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Introduction The variety V

V ∗1 ⊗ · · · ⊗ V ∗n

||

Vn(V1, . . . ,Vn)
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Introduction The variety V

The variety V has three pieces of structure of interest:

(A1) Naturality. Given linear maps fi : Vi → V ′i , there is an induced map

f ∗ : Vn(V ′1, . . . ,V
′
n)→ Vn(V1, . . . ,Vn).

(A2) Symmetry. Given σ ∈ Sn, there is an induced isomorphism

σ∗ : Vn(Vσ(1), . . . ,Vσ(n))→ Vn(V1, . . . ,Vn).

(A3) Flattening. There is a natural isomorphism

Vn+1(V1, . . . ,Vn+1) = Vn(V1, . . . ,Vn−1,Vn ⊗ Vn+1)
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Introduction ∆-varieties

A ∆-variety is a subvariety of V which respects this structure.
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Introduction ∆-varieties

Precisely, a ∆-variety is a rule X which assigns to each (V1, . . . ,Vn) a
closed subvariety

Xn(V1, . . . ,Vn) ⊂ Vn(V1, . . . ,Vn)

such that:

(B1) Given linear maps fi as in (A1), f ∗ carries Xn(V ′1, . . . ,V
′
n) into

Xn(V1, . . . ,Vn).

(B2) Given σ ∈ Sn as in (A2), σ∗ carries Xn(Vσ(1), . . . ,Vσ(n)) into
Xn(V1, . . . ,Vn).

(B3) The flattening isomorphism (A3) induces an inclusion

Xn+1(V1, . . . ,Vn+1) ⊂ Xn(V1, . . . ,Vn−1,Vn ⊗ Vn+1).
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Introduction ∆-varieties

Note: a ∆-variety is not a single variety, but

an interrelated system of varieties.
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Introduction ∆-varieties

Example: the Segre variety

Define
Xn(V1, . . . ,Vn) ⊂ Vn(V1, . . . ,Vn)

to be the set of pure tensors. This is the Segre variety, and is the
motivating example of a ∆-variety.

Conditions (B1) and (B2): linear maps and permutations carry pure
tensors to pure tensors.

Condition (B3): the inclusion

Xn+1(V1, . . . ,Vn+1) ⊂ Xn(V1, . . . ,Vn−1,Vn ⊗ Vn+1)

simply means we can regard an (n + 1)-fold tensor as an n-fold tensor:

v1 ⊗ · · · ⊗ vn+1 = v1 ⊗ · · · ⊗ vn−1 ⊗ (vn ⊗ vn+1).
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Introduction ∆-varieties

Other examples

There are many other examples of ∆-varieties:

Higher subspace varieties. These directly generalize Segre varieties.

The tangent and secant varieties of a ∆-variety is a ∆-variety.

The sum, union and intersection of two ∆-varieties is a ∆-variety.

In particular, the secant varieties of the Segre are ∆-varieties.
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Introduction ∆-modules

A ∆-module is the result of taking a linear invariant of a ∆-variety.
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Introduction ∆-modules

Precisely, a ∆-module is a rule F which assigns to each (V1, . . . ,Vn) a
vector space Fn(V1, . . . ,Vn) equipped with the following extra structure:

(C1) For each system of linear maps fi : Vi → V ′i , a linear map

f∗ : Fn(V1, . . . ,Vn)→ Fn(V ′1, . . . ,V
′
n).

(C2) For each σ ∈ Sn, a linear map

σ∗ : Fn(V1, . . . ,Vn)→ Fn(Vσ(1), . . . ,Vσ(n)).

(C3) A linear map

Fn(V1, . . . ,Vn−1,Vn ⊗ Vn+1)→ Fn+1(V1, . . . ,Vn+1)

There are various compatibilities and technical conditions required, which
we ignore for now.
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Introduction ∆-modules

Sources of examples

If X is a ∆-variety and F is a contravariant linear invariant of varieties (or
closed immersions of varieties), then

Fn(V1, . . . ,Vn) = F(Xn(V1, . . . ,Vn))

is naturally a ∆-module.

Reason: (B1)–(B3) induce (C1)–(C3) by functoriality of F.
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Introduction ∆-modules

Sources of examples

Possibilities for F:

Coordinate ring.

Defining ideal (inside of V).

Syzygies (relative to V).

Local cohomology.

Topological cohomology.
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Introduction ∆-modules

Example: equations of the Segre

Define
Fn(V1, . . . ,Vn) ⊂ Sym2(V1 ⊗ · · · ⊗ Vn)

to be the quadratic equations which vanish on the Segre Xn(V1, . . . ,Vn).

Then F is naturally a ∆-module.
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Introduction ∆-modules

Example: equations of the Segre

The usefulness of the ∆-module structure is that it allows us to produce
equations of complicated Segre varieties from those of more simple ones.
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Introduction ∆-modules

Example: equations of the Segre

Start with the equation α cutting out the Segre X2(C2,C2).

Choosing f1 : C2 → Cm and f2 : C2 → Cn, (C1) gives a linear map

f∗ : F2(C2,C2)→ F2(Cm,Cn).

We can therefore build an element f∗(α) of F2(Cm,Cn).

Varying f1 and f2 produces many elements.

Andrew Snowden (MIT) ∆-modules September 26, 2012 17 / 160



Introduction ∆-modules

Example: equations of the Segre

Start with the equation α cutting out the Segre X2(C2,C2).

Choosing f1 : C2 → Cm and f2 : C2 → Cn, (C1) gives a linear map

f∗ : F2(C2,C2)→ F2(Cm,Cn).

We can therefore build an element f∗(α) of F2(Cm,Cn).

Varying f1 and f2 produces many elements.

Andrew Snowden (MIT) ∆-modules September 26, 2012 17 / 160



Introduction ∆-modules

Example: equations of the Segre

Start with the equation α cutting out the Segre X2(C2,C2).

Choosing f1 : C2 → Cm and f2 : C2 → Cn, (C1) gives a linear map

f∗ : F2(C2,C2)→ F2(Cm,Cn).

We can therefore build an element f∗(α) of F2(Cm,Cn).

Varying f1 and f2 produces many elements.

Andrew Snowden (MIT) ∆-modules September 26, 2012 17 / 160



Introduction ∆-modules

Example: equations of the Segre

Since Cmn = Cm ⊗ Cn, (C3) gives a map

F2(C`,Cmn)→ F3(C`,Cm,Cn).

We get many elements of F3 by taking the images of the elements in F2

we have already constructed.

We can similarly go from 3 to 4 factors.
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Introduction ∆-modules

Example: equations of the Segre

Thus the single equation α gives many equations on every Segre.

In fact, we obtain all equations of each Segre from α!

We say that α generates F .
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Introduction ∆-modules

Example: equations of the Segre

Thus the single equation α gives many equations on every Segre.

In fact, we obtain all equations of each Segre from α!

We say that α generates F .

Andrew Snowden (MIT) ∆-modules September 26, 2012 19 / 160



Introduction ∆-modules
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Introduction ∆-modules

Example: equations of the Segre

Write {1, . . . , n} = Aq B and choose linear maps

f1 : C2 →
⊗
i∈A

Vi , f2 : C2 →
⊗
i∈B

Vi .

We obtain a map f ∗ : Vn(V1, . . . ,Vn)→ V2(C2,C2). Let Xf1,f2 be the
inverse image of X2(C2,C2).

The statement that α generates F is equivalent to the statement that
Xn(V1, . . . ,Vn) is the inersection of the Xf1,f2 as we vary A, B, f1 and f2.
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Introduction ∆-modules

Example: equations of the Segre

Write {1, . . . , n} = Aq B and choose linear maps

f1 : C2 →
⊗
i∈A

Vi , f2 : C2 →
⊗
i∈B

Vi .

We obtain a map f ∗ : Vn(V1, . . . ,Vn)→ V2(C2,C2). Let Xf1,f2 be the
inverse image of X2(C2,C2).

The statement that α generates F is equivalent to the statement that
Xn(V1, . . . ,Vn) is the inersection of the Xf1,f2 as we vary A, B, f1 and f2.

Andrew Snowden (MIT) ∆-modules September 26, 2012 20 / 160



Introduction Two theorems on syzygies

Let X be a ∆-variety and let F p,d be the ∆-module of p-syzygies of X of
degree d .

The goal of this course is to sketch the proof of the following two results
about this ∆-module.
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Introduction Two theorems on syzygies

The first theorem

Theorem

The ∆-module F p,d is finitely generated.
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Introduction Two theorems on syzygies

The second theorem

We will define the Hilbert series f associated to a ∆-module F .

This is a formal power series in several variables.

From it, one can read off the decomposition of Fn(V1, . . . ,Vn) as a
representation of GL(V1)× · · · × GL(Vn) for all (V1, . . . ,Vn).
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Introduction Two theorems on syzygies

The second theorem

Theorem

The Hilbert series of F p,d is a rational function.
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Introduction Two theorems on syzygies

Effectiveness

The proofs of these theorems are effective: there is an algorithm which,
given X , p and d , computes the generators and Hilbert series of F p,d in
finitely many steps.

Unfortunately, the algorithm involves linear algbera over a polynomial ring
in ∼ pp indeterminates, and is therefore totally impractical.
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Introduction Overview of proofs

Two theorems on ∆-modules

The two theorems on syzygies are deduced from the following two abstract
results about ∆-modules:

Theorem

A finitely generated ∆-module is noetherian.

Theorem

The Hilbert series of a finitely generated ∆-module is rational.
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Introduction Overview of proofs

Obtaining the theorems on syzygies from these abstract results is easy:

By definition, F p,d
n (V1, . . . ,Vn) is the homology of a certain Koszul

complex K •,dn (V1, . . . ,Vn).

It turns out that each Kp,d is a ∆-module, and that the Koszul
differentials are maps of ∆-modules. Furthermore, each Kp,d is
obviously finitely generated.

Since Kp,d is noetherian, the subquotient F p,d is finitely generated.

