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Chapter 1

Abelian varieties

1.1 Notation

A variety over a field k is a geometrically reduced and separated scheme of finite type. We shall use that
varieties are generically smooth. For a map f : X → S of schemes and an S-scheme T , we write XT → T
for the base change of f to T . When T = Spec(κ(s)) for s ∈ S, we also write Xs instead.

1.2 Group schemes: definitions and basic properties

Fix a base scheme S.

Definition 1.2.1. An S-group scheme is an S-scheme G equipped with maps m : G×G → G, i : G → G,
and e : S → G satisfying the following:

1. m is associative, i.e., the diagram

G×G×G
(m,id) //

(id,m)

��

G×G

m

��
G×G m // G

commutes.

2. e provides left and right identities for m, i.e., the diagrams

G
(e,id) // G×G

m

��
G

and G
(id,e) // G×G

m

��
G

commute.

3. i provides left and right inverses for m, i.e., the diagrams

G
(i,id) //

��

G×G

m

��
S

e // G

and G
(id,i) //

��

G×G

m

��
S

e // G

commute.
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If m is symmetric, then we say that G is a commutative group scheme. Given two S-group schemes G,H, a
homomorphism G→ H of S-group schemes is a map of S-schemes that commutes with m, i, and e.

rmk:FunctorPtsGrp Remark 1.2.2 (Functor of points perspective). Recall that there is a fully faithful Yoneda embedding

Sch/S
op → PShv(Sch/S) via X 7→ hX := HomS(−, X).

The elements of hX(T ) = X(T ) for an S-scheme T are called the T -valued points ofX; when T = S = Spec(k)
for a field k, then X(T ) is exactly the k-rational points of X. The representable presheaf hX is thus often
called the functor of points of X. Using that the functor X 7→ hX preserves finite products, one then checks
the following: given an S-scheme G, specifying the structure of an S-group scheme on G is the same as
specifying a group structure on the presheaf hG, i.e., a factorization

Sch/S
op → Groups

forget−−−−→ Sets

of hG. In practice, it is often much easier to specify the group structure on hG than to write down explicit
formulas for m, i, and e.

Remark 1.2.3. Using the functor of points, one can perform similar operations with group schemes as
one performs with groups. For example, if g ∈ G(S), then we can define the (left) translation by g map
Tg : G → G by simply asking that for any S-scheme T , the induced map Tg(T ) : G(T ) → G(T ) be left
translation by (the image in G(T ) of) g. Alternately, one uses the following formula to define Tg

G
(g,id)−−−→ G×G m−→ G.

Similarly, one may define a “conjugation by g” map cg : G→ G, (normal) subgroup schemes, etc..

Remark 1.2.4. If G := Spec(A) → S := Spec(R) is a morphism of affine schemes, then specifying an S-
group scheme structure on G is equivalent (by definition) to endowing A with the structure of a Hopf algebra
in the category of R-algebras; the resulting map m∗ : A→ A⊗R A is often called the comultiplication.

We give some fundamental examples.

Example 1.2.5 (The additive group). Assume S = Spec(R). The additive group is the S-group scheme
given by Ga,S := Spec(R[t]); we often write Ga instead if the base S is clear. The group scheme structure
is determined by the formulas

m∗(t) = t⊗ t and i∗(t) = −t and e∗(t) = 0.

It is an exercise to see that this satisfies the axioms for a group scheme. To understand what this means, note
that by Remark 1.2.2, this endows Ga,S(T ) with a group structure functorially in T . But Ga,S(T ) = O(T ).
Unwinding definitions, one checks that the group structure on O(T ) defined this way is the obvious one.

ex:MultGroup Example 1.2.6 (The multiplicative group). Assume S = Spec(R). The multiplicative group is the S-group
scheme given by Gm,S = Spec(R[t, t−1]); the additional structure is determined by the formulas

m∗(t) = t⊗ 1 + 1⊗ t and i∗(t) = t−1 and e∗(t) = 1.

It is an exercise to check that this satisfies the axioms for a group scheme. Again, these formulas translate
to something very natural: for any S-scheme T , we have Gm,S(T ) = O(T )∗, and this has an obvious group
structure functorially in T , which corresponds to the one determined by the preceding formulas.

Example 1.2.7 (General linear group). Assume S = Spec(R). Let G := GLn,S , i.e.,

G = Spec(R[xij ]1≤i,j≤n[
1

det(xij)
]).
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We then have G(T ) = GLn(O(T )) for any S-scheme T . This has an obvious group structure functorially in
T given by multiplication of matrices; the group scheme GLn,S obtained this way is called the general linear
group. We encourage the reader to make the formula for m∗ explicit for n = 2.

More generally, if V is any vector bundle on S, one can define (by glueing) an S-affine S-group scheme
GL(V ) characterized as follows: for any f : T → S, we have GL(V )(T ) = AutT (f∗V ). Taking determinants
of matrices locally defines a homomorphism GL(V )→ Gm,S of group schemes.

Example 1.2.8 (The constant group). For any set X, write X := tx∈XX for the constant S-scheme
attached to S. The functor X 7→ X commutes with finite products. Consequently, if G is an ordinary group,
then G is naturally an S-group scheme. We encourage the reader to describe the functor of points of G.

The preceding examples were all smooth. This need not always be true:

Example 1.2.9 (Roots of unity). Let S = Spec(R), and fix an integer n. Let G = µn := Spec(R[x]/(xn−1)).
Then for any R-scheme T , we have

µn(T ) = {ζ ∈ O(T )∗ | ζn = 1}.

The right hand side has an evident group structure functorially in T , so µn is naturally a group scheme. In
fact, the natural map µn → Gm is a closed immersion of group schemes and is compatible with the group
law, so µn can be viewed as a closed subgroup scheme in Gm. However, µn is not smooth over R if n is
not invertible in R. For example, if R = k is a field of characteristic p and n = p, then k[x]/(xp − 1) =
k[x]/((x− 1)p) is a non-reduced ring.

Example 1.2.10 (The group scheme αp). Let S = Spec(R), and assume p = 0 in R. Let G = αp :=
Spec(R[x]/(xp)). Then, for any R-scheme T , we have natural identifications

αp(T ) = {ε ∈ O(T ) | εp = 0}.

As R has characteristic p, the right hand is naturally a group under addition, and thus αp becomes a group
scheme. The natural inclusion αp ⊂ Ga realizes αp as a closed subgroup scheme of Ga.

Exercise 1.2.11. Let G/S be a group scheme. Using the functor of points, show that G→ S is separated
if and only if the identity section e : S → G is a closed immersion. (Hint: show that the diagram

G
∆ //

��

G×G

m◦(id,i)
��

S
e // G

is Cartesian.) Using this criterion, describe a nonseparated group scheme.

Exercise 1.2.12. Let f : G→ H be a morphism of S-group schemes. Assume H → S is separated. Define a
kernel for f using the functor of points, and show that it is also (representable by) a group scheme. Compute
explicitly the kernel of the following homomorphisms:

1. The map Gm,S → Gm,S determined by t 7→ tn on the functor of points.

2. The map Ga,S → Ga,S given by x 7→ xp on the functor of points (here S has characteristic p).

3. The map Ga,S → Ga,S given by x 7→ xp − x on the functor of points (here S has characteristic p).

ex:GroupSchReduced Exercise 1.2.13. Let G be a group scheme over a field k that is locally of finite type. If G is geometrically
reduced, then show that G is smooth. Give an example of reduced group schemes that are not geometrically
reduced. (Hint: for an imperfect field k, consider the kernel of G2

a,k → Ga,k of the form (x, y) 7→ xp + αyp

for y ∈ k general.)
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1.3 Abelian varieties: definitions and basic properties

def:AbSch Definition 1.3.1. An abelian scheme over S or an abelian S-scheme is a group scheme A/S such that the
structure map A → S is proper and smooth with geometrically connected fibers. When S = Spec(k) is a
field, we say that A is an abelian variety over k.

One thinks of an abelian S-scheme A → S as a flat family of abelian varieties As → Spec(κ(s))
parametrized by s ∈ S.

rmk:AbVarAlternate Remark 1.3.2. Smooth and geometrically connected varieties over a field are geometrically integral, so
an abelian scheme has geometrically integral fibers. Moreover, as geometrically reduced group schemes are
smooth by Example 1.2.13, the smoothness assumption on the structure map A→ S in Definition 1.3.1 can
be weakened to flatness if we require the fibres to also be geometrically reduced.

Remark 1.3.3. This definition is compatible with base change, i.e., if T → S is a map of schemes and A is
an abelian scheme over S, then AT := A×S T is naturally an abelian scheme over T : the relevant structures
(the group law, the inversion map, the identity section) over T arise via base change from the corresponding
structures over S.

Example 1.3.4. When S = Spec(k) is a field, then an abelian variety of dimension 1 over k is the same
thing as an elliptic curve over k. Taking products, we obtain examples of higher dimensional varieties.

Remark 1.3.5. (Abelian varieties over C) When k = C, an abelian variety A/k has an analytification Aan

which is a compact complex manifold equipped with a group structure in the category of compact complex
manifolds1, i.e., Aan is a compact complex Lie group. In fact, the compactness forces such groups to be
commutative (thus justifying the name abelian varieties):

Proof sketch. For any t ∈ Aan, conjugating by t is a group automorphism ct of Aan, and the assocation t 7→ ct
induces an action of Aan on its Lie algebra V := Te(A

an). This action is classified by a holomorphic map
Aan → End(V ); but Aan is compact and End(V ) is a complex vector space, so the map must be constant
by the maximal principle in complex analysis2. Thus, ct : Aan → Aan acts as the identity on the tangent
space. Using the exponential for Lie groups, it follows that ct acts as the identity in an open neighbourhood
of the origin in Aan. Any such open neighbourhood generates Aan as a Lie group as Aan is connected, so
ct must be the constant map with value ct(e) = e ∈ Aan. In other words, the group structure on Aan is
commutative. Using GAGA, it follows the same must be true for A too.

Thus, Aan may be regarded as a commutative compact complex Lie group. It is a basic fact that all such
groups are of the form Cg/Λ, where Λ ' Z2g ⊂ Cg is a lattice; most such tori are not algebraic, and the
the lattices corresponding to the algebraic ones were classified by Riemann. A consequence of this theory is
that, as topological groups, we can describe Aan completely: there is a homeomorphism Aan ' (S1)2g. In
particular, the n-torsion Aan[n] is isomorphic to (Z/n)2g.

We shall prove analogues of the preceding analytic facts purely algebraically next.

1.3.1 Rigidity properties

The following rigidity result (due to Weil) is crucial in setting up the theory of abelian varieties, and is also
useful elsewhere.

1This follows from the fact that the analytification functor X 7→ Xan commutes with fibre products, and thus the group
law on A induces one on Aan.

2This principle states that any holomorphic function on a domain D in Cn that attains its maximum at a point of D must
be constant. We apply it to suitable open subsets of Aan that give charts: the compactness of Aan forces each co-ordinate of
End(V ) to define a function on Aan that must attain a maximum.
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prop:Rigid Proposition 1.3.6 (Rigidity). Let f : X → S be a proper flat morphism with κ(s) ' H0(Xs,OXs) for all
s ∈ S. Then OS → f∗OX is an isomorphism. In particular, if T → S is an affine morphism, then any map
X → T is constant, i.e., it factors over f .

The condition on the cohomology of the fibers is ensured if the fibers are geometrically integral (or just
geometrically reduced and geometrically connected).

Proof. We only give the argument when S is noetherian. The general case can be deduced from this one
using “noetherian approximation” techniques.

First, assuming we have shown the first part, the second part follows immediately from the fact that any
S-map X → T factors uniquely over the canonical “affinization” map X → Spec(f∗OX).

The assertion OS ' f∗OX is part of the “cohomology and base change” package, but we give a direct
argument. We may assume S = Spec(R) is the spectrum of a noetherian local ring (R,m). By the formal
functions theorem and faithful flatness of completions, it is enough to show that R/mn → H0(X,OX/m

nOX)
is an isomorphism. We shall show more generally that for any finite length R-module M , the natural map
ηM : M → F (M) := H0(X, f∗M); we will induct on the length `(M) of M .

If `(M) = 1, then M ' R/m, so the the claim is true by assumption on the fibres of f . If `(M) > 1, then
we can find a short exact sequence

0→ K →M → Q→ 0

with `(K) and `(Q) strictly smaller than `(M). As F (−) is left-exact by the flatness of f , we get a commu-
tative diagram

0 // K //

ηK

��

M //

ηM

��

Q

ηQ

��

// 0

0 // F (K) // F (M) // F (Q)

with exact rows. Both ηK and ηQ are isomorphisms by induction. A diagram chase then implies the same
for the middle one.

cor:RigidClassical Corollary 1.3.7. Say S is a noetherian scheme. Let f : X → S be a proper flat morphism with κ(s) '
H0(Xs,OXs) for all s ∈ S, and let g : Y → S be a separated morphism. Let π : X → Y be an S-
morphism such that πs : Xs → Ys is a constant map for some s ∈ S, i.e., it factors over the structure map
Xs → Spec(κ(s)). Then π is constant over the connected component of s ∈ S.

In practice, this will be applied with Y = Y0×S being a constant family. In this case, the lemma simply
says that one cannot collapse a single fibre of a flat family of integral proper varieties without collapsing all
nearby fibers too.

Proof. We may assume S is connected and affine.
We first show that if π|XV

is constant over some affine open neighbourhood V ⊂ S of s. Let U ⊂ Y be
an affine open subset containing the point πs(Xs). Then π−1(U) ⊂ X is an open subset containing Xs. By
properness of f , there exists some affine open neighbourhood s ∈ V ⊂ S such that XV := f−1(V ) ⊂ π−1(U).
Applying Proposition 1.3.6 to the the first square diagram

XVt

π|XV //

��

UV //

��

U ⊂ Y

��
V V // S

shows that π|XV
is constant; note that UV is affine as U , S, and V are affine.

By repeating the previous argument, it is enough to check πt is constant for all t ∈ S. Let W ⊂ S
be the set of all points t ∈ S with this property. We know that s ∈ W . The argument in the previous
paragraph shows that W is open. It is thus enough to show that W is closed under specialization. Detecting
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specializations3 using valuation rings, we may then reduce to the case where S = Spec(V ) for a discrete
valuation ring V with uniformizer t ∈ V , and s ∈ S is the generic point. In this case, X is reduced:
OX embeds into OX [ 1

t ] by flatness of X/V , and the latter is reduced by assumption on the generic fibre.
Moreover, the subset π(X) ⊂ Y is closed as X → S is proper and Y → S is separated; replacing Y with
π(X) (endowed with its reduced structure), we may assume that π is surjective, and thus Y is also proper
over S. Now, by assumption, π(Xs) ∈ Ys gives a point in the generic fibre of Y → S. The closure of this
point gives a section S → Y of Y → S by properness. We must check that the induced map X → S → Y
coincides with π. But this is true over Xs ⊂ X by construction, and thus must be true everywhere by the
scheme-theoretic density of Xs ⊂ X.

cor:AbVarMapHom Corollary 1.3.8. Let A and B be abelian schemes over some noetherian base scheme S. Let f : A→ B be
an S-map. Then f = Ty ◦ h for y = f(eA) ∈ B(S) with h : A→ B being a homomorphism.

In other words, f is the composition of a homomorphism A→ B with a translation on B.

Proof. By replacing f with Ti(y) ◦ f , we may assume f(eA) = eB , i.e., f preserves the identity elements. We
must check f is a homomorphism. In other words, we want to check that two maps A × A → B given by
f ◦mA and mB ◦ (f, f) coincide; equivalently, we must check that the map

g : A×A→ B g = f ◦mA ◦ iB ◦mB ◦ (f, f)

is constant with value eB . For this, we may assume S is connected. We now apply Corollary 1.3.7 with
X → S being pr1 : A× A→ A, Y → S being pr2 : B × A→ A (i.e., Y0 = B and Y = Y0 × S), s ∈ S being
any point contained in S ' eA(S) ∈ A, and π = g. The hypothesis that πs is constant is verified in our case
precisely because f preserves the identity element. The conclusion is that g is constant over the nonempty
connected component of A. But Proposition 1.3.6 implies that A is connected since S is connected, so g is
constant.

Corollary 1.3.9. Let f : A→ S be a proper smooth morphism with a section e : S → A. Then there exists
at most one structure of an abelian S-scheme on A having e as the identity section.

Proof. The identity map A→ A carries e to itself. If we endow the source and target with arbitrary abelian
S-scheme structures having e as the identity, then the identity map is a homomorphism by Corollary 1.3.8.
This formally implies that all such abelian S-scheme structures on A coincide.

Proposition 1.3.10. Let A be an abelian scheme over a base S. Then A is commutative.

Proof via rigidity. We may assume S is a connected noetherian scheme by standard arguments. The inversion
map i : A → A preserves identity elements, so Corollary 1.3.8 implies i is a homomorphism, which implies
that A is commutative (by the same argument as for ordinary groups, applied via the functor of points).

Proof via nonexistence of global functions. We give a second proof that is closer in spirt to the complex
analytic proof. For simplicitly, we restrict to the case where S = Spec(k) is a field.

Let m : A × A → A be the multiplication, and let s : A × A → A × A be the involution that switches
the two factors. We must show that m = m ◦ s. An equality of morphisms between two k-schemes can be
checked after base change to the algebraic closure, so we may assume k is algebraically closed.

As k is algebraically closed and both A×A and A are varieties, it is enough to check the claim on k-valued
points by the Nullstellensatz. Thus, fix some t ∈ A(k). We must show that conjugation by t acts trivially on
A. As A is integral and ct fixes e ∈ A(k), it is enough to show that ct acts trivially on the local ring OA,e.

3We are using the following: if S is a noetherian scheme, and x  y is a specialization of points of S, then there exists a
map f : Spec(V )→ S with V being a discrete valuation ring such that f carries the generic point to x and the closed point to

y. To prove this, replacing S with {x}, one may assume S is an integral scheme with x being the generic point. Blowing up

the closed subscheme {y} ⊂ S and using the discrete valuation defined by the exceptional divisor on the blowup provides the
desired V .

8



If m ⊂ OA,e denotes the maximal ideal, then OA,e injects into its m-adic completion, so it is enough to show
that ct acts trivially on Vn := OA,e/m

n for each n ≥ 1.
Fix an integer n ≥ 0. Then the conjugation action can be viewed as a map c(k) : A(k) → Aut(Vn) :=

GL(Vn)(k). Assume for the moment that we have lifted this construction to a morphism c : A → GL(Vn)
of k-group schemes. We can then conclude by observing that GL(Vn) is affine, while A is a proper variety
(and hence has no non-constant global functions).

It remains to define the conjugation action c. This is an exercise in thinking about the functor of points,
and follows from the fact that the formation of Vn commutes with base change. More precisely, for any
k-algebra R, write AR = A⊗k R for the abelian scheme over R defined by A via base change. The identity
section eR : Spec(R) → AR is defined via base change from e. Let IeR ⊂ OAR

denote the ideal sheaf of eR.
Then IneR ⊂ OAR

defines the n-fold infinitesimal neighbourhood of the closed subscheme eR(Spec(R)) ⊂ AR;
this subscheme is finite over R, and its co-ordinate ring (viewed as an R-algebra) identifies naturally with
Vn ⊗k R := OA,e/m

n ⊗k R. It follows that the same recipe used to define c(k) enables one to define c(R) for
any k-algebra R in a manner that is compatible as R changes, and thus we obtain the promised map c.

1.3.2 Differential properties

prop:GroupSchOmega Proposition 1.3.11. Let f : G → S be a group scheme with identity section e : S → G. Then there is a
canonical isomorphism Ω1

G/S ' f
∗e∗Ω1

G/S. In particular, if S is the spectrum of a field, then Ω1
G/S is free.

Proof. For any S-scheme T and g ∈ GT (T ), the translation by g map Tg : GT → GT is an isomorphism, and
thus provides a canonical isomorphism T ∗g Ω1

GT /T
' Ω1

GT /T
. Applying this to T = G and g ∈ (G × G)(G)

being the diagonal map ∆ (and unwinding definitions), one obtains a canonical isomorphism

m∗Ω1
G/S ' pr∗2Ω1

G/S

on G×G. Alternately, this also follows by identifying both sides with Ω1
pr1

via the commutative diagram

G×G

pr1

!!

m

&&
'
(id,m)

%%
G×G

pr2 //

pr1

��

G

f

��
G

f // S

using that both squares are cartesian. Restricting to G
(id,e)−−−→ G × G, this gives the desired canonical

isomorphism
Ω1
G/S ' f

∗e∗Ω1
G/S

of sheaves on G.

Remark 1.3.12. Proposition 1.3.11 does not imply group schemes G/k over a field k are smooth as the
rank of Ω1

G/k might exceed the dimension of G. For example, if G = µp and k has characteristic p, then

Ω1
G/k is free of rank 1, while G has dimension 0.

Remark 1.3.13. Assume S is affine. The isomorphism from Proposition 1.3.11 yields (by adjunction) a
map e∗Ω1

G/S → H0(G,Ω1
G/S). This map is injective with left-inverse provided by restricting to the identity

section. Moreover, the construction shows that its image is exactly the “translation invariant” 1-forms, i.e.,
those ω ∈ H0(G,Ω1

G/S) such that T ∗g ωT = ωT ∈ H0(GT ,Ω
1
GT /T

) for any g ∈ G(T ) for any S-scheme T .

Example 1.3.14. Let G = Gm,S with co-ordinate t ∈ H0(G,OG), as in Example 1.2.6. Then e∗Ω1
G/S is a

free OS-module of rank 1, identified with Ie/I
2
e , where Ie ⊂ OG is the ideal sheaf of the zero section. The
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generator t− 1 ∈ Ie thus defines a translation invariant 1-form in H0(G,Ω1
G/S). Unwinding definitions, one

checks that this 1-form is dt
t .

AbVarRatCurve Corollary 1.3.15. Let A/k be an abelian variety over a field k. Any map f : P1 → A is constant. In
particular, abelian varieties are not rational (or even rationally connected).

Proof. We may assume k is algebraically closed. Assume f is nonconstant. Then its image C := f(P1
k) ⊂ A

is a unirational (possibly singular) irreducible curve. Replacing our given P1 with the normalization of
C, we may assume f is birational onto its image. Choose a point c ∈ C(k) in the smooth locus, so c
lifts uniquely to P1(k). Then Tc(P

1) → Tc(C) is an isomorphism. As C ⊂ A is a closed subscheme,
the induced map Tc(P

1) → Tf(c)(A) is injective. On the other hand, pullback of forms gives a map f∗ :
H0(A,Ω1

A/k)→ H0(P1,Ω1
P1/k). The right hand side is 0, so the map is 0. By Proposition 1.3.11, it follows

that f∗Ω1
A/k → Ω1

P1/k is the 0 map. Taking fibers at c then contradicts the injectivity established earlier,
thus proving the claim.

GroupSchemeRatCurve Remark 1.3.16. The conclusion of Corollary 1.3.15 is valid for any commutative k-group scheme A, not
merely abelian varieties. Indeed, the proof above only uses the smoothness of A, and not the properness.
To reduce to the smooth case, we simply observe that once we reduce to k = k, any map P1 → A factors
uniquely over Ared ⊂ A; one then observes that Ared is a smooth k-group scheme as k = k. If we ever need
this, we shall gvie more details.

Exercise 1.3.17. Let X be a smooth projective surface over a field k, and let A/k be an abelian variety.
Any rational map X 99K A is to a morphism X → A. (In fact, the same holds true for X of any dimension,
see Moonen’s notes.)

lem:GrpSchTgt Lemma 1.3.18. Let G/k be a finite type group scheme over a field k. Then there is a canonical isomorphism
T(e,e)(G×G) ' Te(G)×Te(G). The multiplication map m : G×G→ G induces a map T(e,e)(G×G)→ Te(G)
that coincides with the addition map under the previous isomorphism. A similar statement holds true for
Gn for any n ≥ 1.

Proof. Recall that for a k-scheme X with x ∈ X(k), there is a canonical identification4

Tx(X) ' {f : Spec(k[ε]/(ε2))→ X | f |Spec(k) = x}.

It formally follows that if Y is another k-scheme with y ∈ Y (k), then canonical map gives an isomorphism

T(x,y)(X × Y )
'−→ Tx(X)× Ty(Y ),

which gives the first part; here one must think through the compatibility of the preceding isomorphism with
the k-vector space structure on either side. For the second part, consider the inclusions

i1 : G
(e,id)−−−→ G×G and i2 : G

(id,e)−−−→ G.

Under the preceding identification of T(e,e)(G×G), this produces maps

i1,∗, i2,∗ : Te(G)→ Te(G)× Te(G),

4To construct this identification, it is enough to do in the affine case. Thus, given a k-algebra R and a maximal ideal m
with k = κ(m), we must identify the k-linear dual of m/m2 with the set k-algebra of maps R→ k[ε]/(ε2) lifting R→ R/m ' k.
Both sides are compatible with localization, so we may assume R is local with m being the maximal ideal. Now given a map
R → k[ε]/(ε2) as above, the induced map on cotangent spaces then gives a k-linear functional on m/m2 (as the cotangent
space of the target is canonically trivialized by ε). Conversely, given a nonzero functional λ : m/m2 → k, we have a natural
identification (R/m2)/ ker(λ) ' k[ε]/(ε2), where ε corresponds to 1 ∈ im(λ) = k. This yields a map in the other direction,
and one checks that it is an inverse to the previous construction. In terms of this description, the k-vector space structure of
Tx(X) is described the k∗-action on k[ε]/(ε2) by scaling ε (corresponding to scalar multiplication on the tangent space) and the
k-algebra map k[ε1]/(ε21)×k k[ε2]/(ε22)→ k[ε]/(ε2) given by εi 7→ ε (corresponding to addition of tangent vectors).
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and one checks by composing with the two projections that these coincide with the obvious inclusion of the
factors. The map m∗ : T(e,e)(G×G)→ Te(G) can then be described as

m∗(a, b) = m∗((a, 0) + (0, b)) = m∗(i1,∗(a) + i2,∗(b)) = m∗i1,∗(a) +m∗i2,∗(b) = a+ b,

as wanted. For n ≥ 1, one proceeds inductively.

prop:MultnSurjective Proposition 1.3.19. Let A/S be an abelian scheme. For any integer n, write [n] : A → A for the mul-
tiplication by n map. If n is invertible on S, then [n] is finite étale and surjective. In particular, for any
algebraically closed field k over S, the group A(k) is n-divisible for any n invertible on S.

For n invertible on S, it formally follows that the kernel A[n] of [n] is a finite étale S-group scheme: it is

the base change of [n] : A→ A along e : S → A. We shall later see that A[n] is a twisted form of Z/n
2g

.

Proof. Standard properties about étale morphisms reduce us to checking this assertion in each fibre, i.e., we
may assume S = Spec(k) for an algebraically closed field k. As A is proper and connected, any étale map
is automatically finite (as quasi-finite proper maps are finite) and thus surjective (as the image is closed by
properness and open by étaleness), so it suffices to check étaleness. Since A is a smooth k-variety, the map
[n] is étale if and only if it is an isomorphism on tangent spaces at closed points. Using suitable translations,
it is enough to check the claim at the tangent space at e, i.e., we want [n]∗ : Te(A) → Te(A) to be an
isomorphism. But this map is the map on tangent spaces induced by

A
∆−→ An

mn−−→ A,

where mn is the “sum of all co-ordinates” map. Applying Lemma 1.3.18 inductively then shows that [n]∗
coincides with multiplication by n. As n is invertible on S, this is an isomorphism.

Remark 1.3.20. In Proposition 1.3.19, when n is not invertible on S, the map [n] is never étale: the
proof above shows that [n]∗ is multiplication by n on tangent spaces, and thus not invertible by hypothesis.
Nevertheless, [n] is still finite surjective; this shall be proven later using intersection theory. More precisely,
we shall need to understand the behaviour of line bundles on abelian varieties.
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Chapter 2

Cohomology and base change: review

Consider a cartesian diagram

X ′
g′ //

f ′

��

X

f

��
S′

g // S

of noetherian schemes and a quasi-coherent sheaf F on X. Then there is a natural base change map

g∗Rif∗F → Rif ′∗g
′∗F.

If S′ → S corresponds to a map A→ B of rings, then the above map is simply

Hi(X,A)⊗A B → Hi(XB , FB).

