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On Identifying the Aging Mechanisms in Li-ion Batteries
Using Two Points Measurements
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Abstract— Lithium-ion batteries are prone to aging, which
decreases the battery performance. The term battery State of
Health (SOH) is widely used to describe many different aspects
of battery performance. One critical aging characteristic is the
loss of cyclable energy quantified by the decrease in capacity.
Algorithms that estimate the capacity fade using voltage mea-
surements are widely published in literature and are commonly
used in commercial Battery Management Systems (BMS). How-
ever, there are fewer studies identifying the aging mechanisms,
such as the loss of cyclable lithium, or the loss of active material,
both of which manifest as capacity fade. Furthermore, many
of these algorithms require voltage measurement data acquired
during a full charge or discharge cycle, which is inconvenient to
obtain while the battery is in use. In the following, we present
a methodology to identify the aging mechanisms by changes
in the capacity of active material in each electrode, and the
changes in the stoichiometric operating window of the half-cell
potentials. The proposed method utilizes measurement obtained
from only two operating points, with no requirement on a
constant current while traversing between these two operating
points. The method is tested via simulating the LiFePO4 (LFP)
chemistry, where identification is particularly difficult due to
its flat voltage characteristics. Furthermore, unlike previously
presented methods, the identifiability of the aging mechanisms
is studied with respect to location of the two operating points
in the voltage curve. It is important to note that the techniques
explored and proposed in this paper rely on opportunistic
measurements of terminal voltage after a rest period due
to its reliance on the invariant characteristic of the half-cell
potentials.

I. INTRODUCTION

The use of lithium ion batteries is growing every day, and
nowadays they are found in most consumer electronics, and
car manufacturers are moving from the fossil fuel powered
cars to electric power cars at a rapid speed. However, despite
the increase in battery research, there are still a number of
hurdles that have yet to be resolved.

One major issue is the reduction in cell capacity over
time. This capacity fade is one of the key indicators of
the cell State of Health (SOH). Furthermore, accurately
measuring and predicting SOH is very important in a Battery
Management System (BMS) to have a sound estimate of
the battery performance. Many studies have focused their
attention to find and develop tools for battery SOH estima-
tion; the authors of [1] present an excellent review of the
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many methods that have been proposed and delineates their
advantages and disadvantages.

One of the important aspects of SOH estimation is not only
to give a measure of the current capacity of the cell, but also
to detect the aging mechanisms causing the capacity fade. Be
it a laboratory tool or a diagnostic technique performed after
occasional periods of rest, knowing more about the cause
of capacity fade would help inform decisions about how to
prevent further degradation. There can be many factors re-
sponsible for battery aging such as Loss of Cyclable Lithium
(LCL), Loss of Active Material (LAM), and increase in
resistance, to name a few [2]. Growth of the Solid Electrolyte
Interphase (SEI) can cause LCL, which is mostly observed
in the initial stages of aging [2]. This loss would mean,
for instance, during discharge the cathode would be less
lithiated and would be at more positive voltage. To reach the
minimum terminal voltage the cell would have to operate at a
higher anodic potential as shown in Figure 1 or lower anode
stoichiometry (less lithium per carbon atoms). Therefore, by
keeping the cell operating voltage limits constant, a shift
would be introduced in the starting point of the potential
curve of anode with respect to the cathode. Furthermore,
there are studies that postulate that as the cell ages, the half-
cell potential of the anode and cathode would move or slip
with respect to each other [3], [4]. The physical phenomena
responsible for LAM can also be categorized into different
types and according to the affected electrode [2], for example
particle fracture, and loss of contact with current collector.

Voltage based capacity estimation techniques have been
used extensively, and can track relative changes in each
electrode through shifting of the peaks in the Incremental
Capacity (IC) curves [5], [6]. It is also known that the
peaks observed in the dV/dQ are associated with the phase
transitions in the anode and cathode. In [2], [7], the authors
use measurements of the terminal voltage obtained during
slow charging of the cell, over the entire operating range to
identify the different aging mechanisms for several different
cell chemistries.

In [3], [8] the authors have showed the aging can be
identified with the Differential Voltage (DV) curves, and
for NMC cells have calculated the different DV curves by
shifting the half-cell potentials of the cell relative to each
other. In [9] a method is proposed through fitting the charging
cell voltage curves (CCVC) using transformation, which
estimates the capacity of the cell. In [4] the authors used
only two voltages measurement and developed a tool for the
cell state of health (SOH) estimation. However, they have
only considered one aging mechanism namely the Loss of



Cyclable Lithium.

