance implies that f∗(1) only depends on the
homotopy class of f as a pointed map. We obtain a map

h : π1(X,x) = {ptd homotopy classes of maps from S1} → H1(X).

We prove that h is a homomorphism. Say f, g : (S1, 1) → (X,x), and form g ∗ f : (S1, 1) →
(X,x); we want (g ∗ f)∗(1) = f∗(1) + g∗(1). We consider the following picture: [picture goes
here]

Observe the following:

1. The composite map is f ∗ g.

2. Apply H1:

H1(S1)

H1(S1) H1(S1 ∨ S1) H1(X)

H1(S1)

(i1)∗
f∗

a∗

(i2)∗ g∗

3. Under H1(S1) = Z, H1(S1 ∨ S1) = Z⊕ Z we have

a∗(1) = (1, 1) (i1)∗(1) = (1, 0) (i2)∗(1) = (0, 1).

Thus

(g ∗ f)∗(1) = (f ∨ g)∗a∗(1)

= (f ∨ g)∗(1, 1)

= (f ∨ g)∗((1, 0) + (0, 1))

= (f ∨ g)∗(1, 0) + (f ∨ g)∗(0, 1)

= (f ∨ g)∗(i1)∗(1) + (f ∨ g)∗(i2)∗(1)

= f∗(1) + g∗(1)

as required.

Now we show that this homomorphism induces an isomorphism π1(X)ab → H1(X), in the case
where X is a finite CW complex with X0 = {pt}. We induct on dim(X): when dim(X) = 0 or
1, h is an isomorphism.

1. π1(X1, x)→ H1(X) is the abelianization map. This follows from the fact that X1 ∼=
∨
S1.

2. Assume X2 is obtained by attaching a single 1-cell, i.e.
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X2 = colim
S1 D2

X1

α

where α ∈ π1(X1). Then the van Kampen theorem implies that π1(X2, x) = π1(X1, x)/〈α∗(1)〉.
Also, the LES of (X2, X1), get

H2(X2, X1)
∂→ H1(X1)→ H1(X2)→ H1(X2, X1)

and observing that X2/X1 ∼= S2, we see that the first term is Z and the last is zero. We
leave it as an exercise to show that the first arrow is multiplication by α∗(1), so that the
second map is an isomorphism. Since H1(X1) ' π1(X,x), we have the result in dimension
2.

The higher dimensional cases follow from the fact that the inclusion X2 ↪→ X induces an
isomorphism on fundamental groups (proved on homework).

3.8.2 Lefschetz fixed point thoerem

Theorem 3.48. If X is a finite simplicial complex (or even a retract of such), and f : X → X
is an endomorphism, then one of the following is true:

1. f has a fixed point x ∈ X such that f(x) = x.

2. The Lefschetz number τ(f) :=
∑

i(−1)itr(f∗(Hi(X,Q))), is zero.

Example. Consider X a finite set. We claim that τ(f) = the number of fixed points of f . We
have H0(X,Q) =

⊕
x∈X Q · x, and the other homology groups vanish. Thus

τ(f) = tr(f∗(H0(X,Q))) = tr(f∗(
⊕

Q · x))

and we see that f∗(x) = y if f(x) = y, so that f∗ is a “permutation matrix" in some sense. In
this case, the trace of (the matrix corresponding to) f is the number of fixed points of f .
Example (Brouwer fixed point theorem). Any endomorphism f of Dn has a fixed point. The
homology of Dn is concentrated at zero, so that f∗ = 1 on H0(Dn,Q), so τ(f) = 1, implying
that f has a fixed point. This holds for any contractible space which is also a finite simplicial
complex.
Example. Any endomorphism f of RPn for even n has a fixed point. We have

Hi(RPn,Q) =

{
Q i = 0

0 else

as n is even. Now we can apply the previous argument.
This implies that any linear map R2k+1 → R2k+1 has a real eigenvalue. This is false for odd

n, as you can see in the case n = 1, where RPn ∼= S1 has endomorphisms with no fixed points.
Example. Suppose G is a nontrivial path-connected topological group representable as a finite
simplicial complex, e.g. SO(n). We claim that χ(G) =

∑
i(−1)i dimQ(Hi(G,Q)) = 0. This

follows since the trace of the identity map on a vector space is the dimension of that space, so
χ(X) = τ(idX) for any space X.

Choose a nonidentity g ∈ G to obtain Tg : G→ G given by h 7→ hg. Tg has no fixed points,
so this implies that τ(Tg) = 0. As G is path-connected we may drag Tg along a path between g
and 1G to give a homotopy between Tg and the identity map. As homotopic maps induce the
same map on homology, the claim follows.
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Remark. It is tempting to guess that the number of fixed points of an endomorphism f of some
nice X equals τ(f), but this is not true. The identity map in the preceding example gives a
contradiction.

This is almost true, however. There is a way to cleverly count fixed points (with “multiplic-
ity") to obtain an equality.

Remark. Compactness of X is essential: for X = R, the translation x 7→ x + 1 has no fixed
points (even in the sense of the above remark), however as X is contractible, τ(f) = 1.

Remark. Hatcher proves that every CW complex is homotopic to a finite simplicial complex, so
the Lefschetz fixed point theorem holds for CW complexes as well.

Remark. There is a very useful variant of Lefschetz used in algebraic geometry and number
theory.

We prove the Lefschetz fixed point theorem. Observe that in the proof Q may be replaced
with an arbitrary field.

We use the following lemma, which we do not prove.

Lemma 3.49 (Simplicial Approximation theorem.). Let L and K be finite simplicial complexes;
we notate by |K| and |L| the associated topological spaces. Given a continuous map F : |K| →
|L|, there exists a map f : K → L such that

1. f is homotopic to F ,

2. there is n� 0 such that f : Bdn(K)→ |L| is simplicial, where Bdm denotes the barycentric
subdivision of K applied m-times,

3. f is arbitrarily close to F .