Rationality of the Hilbert series of F p,d follows.
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Introduction Overview of proofs

The ladder

To prove the two abstract results about ∆-modules, we proceed along the
following “ladder:”

modules over ordinary rings

↓

modules over twisted commutative algberas

↓

modules over algebras in Sym(S)

↓

∆-modules

Andrew Snowden (MIT) ∆-modules September 26, 2012 28 / 160
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Introduction A conjecture

A conjecture

Our theorems provide a lot of understanding about p-syzygies of a fixed
degree, but do nothing to understand the possible degrees of p-syzygies.

For example, if one wants to understand the 5-syzygies of X , one knows
that F 5,d is finitely generated for each d , but it could be that this
∆-module is non-zero for infinitely many d .

Conjecture

If X is bounded then F p,d = 0 for d � p.

Most (all?) X of interest are bounded.

Andrew Snowden (MIT) ∆-modules September 26, 2012 29 / 160
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Introduction A conjecture

Known cases of the conjecture

If X = the Segre then F p,d = 0 for d > 2p. This follows from the
existence of a quadratic Gröbner basis (Eisenbud–Reeves–Totaro).

If X = the tangent variety to the Segre then F 1,d = 0 for d > 4. Due
to Oeding–Raicu (arXiv:1111.6202), improving earlier bound d > 6
of Landsberg–Weyman (arXiv:math/0509388).

If X = the secant variety to the Segre then F 1,d = 0 for d > 3. Due
to Raicu (arXiv:1011.5867), confirms the GSS conjecture.

If X = a higher secant variety of the Segre, then Draisma–Kuttler
(arXiv:1103.5336) establish a topological version of the conjecture
for p = 1.

Andrew Snowden (MIT) ∆-modules September 26, 2012 30 / 160
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Twisted commutative algberas

§2. Twisted commutative algberas
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Twisted commutative algberas Four definitions

Twisted commutative algberas (tca’s) are generalizations of graded
rings.
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Twisted commutative algberas Four definitions

Definition 1 (sequence model)

A tca is an associative unital graded ring A =
⊕

n≥0 An equipped with an
action of the symmetric group Sn on An such that:

The multiplication map An ⊗ Am → An+m is Sn × Sm equivariant.

For x ∈ An and y ∈ Am, we have yx = τ(xy), where τ ∈ Sn+m

switches {1, . . . , n} and {n + 1, . . . , n + m}.
The second axiom is the twisted commutativity axiom.
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Twisted commutative algberas Four definitions

Definition 1 — example

Let U be a finite dimensional vector space, and put An = U⊗n.

This is an associative unital ring under the multiplication map
An ⊗ Am → An+m which concatenates pure tensors. In fact, A is the
tensor algebra on U.

The group Sn acts on An by permuting the tensor factors.

In general, A is highly non-commutative. However, it does satisfy the
twisted commutativity axiom, and is therefore a tca.
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Twisted commutative algberas Four definitions

Definition 2 (fs model)

Let (fs) be the category whose objects are finite sets and whose morphisms
are bijections.

A tca is a functor A : (fs)→ Vec equipped with a multiplication map

AL ⊗ AL′ → ALqL′

which is associative, unital and commutative.

Commutativity means that the following diagram commutes:

AL ⊗ AL′
//

��

ALqL′

��
AL′ ⊗ AL

// AL′qL
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Twisted commutative algberas Four definitions

Definition 2 — example

For a vector space U and a finite set L, define U⊗L to be the universal
vector space equipped with a multi-linear map from Fun(L,U).

If L has cardinality n then U⊗L is isomorphic to U⊗n. The advantage of
the construct U⊗L is that it is functorial in L.

We think of the factors of pure tensors in U⊗L as being indexed by L.

Let AL = U⊗L. Then A is a tca, multiplication being given by
concatenation of tensors.
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Twisted commutative algberas Four definitions

Definition 3 (Schur model)

A tca is a rule which assigns to each vector space V an associative
commutative unital C-algbera A(V ) and to each linear map of vector
spaces V → V ′ an algebra homomorphism A(V )→ A(V ′).

There is a technical condition required that we ignore for now.
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Twisted commutative algberas Four definitions

Definition 3 — example

Let A(V ) = Sym(V ) be the symmetric algebra on V . If x1, . . . , xn is a
basis of V then Sym(V ) is the polynomial ring C[x1, . . . , xn].

Given a linear map V → V ′ we get a ring homomorphism A(V )→ A(V ′).
It follows that A has the structure of a twisted commutative algebra.
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Twisted commutative algberas Four definitions

Definition 4 (GL model)

A tca is an commutative associative unital C-algebra equipped with an
action of the group GL(∞) =

⋃
n≥1 GL(n) by algebra homomorphisms.

There is a technical condition required that we ignore for now.
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Twisted commutative algberas Four definitions

Definition 4 — example

The symmetric algebra Sym(C∞) = C[x1, x2, . . .] is a tca.

Other examples can be obtained by taking the symmetric algebra on other
representations of GL(∞), for instance Sym(

∧2C∞) or Sym(Sym2 C∞).
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Twisted commutative algberas Four definitions

Comparisons

Each definition has its advantages and shortcomings:

Tca’s in the sequence model are concrete (a single ring) and usually
small (the graded pieces are finite dimensional). However, the lack of
commutativity is an annoyance.

The fs model is like the sequence model, but tends to be more
natural, i.e., many constructions are simpler. The price is that it is
more abstract.

The Schur model relates tca’s directly to usual commutative algebra.
The rings A(V ) tend to be finitely generated. However, one has to
deal with the system of all the rings A(V ).

Tca’s in the GL model are concrete (a single ring) and commutative
in the usual sense. However, they’re often huge!
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Twisted commutative algberas Four definitions

Equivalences

The equivalences between the four definitions of tca’s are induced by more
fundamental equivalences of certain kinds of linear data:

Sequences of representations of the symmetric groups.

Functors (fs)→ Vec.

Functors Vec→ Vec.

Representations of GL(∞).

We will discuss each of these categories and the equivalences between
them.
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Twisted commutative algberas The sequence model

Representation theory of the symmetric group

Irreducible representations of Sn are indexed by partitions of n.

We denote by Mλ the irreducible associated to λ.

Our conventions are such that M(n) is the trivial representation and M(1n)

is the sign representation.

Every representation of Sn is a direct sum of irreducible representations
(complete reducibility).

In other words, the category Rep(Sn) is semi-simple and its simple objects
are the Mλ with |λ| = n.
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Twisted commutative algberas The sequence model

The category Rep(S∗)

We let Rep(S∗) be the following category:

Objects are sequences (Vn)n≥0, where Vn is a representation of Sn.

A morphism f : (Vn)→ (V ′n) consists of morphisms of representations
fn : Vn → V ′n for each n ≥ 0.
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Twisted commutative algberas The sequence model

Structure of Rep(S∗)

For a partition λ of n, we regard Mλ as the object (Vk) of Rep(S∗) with
Vk = Mλ for k = n and Vk = 0 otherwise.

Every object of Rep(S∗) is a direct sum of Mλ’s.

In other words, Rep(S∗) is semi-simple, and the simple objects are the Mλ.
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Twisted commutative algberas The sequence model

The tensor product

The tensor product of graded vector spaces V and V ′ is defined by

(V ⊗ V ′)n =
⊕
i+j=n

Vi ⊗ V ′j .

Let V = (Vn) and V ′ = (V ′n) be two objects of Rep(S∗). Motivated by the
above, we define their tensor product by

(V ⊗ V ′)n =
⊕
i+j=n

IndSn
Si×Sj (Vi ⊗ V ′j ).

There is a natural isomorphism V ⊗ V ′ = V ′ ⊗ V . This makes use of the
element τ which interchanges {1, . . . , n} with {n + 1, . . . , n + m}.
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Twisted commutative algberas The sequence model

Tensor products of simple objects

If λ is a partition of n and µ a partition of m then

Mλ ⊗Mµ = IndSn+m

Sn×Sm(Mλ ⊗Mµ).

The decomposition of this representation into irreducibles is given by the
Littlewood–Richardson rule.

We let cνλ,µ denote the multiplicity of Mν in Mλ ⊗Mµ. This is the
Littlewood–Richardson coefficient.

Andrew Snowden (MIT) ∆-modules September 26, 2012 47 / 160



Twisted commutative algberas The sequence model

Tensor products of simple objects

If λ is a partition of n and µ a partition of m then

Mλ ⊗Mµ = IndSn+m

Sn×Sm(Mλ ⊗Mµ).

The decomposition of this representation into irreducibles is given by the
Littlewood–Richardson rule.

We let cνλ,µ denote the multiplicity of Mν in Mλ ⊗Mµ. This is the
Littlewood–Richardson coefficient.

Andrew Snowden (MIT) ∆-modules September 26, 2012 47 / 160



Twisted commutative algberas The sequence model

Tensor products of simple objects

If λ is a partition of n and µ a partition of m then

Mλ ⊗Mµ = IndSn+m

Sn×Sm(Mλ ⊗Mµ).

The decomposition of this representation into irreducibles is given by the
Littlewood–Richardson rule.

We let cνλ,µ denote the multiplicity of Mν in Mλ ⊗Mµ. This is the
Littlewood–Richardson coefficient.

Andrew Snowden (MIT) ∆-modules September 26, 2012 47 / 160



Twisted commutative algberas The sequence model

Tca’s

Let A ∈ Rep(S∗). Giving a map m : A⊗ A→ A is the same as giving a
map of Sn-representations

IndSn
Si×Sj (Ai ⊗ Aj)→ An

for all i + j = n.

By Frobenius reciprocity, this is the same as giving a map of Si × Sj

representations Ai ⊗ Aj → Ai+j .
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Twisted commutative algberas The sequence model

Tca’s

The map m is called commutative if the diagram

A⊗ A
m //

σ
��

A

A⊗ A
m // A

commutes, where σ is the switching-of-factors map.

