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1. G-MODULES

Let G be a group. A G-module is an abelian group M equipped with a left action
G x M — M that is additive, i.e., g- (x +y) =(g-2)+ (¢g-y) and g -0 = 0. A G-module
is exactly the same thing as a left module over the group algebra Z[G]. In particular, the
category Modg of G-modules is a module category, and therefore has enough projectives and
enough injectives.

We note that one can pass between left and right G-modules: if M is a right G-module
then defining gz = 2g~! gives M the structure of a left G-module. For this reason, we always
work with left G-modules.

Suppose that M and N are two left G-modules. Then M ®z N has the structure of a
G-module via g(z ® y) = (g9z) ® (gy). We also define a second tensor product, denoted
M ®g N, by regarding M as a right G-module and then forming the tensor product over
Z|G]. Explicitly, M ®¢ N is the quotient of M @z N by the relations g7z @ y = z ® gy.

2. GROUP COHOMOLOGY

Given a G-module M, we let M denote the set of invariant elements:
MY ={z € M| gz =uxforall g€ G}.

One easily verifies that M +— MY is a left-exact functor of M. We define H (G, —) to be the
1th right derived functor of this functor. These functors are called group cohomology. To
be completely clear, group cohomology is computed as follows. Let M — I® be an injective
resolution. Then H' (G, M) is the ith cohomology group of the complex (1°)¢.

We regard Z as a G-module with trivial action. For a G-module M, one clearly has

MY = Homg(Z, M).

Thus the invariants functor is just the Hom functor Homg(Z,—). It follows that group
cohomology is simply an Ext group:

H' (G, M) = Ext,(Z, M).

Thus, by properties of Ext, we can compute group cohomology using a projective resolution
of the trivial G-module Z. This is a useful observation, since it means we can find just a single
resolution (the projective resolution of Z) and use it to compute the group cohomology of
any module; we don’t need to find injective resolutions of each module separately. Of course,
this raises the problem of finding a projective resolution of Z. Fortunately, there is a general
construction that applies uniformly to all groups.
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Let P, be the free Z-module with basis G"*!; we write [go, ..., g,] for the element of P,
corresponding to (go,...,g,) € G""1. We give P, the structure of a G-module by defining
glgo, -, 9] = [990, - -, 99:]. Define a differential d: P. — P,_; by

T

9[907"'791"] = Z(_l)i[gm--wgia"'agr}a

=0

where the hat indicates omission. One readily verifies that d> = 0. Let ¢: Py — Z be the
augmentation map, i.e., the additive map defined by €([g]) = 1 for all g € G.

Proposition 2.1. ¢: P, — Z s a projective resolution.

Proof. 1t is clear that each P, is a free Z[G]-module, since G freely permutes a basis. It thus
suffices to prove that the augmented complex is exact. Pick an arbitrary element h € G,
and define a map s,.: P, — P,1 by

sr([g0s -5 9r)) = [Py 90, - -+, )
Similarly, define s_1: Z — Py by 1+ [h]. We thus have the following diagram:

cee P, P, Py Z
e Py P, P, Z
One easily verifies that ds,+s,_1d is the identity on P,, and similarly, that ds_; is the identity

on Z. We thus see that the identity map on the augmented complex is null-homotopic, and
so the complex is acyclic. 0

0

0

Remark 2.2. Note that the maps s, in the above proof are not maps of G-modules. Thus
we have not shown that the complex is null-homotopic in the category Ch(Mod¢), and it
typically is not (just think about trying to make s_; a G-map). The proof does show that
the complex is null-homotopic in Ch(Ab) though, and that’s sufficient for checking it is
exact. 0

Corollary 2.3. Let M be a G-module. Then H (G, M) = H'(Homg(P., M)).