The contributions of this paper can be summarized as
follows: a methodology to identify the aging mechanism
in Lithium-ion batteries using the stoichiometric operating
window and capacity of the electrodes. An optimization
problem to estimate the stoichiometric operating window and
capacity of the electrodes. The proposed technique requires
information at two operating points, and the net Ampere-
hours expended in traversing between these points, which can
be obtained by coulomb counting. The main advantage of the
method proposed in this paper is that there is no need for a
constant charge or discharge, any drive cycle will do as long
as we are doing the coulomb counting. Furthermore, to our
knowledge, we present a first study on the identifiability of
the aging mechanisms using the information provided from
selection of different voltage pairs.

This paper is organized as follows: Section II describes the
aging mechanisms and the model to identify them considered
in this work. Section III presents a technique to estimate the
parameters of the model employed in this study. Section IV
demonstrates the method effectiveness using an example of
an LFP cell, and discusses the identifiability of the aging
mechanism with respect to the provided information sets.
Section V summarizes the contributions.

II. A MODEL FOR BATTERY AGING MECHANISM
IDENTIFICATION

There are several mechanisms responsible for battery
aging. In this paper, we focus our attention to the following
two: Loss of Cyclable Lithium (LCL), and Loss of Active
Material (LAM). In this section, we present a model to
identify some of the key parameters that affect the terminal
voltage and discuss the impact of the aging mechanism has
on these parameters.

Let the stoichiometric state of the anode and cathode, be
denoted by x and y, respectively. Furthermore, let y,z €
[0,1]. As an example, for the anode the chemical formula
is Li,Cg, which means at fully intercalated state, (z = 1),
there is one lithium atom per six carbon atoms. However, due
to manufacturing requirements, different cell specification,
initial SEI formation, and etc., x and y are not necessarily
from O to 1. Hence, the term the stoichiometry window
is introduced for each electrode. The window for anode is
delineated with zg for the fully lithiated state (for cathode
yo for the fully delithiated state) and x199 for the fully
delithiated state (for cathode ;¢ for the fully lithiated state).

Let the half-cell potentials of the cathode and anode,
measured against Lithium, as a function of z and y, be
denoted by U,(y) and U, (x), respectively. Then, while the
cell is in electrical equilibrium (no current is drawn and the
voltage is in steady state), the terminal voltage of the cell
is equal to Open Circuit Potential (OCV) and satisfies the
following.

Up(y) — Un() (D

Then, the stoichiometric window of each electrode,
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Fig. 1. The breakdown of cell terminal voltage into the contribution of

individual electrodes and identification of the corresponding stoichiometric
operating windows for a new (blue) and an aged (red) cell. The superscript
n, and a correspond to the new and aged cell respectively. The figure is
showing the aging caused by LCL (case 1 in Table I). Notice that in this
case, the minimum stoichiometric state of the anode has decreased in the
aged cell because of a LCL.

(0, Y0, 100, Y100), satisfies the relation

Up(yo) — Un(x0) = Vinin, 2)

Up(y100) — Un(x100) = Vinaa- 3)

Where V,,;, and V,,,, is the minimum and maximum
operating voltage of the cell, respectively. Furthermore, the
stoichiometric state of each electrode, (z,y) satisfies the
following relation

y=yo—Q/Cp, x=2x0+Q/Ch. )

where C), and C,, are the total capacities of positive electrode
(cathode) and negative electrode (anode), respectively. @
is the coulomb counting from the fully discharged state
(for convenience, all measured in Ampere-hours). The total



capacity of the cell, C, is measured as the total capacity
that be added (removed) to (from) the cell as it operates
between its voltage limits. It follows from Eq. (4) that,
with (xo, Yo, 100, Y100) as stoichiometric windows of the
electrodes, the following equality is true.

®)

According to Dubarry, et al. [2], LAM can be divided
into four subcategories: (1) lithiated in positive electrode,
(2) delithiated in positive electrode, (3) lithiated in negative
electrode, (4) delithiated in negative electrode. Furthermore,
LCL is also divided into two subcategories during; (1)
charging in negative electrode, and (2) discharging in positive
electrode. However, in this paper, similar to the approach
in [7], we only consider LAM as the changes in active
material. Meaning a change in C,(C,) signifies LAM in
cathode(anode). Furthermore, we only consider LCL hap-
pening at either charging or discharging. Meaning we only
consider changes in (xo,yo) or (100, ¥100) as LCL.