Exercise

Show that m is commutative if and only if the maps Ai ⊗ Aj → Ai+j

satisfy the twisted commutativity axiom.
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Twisted commutative algberas The sequence model

Tca’s

A tca in the sequence model is therefore an object A of Rep(S∗) equipped
with a multiplication map A⊗ A→ A which is commutative, associative
and unital.
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Twisted commutative algberas The fs model

The category Vec(fs)

Let Vec(fs) denote the following category:

Objects are functors (fs)→ Vec.

Morphisms are natural transformations of functors.

Andrew Snowden (MIT) ∆-modules September 26, 2012 51 / 160



Twisted commutative algberas The fs model

The category Vec(fs)

Let Vec(fs) denote the following category:

Objects are functors (fs)→ Vec.

Morphisms are natural transformations of functors.

Andrew Snowden (MIT) ∆-modules September 26, 2012 51 / 160



Twisted commutative algberas The fs model

The category Vec(fs)

Let Vec(fs) denote the following category:

Objects are functors (fs)→ Vec.

Morphisms are natural transformations of functors.

Andrew Snowden (MIT) ∆-modules September 26, 2012 51 / 160



Twisted commutative algberas The fs model

The tensor product and tca’s

We define the tensor product of F and G in Vec(fs) by

(F ⊗ G )L =
⊕

L=AqB
FA ⊗ GB

Giving a map F ⊗ F → F is the same as giving a map FA ⊗ FB → FAqB .

Thus a tca in the fs model is an object A of Vec(fs) equipped with a map
A⊗ A→ A satisfying the required axioms.
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Twisted commutative algberas The fs model

Equivalence with Rep(S∗)

Let [n] denote the finite set {1, . . . , n}.

If F is an object of Vec(fs) then F[n] carries a representation of
Aut([n]) = Sn, and so (F[n])n≥0 is an object of Rep(S∗).

Exercise

Show that the above construction defines an equivalence of categories
Vec(fs) → Rep(S∗) which is compatible with the tensor products.
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Twisted commutative algberas The Schur model

Polynomial functors

A functor F : Vec→ Vec is polynomial if for every pair of vector spaces V
and W , the map

F : Hom(V ,W )→ Hom(F (V ),F (W ))

is a polynomial map of vector spaces.

Concretely, this means that the matrix entries of F (f ) are polynomial
functions of those of f , for f ∈ Hom(V ,W ).

The symmetric and exterior power functors are the basic examples.
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Twisted commutative algberas The Schur model

Schur functors

For a vector space V , let Sn act on V⊗n by permuting tensor factors.

Define Sλ(V ) = HomSn(Mλ,V
⊗n).

Exercise

Show that Sλ is a polynomial functor.

We call Sλ the Schur functor associated to λ.

We have S(n) = Symn and S(1n) =
∧n.
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Twisted commutative algberas The Schur model

Structure of polynomial functors

Let F and G be polynomial functors. We define a functor F ⊕ G by
(F ⊕ G )(V ) = F (V )⊕ G (V ). It is a polynomial functor.

Theorem

Every polynomial functor is a direct sum of Schur functors.
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Twisted commutative algberas The Schur model

Tensor products

Let F and G be polynomial functors. We define a functor F ⊗ G by
(F ⊗ G )(V ) = F (V )⊗ G (V ). It is a polynomial functor.

Exercise

Show that the decomposition of a tensor product of Schur functors is
given by the Littlewood–Richardson rule, i.e., that the multiplicity of Sν in
Sλ ⊗ Sµ is cνλ,µ.
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Twisted commutative algberas The Schur model

Tca’s

A tca in the Schur model consists of a polynomial functor A equipped with
a map A⊗A→ A such that A(V ) is a commutative associative unital ring
for each V .
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Twisted commutative algberas The Schur model

The category S

Let S be the category of polynomial functors Vec→ Vec.

We have an equivalence of categories Rep(S∗)→ S which takes Mλ to Sλ.
This equivalence preserves the tensor products.

A tca in the Schur model is an object A of S equipped with a
multiplication map A⊗ A→ A satisfying the required axioms.
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Twisted commutative algberas The GL-model

Representations of GL(n)

Let V be a representation of GL(n). Denote by ρ the homomorphism
GL(n)→ GL(V ) giving the action and choose a basis of V .

V is algebraic if the matrix entries of ρ(g) are rational functions of
the matrix entries of g .

V is polynomial if the matrix entries of ρ(g) are polynomials in the
matrix entries of g .

The category Rep(GL(n)) of algebraic representations of GL(n) is
semi-simple: every algebraic representation is a direct sum of irreducible
algebraic representations.

Andrew Snowden (MIT) ∆-modules September 26, 2012 60 / 160
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Twisted commutative algberas The GL-model

Weights

Let T (n) ⊂ GL(n) be the subgroup of diagonal matrices. It is isomorphic
to (C×)n. Let U(n) ⊂ GL(n) be the group of strictly upper triangular
matrices.

A weight is an algebraic homomorphism T (n)→ C×. Every weight is of
the form

[z1, . . . , zn] 7→ za1
1 · · · z

an
n

where the ai are integers. The group of weights is isomorphic to Zn.

A weight (a1, . . . , an) is dominant if a1 ≥ a2 ≥ · · · ≥ an and positive if
ai ≥ 0 for each i .
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where the ai are integers. The group of weights is isomorphic to Zn.

A weight (a1, . . . , an) is dominant if a1 ≥ a2 ≥ · · · ≥ an and positive if
ai ≥ 0 for each i .
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Twisted commutative algberas The GL-model

Highest weight theory

Theorem

If V is an irreducible algebraic representation of GL(n) then V U(n) is
one dimensional and T (n) acts on it through a dominant weight.
This weight is called the highest weight of V .

Two irreducible representations with the same highest weight are
isomorphic.

Every dominant weight occurs as the highest weight of some
irreducible algebraic representation.

An irreducible algebraic representation is polynomial if and only if its
highest weight is positive.
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Twisted commutative algberas The GL-model

Relation to Schur functors

Let λ = (λ1, λ2, . . .) be a partition. The length of λ, denoted `(λ), is the
largest n such that λn is non-zero.

Positive dominant weights are the same thing as partitions of length at
most n.

Theorem

Let λ be a partition. If `(λ) ≤ n then Sλ(Cn) is the irreducible
representation of GL(n) with highest weight λ. If `(λ) > n then
Sλ(Cn) = 0.

Corollary

Every polynomial representation of GL(n) is a direct sum of Sλ(Cn)’s.
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Twisted commutative algberas The GL-model

Representations of GL(∞)

The above theory implies that Sλ(C∞) is a non-zero irreducible
representation of GL(∞) for any λ, and that Sλ(C∞) and Sµ(C∞) are
isomorphic if and only if λ = µ.

A representation of GL(∞) is polynomial if it is a direct sum of the
Sλ(C∞)’s. We let Reppol(GL) denote the category of polynomial
representations.

The functor S→ Reppol(GL) given by F 7→ F (C∞) is an equivalence, and
preserves tensor products.

Exercise

Give a direct equivalence Reppol(GL)→ Rep(S∗).
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Twisted commutative algberas The GL-model

Tca’s

A tca in the GL model is a commutative associative unital C-algebra A on
which GL(∞) acts by algebra homomorphisms such that A forms a
polynomial representation of GL(∞).
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Twisted commutative algberas The category V

The category V

To summarize, we have seen that the following four categories are
equivalent:

Rep(S∗) — sequences of representations of symmetric groups.

Vec(fs) — functors from (fs) to Vec.

S — polynomial functors of Vec.

Reppol(GL) — polynomial representations of GL(∞).

Furthermore, each of these categories has a tensor product and the
equivalences preserve the tensor product.

We let V denote an abstract tensor category equivalent to any of the
above four. We use this category when we don’t want to think about the
details of the underlying model.
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Twisted commutative algberas The category V

Tca’s in V

We can define tca’s independent of the choice of model as an algebra in V:
a tca is an object A of V equipped with a commutative associative unital
multiplication map A⊗ A→ A.

We can also define modules over a given tca: if A is a tca then an
A-module is an object M of V equipped with a multiplication map
A⊗M → M satisfying the usual axioms.

Exercise

Unravel the definition of “module” in the four models.
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Twisted commutative algberas Examples of tca’s

The object U〈1〉

Let C〈1〉 be the following object of V:

Rep(S∗): the sequence (Vn) with V1 = C and Vn = 0 for n 6= 1.

Vec(fs): the functor assigning C to sets of cardinality 1 and 0 to all
other sets.

S: the identity functor.

Reppol(GL): the standard representation C∞.

For a vector space U we let U〈1〉 be U ⊗ C〈1〉.
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Twisted commutative algberas Examples of tca’s

The tca Sym(U〈1〉)

The tca A = Sym(U〈1〉) is the most important tca for us. It is given in
the various models as follows:

Rep(S∗): the tensor algebra on U.

Vec(fs): AL = U⊗L.

S: A(V ) = Sym(U ⊗ V ).

Reppol(GL): Sym(U ⊗ C∞).
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Twisted commutative algberas Examples of tca’s

Other polynomial tca’s

Define C〈n〉 to be C〈1〉⊗n and U〈n〉 = U ⊗ C〈n〉.

Let A = Sym(C〈n〉). In the GL-model, C〈n〉 is (C∞)⊗n, and A is the
symmetric algebra on this representation.

Exercise

Work in the fs model and suppose n = 2. Show that AL has a natural
basis consisting of the directed graphs on L. What happens for n > 2?
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Twisted commutative algberas Finiteness conditions

Finite generation of tca’s

A tca A is finitely generated if it is a quotient of Sym(F ) for some finite
length object F of V.

A tca A is finitely generated in degree n if it is a quotient of Sym(U〈n〉)
for some finite dimensional vector space U.
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Twisted commutative algberas Finiteness conditions

Finite generation of tca’s

In the GL-model, A is finitely generated if and only if there exist finitely
many elements x1, . . . , xn such that A is generated as an algebra by the
elements gxi for 1 ≤ i ≤ n and g ∈ GL(∞).

In the Schur model, if A is finitely generated as a tca then A(V ) is finitely
generated as a C-algebra for all finite dimensional V .