This map is not an isomorphism in general. In fact, we give an example where this fails next with f being
smooth and projective, and F being a line bundle.

Example 2.0.1. Let (E, e) be an elliptic curve over a field k. Choose a 1-parameter family {Lt}t∈T of non-
trivial line bundles on E that degenerate to the trivial bundle. Concretely, we take T to be the spectrum
of the local ring OE,e; the line bundle OE×E(∆) ⊗ pr∗1OE(e) on E × E restricts to give a line bundle L on
X := E × T , viewed as a T -scheme via the projection f : X → T . If η and s denote the special and generic
points of T , then Lη ∈ Pic(Xη) is a non-trivial degree 0 line bundle, while Ls is the trivial bundle. We claim
that R0f∗L = H0(X,L) is 0 while H0(Xs, Ls) is 1-dimensional. The second assertion is clear as Xs ' E
and Ls is the trivial bundle. For the first, we simply remark as that the flatness of π, we have injection of
sections H0(X,L) ↪→ H0(Xη, Lη). Now Lη is a non-trivial degree 0 line bundle on the elliptic curve Xη, and
thus has no global sections.

The theme of this chapter is to understand the relationship between the sheaf Rif∗F and the function
s 7→ Hi(Xs, Fs) on S.

2.1 Basic theorems on coherent cohomology

Theorem 2.1.1 (Finiteness theorem). Let f : X → S be a proper morphism of noetherian schemes, and let
F be a coherent sheaf on X. Then Rif∗F is coherent for all i.

FFT Theorem 2.1.2 (Formal functions theorem). Let f : X → Spec(A) be a proper morphism of noetherian
schemes, let I ⊂ A be an ideal, and let F be a coherent sheaf on X. Then the natural maps give an
isomorphisms

Hi(X,F )⊗A Â ' ̂Hi(X,F ) ' limHi(X,F/In),

where all completions are I-adic.
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Proof sketch. Let U be a finite cover of X by affines, and let C•(U, F ) be the associated Cech complex. Then
the vanishing of cohomology of affines ensures that

Hi(X,F ) ' Hi(C•(U, F )) and Hi(X,F/In) ' Hi(C•(U, F/In)) ' Hi(C•(U, F )/In)

for all n. Thus, it is enough to show the following: if K• is a complex of A-modules with Hi(K) finitely
generated for all i, then the natural map gives an isomorphism

Hi(K)⊗A Â ' Ĥi(K) ' limHi(K/InK).

Both these are proven using the Artin-Rees lemma.

prop:FlatBC Proposition 2.1.3 (Flat base change). Let f : X → S be a qcqs morphism of schemes, and let F be a
quasi-coherent sheaf on X. Let g : T → S be any map, and consider the fiber product square:

XT
g′ //

f ′

��

X

f

��
T

g // S

Then there is a natural base change isomorphism

g∗Rif∗F ' Rif ′∗g′∗F

Proof. We may assume S = Spec(A) and T = Spec(B) are affine. Our goal is to show that

Hi(X,F )⊗A B ' Hi(XB , FB)

via the natural map. We give an argument when X is separated, and the general case is similar. Let U be
a finite cover of X by affines, and let C•(U, F ) be the associated Cech complex. Then we have:

1. Hi(X,F ) ' Hi(C•(U, F )) by the vanishing of the cohomology of affines as X is separated.

2. Hi(XB , FB) ' Hi(C•(UB , FB)) ' Hi(C•(U, F )⊗A B) ' Hi(C•(U, F ))⊗A B, where the first isomor-
phism exists for the same reason as above, the second as Cech complexes are compatible with base
change, and the third because the functor −⊗AB is exact (and thus commutes with taking cohomology
of a complex).

Combining the above gives the claim.

Remark 2.1.4. Proposition 2.1.3 often allows us to reduce a cohomological statement about a general
morphism X → S to one where the base S is a complete noetherian local ring. In this case, Theorem 2.1.2
often allows us to reduce further to the case of artinian local rings. The artinian case can then be analysed
explicitly using exact sequences relating an artinian local ring to a field.

Proposition 2.1.5 (Detecting vanishing fibrally). Let f : X → S be proper morphism of noetherian schemes,
and let F be a coherent sheaf on X that is flat over S. Then Rif∗F = 0 for all i ≥ i0 if and only if
Hi(Xs, Fs) = 0 for all i ≥ i0.

Proof. We may assume S = Spec(A) is affine. We want to show that Hi(X,F ) = 0 for all i ≥ i0 exactly
when Hi(Xs, Fs) = 0 for all i ≥ 0.

For ⇐, assume Hi(Xs, Fs) = 0 for all i ≥ i0. It is enough to show that the stalks of Hi(X,F ) at closed
points are zero. By flat base change, we may assume A is complete noetherian local with maximal ideal m
corresponding to the closed point s ∈ Spec(A). By the finiteness and formal functions theorems, we have
Hi(X,F ) ' limHi(Xs, F/m

n). We know that Hi(Xs, F/m) = 0. Using the filtration of R/mn given by
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powers of m, and that R-flatness of R, it follows from the LES that Hi(X,F/mn) = 0 for all n ≥ 0, which
proves the claim. (Note: this argument works separately for each degree i.)

For ⇒, assume Hi(X,F ) = 0 for i ≥ i0. Let U be an affine open cover of X, and C•(U, F ) be the
associated Cech complex. Then C•(U, F ) is a bounded complex of flat A-modules by assumption on F .
Moreover, for any A-algebra B, we have Hi(C•(U, F ) ⊗A B) ' Hi(XB , FB) as the formation of Cech
complexes commutes with base change. Now, as C•(U, F ) is a bounded complex of flat A-modules, it is
homotopically flat1 there is a spectral sequence,

Ep,q2 : TorA−p(H
q(C•(U, F )), B)⇒ Hp+q(C•(U, F )⊗A B).

It then immediately follows that if Hi(C•(U, F )) = 0 for i ≥ 0, the same must be true for Hi(C•(U, F )⊗AB).
Taking B to be the residue fields of A then proves the proposition.

Proposition 2.1.6 (Projection formula). Let f : X → S be a qcqs morphism of schemes. Let E be a vector
bundle on S and let F be a quasi-coherent sheaf on X. Then there is a natural isomorphism

E ⊗OS
Rif∗F ' Rif∗(f∗E ⊗OX

F ).

Proof. There is a natural map from the left to the right given by “cup products”; these can be explicitly
constructed using Cech complexes or by observing that f∗ is lax symmetric monoidal. So it suffices to prove
the isomorphism locally on S, and we can then reduce to the case of trivial bundles, which is clear2.

Proposition 2.1.7 (Kunneth). Let S := Spec(k) be the spectrum of a field. Let X and Y be qcqs k-schemes.
Let F (resp. G) be a quasi-coherent sheaf on X (resp. Y ). Then there is a natural isomorphism

⊕i+j=nHi(X,F )⊗k Hj(Y,G) ' Hn(X × Y, F �G).

Proof. We give an argument when X and Y are separated, and the general case is similar. Let U and V be
finite covers of X and Y by affines. Then taking products gives an affine open cover U × V of X × Y . We
have an obvious isomorphism

C•(U, F )⊗k C•(V, G) ' C•(U× V, F �G),

so the claim follows from the usual Kunneth formula for complexes.

2.2 Relating the cohomology of a family to the fibers

We make the following provisional3 definition:

Definition 2.2.1. For a commutative ring A, a complex M• of A-modules is called perfect if each M i is a
finite projective A-module, and M i = 0 for i /∈ [−n, n] for some n.

lem:CechPerfect Lemma 2.2.2. Let A be a noetherian ring. Let K• be a complex of A-modules satisfying:

1. Each Ki is flat, and Ki = 0 for i /∈ [a, b] for some fixed integers a ≤ b.

2. Each Hi(K) is finitely generated.

Then there exists a perfect A-complex M• and a quasi-isomorphism4 M• → K• with M i = 0 for i /∈ [a, b].

Proof. See Mumford.

1This means that tensoring with it preserves quasi-isomorphisms, and hence can be used to compute derived tensor products.
2One must identify the natural map with the obvious map as well, but we leave this to the reader.
3Once derived categories are introduced, we shall call a complex perfect if it is isomorphic in the derived category to one

satisfying the conditions of the previous definition.
4This is a map of complexes that induces an isomorphism on all cohomology groups.
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lem:QisFlat Lemma 2.2.3. Let f : M• → K• be a quasi-isomorphism between bounded complexes of flat modules over a
commutative ring R. Then for any A-module B, the map M•⊗AB → K•⊗AB is also a quasi-isomorphism.

Proof. Exercise.

prop:DerivedPushforwardPerfect Proposition 2.2.4. Let f : X → Spec(A) be a proper morphism with A noetherian. Let F be a coherent
sheaf on X that is flat over A. Then there exists a perfect A-complex M• such that for any A-algebra B,
there is a natural isomorphism

Hi(M• ⊗A B) ' Hi(XB , FB)

for all i.

Proof. Consider the Cech complex C•(U, F ) attached to a finite cover U = {Ui}i=1,...,n of X by affines
Ui ⊂ X. Then we have:

1. By the vanishing of the coherent cohomology of affine schemes, we have Hi(C•(U, F )) ' Hi(X,F ). In
particular, each Hi(C•(U, F )) is a finitely generated A-module, and vanishes outside [0, n].

2. Each Ci(U, F ) is a flat A-module by assumption on F .

3. The formation of C•(U, F ) commutes with base change, i.e., if B is any A-algebra, then

C•(U, F )⊗A B ' C•(UB , FB)

via the natural map.

Using (1) and (2) and applying Lemma 2.2.2 to C•(U, F ) gives a perfect A-complex equipped with a quasi-
isomorphism M• → C•(U, F ). To finish, we must show that the quasi-isomorphism M• → C•(U, F ) remains
a quasi-isomorphism after applying −⊗A B. This follows from Lemma 2.2.3.

rmk:DerivedPushforwardQis Remark 2.2.5. In the setup of Proposition 2.2.4, by Lemma 2.2.3, we are free to replace M• with any
quasi-isomorphic perfect complex without affecting the conclusion.

cor:SC Corollary 2.2.6 (Semicontinuity). Fix X, A, and F as in Proposition 2.2.4. Then:

1. For each i ≥ 0, the function s 7→ dimHi(Xs, Fs) on Spec(A) is upper semicontinuous, i.e., the sets
{s ∈ S | dimHi(Xs, Fs) ≥ k} are closed for any integer k. In particular, the value of this function can
only go up under specialization.

2. The function s 7→ χ(Xs, Fs) =
∑
i(−1)i dimHi(Xs, Fs) is locally constant.

3. Assume that Hi(Xs, Fs) = 0 for some fixed i and all s ∈ Spec(A). Then Hi(X,F ) = 0 and the natural
map gives an isomorphism

Hi−1(X,F )⊗A κ(s) ' Hi−1(Xs, Fs)

for all s ∈ Spec(A).

4. Assume A is reduced, and fix an integer i. Then the function s 7→ Hi(Xs, Fs) is constant if and only
if Hi(X,F ) is a finite projective A-module and Hi(X,F ) ⊗A κ(s) ' Hi(Xs, Fs) for all s ∈ Spec(A).
If either condition are satisfied, then Hi−1(X,F )⊗A κ(s)→ Hi−1(Xs, Fs) is an isomorphism as well.

Proof. All assertions are equally valid for the cohomology groups of the fibers of any perfect A-complex M•.

1. Choose a perfect complex M• of A-modules as in Proposition 2.2.4. By shrinking the base further, we
may assume each M i is finite free. The differential di : M i →M i+1 is thus a matrix with entries in A.
Our goal is to show that the function

s 7→ dim(ker(di ⊗A κ(s))/im(di−1 ⊗A κ(s)))
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is upper semicontinuous. As all dimensions involved can take on only finitely many values (between 0
and the largest rank of the M i’s), it is enough to show that the functions

ki(s) := dim(ker(di ⊗A κ(s))) and ri(s) = −dim(im(di−1 ⊗A κ(s)))

are upper semicontinuous. By rank-nullity, we have ri(s) = rank(M i−1) − ki−1(s), so it is enough to
show that the claim for ki for all i. But

{s ∈ Spec(A) | ki(s) ≥ c} = {s ∈ Spec(A) | rank(di ⊗A κ(s)) < rank(M i)− c}.

The right hand side is the vanishing locus of the set of (rank(M i)−c)2-minors of di, and is thus closed.

Remark 2.2.7. We pause to give a possibly more enlightening proof for the last statement of the claim,
i.e., the values of the function can only go up under specialization. By detecting specializations using
valuation rings, we may assume A is a discrete valuation ring with fraction field K, residue field k, and
uniformizer t ∈ A. We must show that dimK H

i(XK , FK) ≤ dimkH
i(Xk, Fk). Choose a finite complex

M• of finite projective A-modules as in Proposition 2.2.4. We must show that dimHi(M• ⊗A K) ≤
dimHi(M• ⊗A k). As A → K is flat, we have Hi(M• ⊗A K) = Hi(M•)[ 1

t ]. On the other hand,
tensoring the exact sequence

0→ A
t−→ A→ k → 0

with M• gives a short exact sequence of complexes (as each M i is flat). Taking cohomology of this
sequence gives a short exact sequence of k = A/t-modules

0→ Hi(M•)/t→ Hi(M• ⊗A k)→ Hi+1(M•)[t]→ 0.

It thus suffices to check dimK H
i(M•)[ 1

t ] ≤ dimkH
i(M•)/t. This holds true for any finitely generated

A-module in place of Hi(M•), and can be easily seen using the classification of such A-modules.

2. We may assume that A is a local ring. Our goal is to show that the function s 7→ χ(Xs, Fs) is constant.
Choose a complex M• as in Proposition 2.2.4. As A is local, each M i is a finite free A-module of some
rank ri. We claim that for any s ∈ Spec(A), we have

χ(Xs, Fs) =
∑
i

(−1)iri.

The right side is clearly independent of s, so this would prove the required statement. To see this
formula, write k = κ(s) for simplicity. Then the left side is

∑
i(−1)i dimkH

i(M•⊗Ak) by construction.
As M i⊗A k is a k-vector space of dimension ri, we are reduced to showing the following: for any finite
complex N• of finite dimensional k-vector spaces, we have∑

i

(−1)i dimkH
i(N•) =

∑
i

(−1)i dimkN
i.

We leave this assertion to the reader as an exercise in linear algebra.

3. Fix a prime ideal m ⊂ A with residue field k. Our goal is to show that

Hi−1(X,F )⊗A k → Hi−1(X,F/m)

is an isomorphism; the vanishing of Hi(X,F ) will be deduced en route. For this, by flat base change, we
may assume that A is complete noetherian local with maximal ideal m. We shall show more generally
for any A-module M , the natural map

Hi−1(X,F )⊗AM → Hi−1(X,F ⊗AM)
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is an isomorphism. Using a presentation of M , it is enough to check that the functor

M 7→ Hi−1(X,F ⊗AM)

is right-exact. As F is A-flat, this is implied by the vanishing of the functor

M 7→ Hi(X,F ⊗AM)

and the long exact sequence5. To show this vanishing, by the formal functions theorem, it suffices
handle the case where M is killed by mn for some n ≥ 0. The case n = 1 follows by our assumption
since any such M is a finite product of copies of k. The general case then follows by filtering M by the
m-adic filtration and using the attached long exact sequences. Taking M = A also gives Hi(X,F ) = 0,
as wanted.

4. We explain a simple proof when A is a dvr, and leave the rest to the references. So assume A is a
dvr with fraction field K, uniformizer t, and residue field k. Choose a perfect A-complex M• as in
Proposition 2.2.4. Assuming that dimK(Hi(M•)[ 1

t ]) = dimk(Hi(M• ⊗A k)), we shall show:

(a) Hi(M•) is free,

(b) Hi(M•)/t ' Hi(M• ⊗A k), and

(c) Hi−1(M•)/t ' Hi−1(M• ⊗A k).

This clearly proves the claim. Tensoring the exact sequence

0→ A
t−→ A→ k → 0

with M• gives a short exact sequence of complexes (as each M i is flat). Taking cohomology of this
sequence gives a short exact sequence of k = A/t-modules

0→ Hi(M•)/t→ Hi(M• ⊗A k)→ Hi+1(M•)[t]→ 0.

We then get

dimK(Hi(M•)[
1

t
]) ≤ dimkH

i(M•/t) ≤ dimk(Hi(M• ⊗A k)),

where the first inequality is a general fact about finitely generated A-modules, and the second follows
from the SES. Our hypothesis ensures that the outer terms are equal, and hence all terms are equal,
say to some integer r ≥ 0. It follows that

Hi(M•)/t ' Hi(M• ⊗A k),

proving (b). Choosing r generators of the this k-module and lifting to A, we get a surjection Ar →
Hi(M•). This map is bijective after reduction modulo t by construction; it is also bijective after
inverting t as dimK(Hi(M•)[ 1

t ]) = r. It is then easy to see that this map is an isomorphism, which
proves (a). Finally, (c) follows (a) and the exact sequence used above shifted one degree down.

5If a functor between abelian categories carries short exact sequences to right exact sequences, then it also carries right exact
sequences to right exact sequences.
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Chapter 3

Line bundles

3.1 The seesaw and cube theorems

lem:LineTrivial Lemma 3.1.1. A line bundle M on a proper geometrically integral variety Y over a field k is trivial if and
only if H0(Y,M) and H0(Y,M−1) are nonzero

Proof. The “only if” direction is clear, and for the “if” direction we observe that if s : OY → M and
t : M → OY are nonzero maps, then the compositions st and ts are both nonzero (as Y is geometrically
integra), and thus isomorphisms (as Y is proper), implying that both s and t were isomorphisms.

prop:InvertibleBC Proposition 3.1.2. Let f : X → S be a proper flat morphism of noetherian schemes. Fix L ∈ Pic(X).
Then there exists a unique locally closed subscheme Z ⊂ S such that:

1. The pushforward (fZ)∗LZ is invertible on Z.

2. If T → S is an S-map, then T → S factors (necessarily uniquely) over Z exactly when (fT )∗LT is
invertible. In this case, (fT )∗LT is pulled back from (fZ)∗LZ .

In the sequel, we shall refer to the conjunction of (1) and (2) above for the pair (fZ , L) as saying that
(fZ)∗LZ is invertible and of formation compatible with base change.

Proof. The universal property in (2) characterizes Z, and also shows that its formation is compatible with
base change (provided it exists). We may thus work locally on S to find such a Z. In fact, the underlying
set is clear from (2): |Z| = {s ∈ S | dimH0(Xs, Ls) = 1} ⊂ S. This set is constructible by Corollary 2.2.6
(1). To find the desired scheme structure, fix some s ∈ |Z|. As |Z| is locally closed, the intersection |Z| ∩ U
is closed for a suitably small affine open neighbourhood s ∈ U ⊂ S. We shall equip this closed set with a
natural closed subscheme structure satisfying the analog of (1) and (2) for the base change fU . In particular,
these structures patch together via the universal property to produce the required scheme structure on Z.

First, we make a preliminary construction. Assume S = Spec(A). By shrinking S further, we may choose
a finite complex K• of finite free A-modules as in Proposition 2.2.4, so H0(K• ⊗A B) = H0(XB , LB) for
all A-algebras B. Setting

Q = coker
(
(K1)∨

d∨−−→ (K0)∨
)
,

this translates to a functorial identification HomA(Q,B) ' H0(XB , LB) for all A-algebras B. In particular,
it follows that the formation of Q commutes with localization on A.

Now, as we have fixed s ∈ |Z| ⊂ S, we have dimH0(Xs, Ls) = 1, so HomA(Q, κ(s)) = (Q ⊗A κ(s))∨ is
1-dimensional. Then Nakayama shows that Q is a cyclic A-module, at least after shrinking S further around
s. Write Q = A/I for some ideal I ⊂ A. We then claim that setting Z = V (I) solves the problem, i.e.,
satisfies (1) and (2). For (1), we must show that HomA(Q,A/I) is an invertible A/I-module, which is clear
as Q = A/I. To check (2), we shall show the following:
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(∗) For any A-algebra B, the B-module HomA(Q,B) is invertible exactly when IB = 0.

Once either of these conditions is satisfied, the resulting map HomA(Q,A/I) ⊗A/I B → HomA(Q,B) is
an isomorphism as Q = A/I, which proves the rest of (2).

To prove (∗), note that HomA(Q,B) = B[I] = {b ∈ B | I · b}. If this B-module is invertible and
IB 6= 0, then, after passing to an open cover of Spec(B), we would obtain a free B-module of rank 1 that is
annihilated by a nonzero ideal of B, which is absurd.

thm:Seesaw Theorem 3.1.3 (Seesaw theorem). Let f : X → S be a proper flat morphism of noetherian schemes with
geometrically integral fibers. Fix L ∈ Pic(X). Then:

1. The set Z := {s ∈ S | L|Xs
is trivial} is closed in S.

2. We have L|Zred
' f∗Zred

M for some M ∈ Pic(Zred).

3. There exists a unique closed subscheme structure on Z such that L|Z is pulled back from Pic(Z), and
the map Z → S is universal with this property, i.e., if T → S is some map with LT ∈ Pic(XT ) pulled
back from Pic(T ), then the structure map T → S factors uniquely over Z.

In particular, if L is trivial on all the fibers of f and S is reduced, then L is pulled back from S.

Proof. 1. By Lemma 3.1.1, we have

Z = {s ∈ S | H0(Xs, Ls) ≥ 1} ∩ {s ∈ S | H0(Xs, L
−1
s ) ≥ 1},

which is closed by Corollary 2.2.6 (1).

2. For this part, we may replace S with Zred to assume L is trivial on all the fibers. Thus, H0(Xs, Ls)
is 1-dimensional for all s by our hypothesis on the fibers. As the base is reduced, Corollary 2.2.6 (4)
implies that M = f∗L is a line bundle, and the map Ms → H0(Xs, Ls) is an isomorphism for all s.
There is a pullback f∗M → L defined by adjunction, and it is an isomorphism after restriction to each
fiber Xs by construction (as each line bundle is trivial on the fibers, and the map on global sections is
an isomorphism). Any such map must be an isomorphism: if a map between finite projective modules
over a noetherian ring is an isomorphism on each fiber, it is an isomorphism by Nakayama.

3. We first claim that L is pulled back from S if and only if f∗L and f∗L
−1 are invertible and of formation

compatible with base change. Indeed, the “only if” implication follows from the projection formula
as f∗OX ' OS by Proposition 1.3.6. Conversely, if f∗L and f∗L

−1 are invertible and of formation
compatible with base change, then the adjunction map f∗f∗L → L is map between line bundles that
is an isomorphism on the fibers by our base change compatibility assertion (as in (2)), and thus an
isomorphism by Nakayama.

Consider the maximal locally closed subscheme W ⊂ S such that (fW )∗LW and (fW )∗L
−1
W are both

invertible and of formation compatible with base change, as provided by Proposition 3.1.2 applied to
L and L−1. By the previous paragraph, the map W → S satisfies the universal property formulated
in (2). It thus remains to check that W = Z as subsets of S; indeed, this will imply that W → X is a
closed immersion as Z ⊂ X is closed by (1). But W = Z is also clear from the universal property in
(3) and the definition of Z, so we are done.

Remark 3.1.4 (Seesaw via Picard schemes). For X/S as in Theorem 3.1.3, consider the presheaf PicX/S
on Sch/S defined by T 7→ Pic(XT )/f∗Pic(T ). If f is assumed to be projective and admits a section, then
a non-trivial theorem of Grothendieck shows that PicX/S is representable by a separated S-group scheme.
If one is willing to use this result, then Theorem 3.1.3 admits a direct proof: the line bundle L defines a
section [L] : S → PicX/S(T ), and the desired closed subscheme Z ⊂ S is simply the pullback of the 0-section
of PicX/S along [L].

19



Remark 3.1.5. It follows from the universal property in Theorem 3.1.3 (2) that the formation of Z itself
commutes with base change, i.e., if g : S′ → S is any map, then the scheme-theoretic inverse image Z ′ :=
g−1(Z) ⊂ S′ satisfies the universal property in Theorem 3.1.3 (2) for the pair (fS′ , LS′).

Remark 3.1.6. Theorem 3.1.3 owes its name to the special case X is a product of two proper geometrically
integral varieties over a field k, and f is a projection. In this case, the theorem implies that line bundles on
the product that are trivial on the fibers of one of the projection maps are pulled back from the base of the
projection, thus evoking a “seesaw” image.

Remark 3.1.7. It is tempting to ask the following question: if X and Y are proper and geometrically
integral varieties over k, and L ∈ Pic(X × Y ) is trivial on X × {y} and {x} × Y for a single pair of points
(x, y) ∈ X(k)× Y (k), then is L is trivial? The answer is no. For example, take an elliptic curve (E, e), and
let D ⊂ X×Y be the divisor given by ∆−pr−1

1 (e)−pr−1
2 (e). Then D|{e}×E and D|E×{e} are trivial, but D

is not trivial: if it were trivial, then for any x ∈ E(k), we would see that D|E×{x} ' OE(x− e) is the trivial
line bundle on E, which is not possible unless x = e as the map E(k) → Pic(E) given by y 7→ O(y − e) is
injective.

thm:Cube Theorem 3.1.8. Let S be a connected noetherian scheme, and let X → S and Y → S be two proper flat
morphisms with geometrically integral fibers. Fix L ∈ Pic(X ×S Y ) Assume the following:

1. There exist sections eX ∈ X(S) and eY ∈ Y (S) such that the pullback of L along fX : X
(idX ,eY )−−−−−−→

X ×S Y and fY : Y
(eX ,idY )−−−−−−→ X ×S Y is trivial.

2. There exists a point s ∈ S with Ls trivial.

Then L is pulled back from S.

The idea of the proof is deformation theoretic: using (1) and deformation theory, one “spreads out” the
conclusion of (2) to arbitrary artinian thickenings of s, and, in the limit, to a formal neighbourhood of s.

Proof. Write P = X ×S Y for the product. Let Z ⊂ S be the maximal closed subscheme with LZ pulled
back from Z universally, as in Theorem 3.1.3. We must show Z = S. We have s ∈ Z by (2), so Z 6= ∅.
As Z is closed, it is enough to show Z is also open (as S is connected). Moreover, to prove openness, it is
enough to check stability under generalizations: a closed subset of a noetherian affine scheme that is closed
under generalizations has to be open. We may thus assume S = Spec(R) for a noetherian local ring R with
maximal ideal m and residue field k. Relabelling, write s ∈ S for the closed point, and write I ⊂ m for the
ideal of Z. We want to show I = 0. If not, then there exists a smaller ideal J ⊂ I with I/J ' k as an
R-module: we may simply take J to be the preimage of any codimension 1 subspace of I/mI (as the latter
is nonzero if I 6= 0 by Nakayama). Let W := Spec(R/J), so we have a strict containment Z ( W of closed
subschemes of S. By definition of Z, we know that LZ is pulled back from Z, and hence trivial (as Z is
local). We shall show that LW is also trivial, contradicting the maximality of Z, thus proving the theorem.

As LZ is trivial, we can choose some s ∈ H0(PZ , LZ) giving an isomorphism OPZ

s' LZ . Pulling back
the exact sequence

1→ k → R/J → R/I → 1

to P and tensoring with L gives an exact sequence

1→ Ls → LW → LZ → 1

of sheaves. Hence, the obstruction to lifting s to an element s̃ ∈ H0(PZ , LZ) is an element ξ = ξ(s) ∈
H1(Ps, Ls). We shall show that ξ = 0. This will imply the theorem. In fact, we claim the stronger statement
that ξ = 0 exactly when LW is trivial. Indeed, if ξ = 0, then the map s lifts to s̃ that necessarily trivializes
LW (by Nakayama). Conversely, if LW is trivial, then ξ = 0 as the map H0(PW , LW ) → H0(PZ , LZ)
identifies with the map R/J → R/I by Proposition 1.3.6, and hence is surjective.
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It remains to show ξ = 0. By functoriality of forming ξ from s, the pullback class ξX := f∗X(ξ) ∈
H1(Xs, f

∗
X(Ls)) measures the obstruction to trivializing f∗X(LW ) on XW , and similarly for ξY := f∗Y (ξ) ∈

H1(Ys, f
∗
Y (Ls)). But f∗X(L) and f∗Y (L) are themselves pulled back from S by hypothesis, and hence trivial

as S is local. It follows that ξX = ξY = 0. It is therefore enough to check that pullback gives in injective
map

H1(Ps, Ls)→ H1(Xs, f
∗
XLs)×H1(Ys, f

∗
Y Ls).