Example. Consider F : S1 → S1 defined by z 7→ z2. We give S1 a simplicial structure by gluing
two intervals at their endpoints, so that in the context of the above lemma, K = L. Then letting
n = 2 in the setting of statement 2 of the lemma, we have f : Bdn(K) → L obtained again by
squaring is simplicial.

Proof of 3.48. Suppose f : X → X has no fixed points. Applying simplicial approximation, we
obtain a subdivision L of X and g : |L| → X such that g ' f and g is simplicial.

We may arrange that g(σ)∩ σ = ∅ for each simplex σ in L, as f has no fixed points. This is
a compactness property: the distance between a point and its image, being distinct, is greater
than zero, and as X is compact (finite simplicial complexes are) we may choose a sufficiently
fine subdivision of L to separate all points from their f -images (this is known as the Lebesgue
covering lemma).

Now as g is simplicial, we have g(Ln) ⊂ Xn for each n. As L is a subdivision of X, we have
Xn ⊂ Ln, so that g(Ln) ⊂ Ln for each n. We obtain maps of pairs (Ln, Ln−1) → (Ln, Ln−1)
induced by g. We claim that

τ(g) =
∑
i

(−1)itr(g∗Hi(X,Q)) =
∑
i

(−1)itr(g∗Hi(L
n, Ln−1,Q)).

Once we’ve established the claim, we will see that since Hi(L
n, Ln−1,Q) =

⊕
σ∈Ln Q ·σ, that

as g(σ) 6= σ for each σ ∈ Ln, the map g∗ on the homology of pairs of L has no 1’s appearing on
the diagonal, hence has trace zero.

To prove the claim, we use another lemma. For any map of SESs of vector spaces over a field

0 A B C 0

0 A′ B′ C ′ 0

α β γ

46



we have tr(β) = tr(α)+tr(γ). The proof is left as an exercise; it uses the fact that such sequences
are always split.

We show that the lemma implies the claim in dimension 1. In higher dimensions, an inductive
procedure proves the implication in general. So we suppose that X = X1 with g : X → X. We
want ∑

i

(−1)itr(g∗Hi(X,Q)) = tr(g∗H0(X0, X−1))− tr(g∗H1(X1, X0)). (1)

Consider the diagram

0 Q 0

H1(X0) = 0 H1(X1) H1(X1, X0) H0(X0) H0(X1) H0(X1, X0) = 0

H1(X0) = 0 H1(X1) H1(X1, X0) H0(X0) H0(X1) H0(X1, X0) = 0

0 Q 0

ea b c d

where we set Q := coker(H1(X1) → H1(X1, X0)) = ker(H0(X0) → H0(X1)). We apply the
lemma to the SESs ending in Q, with “vertical" maps given by a, b, e. By the lemma, we have
tr(b) = tr(a)+ tr(e). We apply the lemma also the the SESs starting with Q, with vertical maps
given by e, c, d. By the lemma we have tr(c) = tr(e) + tr(d). The two equations together imply
that tr(c)− tr(b) = tr(d)− tr(a). This implies (1), by comparing the first term on the left with
the first term on the right, and likewise for the second terms.

When dim(X) > 1, one inducts on this procedure. The details are left as an exercise. This
completes the proof.

3.8.3 Vector fields on spheres

We pose the question: when does Sn admit a nonvanishing vector field? Equivalently, for which
n does there exist a map v : Sn → Rn+1r{0} such that v(x)·x = 0 for each x ∈ Sn? Normalizing
v, we see that this is equivalent to finding v : Sn → Sn such that v(x) · x = 0 for each x ∈ Sn.
(We’ll see that this is really an application of the second interesting theorem.)

Example. When n = 1, we obtain such a v by anchoring iz at the point z ∈ S1. Checking that
this works is left as an exercise.

Theorem 3.50. For n even, this can not be done. That is, for n even, there does not exists a
nowhere-vanishing vector field on Sn.

Proof. Assume such a v exists, that v(x) · x = 0 for all v ∈ Sn. Consider the homotopy

H : Sn × I → Sn H(x, t) = x cos(πt/2) + v(x) sin(πt/2).

We check that this is well-defined, i.e. maps into Sn. Consider

||H(x, t)|| = H(x, t) ·H(x, t) = ||x|| cos2(πt/2) + ||v(x)|| sin2(πt/2) = 1

as required, after applying that v(x) · x = 0 and that x ∈ Sn has norm 1. We have H(x, 0) = x
and H(x, 1) = v(x), so v is homotopic to idSn .

It follows that τ(v) = τ(id) = χ(Sn) = 2, as n is even. The Lefschetz fixed point theorem
tells us there is a fixed point, however as v(x) ·x = 0 for all x ∈ Sn, this is a contradiction. This
concludes the proof.
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3.9 Kunneth formulas

The goal of this section is to compute the homology of a product of spaces in terms of the
homology of its factors.
Example. We computed on homework Hi+n(X × Sn) = (Hi(X) ⊗ Hn(Sn)) ⊕ (Hi+n(X) ⊗
H0(Sn)) ' Hi(X) ⊕ Hi+n(X), given a certain formula. We will generalize this construction
with Kunneth formulas.

There are three steps.

Step 1. First, introduce tensor products of chain complexes: ⊗ : Ch(Ab)×Ch(Ab)→ Ch(Ab)
taking (K,L) 7→ K ⊗ L.

Step 2. Obtain the algebraic Kunneth formula to calculate H∗(K ⊗ L) in terms of H∗(K) and
H(L).
Example. We may do this for any category of modules, in particular k-vector spaces. In
this case, the Kunneth formula will be

Hn(K ⊗k L) =
⊕
i+j=n

Hi(K)⊗Hj(L).

Step 3. Prove the Eilenberg-Zilber theorem: for X,Y spaces, then

C∗(X × Y ) ' C∗(X)⊗ C∗(Y )

is a homotopy equivalence.