Let’s examine the above formula a bit more closely. An element of Homg(F,, M) can be
identified with a function ¢: G™! — M that is G-equivariant, i.e., that satisfies

©(glgo; - - 9:]) = go([g0; - - - 9r])-

Such a function ¢ is called a homogeneous r-cochain of G with values in M. The group
of such objects is denoted C"(G, M). If ¢ is such an r-cochain then dyp is the (r + 1)-cochain
given by

r+1

(de) (g0, - - gr1) = D _(=1)'0([g0s - - Gis- - > Got1])-

i=0
We say that ¢ is a homogeneous r-cocycle if dp = 0, and a homogenous r-coboundary
if ¢ = di for some (r — 1)-cochain . The corollary identifies H"(G, M) with the group of
homogeneous r-cocycles modulo homogeneous r-coboundaries.
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Define an inhomogeneous r-cochain to be any function G — M, and let C"(G, M)
be the group of them. We associated to a homogeneous r-cochain ¢ the inhomogeneous
r-cochain given by

(91, 97) = o([1, 91,9192, -, 91 - gr])-

One easily verifies that this gives an isomorphism C"(G, M) — C"(G, M). We can therefore
transfer the differential on the latter to the former. The result is as follows: given an
inhomogeneous r-cochain ¢, the inhomogeneous (r + 1)-cochain dyp is

(de)(grs - 9r+1) =q10(g2, - - -, Grs1)
"‘Z (=191, - giGit1s - - Grs1)]
=1

+ (=) o(g1, .-+, 9r)-

We thus have an isomorphism of complexes C*(G, M) = C*(G, M). Therefore, letting
Z"(G,M) be the kernel of d (the group of inhomogeneous r-cocycles) and B"(G, M)
denote the image of d (the group of inhomogeneous r-coboundaries), we find:

Proposition 2.4. H" (G, M) = Z"(G,M)/B" (G, M).
Remark 2.5. Let us verify that the differentials on homogeneous and inhomogenous 1-chains
agree. Let ¢: G — M be an inhomogeneous 1-cochain. Then dy is given by

(do)(91,92) = g919(92) — #(9192) + ¢(91)-

The corresponding homogeneous 1-cochain ¢: G? — M is given by ¥([g0, 91]) = go2(g5 " 91).
Thus

(d)(190, 91, 92]) = ¥(g1, 92) — (g0, 92) + ¥ (90, 1),

and so

(d)([1, g1, 9192]) = (g1, 9192) — ¥ (1, 92) + (1, 91) = q10(92) — ¢(g2) — ()

3. GROUP HOMOLOGY

Given a G-module M, let Mg be the group of coinvariants:
Mg=M/{x —ox|0oec G zec M}

One easily verifies that M — M is a right-exact functor of M. We define H;(G, —) to be
the ith left derived functor of this functor. These functors are called group homology.
We quickly recall the definition: H;(G, M) is the ith homology group of the complex (P,)q
where P, — M is a projective resolution of M.
We have an identification
Mg =M ®¢ Z.

Indeed, recall that M ®¢ Z is by definition the quotient of M ® Z = M by the relations
cr®1 =2®0c ' =2® 1, which is exactly the definition of M. It follows that group
homology can be viewed as Tor:

H;(G, M) = Tor(G, Z).
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In particular, we can compute group homology using a projective resolution of Z. Using
the resolution from the previous section gives a description of group homology in terms of
chains, cycles, and boundaries. We skip the details, but mention one important case:

Proposition 3.1. If M is a trivial G-module then Hi(G, M) = G* @z M. In particular,
H,(G,Z) = G?.

4. INDUCED AND COINDUCED MODULES
Let H C G be groups and let M be an H-module. We define the induction of M to G
by
Ind$ (M) = Z[G] @zim M,
where the action of G comes from its (left) action on Z[G]. Similarly, we define the coin-
duction of M to G by
CoInd$ (M) = Hompy (G, M).

Thus CoInd% (M) consists of all functions f: G — M satisfying f(hg) = hf(g) for g € G and
h € H. The G-action is given by (gf)(¢’') = f(¢'g). We say that a G-module is (co)induced
if it is (co)induced from the trivial subgroup.

