
CATEGORY THEORY

Definition 0.1. A category C consists of a class1 of objects, written ob(C), a class of mor-
phisms between objects, written Hom(C). Furthermore, for any three objects a, b, c ∈ ob(C),
there must be a binary operation Hom(a, b)×Hom(b, c)→ Hom(a, c), called composition,
satisfying the following two properties:

i. (associativity) If f ∈ Hom(a, b), g ∈ Hom(b, c), and h ∈ Hom(c, d), then h ◦ (g ◦ f) =
(h ◦ g) ◦ f .

ii. (identity) For every x ∈ ob(C), there exists 1x ∈ Hom(x, x), called the identity
morphism for x, such that for all a, b ∈ ob(C), for all f ∈ Hom(a, x) and g ∈
Hom(x, b), 1x ◦ f = f and g ◦ 1x = g.

1. Let MatR be the category whose objects are positive integers and whose morphisms
are matrices with entries in R (i.e. Hom(m,n) is the set of all m × n matrices over
R). Composition is by matrix multiplication. Prove that MatR is a category.2

2. Prove that any partially ordered set (poset) (P,≤) is a category. (What are the
morphisms?)

3. Let G be a group. Prove that we can think of G as a category by taking ob(G) = {∗}
and HomG(∗, ∗) = G with composition given by the binary operation of G.

Definition 0.2. For any category C, we may define the dual (or opposite) category Cop
with ob(Cop) = ob(C) and whose morphisms are in bijection with the morphisms of C. More
precisely, for every f : x→ y in Hom(C), we define f op : y → x in Hom(Cop).

In other words, Cop has the same objects and morphisms of C, except that all the morphisms
“point in the opposite direction.”

4. Give descriptions of the composition laws of MatopR and P op, where (P,≤) is a poset.

Let Fin be the category whose objects are finite sets, morphisms are functions, and com-
position is the usual composition of functions. For any function f : X → Y , define a matrix
M(f) whose rows and columns are indexed by Y and X respectively, and where the entry
in position (y, x) ∈ Y ×X is given by the formula

M(f)y,x =

{
1 y = f(x)

0 y 6= f(x).

5. Check that M(1X) is an identity matrix when 1X : X → X is the identity function.
6. For any pair of composable functions f, g, show that M(f ◦ g) = M(f) ·M(g).

These two properties of M make it look like a homomorphism—or perhaps a representation,
since the outputs are matrices. Any such assignment of morphisms to morphisms that sends
identities to identities and preserves composition is called a functor.

1If you don’t know what a class is, you can think of it as a generalization of a set. For example, Russell’s
paradox tells us that there is no set of all sets, but we want to be able to define a category whose objects
are sets, and we do that with classes. There is a class of all sets.

2Here we have explicityly chosen to work with R, but you can replace R with any unital ring R to define
MatR, the category of matrices over R.
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Definition 0.3. Let C and D be categories. A (covariant) functor F is a mapping from
C to D that associates every object x ∈ ob(C) to an object F(x) ∈ ob(D) and associates
to every morphism f : x → y in Hom(C) a morphism F(f) : F(x) → F(y) in Hom(D)
so that F(1x) = 1F(x) for all x ∈ ob(C) and for all f ∈ Hom(x, y) and g ∈ Hom(y, z),
F(g ◦ f) = F(g) ◦ F(f).

7. The source category for the functor M in Problems 5 & 6 is Fin. What is the target
category?

8. Explain how a homomorphism of groups can be considered a functor.
9. If G is a group, explain why a functor G→ VecC

3 is the same as a representation of
G.

If A is a p× q matrix over C, define a p2 × q2 matrix ⊗2A by the formula

(⊗2A)(p1,p2),(q1,q2) = Ap1,q1 · Ap2,q2 .
10. Show that ⊗2 is a functor. What is its source category? Target category?
11. Is it true that ⊗2(A+B) = ⊗2(A) +⊗2(B)?

Write FI for the category whose objects are finite sets and whose morphisms are injections.