But, after fixing an isomorphism Ls ' OPs
, this identifies with the pullback

H1(Ps,OPs
)→ H1(Xs,OXs

)×H1(Ys,OYs
),

which is even bijective by the Kunneth formula.

cor:cube Corollary 3.1.9 (Theorem of the cube). Fix a base scheme S. Let X → S and Y → S be proper flat maps
with geometrically integral fibers, and let Z be any connected finite type S-scheme. Let L ∈ Pic(X × Y ×Z).
If there exist sections x ∈ X(S), y ∈ Y (S), and z ∈ Z(S) with L|{x}×Y×Z , L|X×{y}×Z , and L|X×Y×{z}
being trivial, then L is trivial.

Proof. Our hypotheses ensure that Theorem 3.1.8 applies to the projection X × Y × Z → Z, so we learn
that L is pulled back from Z. On the other hand, L is trivial on the section {x} × {y} × Z ⊂ X × Y × Z of
the projection by assumption, and hence L must be trivial.

3.2 The theorem of the square and applications

cor:CubeAbVar Lemma 3.2.1. Fix a connected base scheme S. Let π : A → S be an abelian scheme, and let Z be any
S-scheme. Fix maps f, g, h : Z → A. Then for any L ∈ Pic(A), there exists an isomorphism

(f + g + h)∗L ' (f + g)∗L⊗ (f + h)∗L⊗ (g + h)∗L⊗ f∗(L−1)⊗ g∗(L−1)⊗ h∗(L−1)⊗ π∗e∗L

Here we follow the convenient that if a, b : Z → A are two maps, then a + b is the composite Z
(a,b)−−−→

A×A m−→ A.

Proof. It is enough to handle the universal case where Z = A×A×A, and f, g, h are the 3 projections. Set
m = f + g + h, mfg = f + g, mgh = g + h, and mfh = f + h. Write e : A × A × A → A for the constant
map. It is enough to show that the line bundle

M := m∗L−1 ⊗m∗fgL⊗m∗ghL⊗m∗fhL⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1 ⊗ π∗e∗L

is trivial on A×A×A. It is easy to see that the following pairs of maps induce the same maps on composition

with A×A (id,id,e◦π)−−−−−−−→ A×A×A:

m,mfg and mgh, g and mfh, f and e ◦ π, h.

It then immediately follows that M |A×A×{e} is the trivial bundle. By symmetry, we also M also restricts to
the trivial bundle over {e} ×A×A and A× {e} ×A. Corollary 3.1.9 then implies that M is trivial.

MultNLB Corollary 3.2.2. Let A/S be an abelian scheme. Then for any integer n and L ∈ Pic(A), we have

[n]∗L ' L
n2+n

2 ⊗ [−1]∗L
n2−n

2 ⊗ π∗e∗L−n
2

.

In particular, if L is symmetric (i.e., L ' [−1]∗L), then [n]∗L ' Ln2

up to line bundles pulled back from S.

Given any line bundle M , the bundle M ⊗ [−1]∗M is symmetric.
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Proof. One proves this separately for positive and negative n by induction. We give the argument for n = 2.
Applying Lemma 3.2.1 to Z = A with f = [1], g = [1], and h = [−1], we obtain

L ' [2]∗L⊗ [0]∗L⊗ [0]∗L⊗ L−1 ⊗ L−1 ⊗ [−1]∗L−1 ⊗ π∗e∗L,

which, as [0] = e ◦ π, simplifies to give

[2]∗L ' L3 ⊗ [−1]∗L⊗ π∗e∗L−3,

as wanted.

square Corollary 3.2.3 (Theorem of the square). Let A/S be an be an abelian scheme. For all L ∈ Pic(A) and
x, y ∈ A(S), we have an isomorphism

t∗x+yL⊗ L ' t∗xL⊗ t∗yL

up to line bundles pulled back from S.

Proof. Write cx and cy for the constant maps with values x and y respectively. Apply Lemma 3.2.1 with
f = cx, g = cy and h = id to get

t∗x+yL ' c∗x+yL⊗ t∗yL⊗ t∗xL⊗ c∗xL−1 ⊗ c∗yL−1 ⊗ L−1 ⊗ c∗eL.

This gives the desired formula up to line bundles pulled back from S.

phiL Remark 3.2.4 (The φL construction). Corollary 3.2.3 implies that for each line bundle L on A, the map
of presheaves

φL : A→ PicA/S

defined on points by φL(x) = t∗xL⊗ L−1 is a homomorphism. The kernel of this map classifies those points
x : T → A such that the line bundle t∗x(LT )⊗L−1

T on A× T is pulled back from T . We shall give a different
description of this kernel in Corollary 3.2.6.

3.2.1 The Mumford bundle and K(L)
ss:KofL

Let L be a line bundle on an abelian scheme A/S.

Definition 3.2.5. The Mumford bundle attached to L is

Λ(L) := m∗(L)⊗ pr∗1L−1 ⊗ pr∗2L−1 ∈ Pic(A×A).

Applying the Seesaw theorem to the first projection pr1 : A×A→ A, we obtain a maximal closed subscheme
K(L) ⊂ A such that Λ(L)|K(Z)×A is universally pulled back1 from K(L).

If x : T → A is a map, then pullback Λ(L)|T×A can be identified as t∗x(LT )⊗ pr∗1x∗(L)⊗ LT on T × A,
where LT = pr∗2(L). Thus, we have:

KofLAlternate Corollary 3.2.6. A map x : T → A factors through K(L) exactly when t∗xLT ⊗L−1
T on T ×A is pulled back

from T .

Using this, we claim:

Lemma 3.2.7. The subscheme K(L) ⊂ A is a subgroup scheme.

Proof. Let x, y ∈ A(T ) be two scheme-theoretic points. We must show that if t∗x(LT )⊗L−1
T and t∗y(LT )⊗L−1

T

are pulled back from T , the so is t∗x+y(LT )⊗ L−1
T . But this is immediate from Corollary 3.2.3.

1In fact, we have Λ(L)|K(L)×A ' OK(L)×A: this follows by pulling back along the section K(L)
(incl,e)−−−−−→ K(L)× A to pr1.

This is the main reason to introduce the pr∗1L
−1 term in the definition of Λ(L). If we had not done this, then K(L) would be

the same scheme, but we would lose the triviality.
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KofLRestrict Lemma 3.2.8. Assume S = Spec(k) for an algebraically closed field k.

1. The maximal connected reduced subscheme B := (K(L)0)red is an abelian subvariety of A.

2. The line bundle L|B ⊗ [−1]∗L|B is trivial.

In particular, over any base scheme S, if L is relatively ample for A/S, then K(L) is finite over S.

Proof. For (1), observe that B is a proper connected reduced variety such that B(k) ⊂ A(k) is a subgroup.
As k is algebraically closed, this implies that B is an abelian variety. Write M = L|B . It is immediate
from the definitions that Λ(L)|B×B ' Λ(M). Now Λ(L)|K(L)×A is trivial, and hence Λ(M) is also trivial on
B ×B. Pulling back along (1,−1) : B → B ×B shows that M ⊗ [−1]∗M is trivial on B, giving (2).

For the last assertion: as K(L) ⊂ A is closed, the map K(L) → S is proper. Moreover, the formation
of K(L) commutes with base change. Thus, to show finiteness, we may assume S is a geometric point.
Adopting the notation of (1), it is enough to show dim(B) = 0. As L is ample, so is M , and hence the same
holds true for M ⊗ [−1]∗M . But the latter is trivial on B by (2). The claim follows as there are no positive
dimensional connected projective variety where the trivial bundle is ample.

Remark 3.2.9. As Λ(L)−1 = Λ(L−1), we have an equality K(L) = K(L−1) of subgroup schemes of A. In
particular, the finiteness of K(L) does not force ampleness of L. We shall see later that the noneffectivity
of L is the only obstruction here.

3.2.2 Projectivity of abelian varieties

The following proposition ensures that any map non-finite map out of an abelian variety arises essentially
by collapsing a non-trivial abelian subvariety.

MapOutOf Proposition 3.2.10. Let k be an algebraically closed field. Let f : A → Y be a map of k-varieties with A
an abelian variety. For each a ∈ A(k), write Fa for the connected component of f−1(f(a)), given its reduced
structure. Then F0 is an abelian subvariety of A, and Fa = a+ F0 ⊂ A for any a ∈ A(k).

Proof. Fix some a ∈ A(k), and consider the map φ : A× Fa → Y defined by restriction A× A m−→ A
f−→ Y .

Now φ({0} × Fa) is simply the closed point f(a). By Corollary 1.3.7, it follows that φ factors over the

projection pr1 : A × Fa → A via a map φ : A → Y . Using the section A
b 7→(b,a)−−−−−→ A × Fa, it follows that

φ(b) = φ(b, a) = f(b+ a) for any b ∈ A(k). This gives

f(b− a+ Fa) =: φ(b− a, Fa) = φ(b− a) = f(b− a+ a) = f(b).

Taking a = 0 gives f(b+F0) = f(b), so b+F0 ∈ Fb for all b ∈ A(k). Taking b = 0 gives f(−a+Fa) = f(0),
so −a + Fa ⊂ F0 for all a ∈ A(k), and hence Fa ⊂ a + F0 for all a ∈ A(k). Combining the previous two
sentences shows Fa = a+ F0 for all a ∈ A(k).

As F0 is proper, geometrically reduced and geometrically connected, by Remark 1.3.2, it remains to
check F0(k) ⊂ A(k) is closed under the group operation. But we have already seen that a+ Fa = F0 for all
a ∈ A(k). If a ∈ F0(k), then Fa = F0, so this gives a+ F0 = F0, and hence F0(k) is closed under the group
operation.

Effective divisors on an abelian variety are effectively semiample.

EffectSA Proposition 3.2.11. Let A/k be an abelian variety, and let D be an effective divisor on A. Then the line
bundle L = OA(D) is semiample. More precisely, the linear system |2D| is basepoint free.

Proof. We may assume k is algebraically closed. We must show that for each a ∈ A(k), there exists some
E ∈ |2D| such that a /∈ E. Let U ⊂ A denote the dense open set −a+ (A−D). Then U ∩ [−1]∗(U) is not
empty, so we can choose some b ∈ A(k) with b,−b ∈ −a+(A−D). This means a+b ∈ A−D and a−b ∈ A−D;
equivalently, we have a /∈ −b+D and a /∈ b+D. But this can also be written as a /∈ T ∗−b(D)∪ T ∗b (D). Now
the divisor E = T ∗−b(D) + T ∗b (D) belongs to the linear system |2D| by Corollary 3.2.3, and we just checked
a /∈ E, as wanted.
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KofLSA Remark 3.2.12. Let A be an abelian variety over an algebraically closed field k, and L ∈ Pic(A) an
effective line bundle. Proposition 3.2.11 gives a morphism f : A → P(H0(A,L2)) such that f∗O(1) = L2.
Proposition 3.2.10 gives an abelian subvariety F0 ⊂ A in the fibre over f(0). On the other hand, we also
obtain the subgroup scheme K(L) ⊂ A as in §3.2.1. We claim that F0 coincides with B := (K(L)0)red.

To show F0 ⊂ B, fix some x ∈ F0(k). As F0 is connected, it is enough to check that x ∈ K(L)(k), i.e.,
we have T ∗x (L) ' L. Fix a nonzero section s ∈ H0(A,L) corresponding to an effective divisor D ⊂ A. The
section s2 gives a hyperplane H ⊂ Pn which pulls back to the divisor 2D. As x ∈ F0, we have f ◦ Tx = f ,
so T ∗x (2D) and 2D are the same divisor. As this is an equality of divisors and not merely divisor classes, we
must also have T ∗x (D) = D. Passing to associated line bundles shows T ∗xL ' L.

To show B ⊂ F0, set M := L|B . Then M2 is globally generated (as L2 is so). We shall check that M2

is trivial. This implies that the composition B → A
f−→ P(H0(A,L2)) is the constant map; its image is

necessarily f(0), which would prove that B ⊂ F0. To check triviality of M2, note that Lemma 3.2.8 implies
that M−1 ' [−1]∗M , and hence M−2 ' [−1]∗M2. As [−1] is an automorphism, it follows that M−2 is also
globally generated. Lemma 3.1.1 then implies that M2 is trivial.

KofLHofD Remark 3.2.13. Let (A,L,D) as in Remark 3.2.12. The proof of F0 ⊂ B in Remark 3.2.12 shows something
stronger: we have

F0 ⊂ H(D) := {x ∈ A(k) | t∗xD = D},

where the equality is an equality of divisors (and not merely divisor classes). In particular, we have

K(L)◦(k) = B(k) ⊂ F0 ⊂ H(D).

In particular, any open set in A containing H(D) also contains K(L)◦.

We get the promised characterization of ampleness of L in terms of K(L):

AmpleCritKofL Corollary 3.2.14. Let A/k be an abelian variety, and let L ∈ Pic(A) be an effective line bundle. If K(L)
is finite, then L is ample.

Proof. We may assume k is algebraically closed. Let f : A → Pn be the map defined by L2 by Proposi-
tion 3.2.11. It is enough to show that the fibers of f are finite. In fact, as all fibers are translates of each
other, it suffices to show that F0 is finite. But Remark 3.2.12 tells us that F0 = B ⊂ K(L), which is finite
by hypothesis, so we are done.

AffineComplement Lemma 3.2.15. Let X be a separated noetherian scheme. Let U ⊂ X be a dense affine open subset. Then
each generic point of X − U has codimension 1 in X. In other words, X − U is a union of Weil divisors in
X.

Proof. We give a proof when X is normal; see [?, Tag 0BCQ] for the general case. For any x ∈ X, the the
base change Ux := U ×X Spec(OX,x) ⊂ Xx := Spec(OX,x) is a dense affine open subset by the separatedness
of X and the density of U . Now if x is a generic point of X − U , then Xx − Ux is a single closed point, so
Ux is the punctured spectrum of the local scheme Xx. If x had codimension ≥ 2 in X, then it would follow
from normality that H0(Xx,OXx

) ' H0(Ux,OUx
). But both Ux and Xx are affine, so this forces Ux = Xx,

which is impossible as x /∈ U . Thus, x has codimension ≤ 1; in fact, the codimension is exactly 1 as Ux is
nonempty.

ProjectiveFieldExt Exercise 3.2.16. Let X/k be a scheme of finite type. Assume that Xk is projective. Show that X is
projective.

Theorem 3.2.17. Abelian varieties are projective.

Proof. By Exercise 3.2.16, we may assume k is algebraically closed. Let U ⊂ A be an affine open subset
containing e. Let D = A− U , so D is an effective Weil (and hence Cartier) divisor on A by Lemma 3.2.15.
Let L = OA(D) and consider H(D) = {x ∈ A(k) | t∗xD = D} as in Remark 3.2.13. Any x ∈ H(D) carries U
to itself under translation (by definition). As e ∈ U , it follows that x ∈ U , and thus H(D) is contained in
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U . Since K(L)◦(k) ⊂ H(D), it follows that K(L)◦ is also contained in U (see Remark 3.2.13). But K(L)◦

is proper and connected, while U is affine, so K(L)◦ = {∗}, which proves that K(L) is finite, and thus L is
ample by Corollary 3.2.14.

Alternative proof. By Exercise 3.2.16, we may assume k is algebraically closed. Let U ⊂ A be any nonempty
affine open subset. LetD = A−U , soD is an effective Weil (and hence Cartier) divisor on A by Lemma 3.2.15.
Let L = OA(D). By Proposition 3.2.11 the line bundle L2 is globally generated; write f : A → Pm for the
associated morphism. Then the divisor 2D is defined by a section of L2, and hence arises as the pullback
of a hyperplane H ⊂ Pm under f . In particular, for any closed point x ∈ Pm −H, the preimage f−1(x) is
contained in U := A−D. But f−1(x) is proper and U is affine, so f−1(x) must be finite. Proposition 3.2.10
then ensures that all fibres of f are finite, and thus f is finite. But this immediately implies that L2, and
hence L, is ample.

Corollary 3.2.18. Let A be an abelian variety of dimension g. Then A cannot be embedded into P2g−1.

Remark 3.2.19. Note that any projective variety of dimension g can be embedded into P2g+1; a better
version of the argument below improves 2g − 1 to 2g when g ≥ 3 in the first assertion, thus showing the
sharpness of the 2g + 1 bound.

We shall use some intersection theory in the proof, and we summarize what we need. For any coherent
sheaf E on Pm, write ctot(E) =

∑∞
i=0 ci(E) for the total Chern class of a sheaf E, viewed as an element of

the graded ring H2∗(Pm); here we H∗(−) denotes any Weil cohomology theory. We shall use the following
facts:

• The formation of Chern classes is compatible with restriction to subvarieties.

• ctot(−) carries addition in K0 to multiplication of cohomology classes.

• ci(E) = 0 for i > rank(E).

• If h = c1(O(1)) ∈ H2(Pm) is the hyperplane class, then hd|X ∈ H2d(X) is nonzero if X is a d-
dimensional subvariety of Pm.

Proof. Say i : A ⊂ Pm is a closed immersion. We have an exact sequence

0→ I/I2 → Ω1
Pm → Ω1

A → 0

of sheaves on A, where I/I2 is the conormal bundle of rank m − g. Applying ctot to the above sequences
gives

ctot(Ω
1
Pm |A) = ctot(Ω

1
A) · ctot(I/I2).

Now Ω1
A = O

g
A, so ctot(Ω

1
A) = 1. Also, ctot(I/I

2) vanishes in degrees > rank(I/I2) = m− g. Thus, we get

ci(Ω
1
Pm |A) = 0 for i > m− g.

On the other hand, the Euler sequence on Pm is

0→ Ω1
Pm → OPm(−1)m+1 → OPm → 0.

Writing h = c1(OPm(1)) ∈ H2(Pm) for the hyperplane class, this gives

ctot(Ω
1
Pm) = (1− h)m+1.

As the formation of total Chern classes is compatible with restriction to subvarieties, we have the same
formula after restriction to A. In particular, as cm−g+1(Ω1

Pm |A) = 0, we get

hm−g+1 = 0 ∈ H2∗(A).

As A is a projective variety of dimension g and h is a hyperplane class, we also know that hg 6= 0 on A, so
it follows that

m− g + 1 > g, so m > 2g − 1,

as wanted.
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3.2.3 Torsion subgroups

We begin by calculating the degree of multiplication by n.

TorsionDegree Theorem 3.2.20. Let A/S be an abelian scheme of relative dimension g. Then for any integer n, the
multiplication map [n] : A→ A is finite flat of degree n2g. In particular, for any algebraically closed S-field
k, the abelian group A(k) is divisible, and its n-torsion A(k)[n] is finite.

We may assume S is a geometric point (exercise!).

Proof that [n] is finite flat. It is enough to check that the fibers are finite schemes. Let L be an ample line

bundle A Set M := L ⊗ [−1]∗L. so M is symmetric and ample. Then [n]∗M ' Mn2

by Corollary 3.2.2.

Let X ⊂ A be a fibre of [n] (viewed as a reduced proper variety). But then Mn2 |X ' ([n]∗M)|X would be

trivial. As Mn2

is ample, this forces X to be 0-dimensional, as wanted.

To proceed further, we need the notion of a degree for a coherent sheaf on a projective variety:

DegreeSheaf Construction 3.2.21. Let X be an irreducible projective variety of dimension g over a field k. For a line

bundle L and coherent sheaf F on X, the function PF,L(n) = χ(F ⊗ Ln) is a polynomial in n. Write dL(F )
g!

for the coefficient of ng in this polynomial, and write deg(L) = dL(OX). We shall use the following facts

1. F 7→ dL(F ) is additive in short exact sequences. Indeed, the polynomials PF,L(n) behave additively in
F .

2. For any integer k, we have an equality PF,L(kn) = PF,Lk(n) of polynomials, and thus an equality
deg(Lk) = kgdeg(L).

3. If L is ample, then PF (L) has degree dim(F ) (i.e., the coefficient of ndim(F ) is nonzero when F 6= 0).
This is proven by induction on dim(F ). Using (2), we may assume L is very ample. The case dim(F ) = 0
is clear: PF (n) is simply the sum of the dimensions of the (finitely many) stalks of F and is clearly
independent of n. In general, using (1) and standard exact sequences relating F to its restriction to
irreducible components, we may assume dim(F ) = g (so F has irreducible support) and that F is
torsionfree (as the torsion has smaller dimensional support). Now if g > 0, as F is torsionfree, we can
find an exact sequence

0→ F ⊗ L−1 → F → F ⊗ OZ(s) → 0.

It follows that PF (n)− PF (n− 1) = PF⊗OZ(s)
(n). By induction, PF⊗OZ(s)

(n) is a polynomial h(x) of

degree dim(F )− 1. It follows that PF (n) =
∑n
j=0 h(j) is a polynomial degree dim(F ).

4. dL(F ) > 0 if F 6= 0 and dim(F ) = g: this follows from (3) as PF (n) = dimH0(X,F ⊗ Ln) ≥ 0 for
n� 0 is positive.

5. dL(F ) = 0 if dim(F ) < g: this follows from (3).

This notion behaves well with respect to finite morphisms.

DegreeFiniteCover Proposition 3.2.22. Adopt the notation of Construction 3.2.21. Then:

1. dL(F ) = rank(F ) · deg(L).

2. If f : Y → X is a finite surjective map with dim(Y ) = g, then deg(f∗L) = deg(L) · deg(f).

Proof. For (1): we can choose an exact sequence

0→ Irank(F ) → F → Q→ 0

of coherent sheaves where I ⊂ OX is an ideal, and Q is torsion: if U ⊂ X is the affine open complement of

an ample divisor H ∈ |Lk|, then we have an inclusion O
rank(F )
U ⊂ F |U with a torsion cokernel, so we get the

26



above sequence by “clearing denominators” and may thus take I = OX(−kH) for k � 0. As Q is torsion,
dL(Q) = 0. It follows that

rank(F ) · dL(I) = dL(Irank(F )) = dL(F ).

Applying a similar argument to the exact sequence

0→ I → OX → OX/I → 0

then proves (1).
For (2): by the projection formula, we have

POY ,f∗L(n) = χ(Y, f∗Ln) = χ(X, f∗OY ⊗ Ln) = Pf∗OY ,L(n),

for all n, so PY,f∗L = Pf∗OY ,L as polynomials. Using (1), this gives

deg(f∗L) := df∗L(OY ) = dL(f∗OY ) = deg(L) · rank(f∗OY ) = deg(L) · deg(f),

as wanted.

We can now finish the degree calculation.

Proof of Theorem 3.2.20. Let L be an ample line bundle on A. By replacing L with L ⊗ [−1]∗L, we may
assume L is symmetric. Applying Proposition 3.2.22 to [n] : A→ A gives

deg([n]∗L) = deg(L) · deg([n]).

On other hand, as L is symmetric, we have [n]∗L = Ln
2

. As deg(L) 6= 0, it is enough to show that
deg(Lk) = kg · deg(L). Write Q(n) = χ(Ln) and R(n) = χ(Lkn). These are both polynomials degree g in n,
and we have Q(kn) = R(n). In particular, the leading coefficient of R is kg times the leading coefficient of
Q, which gives the claim by definition of degrees.

We can now analyze the torsion subgroups.

Theorem 3.2.23. Let A/k be an abelian variety of dimension g, and fix an integer n.

1. If n is invertible on k, then [n] is finite étale of degree n2g. Moreover, the group scheme A[n] is
isomorphic with the constant group scheme (Z/n)2g when k is algebraically closed.

2. If char(k) = p, then there exists some integer 0 ≤ i ≤ g such that A[pm](k) ' (Z/pm)i for all m ≥ 0.

The integer i appearing in (2) is called the p-rank of A.

Proof. Proposition 1.3.19 shows that [n] is finite étale while Theorem 3.2.20 shows its degree is n2g, so the
first half of (1) is clear. For the second, note that the category finite étale k-algebras is equivalent to the
category of finite sets as k is algebraically closed. As A[n] is a finite étale k-group scheme, it follows that
A[n] is canonically identified with the constant k-group scheme attached to the finite abelian group A[n](k).
The latter has cardinality n2g as [n] is finite étale of degree n2g. Moreover, for each m | n, the m-torsion
subgroup of A[n](k) has cardinality m2g by the same reasoning. Elementary group theory then shows that
A[n](k) must be isomorphic to (Z/n)2g.

For (2), consider first the case m = 1. The analysis Proposition 1.3.19 showed that [p]∗ induces the 0 map
on cotangent spaces as e. We have also seen that H0(A,Ω1

A/k) ' e∗Ω1
A/k and that Ω1

A/k is free. It follows

that [p]∗ induces the zero map [p]∗Ω1
A/k → Ω1

A/k of sheaves. Applying Lemma 3.2.24 (and Remark 3.2.25)

shows that [p] : A→ A factors unique as

A
FrobA/k−−−−−→ A(1) V−→ A
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for some map V . Now FrobA/k is finite flat and purely inseparable of degree pg (this holds true for any

smooth k-scheme of dimension g). In particular, there is a natural bijection A[p](k) ' A(1)[V ](k). As
FrobA/k and [p] are finite and faithfully flat, the same holds true for V . In particular, V is finite flat of

degree deg([p])
deg(FrobA/k) = p2g

pg = pg. It follows that A[V ](k) is an abelian group killed by p of order ≤ pg, and

hence must be (Z/p)i for some 0 ≤ i ≤ g.
To pass to larger m, note that the abelian group A(k) is divisible by Theorem 3.2.20. Hence, we have

exact sequences

0→ A[p](k) ⊂ A[pm](k)
p·(−)−−−→ A[pm−1](k)→ 0.

The left side is (Z/p)i. By induction, the right side is (Z/pm−1)i. It is then easy to see from the structure
theory of abelian groups that the middle term must be (Z/pm)i, for its p-torsion is (Z/p)i.

Kerneld Lemma 3.2.24. Let R be a smooth algebra over a perfect field k of characteristic p. Then the kernel of

R
d−→ Ω1

R/k is exactly the subring Rp of p-th powers in R.

Proof. Viewing R as an Rp-algebra, the map R
d−→ Ω1

R/k is an Rp-linear map of finite Rp-modules whose
kernel K certainly contains Rp. To show Rp = K, we may work étale locally on Rp. Moreover, note that
the formation of K commutes with étale localization on Rp: any étale Rp-algebra is of the form Sp for an
étale R-algebra S, and, in this case, the map obvious map R⊗Rp Sp → S is an isomorphism. We may then
reduce to the case R = k[x1, ..., xn], where one checks this by direct calculation.

KerneldRelativeFrob Remark 3.2.25. For any k-algebra R, write R(1) = R⊗k,FrobR, so R(1) is a k-algebra, and the Frobenius on
R induces a k-linear map FrobR/k : R(1) → R called the relative Frobenius. Thus, we have the fundamental
diagram

k
Frobk //

f

��

k

f(1)

�� f

��

R
Frobk //

FrobR

--

R(1)

FrobR/k

''
R.

When R is reduced, the map FrobR/k : R(1) → R is injective with image exactly Rp ⊂ R. Thus,
Lemma 3.2.24 can be reformulated as follows: if R is a smooth k-algebra and S → R is a map of k-

algebras with Ω1
S/k → Ω1

R/k being the 0 map, then S → R factors uniquely as S → R(1)
FrobR/k−−−−−→ R. Of

course, the analogous statement also holds true for non-affine schemes.
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Chapter 4

Group schemes

4.1 Group schemes in characteristic 0

CartierGroup Theorem 4.1.1 (Cartier). Let k be a field of characteristic 0, and let G/k be a group scheme of finite type.
Then G is reduced and, thus, smooth.

We give de Jong’s proof from the Stacks Project. There is also an extremely simple proof by Oort.

Differentialnzd Lemma 4.1.2. Let k → R be a map of Q-algebras with R noetherian local. Fix some f ∈ R. Assume that

the map R
df−→ Ω1

R/k is a direct summand. Then f is a nonzerodivisor on R.

This is totally false in characteristic p: take R = k[x]/(xp) and f = x.

Proof. Choose a splitting of R
df−→ Ω1

R/k, and let θ : R→ R be the corresponding derivation. In other words,

we have d(a) = θ(a)df + c(a) for c(a) in the kernel of the splitting. Note that θ(f) = 1 by construction. As
θ is a derivation, this gives θ(fn+1) = (n+ 1)fn for all n ≥ 0.