The preceding simplification, enables separation of the
effects of LAM and LCL on the stoichiometric operating
windows. Hence the ability to identify the aging mechanisms.
The forthcoming discussion is based the assumption that
LCL only influences (zo,yo), however, a similar approach
can also be applied when LCL only influences (100, y100)-
The following presentation explains impacts of each individ-
ual aging mechanism on the parameters when they occur by
themselves.

Suppose the cell ages because of LAM in the cathode.
As an immediate consequence, C, decreases to C’!, and
the capacity, C, decreases. However, since there is no LCL
happening , ¢y and yy do not change. The capacity is
computed by substituting for (x100,¥100) from Eq. (5) in
Eq. (3), with C}, instead of Cj, and solving for C

(o §)

+ JE—
Yo C},)
Similarly, if the LAM is also happening in the anode, C,
decreases to C/, and C is computed by using C/, in the
equation above as well.

Now, consider the alternate scenario in which the elec-
trodes undergoes LCL; Suppose the cell is discharging,
which means the Lithium atoms are moving from the anode
(delithiation) to the cathode (lithiation). Due to phenomena
like SEI formation some of the lithium would be lost, and
it would not get stored in the cathode. Which means when
the anode reaches zg, the cathode is at a smaller yo (larger
voltage). Consequently, since the cell is discharged until it
hits the minimum voltage limit, ¢ moves to the left/decrease
in the half-cell potential (Refer to Fig. 1), and yy moves to
the right/decrease.

Furthermore, a smaller xy, with C, and C), unchanged
while satisfying Eqns. (2), (3), and (5), results in a smaller
capacity and a change in the stoichiometric window of the
anode and cathode similar to Fig. 1. In summary, LCL causes
the stoichiometric window of the cathode to shift to the right,

C =Cy - (Yo —y100) = Cr - (T100 — T0)

To — =

Cn> = Vmaz (6)

100

| LCL | LAM |

Case \‘ A ‘ C ‘ Changed Unchanged
1| v XX To, £100, Y0, Y100, C | CpCn
2 | X |/ X £100,¥100, Cn, C | 0,90,Cp
30 X | X |V 100, Y100, Cp, C | @0,0,Cn
4 | v | V| X | 20,2100,%0,9100,Cn,C | Cyp
5 | v | x|V | 20,2100,%0,9100,Cp,C | Cn
6 | v | v |V | 20 100,90, ¥100,Cn,Cp,C |

TABLE I
SCENARIO LIST OF DIFFERENT AGING MECHANISMS AND THE
PARAMETERS THAT CHANGE AS A CONSEQUENCE.

and the stoichiometric window of the anode to shift to the
left.

Table I collates the list of the different permutations of
aging mechanisms and relates them to the parameters that
change. From Table I, note that, if estimates of the different
parameters is available, it is possible to identify LAM — if
the capacity of an electrode has decreased, then LAM has
occurred in that electrode. On the other hand, if the values
of zy and yo have changed then LCL has contributed to the
decrease in the capacity of the cell. This then can be used
as a model to identify the aging mechanism that has caused
a loss in capacity.

III. PARAMETER ESTIMATION

In this section, a method that relies on measurements
obtained from two operating points will be presented. Let
the stoichiometric state in each electrode, corresponding to
each of these voltages be (z1,y1) and (22, y2), that is using
Eq. (1) the voltages V7 and V5 satisfy:

Up(y1) — Un(x1) = V1,
Up(y2) = Un(x2) = V2

Given information on the net amount of Ampere-hours

drawn from the cell in traversing between the two voltages,

AQ, it is easy to see that the stoichiometric states satisfies
the relation:
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Furthermore, here and hereafter, it is assumed that the cell
does not degrade discernibly whilst the cell is traversing
between the two voltages. Now let the cell capacity state
when at voltage V7, and V5 be represented by @)1, and @,
respectively [refer to Fig. 2]. Then, the following constraints
are satisfied:

@
1 0 Cna 1 0 Cp’
+ A
$2=I0—%— o-%: )
_ Q2 Q1+ AQ
yz—y0+0p— o+ c,



Voltage [V]

2.5

Q [An]

Fig. 2. A visual representation of the unknown quantities in the proposed
algorithm.

