
HOMOLOGICAL ALGEBRA

This document is about abelian groups and R-modules, but we will later see that every-
thing makes sense with abelian groups replaced by objects from an “abelian category.”

Suppose we have a short exact sequence

(1) 0→ A
f−→ B

g−→ C → 0,

so that f is an injection, g is a surjection, and ker g = im f .

1. Show that f is an isomorphism if and only if C = 0, and similarly that A = 0 if and
only if g is an isomorphism.

2. Show that B = 0 if and only if A and C are zero.
3. Show that B is not always determined up-to-isomorphism by A and C. That is, show

that there exist A, C, B, and B′ with B not isomorphic to B′ so that

0→ A→ B → C → 0

and

0→ A→ B′ → C → 0

are both exact sequences.
4. To ponder: Given A and C, what choices are there for f , B, and g? This is called

the “extension problem” for A and C.

Definition 0.1. A module P is called projective if the functor Hom(P,−) is exact, so that
the sequence

0→ Hom(P,A)
Hom(P,f)−−−−−→ Hom(P,B)

Hom(P,g)−−−−−→ Hom(P,C)→ 0

is still exact as a sequence of abelian groups.

5. Show that X and Y are projective exactly when X ⊕ Y is projective.
6. Show that the abelian group Z is projective, and deduce the same for Zn.
7. Show that if P is projective, then any surjection p : A� P admits a map i : P → A

with p◦i = 1P . The surjection p is then said to be “split” and i is called a “splitting.”
8. Returning to (1), show that if C is projective, then B ∼= A⊕C, and so the extension

problem is easy in this case.

The next problems indicate some of the interest in non-free projective modules, indicating
a connection to K-theory. Let S1 = [0, 1]/(0 ∼ 1) be the circle, and let R be the ring of
continuous functions S1 → R.

9. Show that M = {f : [0, 1]→ R | f(0) = −f(1)} is an R-module.
10. Using the intermediate value theorem, show that M is not free.
11. Find a continuous path γ : [0, 1]→ GL(2,R) with γ(0) = I and γ(1) = −I.
12. Show that M ⊕M ∼= R⊕R, and conclude that M is projective.
13. Find a two-by-two matrix π ∈ M2(R) so that ππ = π (this condition gives us the

word “projective”), π has rank one when its entries are evaluated at any point t ∈ S1,
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but π is not conjugate to [
1 0
0 0

]
under the action of GL(2, R).

An injective module I is one for which the contravariant representable functor Hom(−, I)
is exact.

14. If k is a field, show that k is injective as a k-module.
15. Is Z an injective abelian group?
16. Show that Z/2 is injective as a Z/2-module, but not as an abelian group.
17. Let Q denote the group rational numbers with addition. Show that the quotient

group Q/Z is an injective abelian group. Is this group indecomposable?
18. Find a nonzero injective Z[x]-module.

Definition 0.2. A chain complex is a sequence of modules C• = {Cn : n ∈ Z} together
with homomorphisms dn : Cn → Cn−1, called differentials or boundary maps, satisfying
dn ◦ dn+1 = 0 for all n ∈ Z. The kernel of dn is the module of n-cycles of C•, written
Zn(C•), and the image of dn+1 is the module of n-boundaries of C•, written Bn(C•). The

nth homology of C• is the quotient Hn(C•) = Zn(C•)�Bn(C•)
.

A cochain complex is a sequence of module C• = {Cn : n ∈ Z} together with homo-
morphisms dn : Cn → Cn+1 called differentials or coboundary maps, satisfying dn+1 ◦ dn = 0
for all n ∈ Z.

19. Set Cn = Z/9Z for all n ≥ 0 and Cn = 0 for all n < 0. Moreover, define dn : Cn →
Cn−1 by dn(x) = 3x. Prove that C• is a complex of Z/9Z-modules and compute its
homology.

20. Write the definition of the nth cohomology of a cochain complex C•. Hint: translate
the definition of homology to cochain complexes.

Definition 0.3. A chain map between two chain complexes (C•, dC,•) and (D•, dD,•) is a
sequence of homomorphisms fn : Cn → Dn that satisfy dD,n ◦ fn = fn−1 ◦ dC,n for all n ∈ Z.

21. Prove that if f : C• → D• is a chain map, then fn(Zn(C•)) ⊆ Zn(D•) and fn(Bn(C•)) ⊆
Bn(D•) for all n ∈ Z.

22. Prove that for each n ∈ Z Hn is a functor from Ch(Ab), the category of chain
complexes of abelian groups with chain maps, to Ab.

Let S be a commutative ring. The category Ch(S − Mod) is an abelian category, and
therefore contains exact sequences.

Definition 0.4. A left resolution of an S-module M is an exact sequence of S-modules

. . .
dn+1−−−→ En

dn−→ . . .
d2−→ E1

d1−→ E0
ε−→M → 0.

