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Abstract— Lithium-ion batteries are the core of new plug-in
hybrid-electrical vehicles (PHEV) as well as considered inmany
2nd generation hybrid electric vehicles (HEV). In most cases the
lithium-ion battery performances play an important role in the
vehicle energy management. As consequence, battery modeling
is one of the most important tasks for hybrid and electrical
vehicles control. Full order electrochemical models have to be
simplified in order to make them compatible with estimation
algorithms embedded in a real-time on-board electronic control
unit. The battery model simplification has to be carried out
accurately in order to achieve maximum computational cost
reduction while ensuring the best model performance and
reaching an efficient system management. In this paper two
different reduced order models, based on the electrochemical
laws, are compared both with simulation results and with
experimental data collected from a 10 Ah lithium-ion battery.
The reduced order models characteristics are analyzed and
compared in relation to the specific control objective.

GLOSSARY

Symbol Name Unit

ie electrolyte current density A cm−2

is solid current density A cm−2

φe electrolyte potential V
φs solid potential V
ce electrolyte concentration mol cm−3

cs solid concentration mol cm−3

cse solid concentration at electrolyte interface mol cm−3

jLi Butler-Volmer current density A cm−3

θn normalized solid concentration at anode -
θp normalized solid concentration at cathode -
U open circuit voltage V
Un anode open circuit voltage V
Up cathode open circuit voltage V
η overpotential V
F Faraday’s number C mol−1

I battery current A
R gas constant J K−1 mol−1

T temperature K

TABLE I

L ITHIUM -ION MODEL NOMENCLATURE.

I. INTRODUCTION

In the past few years lithium-ion batteries became one
of the most popular type of battery in many application
fields, such as portable electronics or electric vehicles. In the
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automotive field, lithium-ion batteries are the core of energy
source and storage. In most cases the lithium-ion battery
performances play an important role for the energy efficiency
of these vehicles, suffering often the stress of very high
transient loads. The charge-discharge rate for the lithium-ion
battery can vary from 1-2 C (1 C is a discharge at nominal
battery capacity) to a very fast pulse discharge, i.e. 40 C -
50 C over a short period of about 10 s - 20 s [9]. In order to
efficiently manage the battery systems in different operating
conditions a precise estimation of li-ions concentrationsand
associated State of Charge (SOC) is necessary. Since measur-
ing these quantities is not possible, a mathematical model is
needed. Unfortunately, a dynamic model able to capture the
electrochemical reaction dynamics is typically of very high
order and complexity [1], [6], [12]. Nevertheless, such type
of model is very important because it can be parameterized
on experimental data and used as a baseline in order to
obtain more manageable reduced order models of very low
order. The reduced order models typically introduce several
approximations [1], [7], [3], [10], [2]. Whereas on one hand
the order reduction allows the model implementation into
a real-time on-board electronic control unit, on the other
hand the simplified models neglect some dynamics so that
they cannot predict accurately the current-voltage behavior
across different operating conditions. As consequence, the
battery model simplification has to be carried out accurately
in order to achieve maximum computational cost reduction
while ensuring the best model performance and reaching an
efficient system management. In this paper, two different
reduced order models, presented in [10] and [2] and based
on the full order electrochemical battery model developed by
Wanget al. [13], are proposed and compared. The simulation
results are compared with both full order electrochemical
battery model and experimental data collected from a 10 Ah
lithium-ion battery from POWERIZER. The comparison is
performed taking into account slow rate and critical high rate
current demand, so that both the transient and steady-state
model behavior can be analyzed. In the following, the full
order electrochemical model is presented and the reduced
order models are derived and discussed. Then the current-
voltage profiles, as predicted by the reduced models, are
compared with the full order and, finally, a comparison with
experimental data is performed. The results discussion and
the conclusions end the paper.

II. BATTERY MODEL FORMULATION

A lithium-ion battery is composed of three principal parts:
two porous electrodes, namely cathode (positive) and anode



Fig. 1. Schematic macroscopic (x-direction) cell model with coupled
microscopic (r-direction) solid diffusion model. The electrodes are filled
with the electrolyte solution.