Combining these steps, we obtain the topological Kunneth formula.
Example. For k a field, Hn(X × Y, k) ∼=

⊕
i+j=nHi(X, k)⊗k Hj(Y, k).

Recall that there exists a functor ⊗ : Ab×Ab→ Ab taking (M,N)→M ⊗N or M ⊗ZN
which satisfies several properties, such as (canonical) symmetry, M ⊗ − commutes with all
colimits, etc.
Example. We have the following identities.

1. M ⊗Z Z = M .

2. M ⊗Z Z/nZ = M/nM .

3. M ⊗Z Q is the “rationalization of M", which is a Q-vector space. When M = Z⊕r ⊕ T
where T is torsion, then M ⊗Z Q = Q⊕r.

4. Q⊗Z Q = Q.

Definition 3.51. Set ⊗ : Ch(Ab)×Ch(Ab)→ Ch(Ab) taking (K,L) 7→ K ⊗Z L by

(K ⊗Z L)n =
⊕
i+j=n

Ki ⊗Z Lj

with, for a ∈ Ki, b ∈ Lj ,

dK⊗L(a⊗ b) = dK(a)⊗ b+ (−1)ia⊗ dL(b).

We need to check that tensor products of complexes are complexes. Indeed:

d2(a⊗ b) = d(d(a)⊗ b+ (−1)ia⊗ d(b))

= d(d(a)⊗ b) + d(b+ (−1)id(b))

= d2(a)⊗ b+ (−1)i+1da⊗ db+ (−1)i(da⊗ db+ (−1)ia⊗ d2(b))

= 0.
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Remark. We think of the tensor as a 2-complex:

...
...

...

· · · K2 ⊗ L0 K1 ⊗ L0 K0 ⊗ L0 · · ·

· · · K2 ⊗ L1 K1 ⊗ L1 K0 ⊗ L1 · · ·

· · · K2 ⊗ L0 K1 ⊗ L0 K0 ⊗ L0 · · ·

...
...

...

where the (direct) sums along the diagonals give the terms of the tensor product complex. The
differentials, pictured this way, go up and to the right.
Example. We consider the following examples.

1. From M,N ∈ Ab we obtain M [0], N [0] ∈ Ch(Ab), with

M [0]⊗N [0] ∼= (M ⊗N)[0]

and more generally
M [i]⊗N [j] ∼= (M ⊗N)[i+ j].

2. K = (Z p→ Z), L = N [0] for N ∈ Ab. Then

K ⊗ L = (N
p→ N).

We have also

Hi(K ⊗ L) =


N/pN i = 0

{x ∈ N : px = 0} i = 1

0 else.

We remark here that if N = Z/p, then both K and L have only zeroth nonvanishing
homology, but K ⊗ L has Hi.

3. If k is a field, and K,L ∈ Ch(Vectk), then

Hn(K ⊗ L) ∼=
⊕
i+j=n

Hi(K)⊗Hj(L)

and the proof of this is left as an exercise.

3.9.1 Algebraic Kunneth formulas

Definition 3.52. For M,N ∈ Ab, choose a SES

0→ K → P →M → 0

with P,K free abelian groups7. We define

Tor(M,N) = ker(K ⊗N d→ P ⊗N).

This is a posteriori dependent on K and P .
7When we are not working over Z, a PID, we cannot choose such a resolution. In this more general case, one

needs projective resolutions.
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Example. We have:

1. Tor(Z/p,N):
0→ Z p→ Z→ Z/p→ 0

so
Tor(Z/p,N) = ker(N

p→ N) = N [p] = {x ∈ N : px = 0}.

2. N torsion free ⇒ Tor(M,N) = 0. To see this, first suppose that N is finitely generated,
so that N ∼= Z⊕r. Thus K ⊗N → P ⊗N is injective. In general write N =

⋃
iNi where

Ni ⊂ N is finitely generated and torsion free, and reduce to the statement about Ni using
the fact that ⊗ and ker commute with all direct limits.

Remark. Tor(M,N) is independent of the choice of presentation. This requires proof, which is
left as an exercise.

We will need the following lemma for the construction of algebraic Kunneth formulas.

Lemma 3.53. Tor is symmetric: Tor(M,N) = Tor(N,M).

Proof. Choose resolutions
0→ K → P →M → 0,

0→ R→ Q→ N → 0

for M and N . We obtain the diagram

0 0

0 K ⊗R P ⊗R M ⊗R 0

0 K ⊗Q P ⊗Q M ⊗Q 0

K ⊗N P ⊗N M ⊗N 0

0 0 0

a

b

after tensoring. The snake lemma8 gives us a map ker(a) → ker(b) which fits into a long exact
sequence

0→ ker(a)→ K ⊗N b→ P ⊗N →M ⊗N → 0

so that ker(a) ' ker(b), as required.

Theorem 3.54 (Algebraic Künneth Formula). For K,L ∈ Ch(Ab) chain complexes of free
abelian groups, then for each n there is a SES functorial in K and L

0→
⊕
i+j=n

Hi(K)⊗Hj(L)→ Hn(K ⊗ L)→
⊕

i+j=n−1

Tor(Hi(K), Hj(L))→ 0.

Remark. Note the following.

1. This sequence is non-functorially split, so that we may compute H∗(K ⊗ L) via H∗(K)
and H∗(L).

8See 3.15 for the statement.
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2. If K (or L) is exact, the theorem implies that so is K ⊗ L.

3. If K → K ′ induces an isomorphism on homology, then so does K ⊗ L→ K ′ ⊗ L.

4. The proof of the theorem will show that when k is a field and K,L ∈ Ch(Vectk), we have
Hn(K ⊗ L) ' ⊕i+j=nHi(K)⊗Hj(L).

Example. Set K = L = Z ·p→ Z. The homology of either chain complex is isolated at degree 0
as Z/pZ. The formula gives that H0(K ⊗ L) = H1(K ⊗ L) = Z/pZ with all other homology
vanishing.

Proof of 3.54. Let K,L ∈ Ch(Ab) be chain complexes of free abelian groups.