Suppose that G = I;c;g;H is the decomposition of G into cosets of H. Then Z[G] is free
right Z[H]-module with basis g;, and so

Indf; (M) = P g ® M.
iel
In particular, we see that Ind% (M) is an exact functor of M. Similarly, if G = II;c; Hg, then
Colndy (M) = [TM,  f = (f(g))ier-
il
In particular, Colnd% (M) is an exact functor of M.
Proposition 4.1. Suppose that H has finite index in G. Then we have a natural isomor-

phism of G-modules
Ind$ (M) = ColndS (M).

Proof. Define a function
©: Colndfj(M) — Indf(M),  fr > g7 @ f(g).
geH\G

It is clear that ® is well-defined and G-equivariant. By the above descriptions of induction
and coinduction, it is an isomorphism. (We are essentially taking g/ = g; * here.) U

Suppose that N is a G-module. Then we can obviously regard N as an H-module. We
sometimes denote this H-module by Res%(N), and refer to it as the restriction of N to H.
It is clear that Res% (V) is an exact functor of N.

Proposition 4.2 (Frobenius reciprocity). Let M be an H-module and let N be a G-module.
We have natural isomorphisms

Homg(Ind$ (M), N) = Homy (M, Res%(N)),
Homg(N, CoInd$(M)) = Hompy (Res; (N), M).
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In other words, induction is left adjoint to restriction and co-induction is right adjoint. When
H has finite indez in G, induction and restriction are adjoint to each other on both sides.

Proof. Exercise. O

Corollary 4.3. If M is an injective H-module then Colnd$ (M) is an injective G-module.
Simalarly, if M is a projective H-module then Indfl(M) s a projective G-module.

Proof. Suppose M is injective. Then
Homg(—, Colnd$ (M)) = Homp (Res% (=), M)

O

is an exact functor, and so Colnd% (M) is injective.

12

Corollary 4.4. We have natural isomorphisms (Colnd%(M))¢ = M and (Ind%(M))a
My .

Proof. For the first isomorphism, apply the proposition with N = Z. For the second, note
that
(Ind§ (M) = Z ©giq) (Z|G) ©zim M) = Z Qi) M = My.

Proposition 4.5 (Shapiro’s lemma). Let H C G be groups and let M be an H-module.
Then we have a canonical isomorphism

H'(G, Colnd$(M)) = H'(H, M).
There is a similar statement for homology and induced modules.

Proof. Let M — I*® be an injective resolution of M as an H-module. Since co-induction is
exact and takes injectives to injectives, we see that CoInd$ (M) — Colnd$(I*) is an injec-
tive resolution. Thus H*(G, CoInd$(M)) is computed by the complex (CoInd%(1*))%. But
this is just (7*)¥, by the relationship between co-induction and invariants, which computes
H*(H, M). O

Corollary 4.6. Suppose that M is a co-induced G-module. Then H'(G, M) = 0 for i > 0.
Similarly for induced modules and homology.

5. EXTENDED FUNCTORIALITY

Let (G, M) and (G', M') be pairs consisting of a group and a module over the group.
A morphism (G, M) — (G', M’) consists of a group homomorphism «: G’ — G and an
additive map B: M — M’ satisfying f(a(g)r) = gf(x) for all ¢ € G’ and x € M. Given
such a pair, one obtains a map of complexes

C*(G, M) = C(G M), o= ((91---.9:) = Ble(elgr), - .. elgr))))
and thus a map on cohomology
H*(G, M) — H*(G', M").

Thus we can say that group cohomology is functorial in (G, M).
There are a number of important special cases of this general construction:
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(a) Let H C G be groups and let M be a G-module. We then have a morphism (G, M) —
(H,Res%(M)), where a: H — G is the inclusion and 8: M — Res$ (M) is the
identity. We thus obtain a map

res: H(G, M) — H'(H, Res$(M))

called restriction. It simply restricts a cocycle on GG to one on H.

(b) Let H C G be anormal subgroup and let M be a G-module. We then have a morphism
(G/H,M*") — (G, M) where a: G — G/H is the quotient map and 3: M# — M is
the inclusion. We thus obtain a map

inf: H(G/H, M") — H (G, M)

called inflation.