(negative) and an electrolyte solution that acts as separator
between the electrodes as shown in Figure 1. During a
discharge process, the lithium active particles diffuse up
to the surface of the negative electrode where they react,
producing lithium ions that flow through the electrolyte
solution via diffusion and migration until they arrive at the
positive electrode. The positively charged ions react withthe
metal oxide material particles of the positive electrode and
diffuse within it. The electrons produced in the negative elec-
trode reaction cannot flow through the electrolyte solution
that acts as insulator and flow through an external circuit,
producing the current. The inverse reactions occur during
the battery charge. Due to their porous nature, the electrodes
are represented as small spheres of active material along the
electrode, with the chemical reactions occurring at the sphere
surface [13]. The resulting Partial Differential Equations
(PDE) describe the battery system with four quantities, i.e.
solid and electrolyte concentrations (cs, ce) and solid and
electrolyte potentials (φs, φe) [4], [9],
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where the overpotentialη is obtained as

η = φs − φe − U(cse) (6)

where U(cse) is the open circuit potential, which is an
empirical correlation function of the solid concentrations and
the coefficientj0 calculated as

j0 = k0(ce)
αa(cs,max − cse)

αa(cse)
αc . (7)

The cell potential is then computed as

V = φs(x = L) − φs(x = 0) −
Rf

A
I (8)

whereRf is the film resistance on the electrodes surface and
A is the collectors surface. More details on the model and
its parameters can be found in [9],[10], and [14].

A. Reduced Order Models

The first Electrode Averaged Model (EAM), derived in
[3], can be achieved by neglecting the solid concentration
distribution along the electrode and considering the material
diffusion inside a representative solid material particlefor
each electrode. This introduces an average value of the solid
concentration that can be related with the battery SOC. Fur-
thermore, by assuming an high concentration of electrolyte
material in the solution, the electrolyte concentrationce can
be considered constant and its average value can be used.

Although these simplifications result in a heavy loss of
information, they can be useful in control and estimation
applications as we demonstrate next. In accordance with
the mean solid concentration, the spatial dependence of the
Butler-Volmer current is ignored and a constant valuej̄Li is
considered which satisfies the spacial integral (for the anode
or the cathode)

∫ δn

0

jLi(x)dx =
I

A
= j̄Li

n δn (9)

whereδn is the anode thickness. This averaging procedure
is equivalent to considering a representative solid material
particle somewhere along the anode and the cathode [3].

The partial differential equation (4), describes the solid
phase concentration along the radius of active particle, but
the macroscopic model requires only the concentration at the
electrolyte interface. By using the finite difference method
for the spatial variabler, it is possible to express the spherical
PDE into a set of ordinary differential equations (ODE),
dividing the sphere radius inMr − 1 slices, each of size
∆r = Rs

Mr−1
and rewriting boundary conditions [8]. The new

system presentsMr − 1 statescs = (cs1
, cs2

, ....csMr−1
)T ,

representing radially distributed concentrations at finite ele-
ment node points1, ..., Mr − 1

ċs = Acs + Bj̄Li. (10)

whereA is a constant tri-diagonal matrix, function of the
diffusion coefficientDs. The output of the system is the
value of the solid concentration at the sphere radius, that
can be rewritten as

c̄se = csMr−1
− Dj̄Li. (11)

whereD is function of diffusion coefficientDs and active
surface areaas. Two sets of ODEs, one for the anode and one



for the cathode are then obtained. The positive and negative
electrode dynamical systems differ at the constant values and
at the input sign.

The initial values of̄cse when the battery is fully charged
is defined asc̄100%

se,x and when fully discharged as̄c0%
se,x,

with x = p, n for the positive and negative electrode. It
is convenient to define the normalized concentration, also
known as stoichiometry,θx = c̄se,x/cse,max,x, with x = p, n
for the positive and negative electrode.

The battery voltage (8), using (6) and using the average
values at the anode and the cathode, can be rewritten as

V (t) = (η̄p − η̄n) +
(

φ̄e,p − φ̄e,n

)

+ (Up(θp) − Un(θn)) −
Rf

A
I.

(12)

Using the microscopic current average values and imposing
the boundary conditions and the continuity at the interfaces,
the solutions of equations (1) - (4) can be found. The results
can be found in [10] and [3] and are not reported here for
brevity.

Using (5) it is possible to express the overpotentials
difference as function of average current densities and solid
concentrations as follows

η̄p − η̄n =
RT

αaF
ln
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√
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√
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(13)

where
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p

2asj0p
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n
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. (14)

The approximate solution for the electrolyte potential at
the interface with the collectors leads to

φ̄e,p−φ̄e,n = φe(L)−φe(0) = −
I

2Akeff
(δn + 2δsep + δp) .