1. Assume that dL = 0 so that eachHi(L) = Li is free. It follows that Tor(Hi(K), Hj(L)) = 0
for each i, j. Thus

Hn(K ⊗ L) =
ker(dK ⊗ 1 : (K ⊗ L)n → (K ⊗ L)n−1)

im(dK ⊗ 1 : (K ⊗ L)n+1 → (K ⊗ L)n)
.

As Li is free, the functor Li ⊗− is exact. Thus

ker(dK ⊗ 1 : (K ⊗ L)n → (K ⊗ L)n−1) '
⊕
i+j=n

ker(dK ⊗ 1 : Ki ⊗ Lj → Ki−1 ⊗ Lj)

exactness'
⊕
i+j=n

ker(dK : Ki → Ki−1)⊗ Lj ,

and similarly for im(dK ⊗ 1). We obtain

Hn(K ⊗ L) =
⊕
i+j=n

ker(dK : Ki → Ki−1)

im(dK : Ki+1 → Ki)
⊗ Lj '

⊕
i+j=n

Hi(K)⊗Hj(L).

2. We reduce to the first case. [Remainder of proof to be filled in later.]

Algebraic Kunneth formulas dictate that if K and L are chain complexes of free abelian
groups then for all n there is a functorial SES

0→
⊕
i+j=n

Hi(K)⊗Hj(L)→ Hn(K ⊗ L)→
⊕

i+j=n−1

Tor(Hi(K), Hj(L))→ 0.

Moreover that this sequence is non-functorially split. We now prove a topological version of this
theorem.

Theorem 3.55 (Eilenberg-Zilber). For spaces X,Y there exist functorial maps

× : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y )

θ : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

such that × ◦ θ and θ ◦ × are homotopic to the identities on X and Y .

Corollary 3.56 (Künneth formula). We see from the above algebraic theorem that there is a
functorial SES

0→
⊕
i+j=n

Hi(X)⊗Hj(Y )→ Hn(X × Y )→
⊕

i+j=n−1

Tor(Hi(X), Hj(Y ))→ 0

which is non-functorially split.
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Corollary 3.57. If we suppose that
⊕

iHi(X) and
⊕

j Hj(Y ) are finitely generated, then χ(X×
Y ) = χ(X) · χ(Y ).

Proof of 3.57. First, it is an exercise to show that for K,L ∈ Ch(Vectk), where k is a field,
then when

⊕
iHi(X) and

⊕
j Hj(Y ) finitely generated, then χ(K⊗k L) = χ(K) ·χ(L) (one can

use the Künneth formula and notice that in this case, Tor vanishes).
Now apply that exercise to K = C∗(X;F2) and L = C∗(Y ;F2).

Example. For X = RP2, we compute the homology of X ×X. We have

Hi := Hi(X) =


Z i = 0

Z/2 i = 1

0 else.

Observe that H0(Y ) = Z. Then

H1(Y ) = H0 ⊗H1 ⊕H1 ⊗H0 ⊕ Tor(H0, H0)

= Z/2⊕ Z/2⊕ 0

= (Z/2)⊕2.

We may do a similar calculation for i = 3, and obtain H3(X ×X) = Z/2.
Remark. If X and Y are CW complexes, one may prove the Künneth formula “by hand", which
you can find in Hatcher.

Proof of 3.55. First we construct the map ×. Given σp : ∆p → X, σq : ∆q → Y we aim to
construct σp×σq ∈ Cp+q(X×Y ) by induction on p+q. Observe that if p = 0 then σ0 represents

some x ∈ X. Then set σ0 × σq : ∆q ' {∗} ×∆q (x,σq)−→ X × Y , and likewise for q = 0.
Now we state the following proposition.

Proposition 3.58. For all X,Y , there is a map

× : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y )

a⊗ b 7−→ a× b

such that

1. × is the obvious map if one factor is a 0-chain.

2. × is compatible with the differential, so that d(a × b) = da × b + (−1)pa × db for each
a ∈ Cp(X), b ∈ Cq(Y ).

3. × is functorial in X and Y .

Remark. We are not claiming that this map is unique; its construction will involve a choice
(which does not mess up functoriality).

Proof of 3.58. We induct on p+ q = n. When n = 0, 1, we use the obvious map. Now, assume
we have suitably defined × on all spaces X,Y and p, q such that p+ q ≤ n− 1.

Consider the special case where X and Y are simplices, and ip : ∆p → ∆p and iq : ∆q → ∆q

are the identities. We suppose n ≥ 2. If ip × iq existed, then

d(ip × iq) = dip × iq + (−1)pip × diq ∈ Cn−1(∆p ×∆q) (2)

is well-defined by induction. Moreover, d(RHS of (2)) = 0. This is not given at present, but one
can apply the Leibniz rule to derive it. Thus RHS of (2) ∈ Zn−1(∆p ×∆q). However ∆p ×∆q
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is contractible, and n ≥ 2, so Bn−1(∆p ×∆q) = Zn−1(∆p ×∆q). Thus the RHS of (2) is given
by d(α) for some α ∈ Cn(∆p ×∆q). We define ip × iq = α ∈ Cn(∆p ×∆q).

In general, for spaces X and Y , given σ : ∆p → X and τ : ∆q → Y , we have σ = σ∗(ip) ∈
Cp(X). Similarly τ = τ∗(iq). We apply functoriality and the definitions of ip × iq to define

σ × τ = (σ, τ)∗(ip × iq) ∈ Cn(X × Y )

where (σ, τ) : ∆p ×∆q → X × Y is the product map9.
It follows from construction that this is functorial. We still need to check the Leibniz rule.

So:

d(σ × τ) = d((σ, τ)∗(ip × iq))
= (σ, τ)∗(d(ip × iq))
(2)
= (σ, τ)∗(dip × iq + (−1)pip × diq)
= (σ, τ)∗(dip × iq) + (−1)p(σ, τ)∗(ip × diq)
i
= σ∗(dip)× τ∗(iq) + (−1)pσ∗(ip)× τ∗(diq)
= d(σ)× τ + (−1)pσ × τ.

where the step i comes from induction.