Exercise

Give an example of a tca A which is not finitely generated but for which
A(V ) is finitely generated as a C-algebra for all finite dimensional V .
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Finite generation of modules

An A-module is finitely generated if it is a quotient of A⊗ F for some
finite length object F of V.

In the GL-model, the A-module M is finitely generated if there exist
finitely many elements x1, . . . , xn such that M is generated as an
A-module by the gxi for 1 ≤ i ≤ n and g ∈ GL(∞).

In the Schur model, if M is a finitely generated A-module then M(V ) is a
finitely generated A(V )-module for all V . The converse does not hold, as
before.
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Twisted commutative algberas Finiteness conditions

Noetherianity

An A-module M is noetherian if every ascending chain of submodules
stabilizes. Equivalently, every submodule of M is finitely generated.

The tca A is noetherian if every finitely generated A-module is noetherian.

Note: most A-modules are not quotients of a direct sum of A’s. Thus
noetherianity of A as a tca does not necessarily follow from noetherianity
of A as an A-module.

Question

If A is noetherian as an A-module is A noetherian as a tca?
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Twisted commutative algberas Finiteness conditions

Boundedness

Recall that `(λ) denotes the length of the partition λ.

For an object M of V, we define

`(M) = sup{`(λ) |Mλ is a constituent of M}.

We say that M is bounded if `(M) <∞.

Any sub or quotient of a bounded object is bounded.
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Twisted commutative algberas Finiteness conditions

Boundedness

An important consequence of the Littlewood–Richardson rule is the
identity `(M ⊗ N) = `(M) + `(N).

Therefore:

Proposition

The tensor product of bounded objects is bounded.

Corollary

A finitely generated module over a bounded tca is bounded.
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Twisted commutative algberas Consequences of boundedness

Boundedness principle

If M is a bounded object, with any kind of extra structure, then one can
recover M completely from M(Cn) if n is sufficiently large.

This principle is very useful, since M(Cn) tends to lie in the realm of
familiar commutative algebra.
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Here is one instance of the boundedness principle:

Proposition

Suppose `(M) ≤ n. Then N 7→ N(Cn) defines a bijection

{subobjects of M} → {GL(n)-subrepresentations of M(Cn)}.

Proof.

Write M =
⊕

`(λ)≤n Vλ ⊗ Sλ where Vλ is a multiplicity space. To give a
subobject of M amounts to giving a subspace of Vλ for each λ.

We have M(Cn) =
⊕

`(λ)≤n Vλ ⊗ Sλ(Cn). By the length condition, the
representations Sλ(Cn) are irreducible and pairwise non-isomorphic. It
follows that giving a GL(n)-subrepresentation of M(Cn) is also the same
as giving a subspace of Vλ for each λ.
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Here is another, closely related, instance:

Proposition

Suppose M is an A-module and `(M) ≤ n. Then N 7→ N(Cn) defines a
bijection

{A-submodules of M} → {GL(n)-stable A(Cn)-submodules of M(Cn)}.

Exercise

Prove this. (The proof is similar to that of the previous proposition.)
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Theorem

A finitely generated bounded tca is noetherian.

Proof.

Suppose A is finitely generated and bounded. Let M be a finitely generated
A-module and put n = `(M). Then N 7→ N(Cn) defines an injection

{A-submodules of M} → {A(Cn)-submodules of M(Cn)}.

Since A(Cn) is a finitely generated C-algebra, it is noetherian. Since M is
a finitely generated A-module, M(Cn) is a finitely generated
A(Cn)-module, and therefore noetherian. It follows that the right side
above satisfies ACC, and so the left side does as well.
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Theorem

The tca A = Sym(U〈1〉) is bounded; in fact, `(A) = dim(U).

Proof.

We have
A(V ) = Sym(U ⊗ V ) =

⊕
λ

Sλ(U)⊗ Sλ(V ),

where the sum is over all partitions. This is the Cauchy formula. Since
Sλ(U) = 0 if `(λ) > dim(U), only those Sλ(V ) with `(λ) ≤ dim(U) are
constituents of A.

Exercise

Prove the Cauchy formula.
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Since a tca finitely generated in degree 1 is a quotient of Sym(U〈1〉), we
find:

Corollary

A tca finitely generated in degree 1 is noetherian.
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Twisted commutative algberas Consequences of boundedness

The boundedness principle is the primary approach to studying bounded
objects, but it does not trivialize all problems.

For example, consider the problem of determining the free resolution of an
A-module M, where A = Sym(C〈1〉).

The free resolution of M(Cn) is finite since A(Cn) = C[x1, . . . , xn], but the
resolution of M itself is typically infinite.

Thus, even though the resolution of M can be recovered from M(Cn) in
principle, it is not the case that the resolution of M(Cn) immediately gives
the resolution of M.

See [SS2] for a detailed study of resolutions of A-modules.
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Twisted commutative algberas Hilbert series

Hilbert series

Let M be an object of V, taken in the sequence model. We define the
Hilbert series of M by

HM(t) =
∞∑
n=0

dim(Mn)
tn

n!
.

Obviously, this is only defined when each Mn is finite dimensional.

Exercise

Show that HM⊗N(t) = HM(t)HN(t).
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An example of Hilbert series

Let A = Sym(U〈1〉), where U has dimension d . In the sequence model,
An = U⊗n and so dim(An) = dn.

We therefore have

HA(t) =
∑
n≥0

dn tn

n!
= edt .
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Another example of Hilbert series

Let A = Sym(U〈1〉), where U has dimension d . Let B be the quotient of
A by the ideal generated by (n + 1)× (n + 1) minors. Thus B(C∞) is the
coordinate ring of the rank n determinantal variety in Hom(U,C∞).

We have a decomposition

B(C∞) =
⊕
`(λ)≤n

Sλ(U)⊗ Sλ(C∞).

It follows that

HB(t) =
∑
`(λ)≤n

dim(Sλ(U)) dim(Mλ)
t |λ|

|λ|!
.

One can attempt to compute this sum using the hook length and hook
content formulas. We will give a better way.
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The main theorem on Hilbert series

Theorem

Let M be a finitely generated module over a tca finitely generated in
degree 1. Then HM(t) is a polynomial in t and et .

Define H∗M(t) like HM(t) but without the factorials. The theorem is
equivalent to the statement that H∗M(t) is a rational function whose
poles are of the form 1/k with k a positive integer.

The series HM(t) forgets a lot of information about M, namely the Sn

action on each piece. It is possible to define an enhanced Hilbert
series which records this information. There is a corresponding
rationality result for it. See [SS2].
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Twisted commutative algberas Hilbert series

Equivariant Hilbert series

Let G be a group, and let K(G ) denote the representation ring of G .

Suppose M is a non-negatively graded representation of G . We define the
G -equivariant Hilbert series of M by

HM,G (t) =
∞∑
n=0

[Mn]tn,

where [Mn] denotes the class of Mn in K(G ). This series belongs to
K(G )JtK.

Similarly, if M is an object of V with an action of G , we have the Hilbert
series HM,G (t) (with factorials) and H∗M,G (t) (without factorials).
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Twisted commutative algberas Hilbert series

Notation

Let T = T (n) be the diagonal torus in GL(n).

Let αi : T → C×, for 1 ≤ i ≤ n, be the standard projectors.

We identify K(T ) with Z[α±1
i ].

We let f 7→ f be the involution of K(T ) which sends αi to α−1
i .

We put |f |2 = f f .

We let
∫
T dα : K(T )→ Z be the map which sends 1 to 1 and all

other monomials to 0.

We put ∆(α) =
∏

i<j(αi − αj).
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Weyl’s integration formula

Suppose χ1 and χ2 are the characters of irreducible algebraic
representations of GL(n), regarded as elements of K(T ).

We have the following formula of Weyl:

1

n!

∫
T
χ1χ2|∆|2dα =

{
1 if χ1 = χ2

0 otherwise
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The key formula

By the boundedness principle, we can recover HM(t) from M(Cn) for n
sufficiently large, assuming M is bounded. The following result makes this
explicit:

Proposition

Let M ∈ V satisfy `(M) ≤ n. Then

HM(t) =
1

n!

∫
T

HM(Cn),T (t;α) exp
(∑

αi

)
|∆|2dα.
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Let M ∈ V satisfy `(M) ≤ n. Then

HM(t) =
1

n!

∫
T

HM(Cn),T (t;α) exp
(∑

αi

)
|∆|2dα.
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Proof of the key formula

Write M =
⊕

Vλ ⊗ Sλ, where Vλ is a multiplicity space.

HM(t) =
∑

dim(Vλ) dim(Mλ)
t |λ|

|λ|!
.

HM(Cn),T (t;α) =
∑

dim(Vλ)(the character of Sλ(Cn))t |λ|.

Put f (α) =
∑ 1

|λ|!
dim(Mλ) · (the character of Sλ(Cn)).

Weyl’s integration formula gives

HM(t) =
1

n!

∫
T

HM(Cn),T (t;α)f (α)|∆|2dα.
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Proof of the key formula (cont’d)

Schur–Weyl gives a decomposition

(Cn)⊗k =
⊕
|λ|=k

Mλ ⊗ Sλ(Cn).

The character of the left side is (
∑
αi )

k .

” right side is
∑

dim(Mλ) · (the character of Sλ(Cn)).

Dividing by k! and summing over k gives f (α) = exp(
∑
αi ).
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Twisted commutative algberas Hilbert series

Rationality of equivariant Hilbert series

Let A0 be the polynomial ring Sym(U ⊗ Cn). The group T acts on A0

through its action on Cn.

Lemma

Let M0 be a finitely generated A0-module with a compatible action of T .
Then

HM0,T (t;α) =
p(t;α)∏n

i=1(1− αi t)d

where p is a polynomial and d = dim(U).

Exercise

Prove the lemma.
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Twisted commutative algberas Hilbert series

Proof of main theorem

Let A = Sym(U〈1〉) and let M be a finitely generated A-module. Put
n = `(M) and d = dim(U).