12. Write the definition of what you think it should mean for a functor F : C → D to be
an inclusion.

13. Describe an inclusion functor i : FI→ Fin.
14. Write the definition of how to compose functors F : C → D and G : D → E . For any

x ∈ ob(C), what is G ◦ F(x)? For any morphism f : x→ y, what is G ◦ F(f)?
15. Does every functor FI → Ab 4 factor through i? In other words, for every functor
F : FI→ Ab, does there exist a functor G : Fin→ Ab so that F = G ◦ i?

For any function f : X → Y between finite sets, define T (f) = [1], the 1× 1 matrix with
entry 1. For every finite set X, let NX be the 1×X matrix [1 1 · · · 1].

16. Show that T defines a functor Fin→ Ab. It is the trivial representation of Fin.
17. Show that NY ·M(f) = T (f) ·NX .

Thinking of M and T as representations, N then looks like an intertwiner—a map of rep-
resentations. Any time a family of morphisms intertwines the outputs of two functors in
this way, it is called a natural transformation. In this case, the family N• is a natural
transformation from M to T . The matrix NX is called the component at X.

Definition 0.4. Suppose that F and G are both functors from C to D. A natural trans-
formation η from F to G is family of morphisms that satisfies the following:

i. To every x ∈ ob(C), η associates a morphism ηx : F(x) → G(x) between objects of
D. (ηx is the component of η at x.)

ii. For every morphism f : x→ y in Hom(C), we must have ηy ◦ F(f) = G(f) ◦ ηx.
Let Zn : Fin → Fin be the “n-tuples” functor sending X to the set of ordered tuples

(x1, . . . , xn) with xi ∈ X, and where we let morphisms act by the rule f(x1, . . . , xn) =
(f(x1), . . . , f(xn)).

18. Show that the rule (x1, x2, x3) 7→ (x1, x3) defines a natural transformation Z3 → Z2

19. Show that the rule (x1, x2) 7→ (x2, x1, x1, x2) defines a natural transformation Z2 →
Z4.

3VecC is the category whose objects are C-vector spaces and whose morphisms are linear transformations.
4Ab is the category whose objects are abelian groups and whose morphisms are homomorphisms.
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20. Find at least 16 distinct natural transformations Z2 → Z4. Are there any others?

Definition 0.5. Let C be a category. Two objects x, y ∈ ob(C) are said to be isomorphic
if there are morphisms f ∈ Hom(x, y) and g ∈ Hom(y, x) so that g ◦ f = 1x and f ◦ g = 1y,
in which case f is called an isomorphism from x to y, and g is called an isomorphism
from y to x. An object i ∈ ob(C) is called initial if |Hom(i, c)| = 1 for all c ∈ ob(C). An
object t ∈ C is called terminal if |Hom(c, t)| = 1 for all c ∈ ob(C).

The following two exercises show that initial and terminal objects are “unique up to unique
isomorphism.”

21. If i1, i2 ∈ ob(C) are initial objects, show that i1 and i2 are isomorphic in C, and
moreover, that the isomorphism f : i1 → i2 is unique.

22. Prove that a terminal object of C is an initial object of Cop. Deduce that if t1, t2 ∈ C
are terminal, then there is a unique isomorphism t1

∼−→ t2.

Definition 0.6. Let D be a category. The objects of the functor category [D, C] are func-
tors F : D → C. Morphisms in [D, C] are natural transformations. Explicitly, if F ,G : D → C
are functors, then ϕ ∈ Hom(F ,G) is a family of morphisms ϕd : F(d) → G(d) so that
ϕb ◦ F(h) = G(h) ◦ ϕa for all a, b ∈ D and h ∈ Hom(a, b).

23. Define an associative composition law for natural transformations.
24. If h : E → D is a functor, check that precomposition with h defines a functor

h∗ : [D, C]→ [E , C].

Definition 0.7. An object 0 in a category C is called a zero object if it is both an initial
and a terminal object in C.

25. Prove that R-Mod 5 has a zero object.

Definition 0.8. If x1 and x2 are objects in a category C, the product of x1 and x2, should
it exist, is an object x1 × x2 ∈ ob(C) together with morphisms π1 : x1 × x2 → x1 and
π2 : x1 × x2 → x2 satisfying the following property:

For any y ∈ ob(C) and pair of morphisms f1 ∈ Hom(y, x1) and f2 ∈ Hom(y, x2), there
exists a unique morphism f ∈ Hom(y, x1 × x2) so that π2 ◦ f = f2 and π1 ◦ f = f1.