It remains to prove the theorem!

4 Cohomology

[Missing a lecture here.]

Recall: we have a functor Ch(Ab) → CoCh(Ab) taking K• 7→ (K•)
∨ = Hom(K•,Z). For

a space X, we have C∗(X) = Hom(C∗(X),Z) and H i(X) = H i(C∗(X)).
More generally, for A an abelian group, C∗(X;A) = Hom(C∗(X,Z), A) and H i(X;A) =

H i(C∗(X;A)).

Remark. If A is a ring, then C∗(X;A) = HomZ(C∗(X;Z), A) ' HomA(C∗(X;Z) ⊗ A,A) '
HomA(C∗(X;A), A) where the second step comes from Hom-Tensor adjunction, and the third
since Cn(X)⊗A ' Cn(X;A). This is most useful when A is a field, so that the right-hand side
is computed using linear algebra.

4.1 Ext and universal coefficient theorems

First we consider the case of k a field. Take

Ch(k)→ CoCh(k)

M• 7→ (M•)
∨.

Observe now that Homk(−, k) is an exact functor on k-vector spaces. It follows that Hi(M
∨
• ) '

Homk(Hi(M•), k).

Corollary 4.1. For X a space, H i(X; k) ' Homk(Hi(X; k), k).

This becomes significantly harder when coefficients are not taken in a field; we want to find
an analogue over Z.

9This argument is known as the “acyclic models argument". Acyclicity records the fact that we used Zn = Bn
in the proof here.
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Definition 4.2. For M,N ∈ Ab, choose a SES

0→ K → P →M → 0

where K and P are free. We define Ext(M,N) = coker(Hom(P,N)→ Hom(K,N)).

Remark. As we saw with Tor, this construction does not depend on the choice of resolution.

Example. Consider M = Z. We see that in this case, Ext(M,−) = 0, since Z has a trivial free
resolution (in the notation of the above definition, K = 0, P = Z).
Example. M = Z/k. We claim that Ext(M,N) ' N/kN . To see this, consider the resolution

0→ Z ·k→ Z→ Z/k → 0

and the claim follows.

Remark. We record the following properties of Ext.

1. Ext is not symmetric. Like Hom, it is contravariant in the first factor and covariant in the
second.

2. Ext(M,N) is functorial in both M and N .

3. Ext(⊕i∈IMi, N) '
∏
i∈I Ext(Mi, N). To show this, use that Hom(⊕Ai, B) '

∏
Hom(Ai, B),

and that taking products is exact.

4. Ext(M,−) = 0 if and only if M is free. The reverse implication follows from the above
example. For the forward implication, choose a resolution

0→ K → P →M → 0

for K and P free. We will split this sequence, in particular the map K → P . As
Ext(M,N) = 0, the map Hom(P,K) → Hom(K,K) is surjective. Therefore there ex-
ists some g : P → K such that gα = idK . Therefore P ' K ⊕M , and M is free.

5. Ext(−, N) = 0 if and only if N is divisible, i.e. kN = N for all nonzero k ∈ Z>0 (the
reverse direction uses Baer’s criterion for injective modules).

6. For M finite (torsion), then Ext(M,Z) is non-canonically identified with M : using the
classification of finitely generated abelian groups, we may reduce to the cyclic case. We
checked this case above. (More naturally, Ext(Mfinite,Z) = Hom(M,Q/Z), but we won’t
need this.)

Remark. Why is it called Ext? For M,N ∈ Ab, it turns out that Ext(M,N) = “extensions of
M by N", i.e. SESs of the form

0→ N →?→M → 0

modulo isomorphisms (of SESs), and split sequences.

Theorem 4.3 (Universal coefficients for Hom). For K ∈ Ch(Ab) a complex of free abelian
groups, for every N ∈ Ab and n ∈ Z, we have a functorial SES

0→ Ext(Hn−1(K), A)→ Hn(Hom(K,A))→ Hom(Hn(K), A)→ 0,

and moreover this is non-functorially split.

We don’t prove 4.3, as its proof is similar to that of the algebraic Künneth formula.
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Example. Consider K = (Z n→ N) in degrees 1 and 0, so homology is isolated at degree 0 and
H0(K) = Z/n. Set M∗ = Hom(K∗,Z) ∼= Z n→ Z, where degrees are flipped w/r/t K. Homology
is now isolated at degree 1.

One should check: H1(M) ' Ext(H0(K),Z).

Corollary 4.4. For X a space such that Hn−1(X) and H1(X) are finitely generated (this will
be standard in practice), write Hn−1(X) = Z⊕r ⊕ Tn−1 where Tn−1 is torsion. Then Hn(X) =
(Hn(X)/〈torsion〉)⊕ Tn−1, non-canonically.

Proof. We use the theorem to write

Hn(X) = Hn(C∗(X)) = Hn(Hom(C∗(X),Z))
UCT' Hom(Hn(X),Z)⊕ Ext(Hn−1(X)),Z

and identifying Hom(Hn(X),Z) ' Hn(X)/torsion, and Ext(Hn−1(X),Z) ' Tn−1, we obtain the
needed statement.

Example. H∗(S1) = Z for ∗ = 0, 1, but the degrees are flipped w/r/t homology, as there is no
torsion in H∗(S1). Similarly for Sn.

Example. H∗(CPn) = Z for ∗ even, and zero otherwise, by the same reasoning.

Example. H∗(RP 2) = Z for ∗ = 0, 0 for ∗ = 1 (because Hom(Z/2,Z) = 0 and Ext(Z,Z) = 0,
applying the UCT), and Z/2 for ∗ = 2, similarly. The rest are zero.

We enumerate some properties of H∗.