Using these equations it is possible to substitute for
(z1,22,y1,y2) in Eqn. (7), and write down the equations
as the following

Uyl + G = Uiz~ EH =V (10
A A
Up (o + W) — Un(wo — W) -V, an
P n

The equation for the derivative of terminal voltage with
respect to Ampere-hours, dV; and dV5, at voltages V7 and
V5, can also be related to the unknown parameters via the
following equations:

dUp(yo + &) dUu(zo — &
() Ao E) gy a2
c, Ch
dUp(yo + LE2L)  dU, (g — VFAQ)
— P _ n = dV, (13)
c, Crn

where dU, and dU, are the rate change of the half-
cell potential with respect to the stoichiometric state of the
cathode, and anode, respectively. These equations provide the
necessary additional information to identify the unknowns
that define the operating window of the half-cells, and
capacity, (zo, Yo, Cn,Cp).

In addition to the unknown parameters, the capacity state
at voltage Vi, )1 is also unknown. In other words, the
position of the voltage measurements in the voltage curve is
assumed to be unknown. These parameters can be estimated
by solving the following optimization problem

4
min Y |[Yi = Yi[|*+10 — 6ol
i=1

st. €0,
UP(yO) - Un(xo)

(P)

Vmin
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where 6 = [x¢, Yo, Cr, Cp, Q1] is the vector of parameters
to be estimated, The function YZ is the function comprised
of left-hand-sides of Eqns. (10)—(13), respectively. The place
holder Y; is the provided data indexed to match Y;.

The second term in (P) is a regularization term, such that
Ve € R", W e M}P*", z||%,:= 2'Wz. In this work, W
is picked as a constant number such that the first term and
regularizing term in (P) are of same order.

The a priori estimate of the parameters is denoted by 6, in
problem (P). This information is assumed available by virtue
of the following facts: (1) used normally, the cell does not
age significantly in a short period of time (within a few days);
(2) the parameters for a new cell are identifiable with relative
ease, and these parameters will usually be updated online;
i.e. estimation is not performed in an information vacuum.
The keen reader will recognize the similarity between (P)
and the moving horizon estimator [10] [11].

The second constraint is the Eq. (2), which is the equation
for the minimum voltage of the cell.

Finally, after finding the parameters, the following equa-
tion can be solved to estimate the capacity of the cell C,
which is rewritten using the maximum voltage Eq. (3).

_c
0 Cp

C
£L‘0+7

Up (y c,

IV. EMPIRICAL ESTIMABILITY IN AN LFP CELL

The problem introduced in Section III is used to iden-
tify the parameters of the voltage characteristic; and hence
identify if an underlying aging mechanism has occurred. The
solvability of problem (P) and the uniqueness of its solution
depends on the measurements.

In this section, we consider a Lithium Iron Phosphate
(LFP) cell as an example to demonstrate the proposed
algorithm. The model of the cell is synthesized using the
half-cell potential functions presented in [12] (reproduced in
Eqns. (15)). The operating terminal voltage window is taken
to be [Vinin, Vinaz] = [2.5,3.6] V. The parameters used in
the simulations are presented in Tab. II, and the open circuit
potential of the this cell is shown in Fig. 2.

Observe from Fig. 2 that the open circuit voltage is almost
flat in the middle region. For measurements obtained in
this region some of the parameters are not identifiable. In
this section, we aim to empirically identify which of the
parameters can be identified with some epsilon accuracy, and
when.

Specifically, we seek to identify, the pairs of terminal
voltage measurements and corresponding OCV derivatives
such that the parameter estimation error is 0.1% when the a
priori guess is within 1% of the true solution. To achieve this,
the range of cell capacity is discretized, and for each pair
of distinct values of the cell’s capacity, the corresponding
open circuit potential and its derivatives are aggregated,
and problem (P) is solved. The built-in MATLAB function
fmincon (with the sgp solver) is utilized to solve (P), and the
relative error of the parameter estimates are noted. Figure 3
presents the results of these trials.
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Fig. 3.
initial guess is with 1% deviation from the true value.

Parameter | LFP cell

0 0.0050
100 0.80
9o 0.9421
Y100 0.0229
Cy (Ahrs) 2.8931
Cp (Ahrs) 2.5022
C' (Ahrs) 2.30
TABLE II

PARAMETERS OF THE SYNTHESIZED CELL USED IN THE SIMULATION

Figures 3(a) and 3(b) paint different pictures of the estima-
bility of xg and yo. While the relative error in estimating the
latter is small, almost everywhere, the same cannot be said
for the former. In fact, the error in estimating yo is almost
always smaller, and the difference between the two is more
pronounced when measurements are obtained from the ‘flat’

Error in percentage

Error in percentage
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Relative error for zg (a), yo (b), Crn (c), and Cjp (d), by solving (P) for various voltage pair measurements depicted versus capacity state, the

regions of the OCV curve.