Combining the previous lemma and the key formula, we obtain

HM(t) =

∫
T

p(t;α)∏n
i=1(1− αi t)d

exp
(∑

αi

)
dα

for some polynomial p. (We have absorbed the n! and ∆ into p.)

It is now an elementary computation to show that this integral is a
polynomial in t and et .
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Twisted commutative algberas Hilbert series

Revisiting the second example

Recall B is the quotient of A = Sym(U〈1〉) by (n + 1)× (n + 1) minors.
We have `(B) = n and

B(Cn) =
⊕
`(λ)≤n

Sλ(U)⊗ Sλ(Cn) = Sym(U ⊗ Cn).

We have HB(Cn),T (t;α) =
∏

(1− αi t)−d , where d = dim(U). The key
formula gives

HB(t) =
1

n!

∫
T

|∆(α)|2∏n
i=1(1− αi t)d

exp
(∑

αi

)
dα.
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Twisted commutative algberas Hilbert series

An equivariant form of the main theorem

Let G be a reductive group, let U be a representation of G and put
A = Sym(U〈1〉).

Theorem

Let M be a finitely generated A-module with a compatible action of G .
Then H∗M,G (t) is a rational function.

Definition of rational: can multiply by a polynomial q ∈ K(G )[t] with
q(0) = 1 and get a polynomial.

The proof of this theorem is similar to that of the non-equivariant
version, but more complicated.

Rationality of H∗M,G (t) does not imply anything nice about HM,G (t).
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Twisted commutative algberas Some open problems

Open problems

Question

Are finitely generated tca’s noetherian?

The tca A = Sym(Sym2(C∞)) satisfies ACC for ideals, and is almost
certainly noetherian (though this is not proved). Note: A = C[xij ]
with i ≤ j . This ring is not noetherian as an S∞-ring.

To show that, e.g., A = Sym(
∧3(C∞)) is noetherian, one might first

try to show that Spec(A) is noetherian as a topological space. This
would involve understanding the structure of GL(∞) orbits on the
variety

∧3(C∞).
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Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Some open problems

Open problems (cont’d)

Some other problems:

How does the Hilbert series of an A-module relate to the structure of
the module?

Does a noetherian tca have finitely many minimal prime ideals?
Known in the bounded case.

To what extent does primary decomposition hold for tca’s?

Is there a good dimension theory for tca’s?

What can one say about Hilbert series in the unbounded case? The
Hilbert series of Sym(C〈n〉) is et

n
, so one might hope for positive

results.

Relationship between GL(∞) noetherianity and S∞ noetherianity?

Andrew Snowden (MIT) ∆-modules September 26, 2012 99 / 160



Twisted commutative algberas Other appearances of tca’s

FI-modules

Church–Ellenberg–Farb (arXiv:1204.4533) introduce algebraic objects
which they call “FI-modules.” They give many examples of these modules:
for instance, the cohomology of certain configuration spaces (as the
number of points varies) forms an FI-module.

In fact, an FI-module is just a module over the tca Sym(C〈1〉), viewed in
the sequence model. See [SS1] for details.

Andrew Snowden (MIT) ∆-modules September 26, 2012 100 / 160

http://arxiv.org/abs/1204.4533


Twisted commutative algberas Other appearances of tca’s

FI-modules

Church–Ellenberg–Farb (arXiv:1204.4533) introduce algebraic objects
which they call “FI-modules.” They give many examples of these modules:
for instance, the cohomology of certain configuration spaces (as the
number of points varies) forms an FI-module.

In fact, an FI-module is just a module over the tca Sym(C〈1〉), viewed in
the sequence model. See [SS1] for details.

Andrew Snowden (MIT) ∆-modules September 26, 2012 100 / 160

http://arxiv.org/abs/1204.4533


Twisted commutative algberas Other appearances of tca’s

EFW resolutions

Eisenbud–Fløystan–Weyman (arXiv:0709.1529v5) constructed pure
resolutions, which was a key step in the proof of the Boij–Söderberg
conjecture. Their construction can actually be seen as the computation of
the projective resolutions of certain finite length modules over the tca
Sym(C〈1〉). See [SS1] for details.
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Twisted commutative algberas Other appearances of tca’s

Representation theory of infinite rank groups

We have been working with the category of polynomial representations of
GL(∞). One can define a larger category of algebraic representations of
GL(∞), or of other groups such as O(∞). These categories are not
semi-simple, in general.

In forthcoming work, S. Sam and I relate these categories to tca’s. For
instance, we show that Rep(O(∞)) is equivalent to the category of finite
length modules over the tca Sym(Sym2(C∞)). This allows us to use tools
from commutative algebra, such as the Koszul complex, to study
representations.
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Algebras in Sym(S)

§3. Algebras in Sym(S)
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Algebras in Sym(S) The category Sym(S)

Multivariate polynomial functors

A functor F : Vecn → Vec is called polynomial if for any (V1, . . . ,Vn) and
(V ′1, . . . ,V

′
n), the induced map

Hom(V1,V
′
1)× · · ·Hom(Vn,V

′
n)→ Hom(F (V1, . . . ,Vn),F (V ′1, . . . ,V

′
n))

induced by F is a polynomial map of vector spaces.

If λ1, . . . , λn are partitions then

(V1, . . . ,Vn) 7→ Sλ1(V1)⊗ · · · ⊗ Sλn(Vn)

is a polynomial functor.

Proposition

Any polynomial functors is a direct sums of these.
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Algebras in Sym(S) The category Sym(S)

Equivariant functors

Let F : Vecn → Vec be a functor. An Sn-equivariant structure on F
consists of giving for each σ ∈ Sn an isomorphism of functors

σ∗ : F (V1, . . . ,Vn)→ F (Vσ(1), . . . ,Vσ(n))

which satisfy an obvious compatibility condition (roughly (στ)∗ = σ∗τ∗).

Not all functors admit an Sn-equivariant structure. For instance,
(V1,V2) 7→ Sym2(V1)⊗

∧2(V2) does not, since the roles of V1 and V2 are
asymmetrical.

A functor can admit multiple equivariant structures. For instance, if
F (V1, . . . ,Vn) is a constant functor, equal to some fixed vector space W
regardless of its input, then giving an Sn-equivariant structure on F is the
same as giving a representation of Sn on W .
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Algebras in Sym(S) The category Sym(S)

The sequence model for Sym(S)

The sequence model for Sym(S) is the following category:

Objects are sequences (Fn)n≥0, where Fn : Vecn → Vec is an
Sn-equivariant polynomial functor.

A morphism f : (Fn)→ (F ′n) consists of morphisms of Sn-equivariant
functors fn : Fn → F ′n for each n.

This is a souped-up version of the category Rep(S∗).

Recall that a ∆-module consists of a a rule assigning to each (V1, . . . ,Vn)
a vector space Fn(V1, . . . ,Vn) with the additional structure (C1)–(C3).
(C1) is simply the structure of a functor on Fn, while (C2) is an
Sn-equivariant structure on Sn. Thus a ∆-module defines an object of
Sym(S) (though it has even more structure, namely (C3)).
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Algebras in Sym(S) The category Sym(S)

The category Vecf

Let Vecf be the category of finite families of vector spaces:

Objects are pairs (V , L) where L is a finite set and V assigns to each
x ∈ L a vector space Vx .

A morphism (V , L)→ (V ′, L′) consists of a bijection ϕ : L′ → L and
for each x ∈ L a linear map Vx → Vϕ−1(x).

The category Vecn is identified with the subcategory of Vecf where
L = [n] = {1, . . . , n}.
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Algebras in Sym(S) The category Sym(S)

The fs model for Sym(S)

A functor F : Vecf → Vec is polynomial if its restriction to each Vecn is
polynomial.

The fs model for Sym(S) is the category of all polynomial functors
Vecf → Vec. Morphsism are natural transformations of functors. This is a
souped-up version of Vec(fs).

Exercise

Let F : Vecf → Vec be a polynomial functor, and define Fn to be the
restriction of F to Vecn. Show that Fn is naturally an Sn-equivariant
functor, and F 7→ (Fn)n≥0 defines an equivalence between the fs and
sequence models of Sym(S).
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Algebras in Sym(S) The category Sym(S)

The tensor product on Sym(S)

Let F ,G : Vecf → Vec be polynomial functors. Define

(F ⊗ G )(V , L) =
⊕

L=AqB
F (V |A,A)⊗ G (V |B ,B).

This is a direct generalization of the tensor product on Vec(fs).

Example

Suppose F1 = Sym2 and Fn = 0 for n 6= 1 and G1 =
∧2 and Gn = 0 for

n 6= 1. Then

(F ⊗ G )(V , [2]) = Sym2(V1)⊗
∧2(V2)⊕

∧2(V1)⊗ Sym2(V2),

and (F ⊗ G )(V , L) = 0 if #L 6= 2. Note: the Littlewood–Richardson rule
never comes in to play!
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Algebras in Sym(S) The category Sym(S)

Algebras in Sym(S)

Since Sym(S) has a tensor product, we have a notion of (commutative,
associative, unital) algebras in Sym(S). Explicitly, an algebra is a
polynomial functor A : Vecf → Vec equipped with a multiplication map

A(V , L)⊗ A(V ′, L′)→ A(V q V ′, Lq L′).

for all (V , L) and (V ′, L′) in Vecf . Such algebras are souped-up versions of
tca’s.
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Algebras in Sym(S) The category Sym(S)

An example of an algebra

Let F ∈ S be a polynomial functor, regarded as an object of Sym(S) in
degree 1. Let A = Sym(F ) be the symmetric algebra on F .

Exercise

Show that
A(V , L) =

⊗
x∈L

F (Vx)

The multiplication map A(V , L)⊗ A(V ′, L′)→ A(V q V ′, Lq L′) is just
concatenation of tensors.

This algebra is the analogue in Sym(S) of the tca Sym(U〈1〉). In fact, if F
is the constant functor F (V ) = U then A is the constant functor
(V , L) 7→ U⊗L, and so A = Sym(U〈1〉).
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Algebras in Sym(S) Noetherianity

Evaluation on constant families

Let U be a vector space. Denote by UL the constant family (V , L) where
Vx = U for all x ∈ L. We denote by i : (fs)→ Vecf the functor L 7→ UL.