1. H0(X) ∼= {continuous maps X → Z}, for X locally path-connected.

2. For X path-connected, x ∈ X, H1(X) ∼= Hom(π1(X,x),Z).

Proof. We have:

We may use UCT to see this, but may also we may use bare bones. Both sides of the statement
take disjoint unions to products, so we may reduce to the case where X is path-connected. We
want to show that when X is path-connected, H0(X) ' Z. We have

H0(X) = ker(C0(X)
d→ C1(X))

= ker(Hom(⊕x∈XZ · x,Z)→ Hom(⊕a∈AZ · a,Z)) A = {path-components of X}

= ker(Maps(X,Z)
d→ Maps(paths in X,Z))

where given f : X → Z, we have

(df)(γ) = f(γ(0))− f(γ(1))

for a path γ in X. Thus f ∈ ker(d) if and only if f(x) = f(y) for all x, y connected by a path
in X. Thus ker(Maps(X,Z)

d→ Maps(paths in X,Z)) is equal to the constant maps X → Z,
isomorphic to Z.
We may also use UCT to see this abstractly. We have

H1(X) =
ker(C1(X)→ C2(X))

C0(X)→ C1(X)

=
ker(Maps(paths in X)

d1→ Maps(∆’s in X,Z))

im(Maps(X,Z)
d0→ Maps(paths in X,Z))
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and we have im(d0) = {f ∈ Maps(paths in X,Z) | f “only depends on endpoints"}. To un-
derstand d1, for a simplex σ ⊂ X composed of edges a, b, c where c’s orientation opposes the
ordering, we have

(d1g)(σ) = g(a)− g(c) + g(b).

Thus ker(d1) = {g | g(a) + g(b) = g(c) for all σ as above}. We may rephrase this as,

ker(d1) = {g | g is additive under composition of paths and only depends on the path up to homotopy}.

We rewrite

H1(X) =
{f : {paths in X}/homotopy→ Z | f additive}

{g : {paths in X}/homotopy→ Z | g only depends on endpoints}

Choose paths γy : y  x for all y ∈ X.

H1(X) =
{f : {loops based at x in X}/homotopy→ Z | f additive}

0
= Hom(π1(X,x),Z)

where the fact that f is additive implies that these are homomorphisms.

3. There exist relative cohomologies H∗(X,A), obtained by dualizing homology of a pair:

C∗(X,A) = Hom(C∗(X,A),Z), H i(X,A) = H i(C∗(X,A)).

Explicitly, this is
0→ Cn(X,A)→ Cn(X)

restrict−→ Cn(A)

i.e., functions on n-simplices of X that vanish when restricted to A.

Proposition 4.5. There is a long exact sequence of a pair

· · · H i(X,A) H i(X) H i(A)

H i+1(X,A) H i+1(X) H i+1(A) · · · .

Proof. There is a SES
0→ C∗(A)→ C∗(X)→ C∗(X,A)→ 0

which is termwise split. Thus Hom(−,Z) produces a SES

0→ C∗(X,A)→ C∗(X)→ C∗(A)→ 0

and now take the LES of H∗.

Remark. There is a UCT for relative cohomology as well.

4. C∗(−) and H∗(−) are contravariant functors. For f : X → Y , we write f∗ for the induced
map.

5. Homotopy invariance: for homotopic f, g : X → Y the maps f∗, g∗ : C∗(Y )→ C∗(X) are
homotopic, hence f∗ = g∗ on homology.

6. There is excision in cohomology.

7. Additionally, we have: CW cohomology for ∆-complexes, the LES in CW cohomology,
the Mayer-Vietoris sequence, the LES of a good pair, the Eilenberg-Steenrod axioms, and
more for cohomology. All proofs follow either from dualizing the steps of the proofs for
homology, or by carrying through an entirely similar proof.
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4.2 Cup products

For any space X, we have the diagonal map ∆ : X → X ×X. Functoriality implies that there
is ∆∗ : H∗(X)→ H∗(X ×X) and the RHS is “roughly" H∗(X)⊗H∗(X). This endows H∗(X)
with the structure of a coalgebra, which is (in some sense) the dual of a ring structure. As this
is slightly inaccessible, we have the following dual picture in cohomology.

We will have natural maps

H∗(X)⊗H∗(X)→ H∗(X ×X)
∆∗→ H∗(X)

(f, g) 7→ f × g

whose composition is the cup product, denoted (f, g) 7→ f ∪ g. We describe the first map in the
diagram. For f ∈ Ck(X) and g ∈ C l(X), for n = k + l, have

(f × g)(σ : ∆n → X ×X) = f(σ|k−dim face) · g(σ|l−dim face)

Theorem 4.6. The cup product makes H∗(X) into a commutative graded ring, in the sense
that f ∪ g = (−1)deg(f)g ∪ f .

Remark. The same also holds for H∗(X, k) for any commutative ring k.
We establish some notation. As always, we write ∆n = [v0, ..., vn].

Definition 4.7. For X a space, the cup product is defined

Ck(X)× C l(X)
∪→ Ck+l(X)

(φ ∪ ψ)(σ : ∆n → X) = φ(σ|[v0,...,vk]) · ψ(σ|[vk,...,vk+l])

for n = k + l.

We have the following properties of cup products.

1. Cup products make sense for any ring R, applied to C∗(X,R).

2. Cup products are associative:

Ck(X)× C l(X)× Cm(X) Ck+l(X)× Cm(X)

Ck(X)× C l+m(X) Ck+l+m(X)

commutes. We check this as follows:

(f ∪ (g ∪ h))(σ : ∆k+l+m → X) = f(σ|[v0,...,vk]) · (g ∪ h)(σ|[vk,...,vk+l+m])

= f(σ|[v0,...,vk]) · g(σ|[vk,...,vk+l] · h(σ|[vk+l,...,vk+l+m]))

and undoing this finishes the computation.

3. The cochain ε ∈ C0(X) = Hom(C0(X),Z) = Maps(X,Z) that sends each x ∈ X to 1, is a
unit for cup products. We write 1 ∈ C0(X).