26. Prove that for any x1, x2 ∈ ob(R-Mod), x1 × x2 exists in R-Mod.

Definition 0.9. If x2 and x2 are objects in a category C, the coproduct of x1 and x2,
should it exist, is an object x1 ⊕ x2 ∈ ob(C) together with morphisms i1 : x1 → x1 × x2 and
i2 : x2 → x1 × x2 satisfying the following property:

For any y ∈ ob(C) and pair of morphisms g1 ∈ Hom(x1, y) and g2 ∈ Hom(x2, y) there
exists a unique morphism g ∈ Hom(x1 ⊕ x2, y) so that g ◦ i1 = g1 and g ◦ i2 = g2.

27. Prove that for any x1, x2 ∈ ob(R-Mod), x1 ⊕ x2 exists in R-Mod.

Definition 0.10. A zero morphism in a category C is a morphism 0xy ∈ Hom(x, y)
satisfying the following:

i. For all w ∈ ob(C) and f1, f2 ∈ Hom(w, x), 0xy ◦ f1 = 0xy ◦ f2.
ii. For all z ∈ ob(C) and g1, g2 ∈ Hom(y, z), g1 ◦ 0xy = g2 ◦ 0xy.

5For a unital ring R, R-Mod is the category whose objects are left R-modules and whose morphisms are
homomorphisms of left R-modules.
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28. Prove that for all x, y ∈ ob(R-Mod), there exists a zero morphism 0xy ∈ Hom(x, y).

Definition 0.11. Given a morphism f ∈ Hom(x, y) of a category C, the kernel of f , should
it exist, is an object k ∈ ob(C) and a morphism gk ∈ Hom(k, x) satisfying the following:

i. f ◦ gk = 0ky.
ii. For all z ∈ ob(C) and g ∈ Hom(z, x) satisfying f ◦ g = 0zy, there exists a unique
u ∈ Hom(z, k) such that gk ◦ u = g.

29. Prove that every morphism f ∈ Hom(R-Mod) has a kernel.

Definition 0.12. Given a morphism f ∈ Hom(x, y) of a category C satisfying g ◦ f = 0xz,
the cokernel of f , should it exist, is an object q ∈ ob(C) and a morphism gq ∈ Hom(y, q)
satisfying the following:

i. gq ◦ f = 0xq.
ii. For all z ∈ ob(C) and g ∈ Hom(y, z) there exists a unique u ∈ Hom(q, z) so that
g = u ◦ gq.

30. Prove that every morphism f ∈ Hom(R-Mod) has a cokernel.

Definition 0.13. A monomorphism of a category C is a morphism f ∈ Hom(x, y) sat-
isfying the property that for all z ∈ ob(C) and g1, g2 ∈ Hom(z, x), if f ◦ g1 = f ◦ g2, then
g1 = g2.

An epimorphism of a C is a morphism h ∈ Hom(x, y) satisfying the property that for all
z ∈ ob(C) and g1, g2 ∈ Hom(y, z), if g1 ◦ h = g2 ◦ h, then g1 = g2.

31. Prove that every monomorphism f of R-Mod can be realized as the kernel of a
morphism g.

32. Prove that every epimorphism h of R-Mod can be realized as the cokernel of a mor-
phism g.

Definition 0.14. An abelian category is a category A that satisfies the following prop-
erties:

i. A has a zero object.
ii. For all x, y ∈ ob(A), x× y ∈ ob(A) and x⊕ y ∈ ob(A).

iii. Every morphism f ∈ Hom(A) has a kernel and a cokernel.
iv. All monomorphisms and epimorphisms of A can be realized as kernels or cokernels,

respectively.

Combining Problems 25-32, you have just proven that R-Mod is an abelian category.
Abelian categories can be thought of as a generalization of module categories, and much of
the algebra that holds for modules can be extended to abelian categories. More precisely,
the properties of an abelian category are what one needs to define exact sequences.

An FI-module is a functor F from FI to VecC
6.

