HOMOLOGICAL ALGEBRA

This document is about abelian groups and R-modules, but we will later see that every-
thing makes sense with abelian groups replaced by objects from an “abelian category.”
Suppose we have a short exact sequence

(1) 05ALBS o0,

so that f is an injection, ¢ is a surjection, and ker g = im f.

1. Show that f is an isomorphism if and only if C'= 0, and similarly that A = 0 if and
only if ¢ is an isomorphism.

2. Show that B = 0 if and only if A and C' are zero.

3. Show that B is not always determined up-to-isomorphism by A and C. That is, show
that there exist A, C, B, and B’ with B not isomorphic to B’ so that

0—A—-B—-C—=0

and
0—A—>B —-C—=0

are both exact sequences.
4. To ponder: Given A and C', what choices are there for f, B, and ¢g? This is called
the “extension problem” for A and C.

Definition 0.1. A module P is called projective if the functor Hom(P, —) is exact, so that
the sequence

Hom(P,f) Hom(P,g)

0 — Hom(P, A) Hom(P, B) Hom(P,C) — 0

is still exact as a sequence of abelian groups.

5. Show that X and Y are projective exactly when X @Y is projective.

6. Show that the abelian group Z is projective, and deduce the same for Z".

7. Show that if P is projective, then any surjection p: A — P admits amap i: P — A
with po? = 1p. The surjection p is then said to be “split” and ¢ is called a “splitting.”

8. Returning to (1)), show that if C' is projective, then B = A@® C, and so the extension
problem is easy in this case.

The next problems indicate some of the interest in non-free projective modules, indicating
a connection to K-theory. Let S' = [0,1]/(0 ~ 1) be the circle, and let R be the ring of
continuous functions S — R.

9. Show that M = {f: [0,1] = R | f(0) = —f(1)} is an R-module.
10. Using the intermediate value theorem, show that M is not free.
11. Find a continuous path v: [0, 1] — GL(2,R) with v(0) = I and (1) = —I.
12. Show that M & M = R & R, and conclude that M is projective.
13. Find a two-by-two matrix m € My(R) so that 77 = 7 (this condition gives us the

word “projective”), 7 has rank one when its entries are evaluated at any point ¢ € S*,
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0 0
under the action of GL(2, R).

An injective module [ is one for which the contravariant representable functor Hom(—, I)
is exact.

14. If k is a field, show that k is injective as a k-module.

15. Is Z an injective abelian group?

16. Show that Z/2 is injective as a Z/2-module, but not as an abelian group.

17. Let Q denote the group rational numbers with addition. Show that the quotient
group QQ/Z is an injective abelian group. Is this group indecomposable?

18. Find a nonzero injective Z[x]-module.

but 7 is not conjugate to

Definition 0.2. A chain complex is a sequence of modules Cy = {C,, : n € Z} together
with homomorphisms d,,: C,, — C,_1, called differentials or boundary maps, satisfying
d, od, 1 = 0 for all n € Z. The kernel of d,, is the module of n-cycles of C,, written
Z,(C,), and the image of d,,1 is the module of n-boundaries of C,, written B,,(C,). The

nth homology of C, is the quotient H,(C,) = Z”(O')/B (C.)
A cochain complex is a sequence of module C* = {C™ : n € Z} together with homo-

morphisms d": C" — C™*! called differentials or coboundary maps, satisfying d**!od” =0
for all n € Z.

19. Set C,, = Z/9Z for all n > 0 and C,, = 0 for all n < 0. Moreover, define d,,: C,, —
Ch_1 by d,(x) = 3z. Prove that C, is a complex of Z/9Z-modules and compute its
homology.

20. Write the definition of the nth cohomology of a cochain complex C'*. Hint: translate
the definition of homology to cochain complexes.

Definition 0.3. A chain map between two chain complexes (C,, dcs) and (D, dp,) is a
sequence of homomorphisms f,: C,, = D,, that satisty dp , o f, = fn—1 0dc,, for all n € Z.

21. Prove thatif f: Cy — D, is a chain map, then f,(Z,(C,.)) C Z,(D,) and f,(B,(C,)) C
B, (D,) for all n € Z.

22. Prove that for each n € Z H, is a functor from Ch(Ab), the category of chain
complexes of abelian groups with chain maps, to Ab.