4. The cup product is bilinear:

(φ1 + φ2) ∪ ψ = φ1 ∪ ψ + φ2 ∪ ψ

and similarly on the left-hand side. We check this as follows:

((φ1 + φ2) ∪ ψ)(σ : ∆n → X) = (φ1 + φ2)(σ|[v0,...,vk]) · ψ(σ|[v0,...,vk+l])
= (φ1(σ|[v0,...,vk]) + φ2(σ|[v0,...,vk])) · ψ(σ|[vk,...,vk+l])
= (φ1 ∪ ψ + φ2 ∪ ψ)(σ).
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Corollary 4.8. C∗(X) is a graded ring. So: C∗(X) ⊗ C∗(X)
∪→ C∗(X) is a map of graded

abelian groups.

5. For φ ∈ Ck(X), ψ ∈ C l(X),

d(φ ∪ ψ) = dφ ∪ ψ + (−1)deg(φ)φ ∪ dψ

where the order of operations has ∪ first, then +. This implies that C∗(X) ⊗ C∗(X)
∪→

C∗(X) is a map of chain complexes.

Proof. Observe:

(dφ ∪ ψ)(σ : ∆k+l+1 → X) = (dφ)(σ|[v0,...,vk+1]) · ψ(σ|[vk+1,...,vk+l+1])

= φ(dσ|[v0,...,vk+1]) · ψ(σ|[vk+1,...,vk+l+1])

=

k+1∑
i=1

(−1)iφ(σ|[v0,...,v̂i,...,vk+1]) · ψ(σ|[vk+1,...,vk+l+1]).

Similarly:

((−1)kφ ∪ dψ) =
k+l+1∑
i=k

(−1)iφ(σ|[v0,...,vk]) · ψ(σ|[vk,...,v̂i,...,vk+l+1]).

Now, we see that the last term of the first expression cancels the first term of the second
expression. One can check that the rest adds up to (φ ∪ ψ)(dσ), as required.

Corollary 4.9. Cup products pass to cohomology.

Proof. The formula for d(φ ∪ ψ) implies that the cup product of two cocycles is a cocycle. In
fact Z∗(X) contains 1, and is a graded subring of C∗(X). Similarly, the cup product of a cocycle
with a coboundary is a coboundary. B∗(X) forms a graded ideal in Z∗(X). These two formally
imply the corollary, and that H∗(X) = Z∗(X)/B∗(X) is a graded ring.

Example. H∗(Sn) = Z[x]/(x2), where n > 0 and deg(x) = n.

6. Cup products are functorial. Given a map f : X → Y and φ, ψ ∈ C∗(Y ), f∗(φ ∪ ψ) =

f∗(φ) ∪ f∗(ψ); it follows that the morphism H∗(Y )
f∗→ H∗(X) is a map of graded rings.

Proof.

(f∗(φ ∪ ψ))(σ : ∆n → X) = (φ ∪ ψ)(f∗σ)

= (φ ∪ ψ)(fσ : X → Y )

= φ(fσ|[v0,...,vk]) · ψ(fσ|[vk,...,vn])

= (f∗φ)(σ|[v0,...,vk]) · (f∗psi)(σ|[vk,...,vn])

= (f∗φ ∪ f∗ψ)(σ).

7. Cup products are graded commutative up to homotopy. That is, φ ∪ ψ = (−1)deg φψ ∪ φ
on H∗(X).

We do not prove this, as the argument is too elaborate and combinatorial. See Hatcher.

58



Example. X = S2 ∨ S4. We claim that H∗(X) = Z[x, y]/(x2, y2, xy), where deg(x) = 2,
deg(y) = 4.

We have

H∗(S2 ∨ S4) =

{
Z ∗ = 0, 2, 4

0 else,

via the UCT, and after noting that the homology of X has no torsion. We have

a : X → S2 “collapse S4"

b : X → S4 “collapse S2".

Which induce

a∗ : H∗(S2) = Z[x]/(x2)︸ ︷︷ ︸
deg(x)=2

→ H∗(X) with image in degree 2,

b∗ : H∗(S4) = Z[y]/(y2)︸ ︷︷ ︸
deg(y)=4

→ H∗(X) with image in degree 4.

As ⊗-products form the coproducts in the category of commutative rings, we obtain

H∗(S2)⊗H∗(S4)→ H∗(X)

u⊗ v 7→ a∗(u)⊗ b∗(v).

This map is, by construction, surjective. We have now a map

Z[x]/(x2)⊗ Z[y]/(y4)→ H∗(X).

Examining degrees, we see that x⊗ y 7→ 0. We obtain

Z[x, y]/(x2, y2, xy)� H∗(X).

As this is a surjection of free abelian groups of rank 4 (forgetting multiplicative structure), it is
an isomorphism. Its kernel is (isomorphic to) a free abelian group of rank zero.

We form external products to assist us with computation. For spaces X and Y , there is a
natural map

Hk(X)⊗H l(Y )→ Hk+l(X × Y )

φ⊗ ψ 7→ pr∗1(φ) ∪ pr∗2(ψ) =: φ× ψ

where pr1 : X × Y → X is the projection, and likewise for Y . Hence we get a map (which you
can check):

H∗(X)⊗H∗(Y )→ H∗(X × Y )

of commutative graded rings10

Also, for X = Y , we get from the diagonal map ∆ : X → X ×X we obtain

∆∗(φ× ψ) = φ ∪ ψ.

To see this:

∆∗(pr∗1φ ∪ pr∗2ψ)

= ∆∗(pr∗1φ) ∪∆∗(pr∗2ψ) ∆∗ multiplicative
= (pr1 ◦∆)∗φ ∪ (pr2 ◦∆)∗ψ H∗ contravariant
= φ ◦ ψ.