(c¢) Again, let H C G be a normal subgroup and let M be a G-module. For g € G, let
ay: H — H be the map h — g 'hg and let 8,: M — M be the map Sy(z) = gu.
Then a, and 3, define an endomorphism of (H,Res%(M)). In this way, we get an
action of G on H'(H, M). Exercise: show that the action of H on H(H, M) is trivial;
thus the action of G can really be regarded as an action of G/H.

(d) Let H C G be a subgroup and let M be an H-module. We then have a morphism
(G, CoInd%(M)) — (H, M) where a: H — G is the inclusion and : Colnd% (M) —
M is given by 5(f) = f(1). We thus get a map

H'(G, Colnd%(M)) — H'(H, M).
Exercise: show that this is the isomorphism from Shapiro’s lemma.

Proposition 5.1 (Inflation—restriction sequence). Let H be a normal subgroup of G and let
M be a G-module. Let r > 0 be an integer, and suppose that H'(H,Res$(M)) = 0 for all
0 <i<r. Then the sequence

0 — H"(G/H, M™") ™ H" (G, M) 3 H" (H, M)
18 exact.

Proof. We first treat the » = 1 case, in which the vanishing hypothesis is vacuous. The
first map is obviously injective, since it is simply pullback along G — G/H. We must
show that the image and kernel agree in the middle. Thus let p: G — M be a crossed
homomorphism that restricts to a principal crossed homomorphism of H. Let x € M be
such that ¢(h) = hx — x for h € H. Let ¢' = ¢ —dz, i.e., ¢'(9) = ¢(g9) — (9o — x). Then
¢’ is a crossed homomorphism representing the same cohomology class as ¢, and ¢’ restricts
to 0 on H. We have ¢'(gh) = g¢'(h) + ¢'(g) = ¢'(9) and ¢'(hg) = h¢'(g) + ¢'(h) = he'(9).
We also have h¢'(g) = ¢'(hg) = ¢'(9(g'hg)) = ¥'(g). We thus see that ¢’ defines a
function G/H — M* which is easily seen to be a crossed homomorphism. This proves the
proposition.

The general case now follows by dimension shifting. Precisely, we proceed by induction
on 7, having established the » = 1 case above. Consider a short exact sequence

O—-M—>1—N—=0

with I injective. Then H"(G, M) =2 H""!(G, N); in particular, H(G,N) = 0for 0 < i < r—1.
Thus we have an inflation—restriction exact sequence for N in degree r — 1, and this gives
one for M. (We leave the details as an exercise.) O



GROUP COHOMOLOGY 7

6. CORESTRICTION

Let H be a subgroup of GG and let M be a G-module. The adjunction between restriction
and induction gives rise to the co-unit morphism

Ind% (Res$ (M)) — M, gRx = gz,

which is a map of G-modules. Now suppose that H has finite index. We can then combine
the above map with the isomorphism between induction and co-induction to get a natural
map of G-modules

CoInd§j(Resfy (M) = M, f— > g 'f(9).
geH\G
Combining this with the Shapiro isomorphism, we thus get a map
cor: H'(H,Res$(M)) = H (G, Colnd$ (ResZ (M))) — HY(G, M)
called corestriction.

Proposition 6.1. The corestriction map on H° is given by

cor: M7 — MC, T Z gx.

Proof. The isomorphism

MY 2 (CoInd$ (Res$ (M)
takes € M* to the function f: G — M given by f(g) = x for all g; note that f(hg) = x =
hax = hf(g) since x is H-invariant. Under the map ColInd% (Res$ (M)) — M defined above,

the element f is sent to
Y og =) glr= ) gz

geH\G geH\G 9eG/H
This completes the proof. U
Proposition 6.2. The composition

HY(G, M) == H'(H,Res%(M)) =5 H(G, M)
is multiplication by [G : H].
Proof. First suppose i = 0. Let x € H'(G, M) = M. Then
cor(res(z)) = Z gr =[G : H|z,
9eG/H

which proves the claim. Thus corores and multiplication by [G : H| define morphisms of
H*(G, —) which agree at index 0, and so they are equal. O

Corollary 6.3. Suppose that G is a finite group of order n. Then n-H(G, M) = 0 for any
G-module M and any i > 0.