Say fg = 0. We shall show that g ∈ ∩nfnR, and thus g = 0 by Krull’s intersection theorem. Applying θ
to fg = 0 gives fθ(g) + g = 0, so g ∈ fR. By induction, assume we have shown g ∈ fnA, so g = fnh, and
hence fn+1h = 0. Applying θ gives

fn+1θ(h) + h · (n+ 1) · fn = 0

Dividing by n+ 1 shows that g = fnh ∈ fn+1R, which finishes the proof by induction.

SmoothnessChar0 Lemma 4.1.3. Let k be a field of characteristic 0. Let R be a finite type k-algebra with Ω1
R/k locally free.

Then R is smooth.

Proof. As k is perfect, it is enough to show that Rm is regular for each maximal ideal m. Note that Ω1
Rm/k

is free of some rank n (by assumption on R) and has fiber given by m/m2. If m/m2 = 0, there is nothing to
prove (as R is automatically regular by the definition of regularity). If not, then choose some f ∈ m that

is nonzero modulo m2. By Nakayama Rm
df−→ Ω1

Rm/k
is a direct summand. Lemma 4.1.2 implies that f is a

nonzero divisor, so, by general properties about regular rings, it is enough to show that S = Rm/f is regular.
But we have an exact sequence

(f)/(f2)
d−→ Ω1

Rm/k
⊗R S → Ω1

S/k → 0.

The left map is split injective as it is the base change to f of Rm
df−→ Ω1

Rm/k
. It follows that Ω1

S/k is free of
rank n− 1, so we win by induction.

Proof of Theorem 4.1.1. By Lemma 4.1.3, it is enough to show that Ω1
G/k is locally free. But this was verified

in Proposition 1.3.11, so we are done.
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4.2 Quotients

Fix a noetherian base ring k. Let G be a finite k-group scheme, and let X/k be a k-scheme. There is an
evident notion of a G-action on X that one defines via the functor of points. Such an action is given by a
map act : G×X → X satisfying suitable actions.

Definition 4.2.1. An action of G on X is free if the map

G×X (act,pr2)−−−−−→ X ×X

is a closed immersion. If X is separated (as we shall always assume), this is the same1 as asking that G-action
on X is free on the functor of points, i.e., G(T ) acting on X(T ) has no stabilizers for a k-scheme T .

Given a k-scheme X with a G-action, we also wish to study when a sheaf F on X has a compatible
G-action. Roughly, this means one must have transitive system of isomorphisms ψg : Fx ' Fg(x) for each
x ∈ X and g ∈ G. To make this workable, we havet he following:

Definition 4.2.2. Let X be a k-scheme with a G-action. For a k-scheme S and an S-point g ∈ G(S), write
ag : XS → XS for the induced action, so ahg = ah ◦ ag for h, g ∈ G(S). A G-equivariant quasi-coherent

sheaf on X is a quasi-coherent sheaf F on X together with specified isomorphisms a∗gFS
λg−→ FS for each

scheme-theoretic point g ∈ G(S) such that, for any pair g, h ∈ G(S), the map λhg : a∗hgFS ' FS coincides
with

a∗hgFS ' a∗ga∗hFS
a∗gλh−−−→ a∗gFS

λg−→ FS .

In fact, it suffices to specify λg for the universal point g = idG ∈ G(G) and to formulate this compatibility
for the universal pair of points (g, h) = (pr1, pr2) ∈ G(G×G).

Example 4.2.3. Let A be an abelian variety over a field k. Let G ⊂ A be a finite subgroup scheme. Then
the translation action of G on A is free.

We shall use the following result about the existence of quotients:

thm:Quot Theorem 4.2.4. Let G be a finite flat k-group scheme acting freely on a flat k-scheme X. Assume that
any finite set of points of X are contained in an affine open. Then there exists a universal G-invariant map

π : X → Y , i.e., the maps G ×X act−−→ X → Y and G ×X pr2−−→ X → Y coincide. Write X/G = Y , call π
the quotient, and write f : G×X → X/G for the induced map.

1. The quotient map π : X → X/G is an fppf G-torsor, i.e., the X → X/G is faithfully flat, and the map

G×X (act,pr2)−−−−−→ X ×X/G X is an isomorphism.

2. The quotient map π : X → X/G is finite flat of degree rank(G).

3. We have OX/G ' π∗OGX := ker(π∗OX
pr∗2−act

∗

−−−−−−→ f∗OG×X).

4. If k is an algebraically closed field, then X(k)/G(k) ' (X/G)(k), and |X|/|G| ' |X/G|.

5. If F is a quasi-coherent sheaf on X/G, then π∗F is naturally a G-equivariant sheaf on X, and this
construction gives an equivalence between quasi-coherent sheaves on X/G and G-equivariant sheaves
on X.

6. There exists a “norm” map Nm : Pic(X)→ Pic(X/G) such that Nm ◦π∗ is multiplication by the rank
of G.

1Indeed, the map G×X → X ×X is proper as G is proper over k and X is separated. The freeness on the functor of points
ensures this map is a monomorphism. A proper monomorphism is a closed immersion.
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7. Assume now that X is proper. Then X/G is also proper, and for any coherent sheaf F on X/G, we
have

χ(X/G,F ) = rank(G) · χ(X,π∗F ).

In fact, (1) implies the rest above.

Proof. The first (5) are standard. For (6), we note that if f∗ : A → B is any finite locally free ring map
corrsponding to a finite locally free map f : Spec(B)→ Spec(A) of affine schemes, then there is a norm map
B∗ → A∗ defined by sending b ∈ B∗ to the determinant of the left-action of b on finite projective A-module
B. The composition of this norm map with f∗ is multiplication by [B : A]. This construction sheafifies
in the étale topology in our global situation above to define a map π∗Gm → Gm of étale sheaves whose
composition with the pullback Gm → π∗Gm is multiplication by the rank of G. Now π∗ is acyclic on étale
sheaves as it is a finite morphism. It follows that Hi(X/G, π∗Gm) ' Hi(X,Gm). Taking i = 1 then gives
the desired map.

For (7), we refer to Mumford.

Example 4.2.5. Let A be an abelian variety over a field k. For each integer n, we have a finite subgroup
scheme G := A[n] ⊂ A that acts on A freely via translation. The map [n] : A → A is G-equivariant, and

exhibits the target A as the quotient A/G. Indeed, the map [n] factors uniquely as A → A/G
g−→ A by the

universal property of the quotient. Both π : A→ A/G and [n] : A→ A are finite flat and surjective, so the
same holds true for g : A/G→ A. Comparing degrees then shows that g is an isomorphism.
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Chapter 5

Dual abelian varieties

5.1 Properties of degree 0 line bundles

In this section, we fix an abelian variety A over an algebraically closed field k. Recall from Remark 3.2.4
that we have a homomorphism

Pic(A)→ Hom(A,PicA/k) via L 7→ φL := (x 7→ t∗xL⊗ L−1).

Thus, φL = 0 if and only if for any scheme theoretic point x : T → A, the bundle t∗x(LT ) ⊗ L−1
T is pulled

back from T . This motivates the following:

DefPic0 Definition 5.1.1. Let Pic0(A) ⊂ Pic(A) denote the kernel of the map Pic(A)→ Hom(A,PicA/k). In other

words, a line bundle L lies in Pic0(A) if and only for any x ∈ A(k), there exists an isomorphism t∗xL ' L.

Pic00 Lemma 5.1.2. For any line bundle L ∈ Pic(A) and any x ∈ A(k), the line bundle t∗xL⊗L−1 lies in Pic0(A).

In other words, φL can be viewed as a map Pic(A)/Pic0(A)→ Hom(A(k),Pic0(A)).

Proof. This follows from the theorem of the square: for any y ∈ A(k), we have

t∗y(t∗xL⊗ L−1) ' t∗x+yL⊗ t∗yL−1 ' t∗xL⊗ t∗yL⊗ L−1 ⊗ t∗yL−1 ' t∗xL⊗ L−1,

where we use the the theorem in the second isomorphism.

Pic01 Lemma 5.1.3. A line bundle L lies in Pic0(A) if and only if Λ(L) := m∗L⊗ pr∗1L−1⊗ pr∗2L−1 is trivial on
A×A.

Proof. If K(L) ⊂ A denotes the maximal closed subscheme over which Λ(L) is pulled back from A via pr1,
then we have seen in Corollary 3.2.6 that K(L) = A exactly that φL = 0. It follows that φL = 0 exactly
when Λ(L) is pulled back from A via pr1. But, in the latter situation, it is easy to see that Λ(L) must be

trivial using the section A
x 7→(x,e)−−−−−→ A×A of pr1.

Pic02 Lemma 5.1.4. If L ∈ Pic0(A), then for any maps x, y : S → A, we have x∗L⊗ y∗L ' (x+ y)∗L on S. In
particular, [n]∗L ' Ln.

In contrast, for L ample, we showed in Corollary 3.2.2 that [n]∗L ' Ln
2

. Thus, [n]∗ behaves linearly on
Pic0(A) ⊂ Pic(A), and quadratically on the ample cone in Pic(A).

Proof. For L ∈ Pic0(A), Lemma 5.1.3 gives an isomorphism m∗L ' pr∗1L ⊗ pr∗2L. Pulling this back along
(x, y) : S → A×A gives the first part of the claim; the second follows immediately by induction.
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Pic03 Lemma 5.1.5. For any L ∈ Pic(A), we have [n]∗L ' Ln2 ⊗M for M ∈ Pic0(A).

Proof. Corollary 3.2.2 shows that

[n]∗L ' L
n2+n

2 ⊗ [−1]∗L
n2−n

2 ' Ln
2

⊗
(
L⊗ [−1]∗L

)n2−n
2 .

It is thus enough to show that L ⊗ [−1]∗L−1 ∈ Pic0(A) for any line bundle L. Choose a point x ∈ A(k).
Translating by x gives

t∗x(L⊗ [−1]∗L−1) ' t∗xL⊗ [−1]∗t∗−xL
−1

' t∗xL⊗ [−1]∗
(
L⊗ t∗−xL−1

)
⊗ [−1]∗L−1.

As the second term on the right lies in Pic0(A), Lemma 5.1.4 simplifies the above expression to give

t∗x(L⊗ [−1]∗L−1) ' t∗xL⊗ L−1 ⊗ t∗−xL⊗ [−1]∗L−1.

Applying the theorem of the square to the first three terms gives

t∗x(L⊗ [−1]∗L−1) ' L⊗ [−1]∗L−1,

as wanted.

Pic04 Lemma 5.1.6. If L ∈ Pic(A) has finite order, then L ∈ Pic0(A).

Proof. Consider the homomorphism

Pic(A)
L 7→φL−−−−→ Hom(A,PicA/k).

Now if L has finite order, then there is some n such that φLn = n · φL is trivial. But this means that
φL(nx) = nφL(x) is trivial for all x ∈ A(k). As A(k) is n-divisible, it follows that φL = 0, as wanted.

Pic05 Lemma 5.1.7. If S is a connected k-scheme of finite type, then for any L ∈ Pic(S × A) and any points
s, t ∈ S(k), we have Ls ⊗ L−1

t ∈ Pic0(A).

In other words, if two line bundles on A are members of the same connected family, then one lies in Pic0

exactly when the other does.

Proof. By shrinking S, we may assume L|S×{e} is trivial. Also, by replacing L with L ⊗ pr∗1L−1
s , we may

assume Ls is trivial for a fixed s ∈ S(k). We must check that Lt ∈ Pic0(A) for all t ∈ S(k); equivalently,
we must show that Λ(Lt) is trivial on A× A for all t ∈ S(k). We shall prove this by putting it in a family.
Thus, on S×A×A, consider the bundle µ∗L⊗ pr∗12L

−1⊗ pr∗13L
−1, where µ(s, a, b) = (s, a+ b). In fact, this

is also simply Λ(L) if we view L as a line bundle on the abelian S-scheme A × S → S. The restriction of
this line bundle to {s} ×A×A is Λ(Ls), and hence is trivial by hypothesis on s ∈ S(k). The restrictions to
S × {e} ×A and S ×A× {e} are trivial simply because L|S×{e} is trivial. The theorem of the cube implies
that µ∗L ⊗ pr∗12L

−1 ⊗ pr∗13L
−1 is trivial. Taking fibers over t ∈ S(k) then implies that Λ(Lt) is trivial, as

wanted.

Pic06 Lemma 5.1.8. Say L ∈ Pic0(A) is not trivial. Then Hi(A,L) = 0 for all i.

Proof. We first observe that H0(A,L) = 0. Indeed, if not, then L is effective. But, as L ∈ Pic0(A), we have
[−1]∗L ' L−1 by Lemma 5.1.4, so L−1 is also effective. Lemma 3.1.1 then implies L is trivial, contradicting
our assumption.

By induction, hoose the minimal k > 0 where we do not yet know Hk(A,L) = 0. The composition

A
a 7→(a,e)−−−−−→ A×A m−→ A
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is the identity, and hence the identity on Hk(A,L) factors over Hk(A× A,m∗L). As L ∈ Pic0(A), we have
m∗L ' pr∗1L⊗ pr∗2L. By Kunneth, we get

Hk(A×A,m∗L) ' ⊕i+j=kHi(A,L)⊗Hj(A,L).

Now the terms for i = 0 or j = 0 vanish as L has no sections. The remaining terms vanish by induction,
so Hk(A × A,m∗L) = 0. As the identity on Hk(A,L) factors through this group, we get Hk(A,L) = 0 as
well.

prop:Pic07 Proposition 5.1.9. Assume L ∈ Pic(A) is ample. Then φL : A(k)→ Pic0(A) is surjective.

Proof. Fix some M ∈ Pic0(A). Assume towards contradiction that M does not lie in the image of φL.
Consider the line bundle

K = Λ(L)⊗ pr∗1M−1 ' m∗L⊗ pr∗1(L−1 ⊗M−1)⊗ pr∗2L−1.

For each x ∈ A(k), we have

K|A×{x} ' t∗xL⊗ L−1 ⊗M−1 and K|{x}×A = t∗xL⊗ L−1.

As M does not lie in the image of φL, it follows that K|A×{x} is a non-trivial bundle in Pic0(A) for all
x ∈ A(k). Lemma 5.1.8 and the formal functions theorem then show that Ripr2,∗K ' 0 for all i, and hence
Hi(A×A,K) = 0 for all i by the Leray spectral sequence for pr2.

On the other hand, consider the Leray spectral sequence for pr1. Lemma 5.1.8 and the formal functions
theorem again show that supp(Ripr1,∗K) ⊂ K(L) for all i. As L is ample, the subscheme K(L) is finite,
so Ripr1,∗K is supported on a zero dimensional subscheme of A (and is the direct sum of its stalks). Such
sheaves have no cohomology, so the Leray spectral sequence for pr1 degenerates to give

Hi(A×A,K) ' H0(A,Ripr1,∗K).

As the left side is zero for all i, the sheaf appearing on the right must also be zero for all i. Thus, we have
Ripr1,∗K = 0 for all i. By semicontinuity, this implies Hi(A,K|{x}×A) = 0 for all i and all x ∈ A(k). But
taking x = e, we have K|{e}×A ' OA, which clearly has a nonzero H0, giving a contradiction.

Pic08 Remark 5.1.10. Proposition 5.1.9 and Theorem 4.2.4 give a bijection (A/K(L))(k) ' A(k)/K(L)(k) '
Pic0(A). In particular, the group Pic0(A) has the the same finiteness features as the set of k-points of an
abelian variety. For example, it follows that there are only finitely many n-torsion line line bundles on A
(using Lemma 5.1.6).

5.2 Construction of dual abelian variety
cons:DualAV

Fix an abelian variety A over a field k. Our goal is to construct the dual abelian variety At with the property
that there is a natural isomorphism At(k) ' Pic0(A). More precisely, we shall show:

thm:DualAV Theorem 5.2.1. Consider the category of triples (S,L, ι), where S is a k-scheme, L ∈ Pic(S ×A) is a line
bundle, ι : L|S×{e} ' OS is a trivialization, and one has L|{s}×A has degree 0 for all geometric points s of
S. This category has a final object (At,P, τ). Pointing At by the natural triple (Spec(k),OA, std) gives a
base point e ∈ At(k); the pair (At, e) is an abelian variety.

The universal property identifies At(k) with isomorphism clases of pairs (M, ι) where M has degree 0
and ι is a trivialization of M at the origin; as two different ι’s differ by a scalar, their difference can be lifted
to an automorphism of M , so it follows that At(k) is also identified with Pic0(A). Thus, Theorem 5.2.1 is
endowing Pic0(A) with the structure of (the k-points of) an abelian variety. We shall use the description
arising from Proposition 5.1.9.

Fix an ample line bundle L on A, so K(L) ⊂ A is finite. Let Λ(L) be the Mumford bundle on A × A.
Note that K(L) × {e} is a subgroup scheme of A × A, and hence acts freely on the latter via translation.
Our first observation is that this action lifts to Λ(L).
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LambdaLEquiv Lemma 5.2.2. The line bundle Λ(L) is naturally K(L)-equivariant for the translation action of K(L) on
A × A. More precisely, an equivariant structure is uniquely determined once one fixes an isomorphism
L|e ' k.

Proof. For any k-scheme T , wse a subscript of T to denote base change along T → Spec(k), so Λ(L)T =
Λ(LT ) ∈ Pic((A×A)T ) is the corresponding Mumford bundle.

Given a T -valued point x ∈ K(L)(T ), the corresponding automorphism of (A × A)T is tx,e, where
(x, 0) ∈ (A×A)T (T ) is the corresponding point. We must thus supply an isomorphism t∗x,eΛ(L) ' Λ(L) for
each such x that are compatible with addition on K(L).

To get an isomorphism, observe that we have

t∗x,eΛ(LT ) = t∗x,e
(
m∗TLT ⊗ pr∗1L−1

T ⊗ pr
∗
2L
−1
T ) = m∗T t

∗
xLT ⊗ pr∗1t∗xL−1

T ⊗ pr
∗
2L
−1
T .

As x ∈ K(L), we have some isomorphism t∗xLT ' LT ⊗M0 for some line bundle M0 pulled back from T .
Any such choice determines an isomorphism

t∗x,eΛ(LT ) = Λ(LT )⊗m∗TM0 ⊗ pr∗1M−1
0 ' Λ(LT ),

where we use that, since M0 is pulled back from T , it pulls back the same way along both m and pr1. To
fix this isomorphism, it is enough to fix it after pullback along i : AT ×T {e}T ↪→ (A × A)T : restriction of
functions along i is bijective by Kunneth. But we have a canonical isomorphism

i∗Λ(L)T ' i∗m∗TLT ⊗ i∗pr∗1L−1
T ⊗ i

∗pr∗2L
−1
T ' LT ⊗ L

−1
T ⊗ V ' V ,

where V denotes the trivial vector bundle on T with global sections V = e∗(L). Similarly, we have a canonical
isomorphism

i∗t∗x,eΛ(L)T ' t∗xi∗Λ(L)T ' t∗xV .

Thus, we fix the isomorphism t∗x,eΛ(L)T ' Λ(L)T by requiring that it agree with the standard isomorphism
t∗xV ' V on application of i∗. It is then easy to see that we have the desired transitivity to define a
K(L)-equivariant structure on Λ(L).

We can now define the pair (At,P, ι) that shall eventually be shown to have the universal property in
Theorem 5.2.1.

Construction 5.2.3 (Construction of the Poincare bundle). Let π : A → At = A/K(L) be the quotient,
so At × A ' (A × A)/(K(L) × {e}). The K(L)-equivariance of Λ(L) constructed in Lemma 5.2.2 then
allows us to descend the line bundle Λ(L) to a line bundle P on At × A via Theorem 4.2.4. Finally, the
proof of Lemma 5.2.2 also gives a K(L)-equivariant isomorphism i∗Λ(L) ' V where i : A × {e} ↪→ A × A
is the obvious inclusion and V = e∗(L) is the fibre of L at the origin. It follows that we obtain a natural
isomorphism P|At×{e} ' V . Fixing a trivialization of V then defines the desired trivialization ιuniv.

Proof of Theorem 5.2.1. Fix a triple (S, F, ι) as in the statement. This gives us a line bundle pr∗23P⊗pr∗13F
−1

on S ×At ×A. Let ΓS ⊂ S ×At be the maximal closed subscheme over which this line bundle pulled back
along pr13. We claim that pr1 induces an isomorphism ΓS ' S.

Let us see how to use this claim to prove the theorem first. By construction, we know that M :=
(pr∗23P ⊗ pr∗13F

−1)|ΓS×A is pulled back from some N ∈ Pic(ΓS). Using the obvious section defined by
ΓS ⊂ S×At ' S×At×{e} ⊂ S×At×A and the fact that both pr∗23P and pr∗13L come equipped with preferred
trivializations on S × At × {e}, we conclude that N is the trivial line bundle on ΓS that comes equipped
with a preferred trivialization. In other words, we have a canonical isomorphism p∗23P|ΓS×A ' pr∗13F |ΓS×A
that is compatible with the given trivializations over ΓS × {e}. Now, granting the claim that pr1 induces
an isomorphism ΓS ' S, it immediately follows that the triple (S, F, ι) is the pullback of (At,P, ιuniv) along

the map S ' ΓS
pr2−−→ At.

We now prove ΓS maps isomorphically to S via pr1.
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1. Preliminary reductions: As the formation of ΓS is compatible with base change on S, we immediately
reduce to the case where k is algebraically closed, and S = Spec(B) is an artinian local ring; write s ∈ S
for the closed point. Moreover, as the construction of ΓS does not involve the choice of trivializations,
we can ignore the trivializations from here on. Now the line bundle F |{s}×A has degree 0, and hence
also has the form P |{b}×A for some b ∈ At(k) by Proposition 5.1.9. In particular, replacing F with

p∗2F |−1
{s}×A does not change the subscheme ΓS . After making this replacement, we may thus assume

that F |{s}×A is the trivial bundle.

2. Freeness of the cohomology of M via pr13: We first claim that M |{s}×At×{a} is a degree 0 line bundle
on the abelian variety At for all a ∈ A(k): this is true for a = e, and thus follows by Lemma 5.1.7.
To identify this fibre, note that the pullback line bundle π∗

(
M |{s}×At×{a}

)
on A is identified with

Λ(L)|A×{a} ' t∗aL ⊗ L−1. By the ampleness of L, the set of all a ∈ A(k) where the latter bundle

is trivial is finite (Lemma 3.2.8). The pullback Pic(At)
π∗−→ Pic(A) has finite fibres Remark 5.1.10,

so there are only finitely many a ∈ A(k) where M |{s}×At×{a} is the trivial line bundle on At. By
Lemma 5.1.8 and semicontinuity, the support of the coherent sheaf Ripr13,∗M on S ×A is finite. The
Leray spectral sequence degenerates to give Hi(S×At×A,M) ' Hi(S×A,Ripr13,∗M). On the other
hand, by the projection formula, we also have Ripr13,∗M ' (Ripr13,∗pr

∗
23P)⊗ F−1. As the support of

this sheaf is finite, we can trivialize F in a small neighbourhood of the support of this sheaf to ignore
it. We conclude then there is a noncanonical isomorphism

Hi(S ×At ×A,M) ' Hi(S ×At ×A, pr∗23P ) ' B ⊗k Hi(At ×A,P ).

In particular, these cohomology groups are all free B-modules.

3. The vanishing of most of the pushforwards of M via pr12: For any a ∈ At(k) ' Pic0(k), the line bundle
M |{s}×{a}×A is trivial exactly when a = e is the origin. Thus, the sheaf Ripr12,∗M is supported set-
theoretically at e ∈ At(k). Let R = OA,e ⊗k B be the local ring at (s, e) ∈ S × A, so each Ripr12,∗M
is can be viewed an R-module. By Proposition 2.2.4, there exists perfect complex

K• :=
(
K0 → K1 → ...→ Kg

)
of R-modules that universally computes (the pullback to R of) Ripr12,∗M . Each homology of K• is
an artinian R-module. Now recall the following:

Lemma 5.2.4. Let O be a regular local ring of dimension g. Let M0 → M1 → ...→ Mg be a perfect
complex over O with each Hi(M•) being artinian. Then Hi(M•) = 0 for i 6= g.

Proof. Pick the smallest i with Hi(M•) 6= 0. We shall show that Hi−g(M• ⊗LO k) is nonzero, which
clearly gives a contradiction if i < g as M• ⊗LO k has no cohomology in negative degrees. Consider the
canonical exact triangle

Hi(M•)[−i]→M• → τ≥i+1M•.

Noting that −⊗LO k carries D≥j to D≥j−g by the existence of the Koszul resolution for k, it follows by
tensoring above triangle with k and looking at Hi−g that

TorOg (Hi(M•), k) := Hi−g(Hi(M•)⊗LO k) ' Hi−g(M• ⊗LO k).

Now Hi(M•, k) is a nonzero artinian O-module, so the left side is always nonzero: one can see this by
filtering this artinian module in terms of copies of k and using that TorOg (−, k) is left-exact (as it is

the highest left-derived functor of Tor0). Thus, the right side above is always nonzero, as wanted.

Applying this lemma to K•, viewed as a perfect complex over the regular local ring OA,e ⊂ R, implies
that Hi(K••) = 0 for 0 ≤ i < g. It follows that Ripr12,∗M = 0 for i < g, and (the stalk at (s, e)
of) Rgpr12,∗M is identified with N = Hg(K•). Taking global sections of Rgpr12,∗M , using that it’s
supported set-theoretically at a single point and the Leray spectral sequence, it follows from (2) that
the R-module N is free when regarded as a B-module via B ⊂ R.
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4. Showing ΓS → S is a homeomorphism: ΓS is contained in the support of ⊕iRipr12,∗M as M is trivial
over ΓS . It follows from (3) that ΓS is set-theoretically contained {(s, e)} ⊂ S × At. It is also clear
that (s, e) ∈ ΓS , so ΓS is set-theoretically the single point {(s, e)} ⊂ S × At, which certainly maps
homeomorphically to S (which is set-theoretically also just a single point {s}).

5. Finding a candidate scheme-structure ΓS : Let K•,∨ be the complex obtained by dualizing the complex
K• from (3) over the ring R. Then the same reasoning used in (3) shows that there is an exact sequence

0→ Kg,∨ → Kg−1,∨ → ...→ K0,∨ → Q→ 0,

i.e., the complex is exact except on the right, and highest homology group Q is an artinian R-module.
By the universality of K•, we know that HomR(Q,T ) ' H0(Spec(T ) × A,M |Spec(T )×A) for any R-
algebra T . Applying this to T = k gives HomR(Q, k) ' H0({s}×{e}×A,M |{s}×{e}×A) ' H0(A,OA),
which is a 1-dimensional vector space. It follows by Nakyama that Q is a cyclic R-module, so we can
write Q = R/I for some ideal I. We claim that V (I) = ΓS . Note that this is the same construction
that appeared in Proposition 3.1.2.

6. The containment ΓS ⊂ V (I): let J ⊂ R be the ideal defining ΓS . We must check that I ⊂ J ; equiva-
lently, we must show that HomR(R/I,R/J) ' R/J . But R/I = Q, so the left side is HomR(Q,R/J),
which calculates H0 of the pullback of M along ΓS × A ⊂ S × At × A. But this restriction is trivial,
so H0(ΓS ×A,M |ΓS×A) ' H0(ΓS ×A,OΓS×A) ' H0(ΓS ,OΓS

) ' R/J , as wanted.

7. The containment V (I) ⊂ ΓS : as ΓS ⊂ S × At is the maximal closed subscheme of S × At over which
M is pulled back from ΓS (and thus trivial, as ΓS is artinian), we must show that the restriction of M
to Spec(R/I)×A ⊂ S ×A×At is trivial. To check this, it suffices to show that the adjunction map

η : H0(V (I)×A,M |V (I)×A)⊗R/I OV (I)×A →M

is an isomorphism. This is a map between line bundles on V (I)×A, so it suffices to check surjectivity.
But surjectivity can be tested after tensoring along R/I → k. Now, after this base change, the line
bundle M becomes trivial (as the closed point of Spec(R) certainly sits in ΓS). On the other hand, we
also have base change for the left hand side by the universal property of Q ' R/I:

H0(V (I)×A,M |V (I)×A)⊗R/IR/k ' HomR(Q,R/I)⊗R/IR/k ' HomR(Q,R/k) ' H0({(s, e)}×A,M |{(s,e)}×A).