(15)
Finally, the battery voltage (12) can be rewritten as a

function of current demand and average solid concentration

V (t) =
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+ (Up(θp) − Un(θn)) −
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A
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(16)

whereKr = 1
2Akeff (δn + 2δsep + δp) + Rf is a term that

takes into account both internal and collector film resistances.
The second model reduction was introduced in [10]

and will be here referred as State Values Model (SVM).
The SVM reduction is performed by manipulating the
governing equations in order to derive analytical trans-
fer functions and later numerical transfer matrices de-
scribing the output response of the model variables
cs(x, s), ce(x, s), φs(x, s), φe(x, s) to an input currentI(s).
Individual submodel responses are then combined in order to
obtain the voltage responseV (s). Before manipulating the
equations it is necessary to make the following assumptions:

• Linear model behavior

• Reaction currentjLi(s) is decoupled from electrolyte
concentrationce(x, s)

Defining the dimensionless variablez = x/δ, wherez = 0
represents the current collector interface andz = 1 represents
the separator interface, the solid phase charge concentration
equation can be linearized and expressed as function ofz
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and, in conformity with the second assumption, neglecting
the 2nd term on the left hand side of the electrolyte charge
concentration equation and assumingkeff to be constant it
is possible to express this equation as
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Subtracting the corresponding equations it is possible to
obtain a single static ODE that expresses the phase potential
difference

φs−e = φs − φe, (23)
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Taking the Laplace transform of the conservation of lithium
in the solid phase and solving it with respect to its boundary
conditions, Jacobsen and West in [5] give the solid state
diffusion

cs(s)

jLi(s)
=

1

asF

(

Rs

Ds

[

tanh(β)

tanh(β) − β

])

, (26)

whereβ = Rs(s/Ds)
1
2 , while the linearization of the Butler-

Volmer equation yields

η =
Rct

as

jLi (27)

whereRct = RT/[i0F (αa + αc)] is the charge transfer re-
sistance. The battery voltage (8), using (6), can be expanded
as

V (t) = φe(L, t) − φe(0, t) + η(L, t) − η(0, t)

+U+(cs,e(L, t)) − U−(cs,e(0, t)) −
Rf

A
I(t).

(28)



After Laplace transform, the voltage response of the linear
impedance model is

V (s)

I(s)
=

VOC(s)

I(s)
+

V−(s)

I(s)
+

V+(s)

I(s)
+

Ve(s)
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−
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A
. (29)

with individual terms arising due to bulk concentration, or
open circuit voltage dynamics
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negative and positive electrode solid state diffusion dynam-
ics,
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and electrolyte phase diffusion dynamics,

Ve(s)

I(s)
=

∆φ∆ce

e+ (L, s)

I(s)
. (33)

Given a full order impedance model transfer matrix
y(s)/I(s), the reduced order transfer matrix is defined as

y∗(s)

I(s)
= Z +

n
∑

k=1

rks

s − λk

. (34)

In [10], λk and rk are numerically generated eigenvalues
and nx × 1 are residue vectors (obtained as in [11]) re-
spectively.Z is obtained directly from full order model as
Z = lims→0 y(s)/I(s). Using the nth order parameters
(ZT , λk, rT

k )T is possible to obtain thenth order time
domain SVM

ẋ(t) = Ax(t) + BI(t)
y∗(t) = Cx(t) + DI(t)

(35)

where

A = diag[λ1...λn], B = [1...1]T ,
C = [r1λ1...rnλn], D = [Z +

∑n
k=1 rk] .

(36)

The choice of model order is application dependent. In
[10] a 5th order positive electrode, 5th order negative elec-
trode and 1st order electrolyte model (later indicated as
5Ds−, 5Ds+, 1De) has been chosen for testing in simulation,
and its results are compared with the other reduced order
model results. The model eigenvalues are

λ− = −[5.56 × 10−3, 6.05 × 10−2, 6.58 × 10−1, 6.38, 62.4]
λ+ = −[8.53× 10−3, 6.08 × 10−2, 5.59× 10−1, 5.82, 63.7]

λe = −9.49 × 10−1

(37)
including the open circuit potential submodel equation (30)
with λOC = 0, the model is 12th order. Following typical
convention SOC is defined as the fraction of capacityQ
stored in the cell. Given an initial SOC at timet = 0 and
assuming100% columbic efficiency, SOC may be calculated
as

SOC(t) = −
1

Q

∫ t

0

I(t)dt. (38)

As reported in [10] and [3] it is possible to express electrode
bulk concentration as linear function of SOC,

cs,avg(t) = [SOC(t)(θ100% − θ0%) + θ0%]cs,max. (39)

Notice that the same equation, with equal stoichiometry
parameters values, is used in the EAM model in order
to obtain a SOC evaluation as a function ofcs,p. The
SVM matrix C and D are then constructed linearizing the
equations around50% SOC, and substituting electrode bulk
concentration with SOC as state variable.