If F : Vecf → Vec is a polynomial functor then L 7→ F (UL) is an object of
Vec(fs). We denote this by i∗(F ). We thus have a functor
i∗ : Sym(S)→ V.

The functor i∗ is compatible with tensor products, and so takes algebras to
algebras. The algebra Sym(F ) goes to the tca Sym(F (U)〈1〉).

Note that i∗(F ) always carries an action of GL(U).
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Algebras in Sym(S) Noetherianity

Vertical boundedness

Let F : Vecn → Vec be a polynomial functor. We can decompose F as a
direct sum of tensor products of Schur functors Sλ. Define L(F ) as the
supremum of `(λ) over those λ for which Sλ occurs in this decomposition.

For an object F = (Fn) of Sym(S), define L(F ) as the supremum of the
L(Fn). We say F is vertically bounded if L(F ) <∞.

Example

Let F ∈ S and let A = Sym(F ). We saw that A(V , L) =
⊗

F (Vx). Thus
L(A) = `(F ). In particular, if F has finite length then A is vertically
bounded.
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Algebras in Sym(S) Noetherianity

Failure of the boundedness principle

Let F ∈ Sym(S) and let U be a vector space with dim(U) ≥ L(F ). One
might hope for a “boundedness principle” where one does not lose
information by evaluating on UL. However, this is not the case.

For example, suppose F ,G ∈ S and let A : Vec2 → Vec be given by

A(V1,V2) = F (V1)⊗ G (V2)⊕ G (V1)⊗ F (V2).

We regard A ∈ Sym(S).

We have A(UL) = (F (U)⊗ G (U))⊕2 if #L = 2 and A(UL) = 0 otherwise.
Thus one can only F ⊗ G ∈ S from A(UL), and not F and G individually.
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Algebras in Sym(S) Noetherianity

Despite the failure of the boundedness principle in general, one does have
the following result:

Proposition

Let M be an object of Sym(S) and let U be a vector space with
dim(U) ≥ L(M). If N and N ′ are subobjects of M such that
i∗(N) = i∗(N ′) then N = N ′.

Proof.

Decompose M as
⊕

Vλ1,...,λn ⊗ Sλ1 ⊗ · · · ⊗ Sλn where the V ’s are
multiplicity spaces. The subobjects N and N ′ correspond to subspaces of
the multiplicity spaces. The point is simply that none of the Schur
functors appearing in M vanish on U, and so one can check for equality of
subspaces of multiplicity spaces after evalauting on U.
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Algebras in Sym(S) Noetherianity

Theorem

An algebra in Sym(S) finitely generated in degree 1 is noetherian.

Proof.

Let A = Sym(F ) where F ∈ S has finite length. It suffices to show A is
noetherian. Let M be a finitely generated A-module. Choose a vector
space U with dim(U) ≥ L(M) and put A′ = i∗(A) and M ′ = i∗(M). Then
A′ is a tca and M ′ is an A′-module. We have a map

{A-submodules of M} → {A′-submodules of M ′}

given by N 7→ i∗(N). This is injective by the previous proposition. The
right side satisfies ACC since A′ is noetherian. Thus the left side satisfies
ACC and A is noetherian.

Andrew Snowden (MIT) ∆-modules September 26, 2012 116 / 160



Algebras in Sym(S) Noetherianity

Theorem

An algebra in Sym(S) finitely generated in degree 1 is noetherian.

Proof.

Let A = Sym(F ) where F ∈ S has finite length. It suffices to show A is
noetherian. Let M be a finitely generated A-module. Choose a vector
space U with dim(U) ≥ L(M) and put A′ = i∗(A) and M ′ = i∗(M). Then
A′ is a tca and M ′ is an A′-module.

We have a map

{A-submodules of M} → {A′-submodules of M ′}

given by N 7→ i∗(N). This is injective by the previous proposition. The
right side satisfies ACC since A′ is noetherian. Thus the left side satisfies
ACC and A is noetherian.

Andrew Snowden (MIT) ∆-modules September 26, 2012 116 / 160



Algebras in Sym(S) Noetherianity

Theorem

An algebra in Sym(S) finitely generated in degree 1 is noetherian.

Proof.

Let A = Sym(F ) where F ∈ S has finite length. It suffices to show A is
noetherian. Let M be a finitely generated A-module. Choose a vector
space U with dim(U) ≥ L(M) and put A′ = i∗(A) and M ′ = i∗(M). Then
A′ is a tca and M ′ is an A′-module. We have a map

{A-submodules of M} → {A′-submodules of M ′}

given by N 7→ i∗(N). This is injective by the previous proposition. The
right side satisfies ACC since A′ is noetherian. Thus the left side satisfies
ACC and A is noetherian.

Andrew Snowden (MIT) ∆-modules September 26, 2012 116 / 160



Algebras in Sym(S) Noetherianity

Analysis of proof

The tca A′ in the above proof is Sym(F (U)〈1〉). We deduced
noetherianity of A from that of A′.

Recall that we deduced noetherianity of A′ from that of an ordinary
polynomial ring by a similar argument. We have `(A′) = dim(F (U)), and
so by the boundedness principle one does not lose information by
evaluating A′ on a vector space V of this dimension. Noetherianity of
A′(V ) = Sym(V ⊗ F (U)) implies that of A′.

So ultimately, we work with a polynomial ring in dim(F (U))2 variables. If,
e.g., F is the pth tensor power functor then L(A) = `(F ) = p and thus
dim(U) = p. So F (U) has dimension pp, and we require p2p variables!

Note also that the tca A′ appearing in the proof is naturally given in the fs
model, but our proof that A′ is noetherian naturally uses the Schur model.
So it is important to be able to switch between these models.
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Algebras in Sym(S) Hilbert series

Definition of the Hilbert series

Let F : Vecn → Vec be a polynomial functor. Decompose F as

F (V1, . . . ,Vn) =
⊕
i∈I

Sλ1,i
(V1)⊗ · · · ⊗ Sλn,i (Vn)

over some index set I . Define polynomials in variables sλ by

H∗F =
∑
i∈I

sλ1,i
· · · sλn,i , HF =

1

n!
H∗F .

In general, F cannot be recovered from HF . For example, if H∗F = sλsµ
then F (V1,V2) can either be Sλ(V1)⊗ Sµ(V2) or Sµ(V1)⊗ Sλ(V1).

However, if F admits an Sn-equivariant structure, then it can be recovered
from HF .
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Algebras in Sym(S) Hilbert series

Definition of the Hilbert series (cont’d)

Let F = (Fn) be an object of Sym(S), taken in the sequence model. We
define the Hilbert series of F by

HF =
∑
n≥0

HFn , H∗F =
∑
n≥0

H∗Fn
.

These are formal power series in the variables sλ.

One can recover each Fn, as a functor Vecn → Vec, from HF . However,
the data of the Sn-equivariance is lost.

In general, HF can involve infinitely many variables. However, in cases of
interest, all the partitions appearing in F will have the same size, and so
HF will only involve finitely many of the sλ.
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Algebras in Sym(S) Hilbert series

An example of Hilbert series

Let A = Sym(Sλ). Then A(V , L) =
⊗

x∈L Sλ(Vx) and so

An(V1, . . . ,Vn) = Sλ(V1)⊗ · · · ⊗ Sλ(Vn).

We therefore have H∗An
= snλ and so

H∗A =
1

1− sλ
, HA = esλ .
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Algebras in Sym(S) Hilbert series

Main theorem on Hilbert series

Theorem

Let M be a finitely generated module over an algbera A in Sym(S) which
is finitely generated in degree 1. Then H∗M is a rational function in the sλ.

Question

Is it the case that HM is a polynomial in the sλ and the esλ? This is not
implied by the theorem, but holds for all examples I know.
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Algebras in Sym(S) Hilbert series

Sketch of proof

Let A and M be as in the statement of the theorem. Choose U with
dim(U) ≥ L(M) and define A′ = i∗(A) and M ′ = i∗(M). Then A′ is a tca
finitely generated in degree 1 and M ′ is a finitely generated A′-module.

The group G = GL(U) acts on A′ and M ′. We can therefore consider the
G -equivariant Hilbert series H∗M′,G , which is a power series with
coefficients in K(G ). This is rational by earlier results.

Unfortunately, we cannot recover H∗M from H∗M′,GL(U). We have already
seen the reason: the Schur functors appearing in M are multiplied together
in M ′.
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Algebras in Sym(S) Hilbert series

Sketch of proof (cont’d)

Fortunately, a modification of this idea does work. Let U1, . . . ,Un be
copies of U and let G = GL(U1)× · · · × GL(Un). Define a tca A′ by

A′L =
⊕

L=L1q···qLn

A(UL1)⊗ · · · ⊗ A(ULn)

and define M ′ similarly.

As before, G acts on A′ and M ′ and the equivariant Hilbert series H∗M′,G is
rational.

One can show that H∗M can be recovered from H∗M′,G is n is taken to be
sufficiently large. This gives rationality of H∗M .
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∆-modules

§4. ∆-modules

Andrew Snowden (MIT) ∆-modules September 26, 2012 124 / 160



∆-modules The category of ∆-modules

The sequence model of ∆-modules

Using the language we now have, we can rephrase our original definition as
follows: a ∆-module is a sequence (Fn)n≥0, where Fn : Vecn → Vec is an
Sn-equivariant polynomial functor, equipped with natural transformations

Fn(V1, . . . ,Vn−1,Vn ⊗ Vn+1)→ Fn+1(V1, . . . ,Vn+1).

This natural transformation is the data originally called (C3).

There are still compatibility conditions required between various pieces of
structure. We prefer not to state these conditions explicitly; they will be
automatically handled in a fs model of ∆-modules.
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∆-modules The category of ∆-modules

The category Vec∆

Let Vec∆ be the following category:

Objects are families of vector spaces (V , L) as in Vec∆.