Thus, after base change along R/I → k, the map η becomes the standard map

H0(A,OA)⊗k OA → OA,

which is certainly an isomorphism.

Thus, with (5) and (6), we have shown ΓS = V (I) where I ⊂ R was the annihilator of Q ' R/I. It
remains to to show that the composite B → R→ R/I is an isomorphism.

8. The composite B → R→ R/I is injective: As K•,∨ resolves Q, it follows any R-linear functor applied
to K•,∨ has homology annihilated by I. In particular, I also annihilates the homology of our original
complex K• = (K•,∨)∨, and thus I annihilates the module N = Hg(K•). As N was free over B ⊂ R
by (2), it follows that I ∩B = 0. In other words, the natural composition B → R→ R/I is injective.

9. The composite B → R → R/I is surjective: it is enough to show surjectivity after reducing modulo
the maximal ideal of B. In other words, as the formation of ΓS (and thus R/I) is compatible with
base change, we must show that k ' R/I if S = Spec(k). In this case, we have M = P, so we must
check that the maximal closed subscheme Γ ⊂ At over which P is pulled back from Γ coincides with the

origin Spec(k)
e−→ At. By compatibility with base change, the preimage of Γ under A

φL−−→ At coincides

with the maximal closed subscheme Γ̃ ⊂ A such that Λ(L)|Γ̃×A is pulled back from Γ̃. But this was, by

definition, given by K(L) ⊂ A. It follows that Γ̃ = K(L), and thus Γ = K(L)/K(L) ' {e}, as wanted.
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We record two corollaries of the proof.

CohPoincare Corollary 5.2.5. We have Hi(At×A,P) = 0 if i 6= g and Hg(At×A,P) ' k. In fact, we have Ripr1,∗P = 0
for i < g an Rgpr1,∗P = k.

Proof. We apply the proof of Theorem 5.2.1 with S = Spec(k). In the notation of the proof, we are trying to
show that K• is a resolution of k. The proof above already shows that Q ' k, and thus K•,∨ is a resolution
of k (placed in degree g) over R. As R is a regular local ring of dimension g, we can also resolve k by a

Koszul complex M• of dimension. Any two free resolutions of k are homotopy-equivalent, so M
htpy
' K•,∨.

By duality, we get M∨
htpy
' K•. As Koszul complexes are self-dual up to a shift, it follows Hi(M∨) = 0 if

i 6= g and Hg(M∨) = k. The same then holds true for K•. As K• is a complex of R-modules that universally
computes the cohomology of P|Spec(R)×A, the claim follows by semicontinuity as Ripr1,∗P is supported inside
Spec(R) ⊂ At.

CohO Corollary 5.2.6. H1(A,OA) has dimension g, and Hi(A,OA) ' ∧iH1(A,OA) has dimension
(
g
i

)
.

Proof. The proof of Corollary 5.2.5 gives a homotopy-equivalence between K• the standard Koszul complex
resolving k over the regular local ring R. Base changing along Spec(k) ↪→ Spec(R) and using the universal
property defining K• then shows that H∗(A,OA) is computed by the mod m reduction of the Koszul complex
on R defining k. The claim now follows from standard properties of the Koszul complex over R: the i-th
term is free of rank

(
g
i

)
as it is ∧i of the 1-st term, and all differentials are zero modulo m.

5.3 Duality

The goal of this section is to explain why the association A 7→ At gives a duality on the category of abelian
varieites, i.e., it is contravariantly functorial and satisfies biduality A ' (At)t.

DualIsogeny Construction 5.3.1 (The dual map). Let f : A → B be a homomorphism of abelian varieties over a field
k. Then we get an induced map g : (id, f) : Bt × A → Bt × B. If PB ∈ Pic(Bt × B) denotes the Poincare
bundle, then we get an induced line bundle g∗PB ∈ Pic(Bt × A). For each (geometric) point b of Bt,
the restriction g∗PB |{b}×A is a degree 0 line bundle on A. Moreover, as f is a homomorphism of abelian
varieties, the restriction g∗PB |Bt×{eA} ' PB |Bt×{eB} comes equipped with a preferred trivialization ι. The
triple (Bt, g∗PB , ι) then defines a map f t : Bt → At via the universal property in Theorem 5.2.1. By
definition, we have an identification

(f t, id)∗PA ' (id, f)∗PB

of line bundles on Bt ×A. For future reference, we write this line bundle as Q(f).

Proposition 5.3.2 (Functoriality of duality). Let f : A→ B be a finite surjective homomorphism of abelian
varieties over a field k. Then f t is also finite surjective, and deg(f) = deg(f t).

Proof. We first explain why f t is finite (and thus necessarily surjective for dimension reasons). It is enough
to show that if k = k, then F := (f t)−1(e) ∈ At(k) is finite. By the construction above, F is the set of all
b ∈ Bt(k) with (g∗PB)|{b}×A being trivial. But the latter line bundle identifies with f∗

(
PB |{b}×B

)
. Now

f∗ : Pic(B)→ Pic(A) has a finite kernel by a norm argument1. As the map b ∈ Bt(k) 7→ P|{b}×B ∈ Pic0(B)
is bijective, it follows that there are only finitely many such b, so F is indeed finite.

1As in the proof of Theorem 4.2.4, there is a norm map Nm : Pic(A)→ Pic(B) that is a left-inverse to f∗ up to multiplication
by deg(f). In particular, the kernel of f∗ sits inside the subgroup of all deg(f)-torsion line bundles. As we have already seen
all such line bundles lie in Pic0(B) (see Lemma 5.1.6), the claim follows from the finiteness of torsion points in Pic0(B) (see
Remark 5.1.10).
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To understand degrees, consider the line bundle Q ' (f t, id)∗PA ' (id, f)∗PB from Construction 5.3.1.
Applying Theorem 4.2.4 (6) to both the isogenies (f t, id) and (id, f), we learn that

χ(At ×A,PA) · deg(f t) = χ(Bt ×A,Q) = deg(f) · χ(Bt ×B,PB),

which gives the claim. If g denotes the common dimension of A and B, then χ(At × A,PA) = (−1)g and
χ(Bt ×B,PB) = (−1)g by Corollary 5.2.5, so the above equality simplifies to give deg(f) = deg(f t).

Biduality Theorem 5.3.3 (Biduality). Let A be an abelian variety over a field k. Then there is a canonical isomor-
phism A→ (At)t of abelian varieties.

Proof. Consider the Poincare bundle PA on At × A. Then PA|At×{a} is a degree 0 line bundle on At (as
this is true for a = e by construction, and then follows for any a by Lemma 5.1.7) and PA|{e}×A comes
equipped with a preferred trivialization ι (namely, the unique one compatible with the trivialization on
P{e}×{e} coming from the preferred trivialization of P|At×{e}). Thus, the triple (A,PA, ι) defines a map
α : A → (At)t by Theorem 5.2.1. This map preserves the origin, and is thus a homomorphism of abelian
varieties. We shall check it is an isomorphism.

Let us first check that α is finite; as dim(A) = dim(At) = dim((At)t), finiteness of α automatically
implies surjectivity. It is enough to check that over k = k, the set-theoretic fiber F = α−1(e) ∈ A(k) is finite.
By definition, this is exactly the set F of all a ∈ A(k) such that PA|At×{a} is trivial line bundle on At. If L
denotes a chosen ample line bundle L used to realize At = A/K(L) and PA as descended from Λ(L) along
π : A×A→ (A×A)/(K(L)×{e}) ' At×A, then for any a ∈ F , the bundle Λ(L)|A×{a} is trivial. But this
bundle is t∗aL⊗ L−1, and hence this gives a ∈ K(L)(k). As L is ample, there are only finitely many such a,
so F is indeed finite, thus proving that α is finite.

We have shown that α : A→ (At)t is a finite surjective homomorphism of abelian varieties. If G = ker(α)
viewed as a finite subgroup scheme of A, then it follows from degree considerations that A/G ' (At)t via α.
Our goal is to show deg(α) = rank(G) equals 1. For this, consider the induced map π := (α, id) : A×At →
(At)t × A; this map realizes the target a quotient of the source by the free action of G × {e} given by
translation. We must show deg(π) = 1. Note that we have

χ(A×At, π∗F ) = deg(π) · χ((At)t ×A,F )

by Theorem 4.2.4 (6). On the other hand, applying the universal property of (At)t gives an identification
π∗PAt = PA. Taking F = PAt then gives

χ(A×At,PA) = deg(π) · χ((At)t ×A,PAt).

By Corollary 5.2.5, both Euler characteristics showing up above are (−1)g where g = dim(A) = dim(At). It
follows that deg(π) = 1, as wanted.

Remark 5.3.4. By construction, PA comes equipped with a preferred trivializations along At×{e}. More-
over, there is a unique trivialization along {e}×A compatible with the previous one over {e}×{e}: existence
follows from the functor of points of At while uniqueness is clear. Thus, we may view PA more symmetri-
cally: it is a line bundle on At ×A that comes equipped with preferred and compatible trivializations along
At × {e} and {e} × A. It follows from this, and Lemma 5.1.7, that the restrictions of PA to the fibers of
either projection give degree 0 line bundles.
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Chapter 6

The Fourier-Mukai transform

We work in the setup of schemes of finite type over a field k.

6.1 Reminders on derived categories

Notation 6.1.1. For any k-schemeX of finite type, writeD(X) = Dqc(X,OX) for the quasi-coherent derived
category of X. Write Db(X) for the its bounded version, and Db

coh(X) ⊂ Db(X) for the full subcategory
spanned by complexes with coherent cohomology. We shall write (M,N) 7→ M ⊗L N for the symmetric
monoidal structure on D(X).

Proposition 6.1.2. Let f : X → Y be a map of finite type k-schemes.

1. The right derived functors of pushforward assemble to give an exact functor Rf∗ : D(X) → D(Y ).
This functor is lax monoidal, i.e., there is a natural map Rf∗(M)⊗LRf∗(N)→ Rf∗(M ⊗LN) (which
may not be an isomorphism). If f is proper, then Rf∗ preserves Db

coh.

2. The left derived functors of pullback assemble to give an exact functor Lf∗ : D(Y ) → D(X). This
functor is symmetric monoidal, i.e., it commutes with tensor products in a natural way. If f is flat
(or merely has finite Tor-dimension1), then Lf∗ preserves Db

coh. In particular, this holds whenever Y
is smooth.

3. Rf∗ is right adjoint to Lf∗.

4. Projection formula: for any M ∈ D(X) and N ∈ D(Y ), there is a natural isomorphism N⊗LRf∗(M) '
Rf∗(f

∗N ⊗LM) induced by the unit map N → Rf∗f
∗N and the lax monoidal structure of f .

5. Base change: given a cartesian square

X ′
g′ //

f ′

��

X

f

��
Y ′

g // Y

which is Tor-independent2, there is a base change isomorphism

Lg′∗Rf∗(−) ' Rf ′∗Lg′∗(−)

of functors D(X)→ D(Y ′).

1This condition means that the local rings of X have finite Tor-dimension over the corresponding local rings of Y .
2This condition means that Tor

OY,y

i (OX,x,OY ′,y′ ) = 0 for all i > 0 and compatible points x ∈ X, y ∈ Y , and x′ ∈ X′. It
holds true if one of f or g is flat, which is the only case we shall use.
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6. Künneth formula: for i ∈ {1, 2}, if fi : Xi → Y are two maps which are Tor-independent (for example,
one could be flat) and Mi ∈ D(Xi), then there is a canonical isomorphism

Rf1,∗M1 ⊗L Rf2,∗M2 ' Rπ∗(Lpr∗1M1 ⊗L Lpr∗2M2),

where π : X ×Y X → Y is the structure map.

6.2 Constructing functors via transforms

Construction 6.2.1 (Fourier-Mukai transforms). Let X and Y be k-schemes of finite type. Let K ∈
D(X ×k Y ). The integral transforms or Fourier-Mukai transforms ΦK and ΨK attached to K are the
functors

ΦK : D(X)→ D(Y ) via N 7→ Rpr2,∗(Lpr
∗
1N ⊗L K)

and
ΨK : D(Y )→ D(X) via M 7→ Rpr1,∗(Lpr

∗
2M ⊗L K).

We often refer to K as the kernel of ΦK and ΨK , and view the above construction as giving functors

Φ : D(X ×k Y )
K 7→ΦK−−−−−→ Fun(D(X), D(Y )) andΨ : D(X ×k Y )

K 7→ΨK−−−−−→ Fun(D(Y ), D(X)),

where the target denotes the category of exact k-linear functors.

Example 6.2.2 (The identity). Take X = Y , and K = O∆(X) as the structure sheaf of the diagonal
∆ : X ↪→ X ×k X. Then ΦK ' id. Indeed, we have

Lpr∗1(N)⊗K ' R∆∗N

by the projection formula for ∆, so the claim follows pr2 ◦∆ = id.

ex:ConvolvePullback Example 6.2.3 (Pushforward and pullback). Let f : X → Y be a morphism of separated finite type k-
schemes. Let i : Γ ⊂ X ↪→ Y by the graph, and K = Ri∗OΓ ∈ D(X ×k Y ). Then ΦK = Rf∗ and ΨK = Lf∗.
To see the former, note that for N ∈ D(X), we have

Lpr∗1(N)⊗L Ri∗OΓ ' Ri∗N

via the projection formula for i, so we get

ΦK(N) = Rpr2,∗(Lpr
∗
1N ⊗L K) ' Rpr2,∗(Ri∗N) ' Rf∗N.

Similarly, for M ∈ D(Y ), we have

Lpr∗2(M)⊗L Ri∗OΓ ' Ri∗(Lf∗N)

via the projection formula for i, so we get

ΨK(M) = Rpr1,∗Ri∗(Lf
∗N) ' Lf∗N,

as wanted.

Example 6.2.4 (Tensor product). Fix a k-scheme X and some M ∈ D(X). Set K = R∆∗M , where
∆ : X ↪→ X ×k X is the diagonal. Then ΦK(−) = (−)⊗LM .
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ConvolveTransform Proposition 6.2.5 (Convolution of integral transforms). Let X, Y , and Z be three k-schemes of finite type.
Let K ∈ D(X ×k Y ) and L ∈ D(Y ×k Z). Set

K ∗ L := Rpr13,∗
(
Lpr∗12K ⊗L Lpr∗23L

)
∈ D(X ×k Z).

We call this the convolution of K and L. Then we have

ΦL ◦ ΦK ' ΦK∗L

as functors D(X)→ D(Z). Similarly, we have

ΨK ◦ΨL ' ΨK∗L

as functors D(Z)→ D(X).

Proof. Consider the diagram

X ×k Y ×k Z

pXYww

pY Z

''
X ×k Y

prX
{{

prY

''

Y ×k Z

prY
ww

prZ

##
X Y Z.

All maps above are flat, and the square is a fibre square. Here we have followed the convention that all
projection maps coming out of X ×k Y ×k Z are labelled with a suitable subscript on p, while all projection
maps out of any product with only two factors are denoted pr with a suitable subscript. Thus, we also write
pX : X ×k Y ×k Z → X for the projection to X, etcetera.

By definition, we have

(ΦL ◦ ΦK)(M) = ΦL(RprY,∗(Lpr
∗
X(M)⊗L K)) = RprZ,∗(Lpr

∗
Y (RprY,∗(Lpr

∗
X(M)⊗L K)⊗L L)).

Applying flat base change to the cartesian square above shows

Lpr∗YRprY,∗ ' RpY Z,∗Lp∗XY ,

so the above exrpression can be simplfied to give

(ΦL ◦ ΦK)(M) = RpZ,∗
(
Lp∗XM ⊗ Lp∗XYK ⊗ Lp∗Y ZL),

where we have also used the projection formula for pXY and pY Z . Applying the projection formula to pXZ
and the sheaf Lpr∗XM , this simplifies further to

(ΦL ◦ ΦK)(M) = RprZ,∗
(
Lpr∗XM ⊗RpXY,∗(Lp∗XYK ⊗ Lp∗Y ZL)

)
' ΦK∗L(M),

as wanted. The proof for Ψ is similar.

Remark 6.2.6. The operation of convolution gives a “composition” law

D(X ×k Y )×D(Y ×k Z)→ D(X ×k Z).

One can check that this is associative. Proposition 6.2.5 implies that this convolution law is compatible with
composition of functors under the map

Φ : D(X ×k Y )→ Fun(D(X), D(Y )).

In other words, the assignment X 7→ D(X) has more functoriality than just in morphisms of schemes: it is
functorial in “correspondences” X → Y if one defines this to mean an object of D(X × Y ). One can also
formulate this in suitable 2-categorical terms, but we do not do that here.

Remark 6.2.7. Given finite type k-schemes X and Y and some K ∈ D(X), we can view X as a space
parametrizing certain objects of D(Y ) via the assignment x 7→ K|{x}×Y . This perspective is quite useful in
practice.
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6.3 The Fourier-Mukai equivalence

Let A be an abelian variety over a field k. Write At for the dual and PA ∈ Pic(A × At) for the Poincare
bundle. Under the biduality isomorphism, we can also view PA as a line bundle on At ×A ' At × (At)t by
switching factors; we have seen before that PA = PAt via this identification. For notational sanity, we write
PAt for PA viewed as a line bundle on At ×A.

Theorem 6.3.1. The map ΦPA
: D(A) → D(At) is an equivalence. More precisely, under the biduality

isomorphism A ' (At)t, we have the formulas

ΦPAt ◦ ΦPA
' [−1]∗A[−g] and ΦPA

◦ ΦPAt ' [−1]∗At [−g],

where g = dim(A). Moreover, ΦPA
induces an equivalence on Db

coh with inverse determined by the same
formulas.

The equivalence ΦPA
is called the Fourier-Mukai equivalence for A. The proof relies on the following

observation:

CubeFM Lemma 6.3.2. Let µ : A×At ×A→ A×At be the map (a, b, c) 7→ (m(a, c), b). Then the line bundle

µ∗P−1
A ⊗ pr

∗
12PA ⊗ pr∗23PAt

on A×At ×A is trivial.

Proof. This follows from the theorem of the cube: to get triviality on {e} × At × A and A× At × {e}, one
uses that PA|{e}×At is trivial, while triviality on A× {e} ×A uses that PA|A×{e} is trivial.

Proof. As the isomorphism A ' (At)t carries PAt on At × (At)t to PA on At × A, it is enough to prove
the first assertion. By Proposition 6.2.5 and Example 6.2.3, it is enough to show the following: if pr13 :
A×At ×A→ A×A is the projection, then the convolution

PA ∗ PAt := Rpr13,∗(Lpr
∗
12PA ⊗L Lpr∗23PAt) ∈ D(A×A)

identifies with OΓ[−g], where Γ ⊂ A×A is the graph of [−1]. By Lemma 6.3.2, this simplifies to give

PA ∗ PAt := Rpr13,∗Lµ
∗PA,

where µ : A×At×A→ A×At is the map (a, b, c) 7→ (m(a, c), b). Applying flat base change for the cartesian
square

A×At ×A
µ //

pr13

��

A×At

pr1

��
A×A m // A,

this simplifies to
PA ∗ PAt := Lm∗Rpr1,∗PA.

We have seen earlier that Rpr1,∗PA ' κ(e)[−g] (see Corollary 5.2.5). We can then apply flat base change to
the square

Γ //

��

A×A

m

��
{e} // A

to conclude that
PA ∗ PAt := Lm∗Rpr1,∗PA ' Lm∗κ(e)[−g] ' OΓ[−g],

as wanted.
The last assertion is automatic as all functors involved preserve Db

coh(−) as all varieties in sight are
proper and smooth.
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We briefly discuss some properties of the Fourier transform.

FM1 Lemma 6.3.3 (Tensoring with degree 0 line bundles goes to translations). For any degree 0 line bundle Mx

on A corresponding to a point x ∈ At(k), we have a natural isomorphism

ΦPA
(F ⊗LMx) ' t∗xΦPA

(F ) (6.1) {FMTensoringTrans}

for all F ∈ D(A).

Proof. Unwinding definitions, it is enough to check that the line bundles pr∗1Mx⊗PA and t∗(e,x)PA on A×At

agree. Both their restrictions to the fibres A×{y} of pr2 are identified with Mx⊗My. Hence, their difference
is pulled back from a line bundle on At by the Seesaw theorem. On the other hand, both line bundles are also
trivial along the section {e}×At ⊂ A×At: this is clear from pr∗1Mx⊗PA from the corresponding statement
for PA, and follows for the second as t∗e,xPA|{e}×At ' t∗x(PA|{e}×At), which is trivial by the trivialization in
the definition of PA.

SkyScraperPic0 Example 6.3.4. Corollary 5.2.5 (and biduality) show that

ΦPA
(OA) ' κ(e)[−g].

It follows from (6.1) that
ΦPA

(Mx) ' κ(−x)[−g]

for any Mx ∈ Pic0(A) corresponding to x ∈ At(k). Hitting both sides with ΦPAt then gives

M−x = [−1]∗Mx ' ΦPAt (κ(−x))

for x ∈ At(k) and thus (by switching the roles of A and At) we get

ΦPA
(κ(y)) ' Ny

for y ∈ A(k) corresponding to Ny ∈ Pic0(At) via the biduality isomorphism. In other words, the Fourier-
Mukai transform switches degree 0 line bundles and skyscraper sheaves (up to shifts and signs).

FM2 Lemma 6.3.5 (Translations go to tensoring with degree 0 line bundles). If a ∈ A(k) corresponds to a line
bundle Na on At, then we have a natural isomorphism

ΦPA
(t∗xF ) ' N−x ⊗ ΦPA

(F )

for all F ∈ D(A) and x ∈ A(k).

Proof. Note that

Lpr∗1t
∗
xF ⊗ PA ' t∗x,0Lpr∗1F ⊗ PA ' t∗x,0(Lpr∗1F ⊗ PA)⊗ pr∗2N−x,

where we use the identification
t∗x,0PA ' pr∗2Nx ⊗ PA

proven as in Lemma 6.3.3 (and the fact that N−x = N−1
x ). Thus, we obtain

ΦPA
(t∗xF ) ' Rpr2,∗

(
t∗x,0(Lpr∗1F ⊗ PA)⊗ pr∗2N−x

)
' N−x ⊗Rpr2,∗t

∗
x,0(Lpr∗1F ⊗ PA).

Now writing t∗x,0 = (t−x,0)∗, and observing that pr2 ◦ tx,0 = pr2, the last expression above simplifies to give

ΦPA
(t∗xF ) ' N−x ⊗Rpr2,∗t

∗
x,0(Lpr∗1F ⊗ PA) ' N−xRpr∗(Lpr∗1F ⊗ PA) ' N−x ⊗ ΦPA

(F ),

as wanted.
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FM3 Lemma 6.3.6 (Tensor products go to convolutions). For any M,N ∈ D(A), there is a natural isomorphism

ΦPA
(M)⊗ ΦPA

(N) ' ΦPA
(M ∗A N),

where M ∗A N = Rm∗(Lpr
∗
1M ⊗ Lpr∗2N) ∈ D(A).

In other words, the Fourier-Mukai transform carries tensor products in D(A) to convolution on D(At).

Proof. Consider the diagram

A×A×At
µ=(m,id) //

pr1

��

pr2

��

pr12

��

A×At
pr2 //

pr1

��

At

A×A m //

p1
yy

p2

%%

A

A A

with the square being cartesian. Now we have

ΦPA
(M ∗A N) = Rpr2,∗(PA ⊗ Lpr∗1(M ∗A N)) ' Rpr2,∗(PA ⊗ (Lpr∗1Rm∗(Lp

∗
1M ⊗L Lp∗2N)))

Simplifying the second largest parenthesized term via flat base change for the square above gives

ΦPA
(M ∗A N) ' Rpr2,∗Rµ∗(Lµ

∗PA ⊗ Lpr∗1M ⊗ Lpr∗2N).

As the map µ above agrees with the one in Lemma 6.3.2 after reordering factors, that lemma impies

µ∗PA ' pr∗13PA ⊗ pr∗23PA.

As pr2 ◦ µ = pr3 as maps, this gives

ΦPA
(M ∗A N) ' Rpr3,∗

(
(Lpr∗13PA ⊗ Lpr∗1M)⊗ (Lpr∗23PA ⊗ Lpr∗2M)

)
.

The map pr3 ◦ µ : A × A × At → At is the two fold fibre power of the flat map p2 : A × At → At. The
sheaves appearing on the right pulled back from each component of this fibre power. Thus, by Künneth,
this simplifies to

ΦPA
(M ∗A N) ' Rpr2,∗(PA ⊗ Lpr∗1M)⊗Rpr2,∗(PA ⊗ Lpr∗2N) =: ΦPA

(M)⊗ ΦPA
(N),

as wanted.

FM4 Lemma 6.3.7 (Exchange of RΓ with fibers). For any F ∈ D(A) and any Mx ∈ Pic0(A) corresponding to
x ∈ At(k), there is a canonical isomorphism

RΓ(A,F ⊗Mx) ' ΦA(F )|{x}.

Similarly, for any G ∈ D(At), there is a canonical isomorphism

RΓ(A,ΦAt(G)⊗Mx) ' G[−g]|{−x}

for all x ∈ At(k).
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Proof. The second follows from the first by setting F = ΦAt(G) and using ΦA ◦ ΦAt ' [−1]∗[−g]. For the
first, Applying base change to the cartesian square

A× {x} //

��

A×At

pr2

��
{x} // At

shows that

ΦA(F )|{x} ' Rpr2,∗(F ⊗ PA)|{x} ' RΓ(A,F ⊗ PA|A×{x}) ' RΓ(A,F ⊗Mx),

as wanted.

FMexRGamma Remark 6.3.8. In Lemma 6.3.7, taking Mx = OA in the second isomorphism shows that χ(A,ΦAt(G)) =
(−1)gχ(G|{e}). Thus, if G is a line bundle, then χ(A,ΦAt(G)) = (−1)g.

Remark 6.3.9. Combining Lemma 6.3.7 with 6.3.4, we learn that

RΓ(A,OA) ' κ(e)[−g]⊗LOAt,e
κ(e).

We may replace OAt,e with its completion R without changing the right hand side. But then there is a
non-canonical identification R ' kJx1, ..., xgK as At is smooth of dimension g. It follows from a standard
calculation with the Koszul complex that that the homology of right hand side is an exterior algebra on H1,
and hence the same holds true for the left hand side, recovering Corollary 5.2.6; of course, this is essentially
the same proof, repackaged using derived categories.

FM5 Lemma 6.3.10 (Behaviour under isogenies). Say f : A → B is a homomorphism of abelian varieties with
dual f t. Then

ΦB ◦ f∗ ' (f t)∗ ◦ ΦA.

Proof. Consider the diagram

B B ×Bt
q1
oo q2 // Bt

A

f

OO

A×Bt
p1
oo p2 //

α

��

β

OO

Bt

ft

��
A A×At

pr1
oo pr2 // At.

The top left and bottom right squares are cartesian. By construction of the dual isogeny, we have

α∗PA ' β∗PB . (6.2) {eq:FMIsog}

Thus, we get

ΦB ◦ f∗M = q2,∗(q
∗
1f∗M ⊗ PB) ' q2,∗β∗(p

∗
1M ⊗ β∗PB) ' p2,∗(p

∗
1M ⊗ α∗PA)

where the second equality uses flat base change for the top left square and the projection formula for β, and
the last equality uses (6.2). As p1 = pr1 ◦ α, this simplifies to

ΦB ◦ f∗M ' p2,∗α
∗(pr∗1M ⊗ PA).

The projection formula for the bottom right square then shows p2,∗α
∗ ' (f t)∗pr2,∗, which immediately gives

the desired equality.
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Chapter 7

Applications of the Fourier-Mukai
equivalence

Let A/k be an abelian variety of dimension g. Write Φ = ΦPA
for notational simplicity. Also entirely for

notational ease, we restrict to the case where k is algebraically closed.

7.1 Homogeneous bundles

An object E ∈ D(A) is called homogeneous if t∗xE ' E for every geometric point x of A; this is the obvious
derived analog of Definition 5.1.1, and will usually be applied when E is a vector bundle. Note that we do
not demand any compatibility in x for the isomorphisms t∗xE ' E.

Our first real application of the Fourier-Mukai equivalence is to classify homogeneous vector bundles:

HomogeneousFM Theorem 7.1.1. Φ[g] identifies the category of homogeneous bundles on A with the category of coherent
sheaves with finite support on At; this correspondence exchanges ranks with lengths. In particular, the collec-
tion of homogeneous vector bundles forms an abelian subcategory of Coh(A) that is closed under extensions.