Let S be a commutative ring. The category Ch(S — Mod) is an abelian category, and
therefore contains exact sequences.

Definition 0.4. A left resolution of an S-module M is an exact sequence of S-modules
Ny N N PRIy Ny G}

The homomorphisms d,, are called boundary maps, and the homomorphism ¢ is called the
augementation map. For succinctness, we often write left resolutions as

E, S M — 0.

A right resolution of an S-module M is an exact sequence of S-modules

€ d0 dt dqn—1 ar
O-M—->Dy—D —...— D, — ...
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For succinctness, we often write right resolutions as
0— M= C..

If all the E, are free modules, then we say that F, = M — 0 is a free resolution,
and if all the E, are projective modules, then we say that F, = M — 0 is a projective
resolution. If all the C, are injective modules, then we say that 0 — M = C, is an
injective resolution.

23. Show that every S-module M has a surjection from a (possibly infinite) direct sum
of copies of S. What does this say about the existence of a free resolution of M?

Definition 0.5. A quasi-isomorphism of chain complexes is a chain map f,: Co4 — D, so
that f,: H,(C,) — H,(D,) is an isomorphism for all n € Z.

24. For any S-module M, find a chain complex of free S-modules Cy so that HyCy = M
and H,C, = 0 otherwise. Probably you will want to pick C}, = 0 for p < 0.
25. Find a quasi-isomorphism from C, to the complex ... -0 — M —0— .. ..

26. If X, is a projective resolution of an S-module A and Z, is a projective resolution of an
S-module C', and if these objects sit in a short exact sequence 0 - A —- B — C — 0,
find a projective resolution Y, of B so that 0 —- X, — Y, — Z, — 0 is a short
exact sequence of chain complexes whose degree-zero homology recovers the original

sequence.
27. Let

0= Xe LY. % 2, -0
be a short exact sequence of chain complexes. Show that X,,_; @ Y,, with differential

d(z,y) = d(x)+(—=1)"f(x)+d(y) is quasi-isomorphic to Z,. Call this complex M(f)s;
it is the mapping cone of f.

Given a chain complex X,, for any & € Z we have the shifted complex X[k|,, with
X[k]p = Xy for all n € Z.

28. Show that Y, is a subcomplex of M (f) and X[—1], is a quotient complex.

29. Using the maps X, i) Yo C M(f)e — X[—1]s —f[-1]
sequence

Y [—1],, construct an exact

HX-H)Y - H,Z—H, X — H,,Y.

Theorem 0.6. If 0 — X, ER Yo % Zy — 0 is a short ezact sequence of chain complexes,
then there are natural maps 0: H,(Zs) — H,—1(Xs) and a long exact sequence

B Hyn(Z) D Hy(X) D H(V) S H(Z) S Ha(X) D

Definition 0.7. Let F be a right exact functor from S-Mod to R-Mod[l| (where R and S are
both commutative unital rings). We can construct the left derived functors of F, L, F

(1 > 0), as follows. For each S-module, M, choose a projective resolution P, — M — 0 and
define

LiF(M) = Hi(F(P.).

LA right exact functor is a functor that preserves right exact sequences.
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Let G be a left exact functor from S-Mod to R-Mod. We can construct the right derived
functors of G, R’G (j > 0), as follows. For each S-module M, choose an injective resolution
0 — M — I, and define

RG(M) = H'(G(L)).

30. Prove that if P, and @), are two different projective resolutions of an S-module M,
then H;(F(P.)) = H;(F(Q.)), thus proving that our definition of left-derived functors
is well-defined. (This exercise is a little challenging and requires the use of a “chain
homotopy”.)

31. Prove that for any S-module M, LyF(M) = F(M).

32. Prove the exercises analogous to Problems 30 and 31 for right derived functors.

Definition 0.8. If R is a ring, and if Mg, g N are modules with opposite-sided actions, the
tensor product is an abelian group defined by the formula

M@pN=2Z (Mx N)/ ~,
where ~ is generated by the relations
(mr,n) ~ (m,rn)
(m+m/,n) ~ (m,n) + (m',n) (m,n+n') ~ (m,n)+ (m,n)
(0,n) ~0 (m,0) ~0
for all m,m’ € M, n,n’ € N, and r € R. The equivalence class of 1 - (m,n) € Z- (M x N)
is written m ®g n, or even just m ® n.