The homomorphisms dn are called boundary maps, and the homomorphism ε is called the
augementation map. For succinctness, we often write left resolutions as

E•
ε−→M → 0.

A right resolution of an S-module M is an exact sequence of S-modules

0→M
ε−→ D0

d0−→ D1
d1−→ . . .

dn−1

−−−→ Dn
dn−→ . . .
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For succinctness, we often write right resolutions as

0→M
ε−→ C•.

If all the En are free modules, then we say that E•
ε−→ M → 0 is a free resolution,

and if all the En are projective modules, then we say that E•
ε−→ M → 0 is a projective

resolution. If all the Cn are injective modules, then we say that 0 → M
ε−→ C• is an

injective resolution.

23. Show that every S-module M has a surjection from a (possibly infinite) direct sum
of copies of S. What does this say about the existence of a free resolution of M?

Definition 0.5. A quasi-isomorphism of chain complexes is a chain map f• : C• → D• so
that fn : Hn(C•)→ Hn(D•) is an isomorphism for all n ∈ Z.

24. For any S-module M , find a chain complex of free S-modules C• so that H0C• ∼= M
and HpC• = 0 otherwise. Probably you will want to pick Cp = 0 for p < 0.

25. Find a quasi-isomorphism from C• to the complex . . .→ 0→M → 0→ . . ..

26. If X• is a projective resolution of an S-module A and Z• is a projective resolution of an
S-module C, and if these objects sit in a short exact sequence 0→ A→ B → C → 0,
find a projective resolution Y• of B so that 0 → X• → Y• → Z• → 0 is a short
exact sequence of chain complexes whose degree-zero homology recovers the original
sequence.

27. Let

0→ X•
f−→ Y•

g−→ Z• → 0

be a short exact sequence of chain complexes. Show that Xn−1⊕ Yn with differential
d(x, y) = d(x)+(−1)nf(x)+d(y) is quasi-isomorphic to Z•. Call this complex M(f)•;
it is the mapping cone of f .

Given a chain complex X•, for any k ∈ Z we have the shifted complex X[k]•, with
X[k]n = Xn+k for all n ∈ Z.

28. Show that Y• is a subcomplex of M(f) and X[−1]• is a quotient complex.

29. Using the maps X•
f−→ Y• ⊆ M(f)• � X[−1]•

−f [−1]−−−−→ Y [−1]•, construct an exact
sequence

HnX → HnY → HnZ → Hn−1X → Hn−1Y.

Theorem 0.6. If 0 → X•
f−→ Y•

g−→ Z• → 0 is a short exact sequence of chain complexes,
then there are natural maps ∂ : Hn(Z•)→ Hn−1(X•) and a long exact sequence

. . .
g−→ Hn+1(Z•)

∂−→ Hn(X•)
f−→ Hn(Y•)

g−→ Hn(Z•)
∂−→ Hn−1(X•)

f−→ . . .

Definition 0.7. Let F be a right exact functor from S-Mod to R-Mod1 (where R and S are
both commutative unital rings). We can construct the left derived functors of F , LiF
(i ≥ 0), as follows. For each S-module, M , choose a projective resolution P• →M → 0 and
define

LiF(M) = Hi(F(P•)).

1A right exact functor is a functor that preserves right exact sequences.
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Let G be a left exact functor from S-Mod to R-Mod. We can construct the right derived
functors of G, RjG (j ≥ 0), as follows. For each S-module M , choose an injective resolution
0→M → I• and define

RjG(M) = Hj(G(I•)).

30. Prove that if P• and Q• are two different projective resolutions of an S-module M ,
then Hi(F(P•)) ∼= Hi(F(Q•)), thus proving that our definition of left-derived functors
is well-defined. (This exercise is a little challenging and requires the use of a “chain
homotopy”.)

31. Prove that for any S-module M , L0F(M) ∼= F(M).
32. Prove the exercises analogous to Problems 30 and 31 for right derived functors.

Definition 0.8. If R is a ring, and if MR, RN are modules with opposite-sided actions, the
tensor product is an abelian group defined by the formula

M ⊗R N = Z · (M ×N)/ ∼,
where ∼ is generated by the relations

(mr, n) ∼ (m, rn)
(m+m′, n) ∼ (m,n) + (m′, n) (m,n+ n′) ∼ (m,n) + (m,n′)

(0, n) ∼ 0 (m, 0) ∼ 0

for all m,m′ ∈ M , n, n′ ∈ N , and r ∈ R. The equivalence class of 1 · (m,n) ∈ Z · (M ×N)
is written m⊗R n, or even just m⊗ n.