The proof relies on the following lemma:

PicHomFM Lemma 7.1.2. . Say G ∈ Db
coh(A) is invariant under tensoring with degree 0 line bundles (i.e., there exist

isomorphisms G⊗ L ' G for all L ∈ Pic0(A)). Then G has finite support.

Proof. As tensoring with line bundles preserves cohomology sheaves, we may assume G is actually a sheaf.
Now if the support is not finite, then there is a reduced irreducible curve C ⊂ A such that G|C has nonzero

rank. Write f : C̃ → C ⊂ A for the normalization, and write G for the torsionfree quotient of f∗G. Then
G is a nonzero vector bundle on C such that G ⊗ f∗L ' G for any L ∈ Pic0(A). Passing to determinants
(and this uses G 6= 0), and using the divisibility of Pic0(A), it follows that the same holds for E = det(G).
But this simply means that f∗L is the trivial line bundle on C for every L ∈ Pic0(A). Stated differently,
the pullback π∗PA along π := (f, id) : C × At → A × At is trivial along all fibers of projection to C. By
the Seesaw theorem, we must then have π∗PA ' pr∗1L for some line bundle L on C. Using our trivialization
of PA|A×{0}, it follows that L is itself trivial, and thus π∗PA is trivial. Viewing PA now as a family of line
bundles on At parametrized by A as in Theorem 5.3.3, it follows that the classifying map C → (At)t is
the constant map. But by unwinding definitions, this is simply the map f : C → A under the biduality
isomorphism A ' (At)t. Thus, we have shown that f is constant, but this is absurd: f was finite and C was
a curve by construction.

Proof of Theorem 7.1.1. If N is a torsion coherent sheaf with finite support on At, then write N = Φ(M) for
some M ∈ D(A). As N has finite support, it can be written as an iterated extension of skyscraper sheaves.
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As Φ−1 of a skyscraper sheaf is a line bundle in homological degree g, it follows that M [g] is coherent sheaf
on A that can be expressed as an iterated extension of line bundles. In particular, M [g] is a vector bundle.
To see homogeneity, note that as N has finite support, N is invariant under tensoring with degree 0 line
bundles. The claim now follows from Lemma 6.3.3.

Conversely, say M ∈ D(A) is homogenous. Set N = Φ(M)[g]. We must check that N is a coherent
sheaf with finite support on A. In fact, it is enough to check that N has finite support: once this is known,
it follows immediately from the previous paragraph that Φ−1(N) = M [g] lives in exactly as many nonzero
degrees as N , and thus N must live in a single degree since M does so. To check finite support, we simply
invoke Lemma 7.1.2, noting that N is invariant under tensoring by degree 0 line bundles by Lemma 6.3.3
and the homogeneity of M .

7.2 Unipotent vector bundles

A vector bundle E on A is called unipotent if it is an iterated extension of copies of the structure sheaf.

Theorem 7.2.1. ΦA[g] identifies the category of unipotent vector bundles on A with the category of coherent
sheaves on At supported set-theoretically at 0 (i.e., the category of artinian OAt,e-modules); this correspon-
dence exchanges ranks and lengths. In particular, the collection of unipotent vector bundles form an abelian
subcategory of Coh(A) closed under extensions.

Proof. Recall the formulae
ΦA(OA) ' κ(e)[−g] and ΦAt(κ(e)) = OA

coming from Example 6.3.4. By induction on the number of extensions needed to express a unipotent vector
bundle in terms of OA, it follows from the first formula that ΦA[g] carries unipotent vector bundles to sheaves
on At supported at the origin. The claim now follows by applying the same reasoning to ΦAt using the second
formula above.

7.3 Non-degenerate line bundles and cohomology of ample line
bundles

sec:ndg

We say that a line bundle L on A is non-degenerate if the group scheme K(L) is finite; equivalently, the
homomorphism φL : A → At is an isogeny (i.e., finite surjective). An ample line bundle and its inverse are
non-degenerate. Our goal is to show that the cohomology of such line bundles is particularly constrained.

thm:nondeg Theorem 7.3.1. Let L be a nondegenerate line bundle.

1. There exists an integer 0 ≤ i(L) ≤ g and a vector bundle E on At such that ΦA(L) = E[−i(L)]. In
particular, Hi(A,L) = 0 for all i 6= i(L).

2. We have
(

dimHi(L)(A,L)
)2

= rank(K(L)).

In particular, the rank of K(L) is a square and Hi(L)(A,L) 6= 0.

The integer i(L) is called the index of L and will be analyzed later. To prove the theorem, we proceed in
steps. First, we explain why the structure of ΦA(L) is quite simple after pullback along the isogeny of φL.

Nondeg1 Lemma 7.3.2. Let L be a non-degenerate line bundle on A. Then there is an isomorphism

φ∗LΦA(L) ' RΓ(A,L)⊗k L−1.

By the faithful flatness of φL, it follows that each cohomology group of ΦA(L) is a vector bundle on A. (We
shall subsequently show that there is only one nonzero cohomology group.)
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Proof. The map φL : A → At classifies a line bundle M on A × A that is trivial on each fibre of pr1 (and
trivialized at the origin on the second factor). By definition, if we write α = (id, φL) : A×A→ A×At, then
α∗PA = M . It is an exercise in unwinding definitions that M ' Λ(L); more precisely, such an isomorphism
is determined by the choice of a trivialization of L|{e}. (In fact, the entire construction in §5.2 could have
been carried out using any non-degenerate line bundle L, not just an ample one.)

Now consider
ΦA(L) = pr2,∗(pr

∗
1 × PA).

Using the diagram
A×A

p1
||

p2

##
α

��

A A

φL

��

A×A

pr1
||

pr2

##
A At

and the cartesianness of the second square, we get

φ∗LΦA(L) ' p2,∗(p
∗
1L⊗ α∗PA).

As explained above, we have α∗PA ' Λ(L) ' m∗L⊗ p∗1L−1 ⊗ p∗2L−1. Plugging this in, we get

φ∗LΦA(L) ' p2,∗(m
∗L⊗ p∗2L−1) ' p2,∗(m

∗L)⊗ L−1,

where the second isomorphism uses the projection formula. Now the cartesian square

A×A m //

p2

��

A

��
A // Spec(k)

then implies that
φ∗LΦA(L) ' RΓ(A,L)⊗ L−1,

as wanted.

Next, we compute χ(A,L).

Nondeg2 Corollary 7.3.3. We have χ(A,L)2 = rank(K(L)).

Proof. We shall use a fancier version of Theorem 4.2.4 (7) applied to the finite quotient A→ A/K(L) ' At:
for any M ∈ Db

coh(At), we have
χ(A, φ∗LM) = deg(φL) · χ(At,M).

Applying this to M = ΦA(L) and using Lemma 7.3.2 gives

χ(A,RΓ(A,L)⊗ L−1) = rank(K(L)) · χ(At,ΦAL).

Now the projection formula simplifies the left side as

χ(A,RΓ(A,L)⊗ L−1) = χ(A,L) · χ(A,L−1).
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By Serre duality (as KA ' OA), we have χ(A,L−1) = (−1)gχ(A,L). So the left side above simplifies to

χ(A,RΓ(A,L)⊗ L−1) = χ(A,L)2 · (−1)g.

On the other hand, by Exercise 6.3.8, we have

χ(At,ΦAL) = (−1)gχ(L|{e}) = (−1)g.

Putting everything together now gives the claim.

The following general fact about convolutions of line bundles will help in the proof.

Nondeg3 Lemma 7.3.4. Let L be any line bundle on A, and let i : K(L)→ A be the defining inclusion. Then

L ∗A [−1]∗L−1 ' i∗(L|K(L))[−g].

In particular, if L is non-degenerate, then this complex has finite support.

Proof. We must show
m∗(p

∗
1L⊗ p∗2[−1]∗L−1) ' i∗(L|K(L))[−g].

To understand the LHS, consider the factorization the automorphism η of A×A given by

η(a, b) = (m(a, b),−b).

Then p1 ◦ η = m and η2 = id. In particular, the latter implies η∗ = η∗, so we may compute

m∗(p
∗
1L⊗ p∗2[−1]∗L−1) ' p1,∗η

∗(p∗1L⊗ p∗2[−1]∗L−1).

Now p1 ◦ η = m and [−1] ◦ p2 ◦ η = p2, so this simplifies to

m∗(p
∗
1L⊗ p∗2[−1]∗L−1) ' p1,∗(m

∗L⊗ p∗2L−1).

Using the formula Λ(L)⊗ p∗1L ' m∗L⊗ p∗2L−1, this can be rewritten as

m∗(p
∗
1L⊗ p∗2[−1]∗L−1) ' p1,∗(Λ(L)⊗ p∗1L) ' p1,∗Λ(L)⊗ L,

where the last isomorphism uses the projection formula. Now using flat base change for the cartesian square

A×A

p1

��

α=(φL,id) // At ×A
pr1

��
A

φL // At,

as well as the formula α∗PA ' Λ(L), we learn that

m∗(p
∗
1L⊗ p∗2[−1]∗L−1) ' L⊗ φ∗Lpr1,∗PA.

By Corollary 5.2.5, this simplies as

m∗(p
∗
1L⊗ p∗2[−1]∗L−1) ' L⊗ φ∗Lκ(e)[−g].

As the kernel of φL is exactly K(L), the claim follows.
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Proof of Theorem 7.3.1. Thanks to Corollary 7.3.3 and Lemma 7.3.2, it is enough to show the following: if
L is a nondegenerate line bundle, then ΦA(L) has the form E[−i(L)] for some vector bundle E and some
integer 0 ≤ i(L) ≤ g. Note that this assertion can be checked after pullback along φL. By Lemma 7.3.2,
we have φ∗LΦA(L) ' RΓ(A,L) ⊗ L−1. It is thus enough to show that RΓ(A,L) is concentrated in a single
degree; this degree is necessarily in [0, g] for general reasons as A has dimension g.

As tensor products and convolutions are interchanged (Lemma 6.3.6), applying ΦA to Lemma 7.3.4 gives

ΦA(L)⊗ ΦA([−1]∗L−1) ' ΦA(i∗(L|K(L)))[−g].

Now K(L) is finite as L is non-degenerate, so L|K(L) is non-canonically identified with OK(L). By the
finiteness of the support and Theorem 7.1.1, it follows that the RHS above has the form E′[−g] for a
homogeneous vector bundle E′ on At of rank rank(K(L)). Pulling back along φL and using Lemma 7.3.2
then shows that

(RΓ(A,L)⊗ L−1)⊗ (RΓ(A, [−1]∗L−1)⊗ [−1]∗L) ' φ∗LE′[−g].

Reorganizing the LHS, we get

RΓ(A,L)⊗RΓ(A, [−1]∗L−1)⊗ OA ' E[−g]

for some vector bundle E on A of rank rank(K(L)). As the LHS is pulled back from a point, it is easy to
see that this forces both RΓ(A,L) and RΓ(A, [−1]∗L−1) to have exactly one non-zero cohomology group, as
wanted.

Next, we analyze the index i(L) of a nondegenerate line bundle. We begin by observing that it is invariant
in families:

Nondeg4 Lemma 7.3.5. Say L and L′ are algebraically equivalent nondegenerate line bundles on A. Then i(L) =
i(L′).

Proof. It is enough to show that L′ = t∗xL for some x ∈ At(k): granting this, pullback along tx induces
an isomorphism H∗(A,L) ' H∗(A,L′), so the indices must be the same. By hypothesis, there is a smooth
proper connected curve and a line bundle L on C × A such that L|{c0}×A ' L and L|{c1}×A ' L′ for some
c0, c1 ∈ C(k). The twist M := L⊗ pr∗2L−1 is thus a line bundle on C × A whose fibre over c0 is trivial. By
Lemma 5.1.7, the fibre over c1 lies in Pic0(A), so L′⊗L−1 ∈ Pic0(A). But the map φL : A→ At is surjective
by non-degeneracy of L, so we must have

L′ ⊗ L−1 = φL(x) = t∗xL⊗ L−1,

and thus L′ ' t∗xL, as wanted.

The index is also invariant under isogeny:

Nondeg5 Lemma 7.3.6. If f : A → B is an isogeny and L is a nondegenerate line bundle on B, then f∗L is
nondegenerate and i(L) = i(f∗L).

Proof. By construction, we have
φf∗L = f t ◦ φL ◦ f.

Indeed, we have φf∗L(x) = t∗xf
∗L⊗ f∗L−1 ' f∗(t∗f(x)L⊗L

−1) = f∗φL(x), so the claim follows that f t = f∗

under the identifications At(k) ' Pic0(A) and Bt(k) ' Pic0(B). As the RHS is a composition of 3 finite
surjective maps, the same is true for the LHS, so f∗L is non-degenerate.

For equality of indices, we use Lemma 6.3.10 applied to f t to get

ΦAf
∗L ' f t∗ΦB(L).

As L is nondegenerate, ΦB(L) has the form E[−i(L)] for a vector bundle E on Bt. As f t is finite flat, the
pushforward f t∗ preserves vector bundles, so ΦAf

∗L = F [−i(L)] for a vector bundle F on At. The claim now
follows from the definition of the index in Theorem 7.3.1.
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Nondeg6 Lemma 7.3.7. For any n > 0 and any nondegenerate line bundle L on A, we have i(L) = i(Ln).

Proof. We only give a proof when n = m2 is a square; the general case can be deduced by a trick using
Lagrange’s 4 square theorem. Lemma 7.3.6 applied to f = [m] shows that i([m]∗L) = i(L). Now Lemma 5.1.5

shows that Ln = Lm
2

and [m]∗L lie in the same algebraic family: their difference is degree 0, and hence lies
in the same family as the trivial bundle as At is connected. Lemma 7.3.5 then shows that i(L) = i(Ln),
proving the claim.

Putting everything together, we learn a vanishing (and non-vanishing) theorem for ample line bundles:

AmpleH0 Corollary 7.3.8. Say L is an ample line bundle on A. Then Hj(A,L) = 0 for j > 0, and dimH0(A,L) =√
rank(K(L)) > 0.

If dim(H0(A,L)) = 1, then we say that L gives a principal polarization.

Proof. Lemma 7.3.7 ensures that i(L) = i(Ln) for all n > 0. On the other hand, by Serre vanishing, we have
Hj(A,Ln) = 0 for j > 0 and n � 0. It follows that i(Ln) = 0 for n � 0, and hence i(L) = 0. The rest
follows from Theorem 7.3.1.

7.4 Classification of stable vector bundles on an elliptic curve

Let E be an elliptic curve over a field k. We shall review the notion of semistable and stable bundles, and
then to classify them (following a result a Atiyah).

7.4.1 Semistable and stable bundles

Fix a smooth projective geometrically connected curve C over a field k. Recall that each vector bundle E on
C has a degree d(E) := d(det(E)) ∈ Z and a rank r(E) ∈ Z≥0. Both these invariants are additive in short
exact sequences, and thus give homomorphism K0(C)→ Z. It follows that we can define d(E) and r(E) for
any E ∈ Db

coh(C), and these invariants are also additive in E.

Definition 7.4.1. For a nonzero vector bundle E on C, define the slow µ(E) = deg(E)/rank(E). We
say that E is semistable (resp. stable) if for every quotient bundle E � F , we have µ(E) ≤ µ(F ) (resp.
µ(E) < µ(F )).

Stable0 Lemma 7.4.2. Let
0→ E1 → E → E2 → 0

be a short exact sequence of nonzero vector bundles. Then

min(µ(E1), µ(E2)) ≤ µ(E) ≤ max(µ(E1), µ(E2)).

Moreover, if µ(E1) = µ(E2), then µ(E) = µ(E1) = µ(E2).

Proof. This is a complete elementary statement. Say d1, r1, d2, r2 ∈ Z with r1, r2 nonzero and d1
r1
≤ d2

r2
.

Then we have
d1 + d2

r1 + r2
≤
d2 · r1r2 + d2

r1 + r2
=
d2 · r1+r2

r2

r1 + r2
=
d2

r2
,

which gives the the assertion µ(E) ≤ max(µ(E1), µ(E2)); the assertion min(µ(E1), µ(E2)) ≤ µ(E) is proven
in exactly the same way. The last part is clear.

Example 7.4.3 (Stable vector bundles on P1). For any curve C, every line bundle is trivially stable and
thus also semistable. If L,M are two line bundles, then E = L⊕M is semistable if and only if d(L) = d(M):
the if direction follows from Lemma 7.4.6 below. Conversely, if d(L) 6= d(M), then say d(L) < d(M). We

have µ(E) = d(L)+d(M)
2 > d(L) = µ(L). Realizing L as a quotient of E then shows that E is not semistable.

52



By the same reasoning, a finite direct sum ⊕iLi of line bundles is semistable exactly when all the Li’s have
the same degree.

Specializing now to P1, by Grothendieck’s theorem, there exists semistable vector bundles on P1 of slope
µ exactly when µ is an integer. In this case, the category of semistable vector bundles of slope µ (for fixed
µ) is identified with the category of vector spaces V via the functor V 7→ V ⊗ O(µ). In particular, stable
vector bundles on P1 coincide with line bundles.

Stable1 Lemma 7.4.4. Fix a nonzero vector bundle E. Then E is semistable (resp. stable) if and only if for every
nonzero subsheaf F ⊂ E, we have µ(F ) ≤ µ(E) (resp. µ(F ) < µ(E).

Proof. We explain the semistable case. The stable case is exactly the same with strict inequalities instead.
Assume that E is semistable. For a nonzero subsheaf F ⊂ E, write F ⊂ E for the saturation of F , so

F/F is torsion. Then the exact sequence

0→ F → F → F/F → 0

shows that deg(F ) ≤ deg(F ). As F and F have the same rank, it follows that µ(F ) ≤ µ(F ). Thus, after
replacing F with F , we may assume that F is saturated in E, and thus Q := E/F is a vector bundle. We
must check that µ(F ) ≤ µ(E), i.e., that

d(F )r(E) ≤ d(E)r(F ).

By semistability, we know that µ(E) ≤ µ(Q), i.e., we have

d(E)r(Q) ≤ d(Q)r(E).

Now we know that d(Q) = d(E)−d(F ) and r(Q) = r(E)− r(F ). Plugging these in to last inequality, we get

d(E)(r(E)− r(F )) ≤ (d(E)− d(F ))r(E).

Canceling the d(E)r(E) term on both sides and switching signs gives

d(E)r(F ) ≥ d(F )r(E),

as wanted. The exact same proof also works when E is stable.
Conversely, assume that E satisfies the conclusion of the lemma in the semistable case. Fix a bundle

quotient E � F with kernel K. We must show µ(E) ≤ µ(F ), and we know that µ(K) ≤ µ(E). The same
reasoning used above in the opposite direction proves the desired implication.

Stable2 Lemma 7.4.5. Let E and F be semistable bundles with µ(E) > µ(F ). Then Hom(E,F ) = 0.

Proof. Assume there exists a nonzero map E → F with image Q ⊂ F . Then µ(Q) ≥ µ(E) by semistability
of E, and µ(Q) ≤ µ(F ) by semistability of F (and Lemma 7.4.4). It follows that µ(E) ≤ µ(F ), which is a
contradiction.

Stable3 Lemma 7.4.6. Let 0 → E1 → E → E3 → 0 be a short exact sequence of vector bundles with equal slopes.
Then E is semistable if and only if E1 and E2 are so.

In particular, direct sums of semistable vector bundles of the same slope are semistable.

Proof. Assume E is semistable. As µ(E1) = µ(E), it is immediate the characterisation of semistability via
subsheaves that E1 is semistable. Dually, as µ(E) = µ(E2), it follows from semistability of E that E2 is
semistable.

Conversely, assume both E1 and E2 are semistable, and write µ for the common slope of all bundles.
Assume towards contradiction that E admits a subsheaf G with µ(G) > µ(E). Then G ∩ E1 ⊂ E1 so
µ(G ∩ E1) ≤ µ if G ∩ E1 6= 0; likewise, G/G ∩ E1 ⊂ E2 so µ(G/G ∩ E1) ≤ µ if G/(G ∩ E1) 6= 0. Thus,
if 0 6⊂ G ∩ E1 6⊂ G, then Lemma 7.4.2 gives µ(G) ≤ max(µ(G ∩ E1), µ(G/(G ∩ E1))) ≤ µ, which is a
contradiction. Thus, we must have either G ∩ E1 = 0 or G ⊂ E1. Now if G ∩ E1 = 0, then G → E2 is
injective, so µ(G) ≤ µ, which is a contradiction; a similar contradiction is reached if G ⊂ E1, so we are
done.
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Stable4 Lemma 7.4.7. A stable vector bundle E is simple, i.e., Hom(E,E) is a division ring. In particular, if k is
algebraically closed, then Hom(E,E) ' k.

Proof. Say f : E → E is a nonzero map with image Q. As f is nonzero, Q is also nonzero, so Q is a bundle.
If f is not surjective, then µ(Q) < µ(E) as Q is a proper submodule of E. On the other hand, µ(Q) ≥ µ(E)
as Q is a quotient of E; if Q is a non-trivial quotient one gets a strict inequality, and the only other option
is E ' Q, which gives equality. Combining the two, this leads to the absurd statement that µ(E) < µ(E),
which is a contradiction, so f must be surjective. By rank considerations, f is also injective, and hence f is
an isomorphism.

Remark 7.4.8. In Lemma 7.4.7, if k is not algebraically closed, then it is indeed possible that Hom(E,E)
is a division ring larger than k. For example, say C is a genus 0 curve over k without points. Fix an
identification C ⊗ k ' P1. Then there exists a rank 2 vector bundle E on C such that E ⊗ k ' OP1(−1)⊕2

via the previous identification; for instance, the group H1(C,KC) ' Ext1
C(OC ,KC) is a 1-dimensional k-

vector space (as this can be checked after passage to k), and we can choose E to be any non-split extension
of OC by KC . It is easy to see that semistability can be detected after passage to k, so E is semistable by
Lemma 7.4.6. In fact, we claim that E is also stable. To see this, fix a line subbundle L ⊂ E. We must
show that d(L) < µ(E) = µ(E ⊗ k) = −1. By base change, we get a line subbundle M := L⊗ k ⊂ O(−1)⊕2.
Then M ' O(−i) for some i > 0, and we must check that i > 1. If not, then i = 1, so L provides a k-model
for O(−1). But then L−1 provides a k-model for O(1). But then H0(C,L−1) is a 1-dimensional k-vector
space, and the zero locus of any nonzero section of L−1 gives a k-rational point of C (as the same holds true
over k), which contradicts our assumption that C does not have points. It follows that E is stable, and thus
A := Hom(E,E) is a division ring over k. By base change, we also know thatA⊗k ' End(O(−1)⊕2) 'M2(k).
In particular, A is a division algebra over k that is strictly larger than k. In fact, a more careful analysis
shows that A is the quaternion algebra over k corresponding to C under the identification between twisted
forms of P1 and twisted forms of M2(−) (as both sides identify with H1(k,PGL2)).

Theorem 7.4.9. Let E be a vector bundle. Then there is a unique filtration

0 = E0 ⊂ E1 ⊂ ... ⊂ Er = E

such that Qi := Ei/Ei−1 is semistable, and µ(Qi) > µ(Qi+1) for i ≥ 1.

This filtration is called the Harder-Narasimhan (or just HN) filtration. The subsheaf E0 ⊂ E is called
the maximal destabilizing subsheaf of E.

Proof. We first observe that set of all possible slopes of all nonzero subsheaves of E is bounded from above.
To see this, note that E can be realized as a subsheaf of L⊕n where L is sufficiently ample and n � 0 (by
writing E∨ as a quotient of L⊕−n for n� 0). Lemma 7.4.6 implies that L⊕−n is semistable, so slopes of its
subsheaves are bounded from the above, and thus the same holds true for E. Let µ be the largest possible
slope that occurs amongst all nonzero subsheaves of E.

Next, we observe that F,G ⊂ E are two subsheaves with µ(F ) = µ(G) = µ, then µ(F + G) = µ as
well. Indeed, F + G is a quotient of F ⊕ G. Now Lemma 7.4.2 implies that F ⊕ G is semistable of slope
µ, and hence µ(F + G) ≥ µ. But µ was chosen to be the maximal slope amongst all subsheaves of E, so
µ(F + G) = µ as well. It follows that there is a maximal nonzero subsheaf E1 ⊂ E of maximal rank with
µ(E1) = µ. It is then also clear from maximality of µ that E1 is semistable: any subsheaf of E1 is also a
subsheaf of E, and hence must have slope ≤ µ. This gives the first step of the filtration.

By induction, E/E1 has a filtration as prescribed in the theorem. Taking preimages in E then gives a
filtration 0 = E0 ⊂ E1 ⊂ ... ⊂ Er = E of E with µ(Qi) ≥ µ(Qi+1) for i ≥ 2. It remains to check that
µ(E1) > µ(E2/E1). If not, then µ(E1) ≤ µ(E2/E1). But then µ(E1) = min(µ(E1), µ(E2/E1)) ≤ µ(E2), so
we have found a subsheaf E2 ⊂ E that is strictly larger than E1 with slope ≥ µ, which is impossible by
choice of E1. Thus, we have constructed the filtration.
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For uniqueness, say 0 = G0 ⊂ G1 ⊂ ... ⊂ Gk = G is another filtration with Gi/Gi+1 being semistable
and µ(Gi/Gi−1) > µ(Gi+1/Gi) for i ≥ 1. Let k be minimal such that E1 ⊂ Gk, so the map E1 → Gk/Gk−1

is nonzero. We then have
µ(E1) ≤ µ(Gk/Gk−1) ≤ µ(G1) ≤ µ(E1),

where the first inequality uses Lemma 7.4.5, the second is true by assumption on the filtration {Gi}, and the
last holds true as µ(E1) = µ is maximal amongst the slope of all subsheaves of E. It follows that all these
numbers must be the same. As µ(Gk/Gk−1) is a strictly decreasing function of k, it follows that k = 1, and
thus E1 ⊂ G1 with µ(E1) = µ(G1). But then the maximality of E1 amongst all subsheaves of E with slope
µ ensures that E1 = G1. Quotienting by this subsheaf, one proceeds by induction.

IndecomposableSSElliptic Corollary 7.4.10. The HN filtration of any vector bundle E on an elliptic curve C is split. In particular,
indecomposable vector bundles are semistable.

Proof. Let 0 = E0 ⊂ E1 ⊂ ... ⊂ Er = E be the HN filtration for E, and let Qi = Ei/Ei+1. We have
µ(Qi) > µ(Qi+1). By induction, the HN filtration for Er−1 is split, i.e., we have an isomorphism Er−1

∼=
⊕r−1
i=1Qi. The obstruction to splitting the HN filtration from E is thus an element of ⊕r−1

i=1 Ext1(Qr, Qi). By
Serre duality (as C has genus 1), it is enough to show that Hom(Qi, Qr) = 0 for i ∈ {1, ..., r − 1}. But
µ(Qi) > µ(Qr) for such i, so the claim follows from Lemma 7.4.5.

We give one source of examples of semistable bundles.

Example 7.4.11. Say f : D → C is a finite étale map of curves. Then A = f∗OD is semistable of slope (or,
equivalently, degree 0). To see this, we are allowed to pass to finite flat covers of C by smooth connected
curves: this passage scales the slope by the degree of the cover, and thus semistability can be descended
through the pullback. But, as f is finite étale, there is some finite flat cover g : C ′ → C of smooth connected
curves such that D′ := g∗D → C ′ is simply tni=1C

′ → C ′. The corresponding structure sheaf is ⊕ni=1OC′ ,
which is semistable by Lemma 7.4.6.

7.4.2 Atiyah’s theorem

Let E be an elliptic curve over k. The base point e ∈ E(k) determines a line bundle L = OE(e) of degree 1,
and the map φL : E → Et is an isomorphism: its degree is the square of H0(E,L) by Corollary 7.3.8, and
is thus 1-dimensional by Riemann-Roch. From now on, identify E with Et via this map.

Our first goal is to prove the following classification of semistable bundles on E.

SSElliptic Theorem 7.4.12. Fix a rational number µ. The category Vect(E)µ of semistable bundles with slope µ on
E is identified with the category Cohtors(E) of coherent sheaves on E with finite support. If we denote this
association by F 7→ T (F ), then `(T (F )) = gcd(deg(F ), rank(F )).

