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Abstract— Lithium-ion batteries are the core of new plug-in
hybrid-electrical vehicles (PHEV) as well as considered imany
2nd generation hybrid electric vehicles (HEV). In most casgthe
lithium-ion battery performances play an important role in the
vehicle energy management. As consequence, battery moadegi
is one of the most important tasks for hybrid and electrical
vehicles control. Full order electrochemical models haveat be
simplified in order to make them compatible with estimation
algorithms embedded in a real-time on-board electronic cotmol
unit. The battery model simplification has to be carried out
accurately in order to achieve maximum computational cost
reduction while ensuring the best model performance and
reaching an efficient system management. In this paper two
different reduced order models, based on the electrochemat
laws, are compared both with simulation results and with
experimental data collected from a 10 Ah lithium-ion battery.
The reduced order models characteristics are analyzed and
compared in relation to the specific control objective.

GLOSSARY
[ Symbol | Name | Unit |

le electrolyte current density A cm—2
s solid current density A cm—2
Pe electrolyte potential \Y

bs solid potential \Y

Ce electrolyte concentration mol cm™3
Cs solid concentration mol cm—3
Cse solid concentration at electrolyte interfade  mol cm™3
gL Butler-Volmer current density Acm—3
On normalized solid concentration at anodge -

0p normalized solid concentration at cathode -

U open circuit voltage V

Un anode open circuit voltage V

Up cathode open circuit voltage V

n overpotential V

F Faraday’'s number C mol~ !

I battery current A

R gas constant JK=T mol~*
T temperature K

TABLE |

LITHIUM-ION MODEL NOMENCLATURE.

I. INTRODUCTION
In the past few years lithium-ion batteries became o

fields, such as portable electronics or electric vehicleshé
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automotive field, lithium-ion batteries are the core of gyer
source and storage. In most cases the lithium-ion battery
performances play an important role for the energy effigienc
of these vehicles, suffering often the stress of very high
transient loads. The charge-discharge rate for the litAimm
battery can vary from 1-2 C (1 C is a discharge at nominal
battery capacity) to a very fast pulse discharge, i.e. 40 C -
50 C over a short period of about 10 s - 20 s [9]. In order to
efficiently manage the battery systems in different opegati
conditions a precise estimation of li-ions concentratiand
associated State of Charge (SOC) is necessary. Since measur
ing these quantities is not possible, a mathematical madel i
needed. Unfortunately, a dynamic model able to capture the
electrochemical reaction dynamics is typically of veryhig
order and complexity [1], [6], [12]. Nevertheless, sucheyp

of model is very important because it can be parameterized
on experimental data and used as a baseline in order to
obtain more manageable reduced order models of very low
order. The reduced order models typically introduce sévera
approximations [1], [7], [3], [10], [2]. Whereas on one hand
the order reduction allows the model implementation into
a real-time on-board electronic control unit, on the other
hand the simplified models neglect some dynamics so that
they cannot predict accurately the current-voltage befavi
across different operating conditions. As consequenaz, th
battery model simplification has to be carried out accuyatel
in order to achieve maximum computational cost reduction
while ensuring the best model performance and reaching an
efficient system management. In this paper, two different
reduced order models, presented in [10] and [2] and based
on the full order electrochemical battery model developged b
Wanget al. [13], are proposed and compared. The simulation
results are compared with both full order electrochemical
battery model and experimental data collected from a 10 Ah
lithium-ion battery from POWERIZER. The comparison is
performed taking into account slow rate and critical hige ra
current demand, so that both the transient and steady-state
model behavior can be analyzed. In the following, the full
order electrochemical model is presented and the reduced
order models are derived and discussed. Then the current-

. - n\(?oltage profiles, as predicted by the reduced models, are
of the most popular type of battery in many apphcaﬂorE

ompared with the full order and, finally, a comparison with
experimental data is performed. The results discussion and
the conclusions end the paper.

Il. BATTERY MODEL FORMULATION

A lithium-ion battery is composed of three principal parts:
two porous electrodes, namely cathode (positive) and anode



where U(cs) is the open circuit potential, which is an

I Al empirical correlation function of the solid concentras@nd
the coefficientj, calculated as
I jO = kO (Ce)aa (Cs,maz - Cse)aa (Cse)ac- (7)
The cell potential is then computed as
R
m V:(bs(x:L)—qﬁs(x:O)—IfI (8)
d whereR; is the film resistance on the electrodes surface and

a 2 | o -
R - | A is the collectors surface. More details on the model and
¥
[ L:CE LiC.0: its parameters can be found in [9],[10], and [14].