We mention that, in the definition, Z · (M ×N) denotes the free abelian group on the set
M ×N , even though this set carries the structure of an abelian group. This is intentional.
In the tensor product, we definitely do not want (m+m′)⊗ (n+ n′) = (m⊗ n) + (m′ ⊗ n′),
even though (m+m′, n+ n′) = (m,n) + (m′, n′) does hold in M ×N . Rather, in the tensor
product,

(m+m′)⊗ (n+ n′) = m⊗ (n+ n′) +m′ ⊗ (n+ n′)

= (m⊗ n) + (m⊗ n′) + (m′ ⊗ n) + (m′ ⊗ n′).
In other words, the symbol ⊗ is meant to be bilinear, like an inner product, or like matrix
multiplication.

33. Prove that R⊗R N ∼= N .
34. By symmetry, conclude that M ⊗R R ∼= M as well.
35. Given another left R-module RN

′, show that M⊗R(N⊕N ′) ∼= (M⊗RN)⊕(M⊗RN
′).

36. Show that Zm ⊗Z Zn ∼= Zmn.
37. Given a map φ : RN → RN

′, produce a map M ⊗R φ : M ⊗R N →M ⊗R N
′.

38. With φ as in the previous problem, show that coker(M ⊗R φ) ∼= M ⊗R coker(φ).

Let G be a cyclic group with 6 elements generated by g ∈ G, and write ⊗G for ⊗ZG. Let
MG = Z2 where g acts by the matrix [

0 −1
1 1

]
.

In the next three problems, we take GN = Z/7Z, but we vary the action of G.

39. Setting gn = n for all n ∈ N , compute M ⊗G N .
40. Setting gn = n+ n for all n ∈ N , compute M ⊗G N .
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41. Setting gn = n+ n+ n for all n ∈ N , compute M ⊗G N .

Let G be a group with two elements, and let R = ZG be the group ring of G. (This
is the ring whose elements are formal Z-linear combinations of elements of G, and where
multiplication of elements is given by composition in the group.) Recall that left G-modules
become left R-modules and vice versa.

42. Find a free resolution of GZ, the integers with trivial left G-action.
43. Compute Z⊗Li

ZGZ for all i ≥ 0 where Z carries the trivial left action of G, and −⊗Li
ZGZ

denotes the left derived tensor product of the right exact functor −⊗ZG Z.
44. Let GM = Z/2Z × Z/2Z where the nontrivial element of G acts by (1, 0) 7→ (1, 1)

and (0, 1) 7→ (0, 1). Find a free resolution of GM .

For the last problem, let G = S3 be the symmetric group.

45. Find a free resolution of GZ, the integers with trivial left G-action.

Definition 0.9. Let R be a ring. For a fixed left R-module N ,

TorRi (M,N) = M ⊗Li
R N

and

ExtiR(N,M) = RjHomR(N,M).

46. Prove that for any abelian groups A and B, TorZ1 (A,B) is a torsion abelian group
and that TorZn(A,B) = 0 for all n ≥ 2.

47. Let R = Z/4Z and consider M = Z/2Z as an R-module.
a. Find projective and injective resolutions for M .
b. Compute TorRi (M,M).
c. Compute ExtiR(M,M).

48. Using the fact that every abelian group B has an injective resolution of the form
B → I0 → I1 → 0 → . . . → 0 → . . ., prove that ExtnZ(A,B) = 0 for all abelian
groups A and B and n ≥ 2.

Definition 0.10. A filtered chain complex F•C• is a sequence of chain complexes

· · · ⊆ F0C• ⊆ F1C• ⊆ F2C• ⊆ · · ·

where each FnC• is a subcomplex of Fn+1C•.

49. If X is a topological space that is filtered by a sequence of subspaces X0 ⊆ X1 ⊆
X1 ⊆ · · · , show that the complex of singular chains on X is filtered by the rule
FnC

sing
• X = Csing

• Xn.

Definition 0.11. Let M be a G-module. Then the nth cohomology group of G with
coefficients in M is Hn(G;M) := ExtnZG(Z,M) where G acts trivially on Z. Similarly, the
nth homology group of G with coefficients in M is Hn(G;M) := TorZGn (Z,M) where
G acts trivially on Z.

If you are familiar with invariants and coinvariants, it is helpful to think of the cohomology
groups Hn(G;M) as the right derived functors of M 7→ MG and the homology groups
Hn(G;M) as the left derived functors of M 7→MG.

50. Let G be the trivial group and let A be any abelian group. Compute Hn(G;A) and
Hn(G;A) for all n ≥ 0.
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51. Let G be the infinite cyclic group (written multiplicatively) with generator x. Then

we can identify ZG with Z[x, x−1]. Prove that 0 → ZG x−1−−→ ZG → Z → 0 is exact,
and then show that Hn(G;A) = 0 and Hn(G;A) = 0 for all n > 1 and G-modules A.