In particular, there exist semistable bundles with all slopes. The first step of the proof is to understand
the behaviour of semistable bundles under the Fourier-Mukai transform.

Atiyah1 Lemma 7.4.13. For any F ∈ Db
coh(E), we have

deg(ΦE(F )) = −rank(F ) and rank(ΦE(F )) = deg(F ).

In particular, µ(ΦE(F )) = −µ(F )−1 provided µ(F ) 6= 0.

Proof. As E is an elliptic curve, we have χ(E,F ) = deg(F ): this is true for vector bundles by Riemann-
Roch, and thus follows in general by additivity. Using this observation, the claims follow from the canonical
isomorphisms

RΓ(E,ΦE(F )) = F [−1]|{e} and RΓ(E,F ) = ΦE(F )|{e}
from Lemma 6.3.7.
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Atiyah2 Lemma 7.4.14. Say F is a vector bundle on E with µ := µ(F ) < 0. Then ΦE(F )[1] is a semistable bundle
with slope −µ−1.

Proof. It is enough to prove this after base change to the algebraic closure. By Lemma 7.4.6, we may also
assume that F is indecomposable. Then ΦE(F ) is also indecomposable. As F has negative slope, we have
H0(E,F ⊗L) = Hom(L−1, E) = 0 for all L ∈ Pic0(E) by Lemma 7.4.5 as L−1 is semistable with slope 0. It
follows that all fibers of ΦE(F ) lie in cohomological degree 1. By semicontinuity, it follows that ΦE(F )[1] is
a vector bundle whose slope is −µ−1 by Lemma 7.4.13. As we already know this bundle is indecomposable,
it follows from Corollary 7.4.10 that ΦE(F )[1] is indeed semistable.

Atiyah3 Lemma 7.4.15. For any slope µ, there is an equivalence Vect(E)µ ' Vect(E)0 obtained by repeatedly
applying ΦE [1] and − ⊗ OE(e) (and their inverses) in some order. Any such equivalence preserves the
quantity gcd(rank(F ),deg(F )).

Proof. If µ = 0, there is nothing to do. If not, then using Lemma 7.4.14, we are allowed to replace µ with
−µ−1 using the Fourier-Mukai equivalence. Moreover, tensoring with O(e) certainly gives an equivalence
Vect(E)µ ' Vect(E)µ+1. To see why this allows us to eventually reach µ = 0, we use some group theory.
Recall that SL2(Z) acts transitively on Q ∪ {∞} = P1(Q) via fractonal linear transformation. Moreover,
SL2(Z) is generated by the matrices

S =

[
0 1
−1 0

]
and T =

[
1 1
0 1

]
.

The matrix S acts on Q ∪ {∞} via µ 7→ −µ−1, while T acts via µ 7→ µ + 1. These coincide by the effect
on slopes of the equivalences induces by ΦE [1] and − ⊗ O(e) of semistable bundles. As S and T generate
SL2(Z) and the latter acts transitively on Q ∪ {∞}, it follows that some combination of iterations of ΦE [1]
and −⊗ O(e) (and their inverses) gives an equivalence Vect(E)µ ' Vect(E)0.

The statement about preservation of gcd(rank(F ),deg(F )) under the above equivalence follows from
Lemma 7.4.14 for the Fourier-Mukai functor, and the following observation for the −⊗ OE(e) functor: if a

b
is a rational number, then gcd(a, b) = gcd(a+ b, b).

Proof of Theorem 7.4.12. By Lemma 7.4.15, it is enough to show

1. ΦE [1] gives an equivalence Vect(E)0 ' Cohtors(E).

2. For any F ∈ Vect(E)0, we have `(ΦE(F )[1]) = gcd(deg(F ), rank(F )) = rank(F ) (as deg(F ) = 0).

For both of these, we may assume k = k.
For (1), say F is a semistable bundle of degree 0. We shall prove by induction on the rank of F that

ΦE(F [1]) is a torsion coherent sheaf. This gives a functor Vect(E)0 → Cohtors(E). The case of rank 1 follows
from Lemma 6.3.3. In larger rank, assume first that there exists a degree 0 line bundle L and a nonzero
map L→ F . Then L ⊂ F must be saturated: if it was not saturated, its saturation L ⊂ F would give a line
subbbundle in F with µ(L) = deg(L) > deg(L) = 0, which is not possible by semistability of F . But then
F/L is a semistable vector bundle of degree 0, and hence F/L ∈ Vect(E)0 as well. By induction, we know
L and F/L carried to torsion coherent sheaves by ΦE [1], and thus the same holds true for E. It remains to
check the claim for those E ∈ Vect(E)0 that admit no non-trivial maps from degree 0 bundles. But then
H0(E,F ⊗ L) = 0 for all L ∈ Pic0(E), so all fibers ΦE(F )|{x} of ΦE(F ) are concentrated in cohomological
degree −1. By semicontinuity, it follows that ΦE(F [1]) is a vector bundle. But the rank of this vector
bundle is given by χ(X,F ) = deg(F ) by Lemma 7.4.13, and is thus 0 as F has slope 0. But this means that
ΦE(F ) = 0, and hence F = 0, as ΦE was an equivalence. This gives the functor required in (1).

Conversely, as any torsion coherent sheaf on E is an iterated extension of copies of the structure sheaves
of closed points, it is easy to see that if ΦE(F [1]) is a torsion coherent sheaf, then F must be an iterated
extension of degree 0 line bundles on E, and hence E ∈ Vect(E)0 by Lemma 7.4.6. This finishes the proof
of (1).

56



It remains to check that `(ΦE(F [1])) = rank(F ). As ΦE(ΦE(F [1])) = [−1]∗F , it follows that

rank(F ) = rank([−1]∗F ) = χ(E,ΦE(F [1])) = `(ΦE(F [1])),

where the first equality is obvious, the second uses Lemma 6.3.7, and third uses that ΦE(F [1]) is a coherent
sheaf with finite support.

StableEll1 Corollary 7.4.16. Assume k = k. Let F be an indecomposable vector bundle of rank r and degree d on E.
Set µ = d

r to be the slope. The following are equivalent:

1. F is stable.

2. gcd(d, r) = 1.

3. F is simple as an object of Vect(E)µ (i.e., has no nonzero nontrivial subobjects).

4. F is simple as a sheaf (i.e., Hom(E,E) = k).

In particular, there exist stable bundles of every slope µ.

Proof. Lemma 7.4.5 gives (1)⇒ (2).
The equivalence of (2) and (3) follows from Theorem 7.4.12 as a torsion coherent sheaf on E is simple

exactly when it has length 1; this requires k = k.
The equivalence of (2) and (4) also follows from Theorem 7.4.12 as a torsion coherent sheaf on E has no

non-scalar endomorphisms exactly when it is the skyscraper sheaf for a closed point.
For (3) ⇒ (1), assume F is simple as an object of Vect(E)µ. As F is indecomposable, we know that F

is semistable by Corollary 7.4.10. We wish to show that F is stable. Say G ⊂ F is a nonzero nontrivial
subsheaf. By semistability, µ(G) ≤ µ(F ) = µ. If µ(G) = µ(F ) = µ, then the semistability of F would
pass down to G, so G ⊂ F would be a nonzero nontrivial subobject of F in Vect(E)µ, which violates the
simplicity of F . Thus, µ(G) < µ(F ), which proves stability.

To see the existence of stable bundles, it is enough to produce a simple indecomposable object of Vect(E)µ.
But any F with T (F ) being a skyscraper sheaf of length 1 provides such a sheaf.
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Chapter 8

Generic vanishing theorems

In this chapter, we work exclusively over C. For any smooth proper variety X with a base point x ∈ X(C),
write a : X → Alb(X) for the Albanese morphism: this is the universal map from X into an abelian variety
that carries the base point to the identity; other properties shall be explained later. The goal is to prove the
following theorem:

GVprototype Theorem 8.0.1 (Green-Lazarsfeld). Let X be a smooth projective variety. For a general L ∈ Pic0(X) and
i < dim(a(X)), we have Hi(X,L) = 0. In particular, if a is generically finite, then (−1)dim(X)χ(X,OX) ≥ 0.

This theorem is a prototype of a “generic vanishing theorem” as it asserts that some cohomology group
is 0 is a generic value of the parameter. We shall give an exposition of this theorem following a paper of
Hacon that heavily uses the Fourier-Mukai transform; the non-algebraic input comes from a deep vanishing
theorem of Kollár in Hodge theory, that we use as a blackbox.

Example 8.0.2. When X is a smooth projective curve of genus g ≥ 1, the Albanese Alb(X) coincides with
the Jacobian of C. The map a : X → Alb(X) is non-constant, and thus generically finite. Thus, in this
case, Theorem 8.0.1 states that H0(C,L) = 0 for a general degree 0 line bundle L on C, which is easy to see
directly: any non-constant map OC → L must be an isomorphism for degree reasons. Note that if g ≥ 2,
then χ(C,L) = 1− g < 0, so H1(C,L) is typically nonzero. In particular, the bound on i in Theorem 8.0.1
is sharp.

8.1 The Picard scheme and the Albanese variety

Let X be a smooth proper geometrically connected variety over a field k of characteristic 0. Fix a base point
x ∈ X(k). We shall use the following facts about Picard and Albanese varieties attached to X.

1. Consider the functor Pic(X) on k-schemes defined by attaching to each k-scheme T the set of iso-
morphism classes of pairs (L ∈ Pic(T × X), ι : L|T×{x} ' OT ). This functor is naturally valued in
abelian groups via tensor products of line bundles. Moreover, it is representable by a locally finitely
presented group scheme also denoted Pic(X) and called the Picard scheme; write PX for the universal
or Poincare line bundle on Pic(X))×X and ιuniv for the universal trivialization over x. The association
X 7→ Pic(X) is contravariantly functorial in X (for base point preserving maps).

Proof. The existence of the Picard scheme is a non-trivial theorem, and we do not prove it here.

2. The identity component Pic0(X) of Pic(X) is an abelian variety. We shall write Pic0(X) = Pic0(X)(k)
for the “degree 0” line bundles on X; the notion of “degree 0” can also be defined in other more direct
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ways. The tangent space TePic0(X) is canonically identified with H1(X,OX). In particular, Pic0(X)
has dimension

dimH1
k(X,OX) =

1

2
dimCH

1(Xan,C) =:
β1(X)

2
,

where the second equality makes sense when k = C and uses Hodge theory.

Proof. To calculate the tangent space, we must identify the kernel of Pic(X)(k[ε]) → Pic(X)(k)
with H1(X,OX). Unwinding definitions, we must identify the kernel of Pic(X[ε]) → Pic(X) with
H1(X,OX), where X[ε] := X ⊗k k[ε]. Consider the exact sequence of sheaves

0→ 1 + εOX → OX [ε]∗ → O∗X → 0

of Zariski sheaves on X. The term on the left is identified with OX via the map 1 + α 7→ α on local
sections. Passing to the long exact sequence, we get an exact sequence

0→ H1(X,OX)→ H1(X,OX [ε]∗)→ H1(X,O∗X),

where injectivity on the left comes from the surjectivity of H0(X,OX [ε]∗)→ H0(X,O∗X) ' k∗. As the
ringed space (X,OX [ε]) identifies with the scheme X[ε] := X⊗k k[ε], the above sequence can be viewed
as a short exact sequence

0→ H1(X,OX)→ Pic(X[ε])→ Pic(X),

which gives the promised identification.

3. The pair (PX , ι
univ) defines, by the universal property of the dual abelian variety, a morphism

a : X → Pic0(X)t.

that carries x ∈ X(k) to the origin via our trivialization ιuniv. Informally, this map sends y ∈ X(k)
to the line bundle PX |Pic0(X)×{y}. This is the universal map from X to an abelian variety that carries
x ∈ X(k) to the origin. We often write this map as a : X → Alb(X) and call it the Albanese map for
X. This map is proper, and the dim(a(X)) is often called the Albanese dimension of X.

Proof of universality of Alb(X). Fix a map b : X → B into an abelian variety B that carries x ∈ X(k)
to the origin. Viewing B = At for A = Bt, this corresponds to a line bundle M ∈ Pic(X × A) that is
trivialized along X × {e}. By the geometric connectedness of X, there is a unique trivialization ι of
M |{x}×A compatible with the given trivialization over M |{x}×{e}. The resulting datum (M, ι) defines

a map A → Pic0(X) which induces a map Alb(X) → B on passage to duals. One can check using

universal properties that the map X
a−→ Alb(X)→ B obtained this way agrees with b.

4. The Albanese map a : X → Alb(X) induces a map Pic(Alb(X)) → Pic(X) by the functoriality of
the Picard scheme. This map induces an isomorphism on identity components, i.e., Pic0(Alb(X)) '
Pic0(X). In particular, any L ∈ Pic0(X) is obtained via pullback along a.

Proof. This is simply a manifestation of biduality for abelian varieties.

8.2 Hacon’s theorem: abstract version

Let A be an abelian variety over a field k of dimension g. We adopt the following notation:

1. Write ΦA : D(A)→ D(At) for the Fourier transform attached to the Poincare bundle PA on A×At.
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2. For any smooth proper k-scheme X of dimension n, write DX(−) = RHom(−, ωX [n]) for the Verdier
duality functor. This functor satisfies DX(F ⊗ E∨) = DX(F ) ⊗ E for any vector bundle E. The
crucial property we need is the following: if f : X → Y be a map between two such schemes, then
Rf∗ ◦ DX ' DY ◦Rf∗.

3. For any ample line bundle L on At, write E(L) = ΦAt(L). By §7.3, we know the following:

• E(L) is a nonzero vector bundle placed in degree 0.

• The pullback φ∗LE(L) identifies with L−1 ⊗H0(A,L) on At.

Hacon’s basic theorem is the following:

Hacon1 Theorem 8.2.1. Let F ∈ Db
coh(A) . The following are equivalent:

1. For L sufficiently ample, we have Hi(A,F ⊗ E(L)∨) = 0 for i 6= 0.

2. For L sufficiently ample, we have Hi(At,ΦA(DA(F ))⊗ L) = 0 for i 6= 0.

3. The complex ΦA(D(F )) is concentrated in degree 0.

Proof. (1) is equivalent to Dk(RΓ(A,F ⊗E(L)∨)) is concentrated in degree 0. By Grothendieck duality, we
have

DkRΓ(A,F ⊗ E(L)∨) ' RΓ(A,DA(F ⊗ E(L)∨)) ' RΓ(A,DA(F )⊗ E(L)),

where the last isomorphism uses that E(L) is a vector bundle. Now if pr1 : A×At → A and pr2 : A×At → At

are the two projection maps, then we have

RΓ(A,DA(F )⊗E(L)) = RΓ(A,DA(F )⊗pr1,∗(PA⊗pr∗2L)) ' RΓ(A×At, pr∗1DA(F )⊗PA⊗pr∗2L) ' RΓ(At,ΦA(DA(F ))⊗L),

where the second and third isomorphisms use the projection formulas for pr1 and pr2 respectively. This
shows (1) and (2) are equivalent.

The equivalence of (2) and (3) is a general fact:

Lemma 8.2.2. Fix a projective k-scheme X and M ∈ Db
coh(X). Then M is concentrated in degree 0 if and

only if RΓ(At,M ⊗ L) is concentrated in degree 0 for L sufficiently ample.

Proof. The “only if” direction is clear from Serre vanishing. Conversely, given M ∈ Db
coh(X), we have a

spectral sequence
Ep,q2 : Hp(X,Hq(M)⊗ L)⇒ Hp+q(X,M ⊗ L).

Assume that RΓ(At,M ⊗ L) is concentrated in degree 0 for all sufficiently ample L. For sufficiently ample
L, the spectral sequence above then degenerates to give

H0(X,Hj(M)⊗ L) = Hj(X,M ⊗ L)

for all j. Our hypothesis then ensures that H0(X,Hj(M) ⊗ L) = 0 for all j 6= 0 and sufficiently ample
L. But this cannot be true if Hj(M) 6= 0 as a sufficiently positive twist of any nonzero coherent sheaf has
non-trivial global sections on a projective scheme. It follows that Hj(M) = 0 for j 6= 0.

Next, we analyze some basic structural features of sheaves satisfying the conclusion of the theorem above.
For convenicen, let us make the following ad hoc definition.

Definition 8.2.3. Any F ∈ Db
coh(A) satisfying the conclusion of Theorem 8.2.1 is called a Hacon complex

on A; if F ∈ Coh(A) is a coherent sheaf, then we say that F is a Hacon sheaf.

Our main goal is to prove the following property of Hacon sheaves:
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Hacon3 Theorem 8.2.4. Let F be a Hacon complex on A.

1. The locus Si(At, F ) = {x ∈ At(k) | Hi(A,F ⊗Lx) 6= 0} is a closed subset of At. More each irreducible
component of this set has codimension ≥ i.

2. We have Si(At, F ) ⊂ Si−1(At, F ) for i > 0.

3. If F is additionally a coherent sheaf, then have χ(A,F ) ≥ 0.

To prove this, we shall need the following compatibility of the Fourier transform with duality.

FMDuality Lemma 8.2.5. For any F ∈ Db
coh(A), there is an isomorphism

DAt(ΦA(F )) ' [−1]∗ΦA(DA(F ))[g].

Proof. By Grothendieck duality for pr2 : A×At → At, we have

DAtΦA(F ) ' pr2,∗DA×At(pr∗1F ⊗ PA).

Note that DA×At = RHom(−,OA×At [2g]). Using the modular interpretation of the Poincare bundle, one
shows that ([1]× [−1])∗PA ' P−1

A . Using these, the above becomes

pr2,∗DA×At(pr∗1F ⊗ PA) ' pr2,∗

(
pr∗1DA(F )[g]⊗ ([1]× [−1])∗PA

)
' pr2,∗([1]× [−1])∗

(
pr∗1DA(F )[g]⊗ PA

)
,

where we use ([1]× [−1])◦pr1 = pr1 for the second isomorphism. Using the projection formula for the square

A×At

[1]×[−1]

��

pr2 // At

[−1]

��
A×At

pr2 // At

,

the above formula simplifies to

pr2,∗([1]× [−1])∗
(
pr∗1DA(F )[g]⊗ PA

)
' [−1]∗pr2,∗(pr

∗
1DA(F )⊗ PA)[g] ' [−1]∗ΦADA(F )[g],

as wanted.

Using this property, we obtain an alternative and more useful characterization of a Hacon complex:

HaconGV Proposition 8.2.6 (Characterization of Hacon complexes). Let F ∈ Db
coh(A). The following are equiva-

lent:

1. F is a Hacon complex.

2. RHom(ΦA(F ),OAt) is concentrated in degree 0.

3. ΦA(F ) = RHom(E,OAt) for a coherent sheaf E on At.

Proof. For (1)⇔ (2): note that F is a Hacon complex exactly when ΦA(DA(F )) is concentrated in degree 0.
By Lemma 8.2.5, this happens exactly when DAtΦA(F ) is concentrated in homological degree g. But DAt =
RHom(−,OAt [g]) as ωAt is the trivial bundle. Thus, F is a Hacon complex exactly when RHom(ΦA(F ),OAt)
is concentrated in degree 0.

For (2) ⇔ (3): Write (−)∨ = RHom(−,OAt) ' DAt [−g]. Then (−)∨ is a duality: it is a contravariant
equivalence, and there is a canonical identification (G∨)∨ ' G for any G ∈ Db

coh(A). The equivalence of (2)
and (3) is now immediate.

61



Thus, to understand the supports of the Fourier transform of a Hacon complex, we must understand
locally the structure of Ext∗(M,R). The following general commutative algebra lemma will be quite useful
in this regard:

CASupport Lemma 8.2.7. Let R be a regular ring, and let M be a finitely generated R-module. Then ExtiR(M,R) is
supported in codimension ≥ i, i.e., it vanishes when localized at any prime of R with height < i.

Proof. Let p be a height j prime of R. We must show that ExtiR(M,R)⊗R κ(p) = 0 for i > j. But we have

ExtiR(M,R)⊗R Rp ' ExtiRp
(Mp, Rp)

as the formation of Ext-groups commutes with localization for finitely generated R-modules. It is enough
to show the groups displayed above vanish for i > j. Now Rp is a regular local ring of dimension j, so the
category of Rp-modules has global dimension j, and hence the above Ext-groups must vanish for i > j, as
wanted.

Next, we explain why the Fourier transform of a Hacon complex is constrained:

Hacon2 Corollary 8.2.8 (Supports of the Fourier transform). Let F be a Hacon complex. Then Supp(HiΦA(F )) ⊂
At has codimension ≥ i for all i.

If F is additionally assumed to be a coherent sheaf (or merely that F ∈ D≥0), then ΦA(F )|U is concen-
trated in degree 0 for a sufficiently small non-empty open subset U ⊂ At.

Proof. As F is a Hacon complex, we know from Proposition 8.2.6 that ΦA(F ) has the form RHom(E,OAt)
for a coherent sheaf E on At. The first part of the claim then follows from Lemma 8.2.7.

For the second part, note that M := ΦA(F )|U ∈ D≤0 by the first part for U ⊂ At sufficiently small and
non-empty. On the other hand, if F ∈ D≥0, then ΦA(F ) ∈ D≥0 as well, as one immediately checks from
that flatness of pr1 and PA. Combining these assertions shows that ΦA(F )|U is concentrated in degree 0 for
such F , as wanted.

We can now prove Theorem 8.2.4.

Proof of Theorem 8.2.4. Let F be a Hacon complex on A. For (1), we must show that

Si(At, F ) = {x ∈ At(k) | Hi(A,F ⊗ Lx) 6= 0}

is a closed subset of At of codimension ≥ i. This follows Corollary 8.2.8 and the following general lemma
applied to M = ΦA(F ):

Lemma 8.2.9. Let R be a commutative ring, and let M be a perfect complex. Then, for each integer i, we
have

Si(R,M) := {x ∈ Spec(R) | Hi(M ⊗R κ(x)) 6= 0} ⊂ ∪j≥iSupp(Hj(M)).

Moreover, each Si(R,M) is a closed subset of Spec(R).

Proof. Assume that containment in the statement of the lemma is false. Then there exists some prime
x ∈ Spec(R) such that Hi(M ⊗R κ(x)) 6= 0 but Hj(M) ⊗R Rx = 0 for j ≥ i. The second condition
implies that Mx := M ⊗R Rx ∈ D<i. But then Mx ⊗Rx κ(x) ∈ D<i, which is a contradiction because
M ⊗R κ(x) 'Mx ⊗Rx

κ(x) is assumed to have a non-trivial Hi.
The closedness is a general fact, proven as in Corollary 2.2.6.

For (2), we must show that Si(A,F ) ⊂ Si−1(A,F ) for i > 0. As F is a Hacon complex, we have
F ' RHom(E,OAt) for a coherent sheaf E on At from Proposition 8.2.6. For any x ∈ At(k), we have the
base change isomorphism

RHom(E,OAt)⊗ κ(x) ' RHom(E, κ(x)).

The claim then follows from the following general commutative algebra lemma:
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Lemma 8.2.10. Let R be a noetherian local ring, and let M be a finitely generated R-module. If ExtiR(M,k) 6=
0 and some i > 0, then Exti−1

R (M,k) 6= 0.

Proof. Let K• be a minimal free resolution of M ; this means that each Ki is finite free, and the differential
is 0 modulo the maximal ideal of R. Any such complex is unique up to non-unique isomorphism. Then
dimk ExtiR(M,k) = rank(Ki). We must thus show that if Ki 6= 0 for some i > 0, then Ki−1 6= 0 as well.
But this is just a general fact about minimal free resolutions: if some Kj = 0 for j ≥ 0, then the complex
0→ Kj−1 → ..→ K0 would give a necessarily minimal resolution for M , and hence minimality ensures that
Ki = 0 for all i > j.

For (3): we must show that if F is a Hacon sheaf, then χ(A,F ) ≥ 0. Note that (1) implies that
Hi(A,F ⊗ L) = 0 for i > 0 and L lying in the complement of the proper closed subset ∪i>0S

i(A,F ) ⊂ At.
As F is a sheaf, this implies χ(A,F ⊗ L) = h0(A,F ⊗ L) ≥ 0 for any such L. On the other hand, As At is
connected, we also have χ(A,F ⊗ L) = χ(A,F ) for any L ∈ At, so we obtain the claim.

8.3 Hacon’s theorem: geometric version

Let X be a smooth projective variety over an algebraically closed field k of characteristic 0. Let a : X →
A := Alb(X) be the Albanese map.

Theorem 8.3.1. For each k ≥ 0, the sheaf F := Rka∗ωX is a Hacon sheaf.

Proof. Let L be an ample line bundle on At, and let E(L) = ΦAt(L) be the attached vector bundle on At; we
know that φ∗LE(L) ' H0(At, L)⊗L−1, where φL : At → A is the isogeny attached to L. By Theorem 8.2.1,
we must show that Hi(A,F ⊗ E(L)∨) ' 0 for i 6= 0.

First, we check that it suffices to show that Hi(A,F ⊗E(L)∨ ⊗ φL,∗OAt) = 0 for i 6= 0. Indeed, the map
OA → φL,∗OA is a direct summand of sheaves: a retraction is provided by the trace map divided by the
degree of φL.

By the projection formula and the preceding formula for φ∗LE(L), we are reduced to showing that
Hi(At, φ∗LF ⊗ V ⊗ L) = 0 for i 6= 0, where V = H0(A,L)∨ is a finite dimensional k-vector space. This
is equivalent to checking that Hi(At, φ∗LF ⊗ L) = 0 for i 6= 0. Applying base change to the cartesian square

X ′ //

b

��

X

a

��
At

φL // A

and using that φL is étale, we learn that φ∗LR
ia∗ωX ' Rib∗ωX′ . We are thus reduced to showing that

Hi(At, Rib∗ωX′⊗L) = 0 for i 6= 0. This is precisely the statement of Kollár vanishing Theorem 8.3.2 applied
to the map X ′ → b(X ′).

The following theorem of Kollár was used above.

Kollar Theorem 8.3.2 (Kollár). Let f : X → Y be a proper surjective morphism of projective algebraic varieties
over k. Assume X is smooth.

1. For any ample line bundle L on Y , we have Hi(Y,Rjf∗ωX ⊗ L) = 0 for i > 0 and any j.

2. Each Rjf∗ωX is torsionfree. In particular, we have Rjf∗ωX = 0 of j > dim(X)− dim(Y ).

We now obtain consequences.

Corollary 8.3.3 (Green-Lazarsfeld). Let Si(ωX) := {L ∈ Pic0(X) | Hi(X,ωX ⊗ a∗L) 6= 0} ⊂ At. Then
each Si(X) ⊂ At is closed, and each component has codimension ≥ i− (dim(X)− dim(a(X))).

In particular, if the Albanese map is generically finite, then each component of Si(ωX) has codimension
≥ i. Consequently, χ(X,ωX) ≥ 0.
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Proof. As the Poincare bundle on X×Pic0(X) is pulled back from the Poincare bundle on Alb(X)×Pic0(X)
under the Albanese map, one checks by the projection formula that Si(ωX) = Si(At, Ra∗ωX). An elementary
spectral sequence argument shows that

Si(At, Ra∗ωX) ⊂ ∪jSi(At, Rja∗ωX [−j]) = ∪iSi−j(At, Rja∗ωX).

For the first part, it is thus enough to show that the maximal j that can occur on the right above is
dim(X) − dim(a(X)). It is thus enough to show that Rja∗ωX = 0 for j > dim(X) − dim(a(X)). But this
follows from Theorem 8.3.2 (2).

For the last part, we simply observe that if dim(X) = dim(a(X)), then ∪i>0S
i(ωX) ⊂ At is a proper closed

subset by the first part. Thus, there exists some L ∈ At(k) outside this locus. But then RΓ(X,ωX ⊗ a∗L) =
H0(X,ωX ⊗ a∗L), so χ(X,ωX) = χ(X,ωX ⊗L) ≥ 0, where the equality follows from the invariance of Euler
characteristics in flat families.
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Chapter 9

Jacobians and the Torelli theorem

We fix an algebraically closed field k of characteristic 01. Let C be a smooth projective connected curve over
k of genus g ≥ 1. Write Jac(C) := Pic0(C) for the identity component of the Picard scheme. Our goal is to
prove the following:

Theorem 9.0.1 (Torelli). The Jacobian Jac(C) comes equipped with a canonical principal polarization Θ.
The pair (Jac(C),Θ) determines C uniquely up to isomorphism.