Proof. Take H to be the trivial group. Then H'(H, Res$(M)) = 0, and so res(z) = 0 for any
r € H (G, M). Thus nx = cor(res(z)) = 0. O

Corollary 6.4. Let G be a finite group and let M be a finitely generated Z|G]-module. Then
HY(G, M) is finite for i > 0.
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Proof. The group of cochains C*(G, M) is obviously a finitely generated abelian group, since
M is finitely generated and G is finite. Since H'(G, M) is a subquotient of C*(G, M), it too
is finitely generated. Since it is also killed by #G, it is thus finite. U

Corollary 6.5. Let H be the p-Sylow subgroup of G and let M be a G-module. Then the
restriction map ‘ ‘

res: H (G, M) — H'(H, Res$ (M))
1s injective on the p-primary components of these groups.

Proof. Suppose = € H'(G, M) has order a power of p and res(z) = 0. Then 0 = cor(res(x)) =
|G : H]z. But [G : H] is prime to p and x has p-power order; thus = = 0. O

7. CUP PRODUCTS

Let G be a group and let M and N be G-modules. We define a map
H'(G,M) x H*(G,N) — H (G, M @ N), (z,y) —» z Uy,

called the cup product, as follows. Let x be represented by the (homogeneous) r-cocycle ¢
and let y be represented by the s-cocycle ¥. Then x Uy is represented by the (r + s)-cocycle

(G153 Gras) = (g1, G) © G Gr0(Grsts - -, Gs)-
We leave it as an exercise to verify that this is well-defined.

Proposition 7.1. The cup product has the following properties:
(a) It is bi-additive.
(b) It is functorial in M and N.
(¢) In cohomological degree 0, it is the map
U: M@ N9 = (M @ N), rUy=x®y.
(d) Suppose that
0> M — My — M;—0
1s an exact sequence of G-modules, and N is a G-module such that the sequence
0=>M QN > My@N — Ms® N — 0

is exact. Then for x € H (G, Ms3) and y € H*(G, N) we have (0x) Uy = d(z Uy),
where 0 is the connecting homomorphism.
(e) Suppose that
0—= Ny = Ny —> N3 —0

1s an exact sequence of G-modules, and M is a G-module such that the sequence
0> M®RN, - M® Ny — M® N3 —0

is exact. Then for x € H"(G, M) and y € H*(G, N3) we have U (dy) = (—1)"6(xUy),

where § is the connecting homomorphism.

Moreover, these properties uniquely characterize cup product; that is, given another product
rule on cohomology satisfying these axioms, it is equal to cup product.

Proof. Checking the properties is a simple exercise. Uniqueness is proved by dimension
shifting. 0

Proposition 7.2. The cup product satisfies the following properties:
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(a) Forx € H"(G, M), y € H*(G,N), and z € H(G, K), we have xU(yUz) = (zUy)Uz,
under the natural identification M @ (N @ K) = (M @ N) ® K.

(b) For x € H"(G, M) and y € H*(G, N), we have x Uy = (—1)"*y Uz under the natural
wdentification M @ N = N @ M.

(c) res(x Uy) = res(z) Ures(y) when defined.

(d) cor(z Ures(y)) = cor(z) Uy when defined.

Proof. Exercise. O

Suppose that M x N — K is a G-equivariant pairing, that is, the map M @ N — K is a
map of G-modules. We can then consider the composite

H' (G, M) x H*(G,N) = H™**(G, M @ N) — H*(G, K).

This will also be refereed to as the cup product.

As a corollary to the above proposition, we see that €9, , H (G, Z) is a graded-commutative
ring. That is, it is a graded, unital, and associative ring, and satisfies the modified commu-
tativity rule zy = (—1)"yx when z and y are homogeneous of degrees r and s. This ring is
called the cohomology ring of G. Moreover, if M is a G-module then @, ,H (G, M) is a
module over the cohomology ring. B
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