Recall that the objective function of problem (P) includes
a weighted regularization term (with weights chosen such
as to normalize the entries) that ensures that the optimal
solution does not deviate far from the a priori estimate when
a parameter cannot be estimated. In the ‘flat’ region of the
OCYV curve, the estimation error for x is near 1% — close to
the a priori estimate of zy. This suggests that xy cannot be
estimated when both operating points are in the flat region
of the curve. However, for those voltage pairs that include
one or both measurements from the shoulder or neck region
of the voltage curve (the shoulder and neck are the regions
at the start and end of the voltage curve with large gradients
with respect to cell capacity, respectively) estimating xq is
possible.

The reason for this disparity in estimating zy and yo can



be explained as follows. The parameters ¢ and yy are in-
trinsically coupled through the equality constraint in problem
(P) (minimum voltage limit). Comparing the sensitivity of
this constraint with respect to the unknowns, it is apparent
that in the shoulder region of the OCYV, 3(;; 2 is larger than
%; i.e. this constraint is more sensitive to changes in yg
than x(. Furthermore, through simulations, it is noted that
small changes to yg result in a discernible variation between
the resultant OCV curves, even in the flat regions. Taken
together, this suggests that yy can be estimated with small
error. Finally, since the sensitivity of the terminal voltage
with respect to zg is smaller (than that of ) in the shoulder
region (V,,,;, constraint), it stands to reason that z has larger
estimation error than yj.

In Figs. 3(c), and 3(d) the resulting estimation errors
for C,, and C, are presented. Notice that the patterns in
distribution of errors of C), and C,, are similar to those of z
and yo, respectively. The sensitivity with respect to C),, and

] 8UP & U, & ]
C,, can be written as y O and 92 C2 In the flat region
aai 2 is almost zero, compare to %. In the shoulder and

neck region the magnitude of 88U1’ and ‘98U n are comparable.
Yy T

As a result, the voltage equation 1s less sensitive to variations
in Cp in flat region compared to shoulder and neck region.
Furthermore, the sensitivity is also multiplied by @1, so with
a larger ()7 the sensitivity would also be larger. Hence the
reason behind (), having a smaller estimation error in neck
region compared to shoulder region.

As described in Section II, LCL and LAM aging mecha-
nisms can be detected by identifying changes to some subset
of the parameters (2o, yo, Cp, Cr). Since yo and C,, can be
estimated within small error tolerance range, the conclusion
follows: identifying LCL, and LAM in anode is possible.
However, identifying LAM in cathode is only possible with
measurement in shoulder and neck region.

V. CONCLUSION

In this paper, we present a methodology to identify the
aging mechanisms associated with capacity loss in a lithium-
ion battery. A model was proposed that relates changes
in the capacity of active material and the stoichiometric
operating window in each electrode to the aging mechanisms.
The parameter estimation problem was then formulated as
an optimization problem. The algorithm is different from
traditional approaches in that it uses voltage measurements
from only two operating points to estimate the parameters
relating to the capacity of active material and the stoi-
chiometric operating window. The algorithm was evaluated
using simulations of a Lithium Iron Phosphate cell. The
results indicate that one can identify LAM in anode and
LCL. However, identifying LAM in cathode is only possible
when measurements were obtained from regions with a large
derivative in voltage with respect to capacity change.

Directions for further investigations: For a new cell with
use of the full voltage curve, the parameters that identify
the aging mechanisms could be estimated [7]. Using the
parameters of the new cell, with a recursive scheme, we can

103

keep track of the changes in parameters, while the cell is in
use. Furthermore, we can use methods described in [13] to
partition the parameters based on their estimability, for faster
computation time.

To address the low observability in the flat voltage regions
the addition of measurements from strain or force sensors
could provide additional information. Similar to the half-
cell potentials the total expansion of a cell, could also be
taken as the sum of the half-cell expansion of the electrodes.
However, we need to have a mechanical model of the cell in
order to model the effects of the components of the cell like
the separator, casing, and etc. on the force measurements.
Approaches to model the mechanical behavior of the cells
in the packs has been presented in [11], which can be used
as a basis for a cell model.
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