A morphism (V , L)→ (V ′, L′) consists of a surjection ϕ : L′ → L and
for each x ∈ L a linear map Vx →

⊗
ϕ(y)=x V ′y .

There is a map

((V1, . . . ,Vn−1,Vn ⊗ Vn+1), [n])→ ((V1, . . . ,Vn+1), [n + 1])

in Vec∆, where the surjection [n + 1]→ [n] collapses n and n + 1 to n.
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∆-modules The category of ∆-modules

The fs model of ∆-modules

A ∆-module is a polynomial functor F : Vec∆ → Vec. (Polynomial means
that the restriction to Vecf is polynomial.)

The map

((V1, . . . ,Vn−1,Vn ⊗ Vn+1), [n])→ ((V1, . . . ,Vn+1), [n + 1])

induces the structure (C3) on ∆-modules.
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∆-modules Results on ∆-modules

The ∆-module Qn

Define Qn to be the ∆-module given by

Qn(V , L) =
⊗
x∈L

V⊗nx .

A map (V , L)→ (V ′, L′) in Vec∆ consists of a surjection ϕ : L′ → L and
linear maps Vx →

⊗
ϕ(y)=x Vy for x ∈ L. Taking the nth tensor power of

this map and then tensoring over x ∈ L gives a map
Qn(V , L)→ Qn(V ′, L′). This explains how Qn is a functor on Vec∆.
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∆-modules Results on ∆-modules

Qn as an algebra in Sym(S)

The ∆-module Qn also has the structure of an algebra in Sym(S). This
algebra structure is simply the map

Qn(V , L)⊗ Qn(V ′, L′)→ Qn(V q V ′, Lq L′)

given by concatenation of tensors. In fact, Qn is the tensor algebra on the
nth tensor power functor.

As Qn is finitely generated in degree 1, our results on Sym(S) algebras
(noetherianity, Hilbert series) apply to it.

We note that the symmetric group Sn acts on Qn. This action is
compatible with the algebra and ∆-module structure.
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∆-modules Results on ∆-modules

The key result on ∆-modules

Theorem

Any ∆-submodule of Qn is automatically a QSn
n -submodule.

Proof.

We must show that if a ∈ Qn(V , L)Sn and m ∈ Qn(V ′, L′) then am
belongs to the ∆-submodule of Qn generated by m. Since Qn(V , L)Sn is
spanned by nth powers, it suffices to treat the case where a = a⊗n0 with
a0 ∈ Q1(V , L).

Pick an element x ∈ L′. Define a map (V ′, L′)→ (V q V ′, Lq L′) as
follows. The surjection Lq L′ → L′ is the identity on L′ and collapses L to
x . The map V ′x → V ′x ⊗

⊗
y∈L Vy is id⊗ a0. This map in Vec∆ induces a

map Qn(V ′, L′)→ Qn(V q V ′, Lq L′) by the ∆-module structure on Qn,
under which m maps to am.
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⊗
y∈L Vy is id⊗ a0. This map in Vec∆ induces a

map Qn(V ′, L′)→ Qn(V q V ′, Lq L′) by the ∆-module structure on Qn,
under which m maps to am.

Andrew Snowden (MIT) ∆-modules September 26, 2012 130 / 160



∆-modules Results on ∆-modules

The key result on ∆-modules

Theorem

Any ∆-submodule of Qn is automatically a QSn
n -submodule.

Proof.

We must show that if a ∈ Qn(V , L)Sn and m ∈ Qn(V ′, L′) then am
belongs to the ∆-submodule of Qn generated by m. Since Qn(V , L)Sn is
spanned by nth powers, it suffices to treat the case where a = a⊗n0 with
a0 ∈ Q1(V , L).

Pick an element x ∈ L′. Define a map (V ′, L′)→ (V q V ′, Lq L′) as
follows. The surjection Lq L′ → L′ is the identity on L′ and collapses L to
x . The map V ′x → V ′x ⊗

⊗
y∈L Vy is id⊗ a0. This map in Vec∆ induces a

map Qn(V ′, L′)→ Qn(V q V ′, Lq L′) by the ∆-module structure on Qn,
under which m maps to am.

Andrew Snowden (MIT) ∆-modules September 26, 2012 130 / 160



∆-modules Results on ∆-modules

Noetherianity of ∆-modules

Theorem

The ∆-module Qn is noetherian.

Proof.

An ascending chain of ∆-submodules is an ascending chain of
QSn

n -submodules of Qn. Since Qn is noetherian and Sn is a finite group,
Qn is noetherian as a module over QSn

n , and so any such ascending chain
stabilizes.
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∆-modules Results on ∆-modules

Hilbert series of ∆-modules

The Hilbert series of a ∆-module is defined to be the Hilbert series of the
underlying object in Sym(S).

Theorem

The Hilbert series of any subquotient of Qn is rational.

Proof.

Any such subquotient is naturally a finitely generated module over QSn
n .

Rationality follows from rationality of Hilbert series for finitely generated
Qn-modules. (The Sn doesn’t affect much.)
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Applications to syzygies

§5. Applications to syzygies
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Applications to syzygies Syzygies of ∆-varieties

Syzygies

Let S = Sym(V ) be a polynomial ring and let R be a quotient ring. The
space of p-syzygies of R is TorSp (R,C). If F• → R is a minimal free
resolution of R as an S-module then this Tor is just Fp/S+Fp.

This Tor can also be calculated using the free resolution of C as an
S-module. This resolution, the Koszul resolution, is given by S ⊗

∧•(V ).
Tensoring with R over S , we see that the complex K = R ⊗

∧•(V )
computes TorSp (R,C).

Suppose V ′ is another vector space, S ′ = Sym(V ′) and R ′ is a quotient of
S ′. Suppose V → V ′ is a linear map which carries R to R ′. Then there is
an induced morphism K → K ′ and thus TorSp (R,C)→ TorS

′
p (R ′,C).
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Applications to syzygies Syzygies of ∆-varieties

∆-varieties

For (V , L) ∈ Vec∆, let V(V , L) =
⊗

x∈L V ∗x . The structure (A1)–(A3)

shows that V defines a contravariant functor from Vec∆ to the category of
varieties.

A ∆-variety is a contravariant functor X from Vec∆ to varieties equipped
with a closed immersion X → V.
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Applications to syzygies Syzygies of ∆-varieties

Syzygies of ∆-varieties

Let S(V , L) be the the coordinate ring of V(V , L) and let Sd(V , L) be its
degree d piece. Explicitly, Sd(V , L) = Symd(Q1(V , L)) where
Q1(V , L) =

⊗
x∈L Vx . This is a ∆-module, and a quotient of Qd .

Let R(V , L) be the coordinate ring of X (V , L) and let Rd(V , L) be its
degree d piece. This is a ∆-module, and a quotient of Sd(V , L).

Let Kp(V , L) = R(V , L)⊗
∧p(Q1(V , L)). Let

Kp,d(V , L) = Rp−d(V , L)⊗
∧p(Q1(V , L)) be its degree d piece. This is a

∆-module, and a quotient of Qd .
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Applications to syzygies Syzygies of ∆-varieties

Syzygies of ∆-varieties (cont’d)

The Koszul differentials give K •,d the structure of a complex. Let F p,d be
its pth homology. This is the space of p-syzygies of degree d for X , and
forms a ∆-module.

Since F p,d is a subquotient of Kp,d , and thus of Qd , it is finitely generated
and has rational Hilbert series. This proves our main results on syzygies.
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Applications to syzygies Syzygies of the Segre embedding

Syzygies of the Segre embedding

Let X be the ∆-variety given by the Segre embedding, and let F p,d be as
above. Here are three results on these syzygies:

Theorem (Eisenbud–Reeves–Totaro)

We have F p,d = 0 for d > 2p.

Theorem (Rubei)

The Segre variety satisfies the Green–Lazersfeld property N3 but not N4.
This means that F p,d = 0 for d 6= p + 1 if p = 1, 2, 3 but not for p = 4.

Theorem (Lascoux, Pragacz–Weyman)

[The decomposition of F p,d
2 (V1,V2).]
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Applications to syzygies Syzygies of the Segre embedding

An Euler characteristic

Let fp,d be the Hilbert series of F p,d (with factorials), and define
χd =

∑
p≥0(−1)pfp,d .

Theorem

χd =
d∑

p=0

(−1)p

p!

∑
|λ|=p

(#cλ) sgn(cλ) exp(s(d−p) � s ′λ)


where:

cλ is the conjugacy class in Sp corresponding to λ.

s ′λ =
∑
|µ|=p χµ(cλ)sµ, where χµ is the character of Mµ.

� is the usual product of Schur functors, computed with the
Littlewood–Richardson rule.
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Applications to syzygies Syzygies of the Segre embedding

Key calculation in proof of theorem

Proposition

Let λ be a partition of p and let F be the object of Sym(S) given by
F (V , L) = Sλ(

⊗
x∈L Vx). Then

HF =
1

p!

∑
|µ|=p

(#cµ)χλ(cµ) exp(s ′µ)

The nth term in the power series expansion on the right precisely records
the decomposition of Sλ(V1 ⊗ · · · ⊗ Vn) into Schur functors.
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Applications to syzygies Syzygies of the Segre embedding

Example of key calculation

Suppose λ = (1, 1). Put s = s(2) and w = s(1,1). We have s ′(2) = s + w

and s ′(1,1) = s − w . Therefore HF = 1
2 (es+w − es−w ).

We have the following power series expansion:

HF = w + sw + 1
6 (w 3 + 3s2w) + 1

6 (sw 3 + s3w) + · · ·

The degree 3 term means exactly that there is a decomposition∧2(V1 ⊗ V2 ⊗ V3) =
∧2(V1)⊗

∧2(V2)⊗
∧2(V3) ⊕

Sym2(V1)⊗ Sym2(V2)⊗
∧2(V3) ⊕

Sym2(V1)⊗
∧2(V2)⊗ Sym2(V3) ⊕∧2(V1)⊗ Sym2(V2)⊗ Sym2(V3)
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Applications to syzygies Syzygies of the Segre embedding

Formulas for fp,d

We have fp,p+1 = (−1)pχp+1 for p = 1, 2, 3, 4 since N3 is satisfied.