9.1 Constructing the principal polarization

9.1.1 Symmetric powers of C

For any integer r ≥ 0, there is an obvious action of the symmetric group Sr on Cr. We shall use the following
theorem:

Theorem 9.1.1. The quotient Symr(C) = Cr/Sr exists in the category of schemes. Moreover, it is smooth,
and Symr(C)(k) identifies with the set Diveff (C)r of effective divisors of degree r on C.

Proof. The existence of a quotient of a quasi-projective variety by a finite group action is a standard con-
struction, and we do not give it here. Instead, we simply sketch how it works: one chooses an Sr-equivariant
cover of Cr by affine open subsets Ui, forms the affine schemes Vi = Spec(O(Ui)

Sr ) so that Vi = Ui/Sr, and
glues the Vi’s together using the compatibility of forming invariants with localization.

Granting the existence of the quotient, let us explain smoothness at the point most likely to cause trouble,
i.e., a point where all co-ordinates coinice. Fix a point x ∈ C(k), which gives a point y := (x, ..., x) ∈ Cr(k)

and its image z ∈ Symr(C)(k). By smoothness of C, we have ÔC,x ' kJtK and thus ÔCr,y = kJt1, ..., trK,
where each ti comes via a projection map to C. As y is a fixed point for the Sr-action, there is an induced

Sr-action on ÔCr,y which, under our choice of co-ordinates, is the standard Sr-action on kJt1, .., trK. As y is

a fixed point, we have ̂OSymr(C),z ' kJt1, ..., trKSr , which is a formal power series ring by the fundamental
theorem on symmetric functions. Thus, Symr(C) is smooth at z.

To identify the points of Symr(C)(k), we first note that Symr(C)(k) = Cr(k)/Sr by a general property
of finite quotients. Now the map that carries (x1, ..., xr) ∈ Cr(k) to the divisor

∑
i xi ∈ Div(C)r is Sr-

equivariant, and thus gives a map τ : Cr(k)/Sr → Diveff (C)r. The injectivity of τ is the assertion that
(x1, ..., xr) ∈ Cr(k) is determined by subscheme attached to the divisor

∑
i xi, which is clear. The surjectivity

of τ is precisely what the effectivity of a divisor guarantees.

SymFunctor Remark 9.1.2. More generally, one can identify the functor of points of Symr(C) in a similar way: for any
k-scheme T , specifying a map T → Symr(C) is the same as specifying an effective Cartier divisor Z ⊂ C×T
that is finite and flat over T of degree r. We do not prove this assertion here.

1This assumption is strictly for simplicity of some arguments, and is not necessary for essentially any theorem.
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9.1.2 Relating Symn(C) to the Picard scheme

To proceed further, we use the following two maps:

1. For any r ≥ 0, there is natural map Cr → Pic(C) given by (x1, ..., xr) 7→ OC(
∑
i[xi]). This map

is Sr-equivariant, and thus factors as a map σr : Symr(C) → Pic(C). Under the interpretation of
Symr(C)(k) with effective divisors of degree r, this map simply sends an effective divisor D to the
corresponding line bundle OC(D).

2. There is a degree map deg : Pic(C)→ Z. Write Pic(C)r = deg−1(r) for the clopen subset parametrizing
line bundles of degree r. The map σr factors as Cr → Pic(C)r → Pic(C), we often refer to the first
map as σr as well.

SymPicFibers Theorem 9.1.3. The maps σr : Symr(C)→ Pic(C)r satisfy the following properties.

1. Every fiber of σr is set-theoretically a projective space (but possibly empty).

2. For r > g − 1, the map σr is surjective with geometrically connected fibers.

3. For r > 2g − 2, the map σr is smooth. In fact, it is a projective bundle.

4. For r ≤ g, the map σr is birational onto its image W r ⊂ Pic(C)r. In particular, W g = Pic(C)g and
W g−1 ⊂ Pic(C)g−1 is an irreducible divisor.

5. The Jacobian Jac(C) coincides with Pic(C)0. Thus, each Pic(C)r is a transate of Jac(C), and we write
Picr(C) = Pic(C)r from henceforth.

Proof. It is enough to check all assertions on k-points.

1. The fiber of σr over a degree r line bundle L is the set of effective divisors linearly equivalent to L,
i.e., it identifies with P(H0(C,L)). In particular, it is a projective space.

2. If a line bundle L has degree r > g− 1, then h0(L) ≥ χ(L) = r+ 1− g > 0, so the fibre of σr over L is
non-empty by (1).

3. If a line bundle L has degree r > 2g − 2, then h1(L) = h0(KC ⊗ L−1) = 0 as KC ⊗ L−1 has negative
degree, and thus h0(L) = χ(L) = r + 1− g. In particular, it follows that if r > 2g − 2, then all fibers
of σr are at least set-theoretically projectivizations of vector spaces of the same dimension r + 1 − g.
To actually identify the fibers scheme-theoretically, we use a trick. Let L ∈ Pic(C × Pic(C)r) be the
universal degree r line bundle trivialized along {x}×Pic(C)r for a fixed base point x ∈ C(k). For each
` ∈ Pic(C)r corresponding to a degree r line bundle L on C, we have L|C×{`} ' L by the universal
property of L. By cohomology and base change (and our assumption r > 2g − 2), it follows that
E := pr2,∗L is a vector bundle of rank r + 1 − g. Using the easy direction of the characterization
of Remark 9.1.2, one can produce a map h : P(E) → Symr(C) over Pic(C)r that is a bijection on
all the fibers over Pic(C)r, and thus a bijection. As both P(E) and Symr(C) are normal and k has
characteristic 0, it follows that h is an isomorphism, which proves everything.

4. Now assume r ≤ g. To show birationality of Symr(C) → Wr, it is enough to exhibit a single point
of Pic(C)r over which the fiber of σr is set-theoretically a singleton. Indeed, by the irreducibility of
Wr, this would ensure that Symr(C)→ Wr is generically finite; one uses that Wr stratified according
to the fiber dimension of this map. But since the geometric generic fibres are projective spaces (at
first set-theoretically, but then also scheme-theoretically by generic smoothness), the generic finiteness
would then also ensure that Symr(C)→Wr is birational. To find this point, we claim the following:

Lemma 9.1.4. For r ≤ g, there is a non-empty open U ⊂ Cr such that h0(OC(
∑
i[xi])) = 1 for

(x1, .., xr) ∈ U(k).
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Proof. Consider the following assertion:

(∗): If D is an effective divisor on C with h1(D) > 0, then there exists a non-empty open set V ⊂ C
such that h1(D + P ) = h1(D)− 1 for P ∈ U(k).

Granting (∗), we may prove the lemma as follows. Consider the trivial effective divisorD0 corresponding
to the line bundle OX . Then h1(D0) = g > 0. Applying (∗) inductively r times, we obtain an open
subset U ⊂ Cr such that h1(

∑
i Pi) = h1(D0 + P1 + ... + Pr) = g − r for (P1, ..., Pr) ∈ Cr(k). By

Riemann-Roch, this implies that h0(
∑
i Pi) = r + (1− g) + (g − r) = 1, as wanted.

It remains to prove (∗). By Riemann-Roch and Serre duality, this is equivalent to finding an open
set V ⊂ C such that h0(KC(−D − P )) = h0(KC(−D)) − 1. Now, by assumption, h0(KC(−D)) > 0,
so there exists a dense open V ⊂ C such that the canonical map H0(KC(−D)) ⊗ OC → KC(−D)
is surjective over V . Taking any point P ∈ V (k), it follows that applying H0(C,−) to the standard
sequence

0→ KC(−D − P )→ KC(−D)→ KC(−D)|P → 0

gives an exact sequence. In particular,

H0(C,KC(−D))→ KC(−D)|P

is surjective, and hence h0(KC(−D − P )) = h0(KC(−D))− 1.

5. Recall that Jac(C) was defined as the identity component of Pic(C) and is thus clearly contained in
Pic(C)0. It is therefore enough to show that Pic(C)0 is connected. But if we choose some x ∈ C(k),
then the map L 7→ L(r[x]) gives an isomorphism Pic(C)0 ' Pic(C)r, so it is enough to prove Pic(C)r
is connected for some r. Thus follows from (2) and the connectedness of Symr(C).

Construction 9.1.5 (The infinite symmetric product). For r, s ≥ 0, we have an obvious isomorphism
Cr × Cs ' Cr+s. There is an evident Sr × Ss-action on Cr × Cs, and an Sr+s-action on Cr+s. The
preceding isomorphism is equivariant for these actions with respect to the obvious inclusion Sr ×Ss ⊂ Sr+s.
Passing to the quotients, this gives a map Symr(C) × Syms(C) → Symr+s(C). Set Sym0(C) = Spec(k)
and Sym(C) = tr≥0Symr(C). We call Sym(C) the infinite symmetric product of C. The maps defined
above fit together to give Sym(C) the structure of a commutative monoid scheme. There is an obvious
map C → Sym(C) given by C ' Sym1(C). The maps σr : Symr(C) → Pic(C)r fit together to give a map
Sym(C)→ Pic(C) of commutative monoids. Thus, we have constructed maps

C → Sym(C)→ Pic(C)

where the second term is a commutative monoid scheme, and the third term is a commutative group scheme.
We shall show that these maps are universal with these properties. For now, simply note that the composite
map C ' Sym1(C)→ Pic1(C) is given by x 7→ OC([x]).

SymUnivProp Corollary 9.1.6. The natural map C → Sym(C) is the universal map from C into a commutative monoid
scheme.

Proof. Say G is any commutative monoid scheme equipped with a map f : C → G. Then f defines maps

Cr
fr

−→ Gr
m−→ G, where m is the multiplication on G. As G is commutative, this map is Sr-equivariant, and

thus factors to give a map Symr(C) → C. Putting these together gives a map Sym(C) → G which agrees
with f on the component C ' Sym1(C) ⊂ Sym(C). This gives the extension, and the uniqueness is proven
similarly.

PicUnivProp Corollary 9.1.7. The natural map C → Pic(C) is the universal map from C into a locally finitely presented
commutative group scheme whose identity component is an abelian variety.
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We shall implicitly use that any locally finitely presented k-scheme X has a discrete set of connected
components, and that each connected component is clopen.

Proof. Let a : C → G be a map from C to a commutative group scheme G. By Corollary 9.1.6, a extends
unique to a map b : Sym(C)→ G of commutative monoid schemes. As abelian varieties admit no non-trivial
maps from rational curves by Corollary 1.3.15, it follows from Theorem 9.1.3 that the restriction of b to
tr≥2g−2Symr(C) ⊂ Sym(C) factors over

Sym≥2g−2(C) := tr≥2g−2Symr(C)→ Pic≥2g−2(C) := tr≥2g−2Picr(C).

to give a map
c : Pic≥2g−2(C)→ G.

The map c intertwines the composition law on the LHS (inherited from the group law on Pic(C)) with the
group law on the RHS. Using the fact that C is a group (and not just a monoid), it is easy to see that c
extends uniquely to a homomorphism c̃ : Pic(C) → G of group schemes; explicitly, if x ∈ Pica(C)(T ), then
the extension is determined by the requirement

c̃(x) = c(x+ y)− c(y)

for any y ∈ Picb(C)(T ) with b ≥ (2g − 2)− a.

Remark 9.1.8. The assumption that the identity component is an abelian variety in Corollary 9.1.7 is not
necessary; one argues as in Remark 1.3.16.

JacAlb Corollary 9.1.9 (Jacobian as an Albanese). Fix a base point P ∈ C(k), and let f : C → Jac(C) ⊂ Pic(C)
be the map defined by Q 7→ OC([Q]− [P ]). This map carries P to e, and identifies Jac(C) with the Albanese
variety of C, i.e., the natural map Alb(C) → Jac(C) is an isomorphism. This map is also identified with
f∗ : Jac(C)t → Pic0(C) under the identification Alb(C) := Jac(C)t and Pic0(C) =: Jac(C).

Proof. Let A be an abelian variety, and let g : C → A be a map with g(P ) = e. By Corollary 9.1.7, we get
a unique extension of g to a homomorphism h : Pic(C)→ A of group schemes. Restricting this map gives a
map H : Jac(C) = Pic0(C)→ A. Note that h(f(P )) = e and that translating by f(P ) gives an isomorphism
Pic0(C) ' Pic1(C). As h is a group homomorphism, it immediately follows that g = H ◦ f , and that H is
unique with this property.

The identification Alb(C) ' Jac(C) coming from the previous paragraph is the unique one that carries
Q ∈ C(k) to OC([Q]−[P ]) ∈ Jac(C)(k) via the canonical map C → Alb(C). We wish to identify this map with
f∗. The map f : C → Jac(C) = Pic0(C) corresponds, under the moduli description of Jac(C) as the space
of degree 0 line bundles on C trivialized at P , to the line bundle PC := OC×C(∆)⊗p∗1OC(−P )⊗p∗2OC(−P ),

i.e, PC is the pullback of the Poincare bundle on Jac(C) × C along C × C f,id−−→ Jac(C) × C. The pullback
f∗ sends x ∈ Jac(C)t corresponding to P|Jac(C)×{x} ∈ Pic0(Jac(C)) to the line bundle f∗(P|Jac(C)×{x}). In
particular, if x ∈ Jac(C)t comes from Q ∈ C(k) via the Albanese, then it follows that f∗(P|Jac(C)×{x}) '
PC |C×{Q} ' OC([Q]− [P ]).

As a consequence of the previous discussion, we have constructed an isomorphism Jac(C) ' Jac(C)t

depending on the choice of a base point P ∈ C(k). One can show directly that this is principal polarization,
and that the corresponding Θ-divisor is given by the image W g−1 ⊂ Picg−1(C) of σg−1 under some standard
isomorphism Picg−1(C) ' Pic0(C). This is essentially done in the next section, using the language of
determinants of cohomology and the Fourier transform.
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9.1.3 The principal polarization

We shall use without proof that the notion of determinants extends to the derived category:

Proposition 9.1.10 (Mumford-Knudsen). Fix a smooth k-scheme X. The functor det(−) on the category of
vector bundles on X extends to a symmetric monoidal functor Db

coh(X)→ Pic(X) by passage to resolutions.
For any exact triangle

K → L→M

in Db
coh(X), there is a canonical isomorphism det(L) ' det(K)⊗ det(M).

More generally, the same assertions hold true for any scheme X provided we replace Db
coh(X) with the

derived category Dperf (X) of perfect complexes on X, i.e., those complexes that locally can be represented
by a finite complex of finite free OX-modules.

Using the determinant of cohomology, one can often construct sections:

DetCoh Proposition 9.1.11. Let S be a connected k-scheme, and let f : X → S be a proper smooth relative curve.
Let M be a vector bundle on X such that Rf∗M is generically acyclic. Then the line bundle L := det(Rf∗M)
comes equipped with a canonical nonzero section θ ∈ H0(S,L) such that Z(θ) coincides set-theoretically with

Si(S,Rf∗M) := {s ∈ S | Hi(Xs,M |Xs) 6= 0}

for i = 0, 1.

Proof. We first note that S0(S,Rf∗M) = S1(S,Rf∗M). Indeed, by assumption on generic acyclicity, we
know that χ(Xs,M |Xs

) = 0 for s ∈ S generic; by connectedness of S, the same holds for any s ∈ S. Thus,
for any s ∈ S, we have H0(Xs,M |Xs

) 6= 0 exactly when H1(Xs,M |Xs
) 6= 0, which gives the claim.

To construct θ, we make choices; the section is independent of these choices, but we do not explain that
here. Choose an effective divisor D ⊂ X that is finite flat over S with sufficiently large degree on the fibers.
We have an exact sequence

0→M →M(D)→M |D → 0

on X. For D sufficiently positive, by semicontinuity, we may assume that R1f∗M(D) = 0 and that f∗M(D)
is a vector bundle on S. As D → S is finite flat, we also know that R1f∗(M |D) = 0 and f∗(M |D) is a vector
bundle. It follows that Rf∗M is computed by the two-term complex

f∗M(D)
η−→ f∗(M |D)

of vector bundles on S. The generic acyclicity of Rf∗M ensures that η is an isomorphism generically; in
particular, both vector bundles appearing above have the same rank. Taking determinants, it follows that

L := det(Rf∗M) ' det(f∗M(D))⊗ det(f∗(M |D)).

The determinant of η gives a section θ ∈ H0(S,L). It is clear from the definition that for any s ∈ S, the
section θ⊗κ(s) ∈ L⊗κ(s) is nonzero exactly when η⊗κ(s) is an isomorphism, which happens exactly when
RΓ(Xs,Ms) ' 0. This implies that Z(θ) coincides with Si(S,Rf∗M) for i = 0, 1, as wanted.

Theta1 Proposition 9.1.12. Let a : C → A be a finite map to an abelian variety; we view coherent sheaves on C
as coherent sheaves on A via pushforward along a. For a line bundle L on C, write d(L) := det(ΦA(L)) ∈
Pic(At). The map φd(L) : At → A is independent of L, and coincides with the map

At = Pic0(A)
a∗−→ Pic0(C) ' Jac(C)

a∗−→ A,

where a∗ is the map induced by the universal property of Pic(C) from Corollary 9.1.7.
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Proof. As all objects in sight are smooth k-varieties, it is enough to show the claim on k-points. Fix a point
x ∈ At. If P be the Poincare bundle on A × At, then Px = PA×{x} is the corresponding line bundle on A

under the identification At(k) ' Pic0(A). We then compute

φd(L)(x) = t∗xd(L)⊗d(L)−1 = t∗x det(φA(L))⊗det(φA(L))−1 ' det(φA(L⊗Px))⊗det(φA(L))−1 ' d(L⊗a∗Px)⊗d(L)−1.

where the third equality uses that det commutes with pullback and that φA intertwines translations on At

with tensor products on A by Lemma 6.3.3. We must show that this line bundle, viewed as an element of
Pic0(At) ' (At)t(k), agrees with a∗a

∗Px ∈ A(k) via the canonical isomorphism A ' (At)t. Recall that the
latter is characterized by the requirement that p ∈ A(k) corresponds to P|{p}×At ∈ (At)t(k). The claim now

follows from the following more general assertion applied to a divisor D representing a∗Px ∈ Pic0(C).

Lemma 9.1.13. For any divisor D on C, we have d(L(D)) ' d(L) ⊗ P|{a∗D}×At , where a∗ : Pic(C) → A
is the map induced by the universal property of Corollary 9.1.7.

Proof. By linearity, it is enough to show the claim when D = [p] for a single point p ∈ C(k). In this case,
we have the exact sequence

0→ L→ L(p)→ L(p)|p ' κ(p)→ 0.

Applying ΦA gives
φA(L)→ φA(L(p))→ P|{p}⊗At .

Taking determinants then shows
d(L(p)) = d(L)⊗ P|{p}⊗At .

To explain the principal polarization on Jac(C), we recall some definitions. Recall that a polarization on
an abelian variety A is defined to a map φ : A→ At of the form φL for some (unspecified) ample line bundle
L; such a map is necessarily finite. If φ is an isomorphism, then we say that φ is a principal polarization. In
this case, we have dimH0(A,L) = 1 by Corollary 7.3.8. We shall write ΘL ⊂ A for the zero locus of any
nonzero section of L, and call it the θ-divisor attached to L. Given a principal polarization φ, the following
facts can checked:

1. The collection of L with φL = φ forms naturally a torsor Xφ for At(k). This amounts to the assertion

that Pic(A)
M 7→φM−−−−−→ Hom(A,At) has kernel At(k) (as well as the fact that ampleness is invariant under

tensoring with a degree 0 line bundle).

2. For each choice of L ∈ Xφ, we get a θ-divisor ΘL ⊂ A. Given x ∈ A(k), we have x+ ΘL = ΘL⊗φ(−x):
both sides are effective Cartier divisors attached to the line bundle t∗xL, which has a unique nonzero
global section up to scaling. Now given L,M ∈ Xφ, we can write L ' M ⊗ φ(−x) for a unique
x ∈ A(k) as φ is an isomorphism. It follows that ΘL = x + ΘM for a unique x ∈ A(k). Note that
x+ ΘM = ΘM exactly when x = e (as φ is an isomorphism). In other words, we may regard Θ as an
abstract defined variety equipped with an A-torsor Yφ of “standard” embeddings Θ ↪→ A. There is a
natural identification Yφ = Xφ of A-torsors given by sending L ∈ Xφ to Θ = ΘL ↪→ A.

We now explain how to construct the principal polarization on Jac(C).

JacPPAV Corollary 9.1.14. Let a : C → Jac(C) be the Albanese map defined using a base point P ∈ C(k) as in
Corollary 9.1.9.

1. The map φ considered in Proposition 9.1.12 (for some choice of L, which is irrelevant by the lemma)
is an isomorphism.
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2. The map φ gives a principal polarization on Jac(C). More precisely, d(L) is ample for any degree g−1
line bundle L.

3. Choose L to be a degree g − 1 line bundle on C. The θ-divisor Θ ⊂ Jac(C) attached to φL coincides

with the image W g−1 ⊂ Picg−1(C) of Symg−1(C) under the isomorphism Jac(C)
M 7→L⊗M−−−−−−→ Picg−1(C).

In particular, Θ(k) ⊂ Pic0(C) consists of those degree 0 line bundles M such that H0(C,L⊗M) 6= 0

Proof. For (1), by Proposition 9.1.12, it is enough to show that the map

Jac(C)t = Pic0(Jac(C))
a∗−→ Pic0(C)

a∗−→ Jac(C)

is an isomorphism. The map a∗ is exactly the map realizing the isomorphism between Alb(C) := Jac(C)t and
Jac(C) coming from Corollary 9.1.9, while a∗ is also an isomorphism by the second part of Corollary 9.1.9.

Having checked that φ is an isomorphism, to show (2), it is now enough to show that d(L) is effective
(by Corollary 3.2.14) for some choice of L. We shall check this in a manner that also establishes parts of
(3). Choose L to be a line bundle of degree g− 1. Then we claim that d(L) = det(ΦA(L)) is effective. If we
write P for the Poincare bundle on C × Jac(C), the ΦA(L) is given by Rpr2,∗(pr

∗
1L⊗ P). In particular, for

any point x ∈ Jac(C)(k), the fibre ΦA(L)⊗ κ(x) identifies with RΓ(C,L⊗P|C×{x}); as x varies through all

points of Jac(C)(k), the line bundle L ⊗ P|C×{x} varies through all points of Picg−1(C)(k). In particular,
for generic x, we have RΓ(C,L⊗ P|C×{x}) = 0 by Theorem 9.1.3. Applying Proposition 9.1.11 to the map
pr2 : C × Jac(C) → Jac(C) with M = pr∗1L ⊗ P then shows that d(L) = det(Rpr2,∗(pr

∗
1L ⊗ P)) admits a

canonical section θ such that Z(θ) coincides with the set of all degree 0 line bundles M ∈ Pic0(C)(k) such
that H0(C,L⊗M) 6= 0. This establishes (2), as well the set-theoretic variant of (3).

To finishing proving (3), we must check that Z(θ) as defined above coincides with W g−1 as schemes. As
both sides are irreducible Cartier divisor and W g−1 is reduced, it is enough to check that Z(θ) is reduced.
But this follows from the following general fact:

Lemma 9.1.15. Let A be an abelian variety, and let L be an ample line bundle giving a principal polarization.
If the θ-divisor Θ ⊂ A is irreducible, it is reduced.

Proof. If Θ was not reduced, then we could write Θ = k ∗ D for some k > 1 and divisor D. It then
follows that L = Mk for some ample line bundle M and k > 1. But it is easy to see that K(Mk) contains
A[k]: the theorem of the square implies that the map M 7→ φM gives a group homomorphism Pic(A) →
Hom(A,Pic0(A)), and hence φMk is divisible by k as a map, and thus kills A[k]. Since φL is an isomorphism
by assumption, we get a contradiction.

9.1.4 The Torelli theorem

The statement

Let A be an abelian variety over k equipped with a principal polarization φ : A → At, and let Θ ⊂ A be
some effective divisor inducing φ. Set

Z(A, φ) = coker(Pic(A)→ Pic(Θns)).

As different choices of Θ differ by translations, one checks that Z(A, φ) depends only on φ and not on Θ.
Assume now that Θ is symmetric, i.e., [−1]∗Θ = Θ; such divisors always exist2, and two choices differ by

2Indeed, if φ = φL for some L (so L = OA(Θ)), then Θ is symmetric exactly when [−1]∗L = L. Now given any L with
φ = φL, the difference L−1 ⊗ [−1]∗L is a degree 0 line bundle, and thus of the form M2 for some degree 0 line bundle M . As
[−1]∗M = M−1, it follows that L⊗M is symmetric; moreover, we have φL = φL⊗M . Thus, we have constructed a symmetric
line bundle L inducing the principal polarization. It is clear from this construction that the set of all such L’s forms a torsor
for A[2](k). This reasoning also shows that the set of symmetric Θ-divisors for φ forms a torsor for A[2](k).
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translations by a unique x ∈ A[2](k). In particular, we may regard Θ as a symmetric subscheme of A that
is well-defined (i.e., depends only on φ) up to translations by A[2](k). Consider set P (A, φ) ⊂ Pic(Θns) of
all line bundles M with the following two properties:

1. M ⊗ [−1]∗M ' ωΘns .

2. M generates Z(A, φ).

We can now formulate the Torelli theorem:

Theorem 9.1.16. Consider the principally polarized abelian variety (Jac(C), φ) constructed in Corollary 9.1.14.
Pick a symmetric Θ-divisor Θ ⊂ Jac(C), and let j : Θns → Θ be the inclusion. Then:

1. The set P (Jac(C), φ) is non-empty.

2. For any M ∈ P (Jac(C), φ), the complex ΦJac(C)(j
ns
∗ M) has form F [1 − g] for a coherent sheaf F on

Jac(C)t
φ
' Jac(C). The scheme-theoretic support of F is isomorphic to the curve C, and F is a line

bundle of degree g − 1 on C.

A sketch of the proof

We sketch roughly the main steps of the proof. As the Torelli theorem is clear in genus 2 (though one must
also check the above formulation), we restrict to g ≥ 3.

1. By carefully studying the geometry of the θ-divisor W g−1 ⊂ Picg−1(C) via the map Symg−1(C) →
W g−1 one shows the following:

Proposition 9.1.17. If C is not hyperelliptic, then Z(Jac(C), φ) ' Z. If C is hyperelliptic of genus
≥ 3, then Z(Jac(C), φ) ' Z/2. In both cases, the restriction map Pic(Picg−1(C)) → Pic(Θns) is
injective.

The proof uses many classical facts about curves (such as Clifford’s theorem and Maarten’s theorem).

2. Consider the semidirect product G := Jac(C)t o Z/2, where the Z/2 acts via [−1] on Jac(C)t. There
is a natural G-action on the set P (Jac(C), φ): the Z/2 acts via [−1]∗ (which makes sense because Θ is
symmetric), while a point ξ ∈ Jac(C)t(k) corresponding to a degree 0 line bundle M on Jac(C) acts
via tensor product with M |Θns . One then proves the following:

Lemma 9.1.18. The G-action on P (Jac(C), φ) is transitive. More precisely, this holds true for any
ppav (A, φ) with symmetric θ-divisor Θ as long as Pic(A)→ Pic(Θns) is injective.

As a consequence, if one understands the Fourier transform of one particular M ∈ P (Jac(C), φ), one
understands the Fourier transform of every such M : tensor products with degree 0 line bundles as well
as [−1]∗ behave predictably under the Fourier transform.

3. We must show that the set P (Jac(C), φ) is non-empty, and that that ΦJac(C)(M) verifies (2) in the
theorem for any M ∈ P (Jac(C), φ). By the previous reduction, it suffices to prove non-emptyness,
and verify (2) for a single M ∈ P (Jac(C), φ). Both of these follow from the involutivity of the Fourier
transform, and the following:

Proposition 9.1.19. Let Ψ : D(C)→ D(Picg−1(C)) be the transform defined by the Poincare bundle
on C × Picg−1(C). Then Ψ(OC)[1] ' jns∗ M for some M ∈ P (Picg−1(C), φ).

Beyond standard cohomological machinery, the main non-trivial ingredient that goes into this proof is
the following: the singular locus of Θ has codimension ≥ 3. This assertion ensures that jns∗ (F |Θns) ' F
for any sheaf F that admits a two term resolution by vector bundles.
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