We mention that, in the definition, Z - (M x N) denotes the free abelian group on the set
M x N, even though this set carries the structure of an abelian group. This is intentional.
In the tensor product, we definitely do not want (m+m') ® (n+n') = (m®@n) + (m' @n'),
even though (m +m’,n+n') = (m,n) 4+ (m/,n’) does hold in M x N. Rather, in the tensor
product,

(m+m)@n+n)=men+n)+m e n+n)
=(men)+(men)+ (men)+(m on).

In other words, the symbol ® is meant to be bilinear, like an inner product, or like matrix
multiplication.

33. Prove that R®r N = N.

34. By symmetry, conclude that M ®zr R = M as well.

35. Given another left R-module g N', show that M@r(NON') = (M@rN)B(MRrN').

36. Show that Z™ @5, 7™ = 7™,

37. Given a map ¢: gkN — rN’, produce a map M ®p ¢: M @r N — M Qr N'.

38. With ¢ as in the previous problem, show that coker(M ®g ¢) = M ®p coker(¢).

Let G be a cyclic group with 6 elements generated by g € G, and write ®¢g for ®z5. Let
Mg = 72 where g acts by the matrix

0 —1

1 1|

In the next three problems, we take ¢ N = Z/7Z, but we vary the action of G.

39. Setting gn = n for all n € N, compute M ®¢ N.
40. Setting gn =n + n for all n € N, compute M ®¢ N.
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41. Setting gn = n +n+n for all n € N, compute M ®g N.

Let G be a group with two elements, and let R = ZG be the group ring of G. (This
is the ring whose elements are formal Z-linear combinations of elements of GG, and where
multiplication of elements is given by composition in the group.) Recall that left G-modules
become left R-modules and vice versa.

42. Find a free resolution of ¢Z, the integers with trivial left G-action.

43. Compute Z®§&Z for all i > 0 where Z carries the trivial left action of GG, and —®§&Z
denotes the left derived tensor product of the right exact functor — ®zq Z.

44. Let oM = 7 /27 x Z/2Z where the nontrivial element of G' acts by (1,0) — (1,1)
and (0,1) — (0,1). Find a free resolution of oM.

For the last problem, let G = S3 be the symmetric group.

45. Find a free resolution of ¢Z, the integers with trivial left G-action.
Definition 0.9. Let R be a ring. For a fixed left R-module N,
Tor®(M,N) = M @5 N

and
Ext’% (N, M) = R'Homg(N, M).

46. Prove that for any abelian groups A and B, Tor?(A, B) is a torsion abelian group
and that Tor%(A, B) = 0 for all n > 2.
47. Let R = Z /47 and consider M = 7 /27 as an R-module.
a. Find projective and injective resolutions for M.
b. Compute Tor®(M, M).
c. Compute Ext’ (M, M).
48. Using the fact that every abelian group B has an injective resolution of the form
B—1Iy—1 -0—...—=0— ..., prove that Ext;(A, B) = 0 for all abelian
groups A and B and n > 2.

Definition 0.10. A filtered chain complex F,C, is a sequence of chain complexes
- CFC, C FC, CFC, C -
where each F,C, is a subcomplex of F},1C,.

49. If X is a topological space that is filtered by a sequence of subspaces Xy C X; C
X; C ---, show that the complex of singular chains on X is filtered by the rule
F,Csm9X = Csm9X,.

Definition 0.11. Let M be a G-module. Then the nth cohomology group of G with
coefficients in M is H"(G; M) := Exty,(Z, M) where G acts trivially on Z. Similarly, the
nth homology group of G with coefficients in M is H,(G; M) := Tor”“(Z, M) where
G acts trivially on Z.

If you are familiar with invariants and coinvariants, it is helpful to think of the cohomology
groups H"(G; M) as the right derived functors of M + M® and the homology groups
H,(G; M) as the left derived functors of M +— M.

50. Let G be the trivial group and let A be any abelian group. Compute H,(G; A) and
H™(G; A) for all n > 0.
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51. Let G be the infinite cyclic group (written multiplicatively) with generator z. Then

we can identify ZG with Z[z, z~1]. Prove that 0 — ZG 2= ZG — Z — 0 is exact,
and then show that H"(G; A) = 0 and H,(G; A) =0 for all n > 1 and G-modules A.