10A commutative graded ring is not the same thing as a graded commutative ring. The first is a graded ring
which commutes in the sense of graded rings: it picks up a sign according to degree. The latter does not.
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Theorem 4.10. If X and Y are CW complexes and H i(Y ) is finite free for all i, then H∗(X)⊗
H∗(Y )→ H∗(X × Y ) is an isomorphism of graded rings.

Example. For X = S1 × S1, this is

H∗(X) ' H∗(S1)⊗H∗(S1)

' Z[x]/x2 ⊗ Z[y]/y2 deg(x) = deg(y) = 1

' Z[x, y]/(x2, y2)

where the adjunction occurs in the category of graded rings, i.e. xy = −yx. That is, this is
isomorphic to

∧∗
Z(Z · x⊕ Z · y).

Example. More generally, H∗((S1)n) =
∧∗

Z(Z⊕n).

All of the details of the following proof sketch can be found in Hatcher.

Proof sketch of 4.10. We hold Y fixed and define 2 functors:

CW Complexes grAbGp

h∗

k∗

defined as
h∗(X) = H∗(X)⊗H∗(Y ), k∗(X) = H∗(X × Y ).

We have a natural transformation

η(−) : h∗(−)→ k∗(−).

Observe the following.

1. η(pt) is an isomorphism.

2. Both h∗(−) and k∗(−) make sense for pairs (X,A) and satisfy: homotopy invariance,
excision, LES of a pair (here we use that tensoring preserves long exact sequences when
they are free), additivity (take disjoint unions to products; this uses that H∗(Y ) is finitely
generated11).

Proposition 4.11. Any η : F ∗ → G∗ of functors on CW pairs that satisfy the above conditions
is an isomorphism, provided that it is so when evaluated on a point.

We compute the cohomology rings of complex and real projective space.

Example. Consider X = RPn. We will show that H∗(RPn;Z/2) = (Z/2)[x]/(xn+1), where
deg(x) = 1. It will follow from a similar argument that H∗(X) = Z[x]/(xn+1), with deg(x) = 2.
For this example, we write H i(Y ) = H i(Y ;Z/2) for all spaces Y .

It is a corollary of the computation that there is no map CP2 → S2 inducing a nonzero map
on H2 (use the universal coefficient theorem). It follows from this that CPn 6' S2 ∨ S4.

For the computation, we proceed by induction on n. The base case(s) is/are trivial. We have a
standard inclusion i : RPn−1 ↪→ RPn, which by induction induces i∗ : H∗(RPn)→ H∗(RPn−1) =
(Z/2)[x]/(xn). An examination of cellular homology shows that this is a surjection. If x ∈
H1(RPn) is the unique nonzero element, it is enough to show that xn 6= 0 (as we are working

11Tensor products commute with finite products, which are isomorphic to coproducts, as tensor products
commute with all directed limits.
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over a field). We have a map (Z/2)[x] → H∗(RPn) taking xi 7→ something nonzero, for each
i ≤ n. Hence this map is surjective, after comparing dimensions. We will show that H i(RPn)⊗
Hn−i(RPn)→ Hn(RPn) ' Z/2, given by multiplication, is nonzero, hence via linear algebra, an
isomorphism12.

We establish some geometric constructions to do this. We write

RPn =
{(x0, ..., xn) ∈ Rn+1 r {0}}

R×
.

We consider in particular the subspaces

P i := {(x0, ..., xi, 0, ..., 0)} ⊆ RPn, Pn−i = {(0, ..., 0, xi, ..., xn)} ⊆ RPn.

Note that RPn = Pn. Observe that P i ∩ Pn−i = {(0, ..., xi, ..., 0)} = {p} ⊆ RPn. We set
U = {(x0, ..., xn) | xi 6= 0} ⊆ RPn. Observe that U is homeomorphic to Rn, by mapping

(x0, ..., xn) 7→ (x0/xi, x1/xi, ..., ˆxi/xi, ..., xn/xi).

Now consider the diagram

H i(RPn)⊗Hn−i(RPn) Hn(RPn)

H i(RPn,RPn r Pn−i)⊗H i(RPn,RPn r Pn−i) Hn(H i(RPn,RPn r {p})

H i(Rn,Rn rRn−i)⊗Hn−i(Rn,Rn rRi) Hn(Rn,Rn r {p})

α1

α2

a

b

c

d

α3

each of whose horizontal arrows are cup products (i.e., multiplication), and whose downward
arrows are induced by inclusions. We will check that a, b, c, d, α3 are isomorphisms. It will then
follow that α1 is an isomorphism, as required.

The geometric input of this is the following. We claim that Pn r Pn−i deformation retracts
to P i−1 ⊆ Pn r Pn−i. We do not prove this.

Note now that d is an isomorphism, by the cohomological statement of excision. We use the
geometric input to observe that c is an isomorphism, along with cellular homology. Similar (long)
arguments apply also to a and b; see Hatcher for the brutal details. That α3 is an isomorphism
follows from an application of the Kunneth formula and the computation of the cohomology of
spheres. These observations close the example.

We consider some fun exercises.
Example. Consider the standard map Cn+1 r {0} → CPn. Show that this map has no section
for n > 1.

Solution: Apply homology.
Example. For a cover X̃ π→ X a covering space with X̃,X finite CW complexes, then if X̃ is
contractible, then π is an isomorphism.

Solution: Finiteness implies that π is finite degree. We have deg(π)χ(X) = χ(X̃) = 1; it
follows that deg(π) = 1.
Example. Show that RP4 is not a Lie group.

Solution: χ(RP4) = 1, however χ(G) = 0 for any connected topological group G.
Example. Show that any Z/2 action on CPn has a fixed point, for n ≥ 1.

Solution: Let g ∈ Z/2 be nonzero. Then

τ(g) =
∑
i

tr(g∗(Hi(CPn;Z/2))) =
∑
i

tr(id) = χ(CPn) = n 6= 0

as any nonzero action of Z/2 on Z/2 is the identity.
12This is the statement of Poincaré duality for RPn.
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END

“Don’t attribute any quotes to me."
-Bhargav Bhatt
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