III. M ODEL COMPARISON

In order to compare EAM and SVM, several simulations
have been performed with different current demand profiles.
As in the linear SVM the matrix C and D depend on the
initial value of SOC, a parameter identification procedure
is necessary for every simulation tests at different operating
conditions. It is important to note that the SVM presented
here is an application of the SVM in [10] using linear
parametrization techniques. Figure 2 shows the voltage out-
put of the models to a current demand according to the
FreedomCar Operation manual, consisting in a 30 A current
discharge for 10 s followed by a 40 s rest and in a 22.5 A
charge for 10 s followed by open circuit relaxation. Figure
3 shows the voltage error and the SOC prediction of the
reduced order models. Table II highlights how both the
models reproduce with a good accuracy the battery voltage.
As the SVM evaluates the SOC based on a integrator, it is
unable to predict the discontinuity on bulk concentration due
to high current demand with fast dynamics.
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Figures 4 and 5 show the performance of the models
under high rate current demand. The profile is a series of
60A current pulse with the period equal to 10s, followed by
10s of relaxation. The results, reported in Table II, show a
good voltage prediction compared to the complete model.
As expected the linear SVM exhibits a greater error, in
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particular during the steps in current demand (the model
parameters were identified supposing a 30A (3C) constant
request, which imply an huge superimposed perturbation
of ±30A). An adaptive parameter update function of the
current demanded can drastically reduce this error. Again,the
main difference between the models is in SOC evaluation.
The SVM predicts a final SOC approximately of 0.4, while
EAM shows a nearly complete discharge, as expected by the
experiments. This is because the integrator model only takes
into account the average amount of current extracted from
the battery, neglecting the high-rate depletion.

IV. EXPERIMENTAL DATA IDENTIFICATION

The reduced order models exhibit a very low computa-
tional cost that allows not only a real time implementation
but also the possibility of a parameter identification based
on current-voltage profiles obtained from experimental data.
An on-line parameters identification is particularly useful in
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order to have a device independent control and estimation
system unit. In this paper, both the models have been
identified off-line using several charge and discharge profiles
collected with a 37 V - 10 Ah lithium-ion battery, and
then validated on different data sets. The results reported
in Figure 6 -7 show the voltage prediction of the two
models during a selected experiment. The SVM appears
to be more suitable for identification and exhibits a smaller
error in voltage prediction if compared with the EAM, as
confirmed by the results summarized in Table II. This is
mainly due to the linearity of the model, in particular in
the parameters dependence that leads to a very good model
fit. On the contrary, EAM presents a non-linear structure
and its dependence on the parameters is also non linear.
On the other hand for the SVM there are a total of 24
parameters to identify, i.e. the 11 eigenvalues, C and D
matrix and a static parameter function of initial SOC, while
the EAM depends on just 9 parameters describing some
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physical battery properties. The big amount of parameters
introduces in SVM an indetermination and may lead to errors
in parameter identification if a poor or incomplete data set
is used. To overcome this problem a partial subset of param-
eters was first identified and later the residual parameters
were added gradually, removing the voltage prediction bias
due to incorrect parameters identification. The SVM SOC
evaluation still suffers the limitation due to its definition,
and is again unable to predict discontinuities in electrode
bulk concentration.

V. CONCLUSION

This paper describes two different reduced order models
of a lithium-ion battery derived from a full order elec-
trochemical model. While the full order model is able to
predict electrochemical species and potential conservation
distribution along the cell, the reduced orders are suited for
real time application. As shown, both the models are able
to predict voltage well, but they exhibit different backwards.
The EAM model is mainly aimed to the SOC estimation,
being able to take into account rapid electrode bulk concen-
tration discontinuities and offering a highly precise voltage
prediction with respect to the full order battery model and
good performance with respect to the experimental data.
Furthermore, the EAM depends on few parameters, and it
is very simple to set-up because its initial conditions depend
only on the battery SOC. Its main disadvantage is the strong
non-linearity, in particular the non-linearity in the parameters
dependence, which make an on-line parameters identification
hard to implement and leads to a bigger error in voltage
prediction. Conversely the SVM model presents a poor SOC
estimation, unable to follow electrode bulk concentration
during high transient but a very precise voltage prediction
with respect to experimental data once all the parameters
have been identified. Even if the model depends on a big
amount of parameters and it is difficult to set up correctly,
the simple linear structure of the model make it easy to

identify and particularly suited for on-line adaptive control
and battery voltage prediction.