33. Prove that the category of FI-modules, the functor category [FI,VecC], is an abelian
category.

Definition 0.15. The Grothendieck group of an abelian category A is the abelian group
generated by all isomorphism classes [x] of objects of A and with the relation [a]−[b]+[c] = 0
if 0→ a→ b→ c→ 0 is an exact sequence in A.

6The more general definition of an FI-module replaces VecC with R-Mod.
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34. Compute the Grothendieck groups of the category of finitely generated C-vector
spaces and the category of finitely generated abelian groups.

Definition 0.16. Given an object c ∈ C, the representable functor Hom(c,−) : C → Set7

is the functor that sends b to Hom(c, b), and for any morphism f : a→ b, Hom(c, f) : Hom(c, a)→
Hom(c, b) sends g ∈ Hom(c, a) to g ◦ f ∈ Hom(c, b).

In the next two problems, we prove Yoneda’s lemma. Let H,F : C → Set be functors, and
suppose H = Hom(c,−) is represented by some c ∈ ob(C). Note that H(c) = Hom(c, c) has
a special element 1c : c→ c, the identity morphism on c.

35. For every x ∈ F(c), show that there is a unique natural transformation ϕ : H =⇒ F
with ϕc(1c) = x.

36. Explain why we might say that H is a “free C-module on a single generator at c ∈ C.”
Let S be the poset category with objects {2}, {2, 3}, {1, 2, 3}, {0, 1, 2, 3}, {1, 2, 3, 4} and

where morphisms are inclusions. Define a functor F : S → Ab by the formula

S ∈ S F(S) = ker
(
ZS ε−→ Z

)
where ZS denotes the Z-module of formal Z-linear combinations of elements of S, and the
map ε : ZS → Z is defined on basis vectors s ∈ S by ε(s) = 1.

37. What does F do to morphisms of S?
38. For each S ∈ S, show that F(S) is a free Z-module by finding a basis.
39. For every inclusion i : S ⊆ T , write F(i) as a matrix.

Definition 0.17. An isomorphism of categories is given by a pair of functors F : C → D
and G : D → C so that G ◦ F is the identity functor on C and F ◦ G is the identity functor
on D.

The terminal category ∗ is the category with a single object and a single morphism (the
identity morphism of the object).

40. Find an isomorphism of categories ψ : C → [∗, C].
41. Show that every category C has a unique functor t : C → ∗.

Let t : E → ∗ be the unique functor from E to the terminal category. Let F : E → C be a
functor. If the functor

C → Set
c 7→ Hom(F , ψ(c) ◦ t)

is representable, then the representing object, which is an object of C, is written colimEF ; it
is called the colimit of F . The colimit may also be written t !F . Eliding the isomorphism ψ,
so that the symbol “c” may stand for an object c ∈ C or its corresponding functor c : ∗ → C,
the colimit satisfies

Hom(t !F , c) ∼= Hom(F , t∗c)
for all c ∈ C.

42. Show that any two colimits of F are isomorphic.
43. If G is a group considered as a one-object category, and if X : G → Set is a right

G-set considered as a functor, show that colimGX ∼= X/G.

The next questions investigate adjoint functors.

7Set is the category whose objects are sets whose morphisms are functions.
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Definition 0.18. An adjunction of categories C and D is a pair of functors F : D → C and
G : C → D so that for all x ∈ ob(C) and y ∈ ob(D) there is a natural isomorphism

HomC(F(y), x) ∼= HomD(x,G(y)).

F is the left adjoint functor and G is the right adjoint functor.

Let D : Fin→ Fin be the “doubling functor” that sends a set X to the product X×{1, 2}.
44. Show that the functor X 7→ Hom(DX, Y ) is representable by finding a set Z so that

Hom(DX, Y ) ∼= Hom(X,Z) are isomorphic functors of X. The set Z is allowed to
depend on Y , but not on X!

45. Show that any map f : Y → Y ′ induces a natural transformation Hom(D−, Y ) =⇒
Hom(D−, Y ′).

46. Let ΩY denote the set called Z earlier. Given any map Y → Y ′, use Yoneda’s lemma
to provide a map ΩY → ΩY ′. Show that this rule makes Ω into a functor.

47. Find a natural isomorphism

Hom(DX, Y ) ∼= Hom(X,ΩY )

where both sides are considered functors of X and Y .