Solid-Electrolyte Interface

BT

A. Reduced Order Models

The first Electrode Averaged Model (EAM), derived in
[3], can be achieved by neglecting the solid concentration
distribution along the electrode and considering the nelter
Fig. 1.  Schematic macroscopia-firection) cell model with coupled diffusion inside a representatlve solid material partide .
microscopic {-direction) solid diffusion model. The electrodes are dlle €aCh electrode. This introduces an average value of the soli
with the electrolyte solution. concentration that can be related with the battery SOC. Fur-

thermore, by assuming an high concentration of electrolyte

material in the solution, the electrolyte concentratiprcan
(negative) and an electrolyte solution that acts as separahe considered constant and its average value can be used.
between the electrodes as shown in Figure 1. During a aAlthough these simplifications result in a heavy loss of
discharge process, the lithium active particles diffuse Upformation, they can be useful in control and estimation
to the surface of the negative electrode where they reagfpplications as we demonstrate next. In accordance with
producing lithium ions that flow through the electrolytethe mean solid concentration, the spatial dependence of the
solution via diffusion and migration until they arrive ateth Butler-Volmer current is ignored and a constant V@&é is

positive electrode. The positively charged ions react with  considered which satisfies the spacial integral (for thelano
metal oxide material particles of the positive electrodd angy the cathode)

diffuse within it. The electrons produced in the negativecel 5
trode reaction cannot flow through the electrolyte solution / Y (x)de = I_ jlis, 9)
that acts as insulator and flow through an external circuit, 0

A

producing the current. The inverse reactions occur duringheres, is the anode thickness. This averaging procedure
the battery charge. Due to their porous nature, the eleetrods equivalent to considering a representative solid meiteri
are represented as small spheres of active material aleng farticle somewhere along the anode and the cathode [3].
electrode, with the chemical reactions occurring at th@sph  The partial differential equation (4), describes the solid
surface [13]. The resulting Partial Differential Equason phase concentration along the radius of active particle, bu
(PDE) describe the battery system with four quantities, i.ehe macroscopic model requires only the concentrationeat th
solid and electrolyte concentrations;( c.) and solid and electrolyte interface. By using the finite difference metho
electrolyte potentials(, ¢.) [4], [9], for the spatial variable, it is possible to express the spherical
O [ opra e L P_D_E_ into a set of ordi_nary_ differentia_ll equations (ODE),
9z (“ Ve + Kp lence) =J 1) dividing the sphere radius id4, — 1 slices, each of size
A, = 35 and rewriting boundary conditions [8]. The new

9 eIy _ :Li 2 _ T
72 \@ +bs ) =] (2) system pr_esentMT — 1_ st{;\teSCS = (Csy, Csy ,_....csMr_l)_ ,
0 representing radially distributed concentrations at dirgte-
32806 _ v, (Deffgzce) 4 1 ;t L (3 ment node points, ..., M, — 1
t € .
5 és = Ac, + BjL (10)
S ¥ ,(DyVey) (4)
ot r(DsVes where A is a constant tri-diagonal matrix, function of the

coupled with the Butler-Volmer current density equation diffusion coefficientD,. The output of the system is the

L’L(I) = Q.7 exp Ln — exp _Zc n
J sJo RT RT

) can be rewritten as
where the overpotentiaj is obtained as

Cse = Csyy,_, — D™ (11)

whereD is function of diffusion coefficientD, and active
N =0¢s — pe — Ul(Cse) (6) surface area,. Two sets of ODESs, one for the anode and one



for the cathode are then obtained. The positive and negatives Reaction current’i(s) is decoupled from electrolyte
electrode dynamical systems differ at the constant valods a concentratior, (z, s)

at the input sign. Defining the dimensionless variable= z/§, wherez = 0
The initial values ofcs. when the battery is fully charged represents the current collector interface ard 1 represents
is defined ascl?% and when fully discharged a&)?,, the separator interface, the solid phase charge condentrat
with = = p,n for the positive and negative electrode. Itequation can be linearized and expressed as functian of

is convenient to define the normalized concentration, also eff 52
known as stoichiometry,, = Csc »/Cse.maz.o» With z = p,n o0 i 0 (17)
... . 2 2
for the positive and negative electrode. . 6. ) 9z
The battery voltage (8), using (6) and using the averagith boundary conditions

values at the anode and the cathode, can be rewritten as ol f 3, I 18
V(t) = (ﬁp — 1) + ((lge,p - (lge,n) 0 0z =0 A
R (12)
0z |,_,