Current Profile Model E[|error|] max[|error|] Std σ

Simulation results

EAM 5.08e−4 2.45e−2 2.16e−4

8C discharge
SVM 2.2e−3 2.14e−2 3.2e−3

EAM 1.54e−4 1.91e−3 1.73e−4

5C/10s pulse
SVM 6.5e−3 3.69e−2 8.0e−3

EAM 3.17e−4 1.36e−3 3.18e−4

10C/10s pulse
SVM 1.02e−2 8.96e−2 1.33e−2

EAM 6.24e−5 3.34e−2 5.42e−4

FreedomCar
SVM 9.72e−4 2.01e−2 1.6e−3

Experimental data fitting

EAM 2.77e−2 7.93e−1 3.64e−2

Val. profile 1
SVM 2.0e−2 2.16e−1 2.82e−2

EAM 2.48e−2 5.85e−1 2.95e−2

Val. profile 2
SVM 1.87e−2 2.05e−1 2.32e−2

TABLE II

ANALYSIS RESULTS. ERROR ON VOLTAGE PREDICTION.

REFERENCES

[1] O. Barbarisi, F. Vasca, and L. Glielmo. State of charge kalman filter
estimator for automotive batteries.Control Engineering Practice,
14:267 – 275, 2006.

[2] A. Stefanopoulou D. Di Domenico and G. Fiengo. Psm: Reduced order
lithium-ion battery electrochemical model and extended kalman filter
state of charge estimation.ASME Journal of Dynamic Systems, Mea-
surement and Control - Special Issue on Physical System Modeling,
2008.

[3] D. Di Domenico, G. Fiengo, and A. Stefanopoulou. Lithium-ion
battery state of charge estimation with a kalman filter basedon a
electrochemical model.Proceedings of 2008 IEEE Conference on
Control Applications, 1:702 – 707, 2008.

[4] W.B. Gu and C.Y. Wang. Thermal and electrochemical coupled
modeling of a lithium-ion cell.Proceedings of the ECS, 99:748–762,
2000.

[5] T. Jacobsen and K. West. Diffusion impedance in planar, cylindrical
and spherical symmetry.Electrochimica acta, 40:255–262, 1995.

[6] J.A. Prins-Jansen, J.D. Fehribach, K. Hemmes, and J.H.W. de Wita.
A three-phase homogeneous model for porous electrodes in molten-
carbonate fuel cells.J. Electrochem. Soc., 143:1617–1628, 1996.

[7] S. Santhanagopalan, Q. Guo, and R.E. White. Parameter estimation
and model discrimination for a lithium-ion cell.J. Electrochem. Soc.,
154:A198–A206, 2007.

[8] W.E. Schiesser.The Numerical Method of Lines: Integration of Partial
Differential Equations. Elsevier Science & Technology, 1991.

[9] K. Smith and C.Y. Wang. Solid-state diffusion limitations on pulse
operation of a lithium-ion cell for hybrid electric vehicles. Journal of
Power Sources, 161:628–639, 2006.

[10] K.A. Smith, C.D. Rahn, and C.Y. Wang. Control oriented 1d
electrochemical model of lithium ion battery.Energy Conversion and
Management, 48:2565–2578, 2007.

[11] Kandler A. Smith, Christopher D. Rahn, and Chao-Yang Wang. Model
order reduction of 1d diffusion systems via residue grouping. Journal
of Dynamic Systems, Measurement, and Control, 130, 2008.

[12] M.W. Verbrugge and B.J. Koch. Electrochemical analysis of lithiated
graphite anodes.J. Electrochem. Soc., 150:A374–A384, 2003.

[13] C.Y. Wang, W.B. Gu, and B.Y. Liaw. Micro-macroscopic coupled
modeling of batteries and fuel cells. part i: Model development. J.
Electrochem. Soc., 145:3407–3417, 1998.

[14] C.Y. Wang, W.B. Gu, and B.Y. Liaw. Micro-macroscopic coupled
modeling of batteries and fuel cells. part ii: Application to ni-cd and
ni-mh cells. J. Electrochem. Soc., 145:3418–3427, 1998.