Put s = s(2), w = s(1,1).

f1,2 = 1
2 es+w + 1

2 es−w − es

Put s = s(3), w = s(1,1,1), t = s(2,1).

f2,3 = 1
3 es+w+2t − 1

3 es+w−t − es+t + es

Put s = s(4), w = s(1,1,1,1), a = s(3,1), b = s(2,2), c = s(2,1,1).

f3,4 = 1
8 es+w+3a+2b+3c − 1

8 es+w−a+2b−c + 1
4 es−w−a+c − 1

4 es−w+a−c

+ 1
2 es+b−c − 1

2 es+2a+b+c + es+a − es
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Applications to syzygies Syzygies of the Segre embedding

Meaning of formulas

Expanding in a power series,

f1,2 = 1
2 w 2 + 1

2 sw 2 + 1
24 (6w 2s2 + w 4) + · · ·

The nth term describes the decomposition of F 1,2
n (V1, . . . ,Vn) (i.e., the

quadratic relations) under the action of GL(V1)× · · · × GL(Vn). For
example,

F 1,2
3 (V1,V2,V3) = Sym2(V1)⊗

∧2(V2)⊗
∧2(V3) ⊕∧2(V1)⊗ Sym2(V2)⊗
∧2(V3) ⊕∧2(V1)⊗

∧2(V2)⊗ Sym2(V3)

We have thus given the complete decomposition of the spaces of
p-syzygies for p = 1, 2, 3.
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We have thus given the complete decomposition of the spaces of
p-syzygies for p = 1, 2, 3.
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Applications to syzygies Syzygies of the Segre embedding

A problem

Problem

Compute f4,6.

We have χ6 = f4,6 − f5,6, so the Euler characteristic calculation does not
give the value of f4,6. However, that calculation shows that computing f4,6

is equivalent to computing f5,6.

Lascoux’s resolution gives f4,6 = 1
2 s2

(2,2,2) + · · · , i.e., it computes the
leading term of f4,6.

Our proof of rationality of fp,d shows that f4,6 can be computed by a finite
linear algebra computation over the ring C[x1, . . . , x2,176,782,336]. This is
totally impractical, so another method must be found!
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Additional topics

§6. Additional topics
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Additional topics More on ∆-modules

Alternate definition of ∆-modules

A ∆-module is an object of Sym(S) with extra structure, namely the maps
(C3). We now give a different way of encoding this extra structure.

There is a comultiplication map ∆: S→ S⊗2, which takes a polynomial
functor F to the polynomial functor (V ,W ) 7→ F (V ⊗W ). Obviously this
new polynomial functor is S2-equivariant, and so ∆ takes values in
Sym2(S).

There is a unique extension of ∆ to a derivation of Sym(S). A ∆-module
can be defined as an object M of Sym(S) equipped with a map ∆M → M
satisfying an associativity axiom. This map precisely corresponds to the
map (C3).
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Additional topics More on ∆-modules

Free ∆-modules

Given an object F of Sym(S), there is a universal ∆-module it generates,
which we denote by Φ(F ). In fact, Φ is the left adjoint of the forgetful
functor Mod∆ → Sym(S).

We call a ∆-module of the form Φ(F ) free, and finite free if F has finite
length. An arbitrary ∆-module is finitely generated if and only if it is a
quotient of a finite free ∆-module.
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Additional topics More on ∆-modules

The functor Ψ

Given a ∆-module M, denote by Mold(V , L) the subspace of M(V , L)
generated by elements of M(V ′, L′) with #L′ < #L. Equivalently, Mold is
the image of ∆M → M. Then Mold is a ∆-submodule of M. We let
Ψ(M) = M/Mold. This is a ∆-module, but the maps (C3) are always 0, so
we regard Ψ(M) as an object of Sym(S).

A version of Nakayama’s lemma holds: a ∆-module M is finitely generated
if and only if Ψ(M) is of finite length. In fact, M is always a quotient of
Φ(Ψ(M)).
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Additional topics More on ∆-modules

Analogy with C[t]-modules

Graded vector spaces Sym(S)

Graded C[t]-modules ∆-modules

V ⊗C C[t] Φ(F )

M ⊗C[t] C Ψ(M)

multiplication by t the map ∆M → M

tM Mold
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Additional topics More on ∆-modules

We proved two main theorems about ∆-modules: one about noetherianity
and one about rationality of Hilbert series.

These two results are not the end of the story, however: there are many
other results one might want to establish about ∆-modules.

Our method provides a systematic procedure for proving results about
∆-modules.
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Additional topics More on ∆-modules

Resolutions of ∆-modules

One can attempt to resolve a ∆-module by free ∆-modules. As usual, the
first step in the resolution gives the generators and the second step can be
intepreted as relations between these generators.

For instance, the syzygy module F 1,2 of the Segre is generated by the
defining equation of P1 × P1. However, F 1,2 is not free: different
sequences of the operations (C1)–(C3) can yield the same equations.
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Additional topics More on ∆-modules

The Poincaré series

The terms of the resolution of M are Φ(LiΨM). This is in analogy with
how Tor’s give the resolutions of modules over polynomial rings; note that

LiΨ is analogous to Tor
C[t]
i (−,C).

We can record this information in a series:

PM(q) =
∑
i≥0

(−1)iH(LiΨM)qi .

We call Pm(q) the Poincaré series of M. The Hilbert series is recovered
by evaluating at q = 1 and aplying Φ. Where the Hilbert series of M
depends only on the underlying object of Sym(S), the Poincaré series uses
the ∆-module structure.

The main question, obviously, is if PM(q) is rational.
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the ∆-module structure.

The main question, obviously, is if PM(q) is rational.

Andrew Snowden (MIT) ∆-modules September 26, 2012 152 / 160



Additional topics More on ∆-modules

The Poincaré series
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Additional topics More on ∆-modules

Poincaré series for tca’s

Let A be the tca Sym(U〈1〉) and let M be a finitely generated A-module.
The resolution of M by projective A-modules is typically infinite. S. Sam
and I show that:

Regularity is finite, i.e., the resolution of M has only finitely many
linear strands.

The ith linear strand Fi (M) admits the structure of a finitely
generated module over A′ = Sym(U∗〈1〉).

In fact, F gives an equivalence Db(A)→ Db(A′) which we call the Fourier
transform.

An elementary manipulation gives PM(q) =
∑

i≥0 HFi (M)(qt)q−i . This

shows that PM(q) belongs to Q[t, et , q±1].
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Additional topics More on ∆-modules

Back to Poincaré series for ∆-modules

To obtain rationality of Poincaré series for ∆-modules is now just a matter
of transferring the result for tca’s to algebras in Sym(S), and then to
∆-modules. We have not done this yet, but expect to be able to.

Problem

Compute the Poincaré series of any non-free ∆-module, e.g., F 1,2 of the
Segre.
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Additional topics More on ∆-varieties

Bounded ∆-varieties

Let X be a ∆-variety. Write R(V , L) for the coordinate ring of X (V , L).
Then R is an object of Sym(S) (in fact, a ∆-module). We say that X is
bounded if L(R) <∞.

Example

Suppose X is the Segre. Then R(V , L) =
⊕

n≥0

⊗
x∈L Symn(Vx). It

follows that L(R) = 1 and so X is bounded.

Boundedness is preserved under many operations on ∆-varieties. In
particular, the secant varieties of the Segre are bounded. Recall:

Conjecture

If X is bounded then F p,d = 0 for d � p.
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Additional topics More on ∆-varieties

The ∆-variety ∆Subd

Define Subd(V1, . . . ,Vn) ⊂ V ∗1 ⊗ · · · ⊗V ∗n to be the union of spaces of the
form U1 ⊗ · · · ⊗ Un where the Ui vary over the dimension d subsapces of
the V ∗i . Thus Sub1 is the Segre.

For d > 1, Subd is not a ∆-variety but contains a maximal ∆-subvariety,
called ∆Subd , which can be obtained by intersecting the Subd ’s of
flattenings. The ∆-variety ∆Subd can be characterized as the maximal
∆-variety whose coordinate ring satisfies L ≤ d .

Question

Is ∆Subd noetherian? That is, does any descending chain of
∆-subvarieties of ∆Subd stabilize?

This question is weaker than the conjecture, but stronger than the result
of Draisma–Kuttler.
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Additional topics Syzygies of Segre–Veronese varieties

The Segre–Veronese variety

Let V1, . . . ,Vn be vector spaces and w1, . . . ,wn positive integers. The
Segre–Veronese variety is the subvariety of

Symw1(V ∗1 )⊗ · · · ⊗ Symwn(V ∗n )

consisting of pure tensors of pure powers.
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Additional topics Syzygies of Segre–Veronese varieties

m∆-modules

Define a category Vecm∆ as follows:

The objects are pairs (V , L) where L is a weighted set and V assigns
to each x ∈ L a vector space Vx .

A morphism (V , L)→ (V , L′) consists of a weighted
correspondence L′ → L and certain linear maps on the vector spaces.

The Segre–Veronese variety is a functor from Vecm∆ to varieties.

An m∆-module is a polynomial functor Vecm∆ → Vec. The syzygies of
the Segre–Veronese are examples.
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Additional topics Syzygies of Segre–Veronese varieties

Results on syzygies

S. Sam and I have carried over the results on syzygies of Segre varieties to
the Segre–Veronese case. Remarks:

Whereas the results in the Segre case depended on the fact that
Sym(U ⊗ C∞) is noetherian as a GL(∞)-algebra (which goes back to
Weyl), these new results use noetherianity as an S∞-algebra (theorem
of Cohen, Aschenbrenner, Hillar, Sullivant).

The result on Hilbert series in the Segre–Veronese case is weaker than
the result in the Segre case: it does not completely determine the
decompositions of the syzygy modules.

The result on Hilbert series is also conditional at this point: it
depends on an elementary statement concerning certain quivers which
we have not been able to prove (but suspect to be true).
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End

Thank you for listening!
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