Using the microscopic current average values and imposing,q iy conformity with the second assumption, neglecting
the boundary conditions and the continuity at the intesaceyhe ond term on the left hand side of the electrolyte charge

the solutions of equations (1) - (4) can be found. The result§,\centration equation and assumied’ to be constant it
can be found in [10] and [3] and are not reported here fqg possible to express this equation as

brevity.

Using (5) it is possible to express the overpotentials K e g -0 (20)
difference as function of average current densities and sol 62 022
concentrations as follows with boundary conditions
eff
 Rr ST Y&+1 k00| _ L 21)
p = n = ——In (13) 5 02|, A
aaF gn + V 5721 +1 9
where o Oe =0. (22)
Jr' it 02 l=o
& = 2asjop and &, = 2a5jon (14) Subtracting the corresponding equations it is possible to
) ) . obtain a single static ODE that expresses the phase pdtentia
The approximate solution for the electrolyte potential aljifference
the interface with the collectors Ie;ads to boo = bs — e, (23)
qze,p_qge,n = (be(L)_(be(O) = _7eff (611 + 25861) + 51)) . 8Q(b.s—e 2 1 1 .Li
2Ak (15) 5.2 el T + o7 ) (24)
Finally, the battery voltage (12) can be_rewritten aS Qith boundary conditions
function of current demand and average solid concentration
keff a(bs—e Ueff a(bs—e I
5 0 T8 0 =1 @
Z z=1 Z 2=0
(JE2+1
V(t) = RT In ST &% T Taking the Laplace transform of the conservation of lithium
adl” &, 4+ /2 +1 (16) in the solid phase and solving it with respect to its boundary
K, conditions, Jacobsen and West in [5] give the solid state
+ (Up(0p) = Un(0n)) — a1 diffusion
where K, = 5trr (0n + 20sep + 0p) + Ry is a term that ?5(5) _ 1 (& {715“"}‘(@ D , (26)
takes into account both internal and collector film resiséan j¥i(s)  asF \ Dy [tanh(B) — S

The second model reduction was introduced in [10}eres = R, (s/D,)%, while the linearization of the Butler-
and will be here referred as State Values Model (SVMyimer equation yields

The SVM reduction is performed by manipulating the

governing equations in order to derive analytical trans- n= @jm (27)

fer functions and later numerical transfer matrices de- as

scribing the output response of the model variablewhere R.; = RT/[ioF(a, + )] is the charge transfer re-
cs(x, 8), ce(x,s), ps(x, s), pe(x,s) to an input currenf(s).  sistance. The battery voltage (8), using (6), can be exmhnde
Individual submodel responses are then combined in order &3

obtain the voltage respondé(s). Before manipulating the V(t) = ¢e(L,t) — ¢e(0,) + (L, t) — (0, 1)
equations it is necessary to make the following assumptions Ry (28)
« Linear model behavior U (Cs,e(Ls)) = U—(e5,e(0,1)) — —-1(2)-



After Laplace transform, the voltage response of the lineas reported in [10] and [3] it is possible to express eleatrod
impedance model is bulk concentration as linear function of SOC,

V(S) - Voc(S) V,(S) V. (S) Ve(S) Rf Cs.av — _ Cs maz-
Tts) = 1) Ts) IJF(S) )~ A (29) avg(t) = [SOC(t)(0100% — Oo%) + Oovlcs, (39)

with individual terms arising due to bulk concentration, o

rNotice that the same equation, with equal stoichiometry
open circuit voltage dynamics parameters values, is used in the EAM model in order
to obtain a SOC evaluation as a function af,. The
Voc(s) _ 1 [oU+ 1 _OU- 1 l’ (30) SVM matrix C and D are then constructed linearizing the
I(s) AF | Ocsy 0465 Ocg— b_€5— ] s equations around0% SOC, and substituting electrode bulk
negative and positive electrode solid state diffusion dyna concentration with SOC as state variable.
ics,
-Li
J o —
V_(s) = _OU- Acse—(0,5)  n-(0,5) + A¢' (L, S), In order to compare EAM and SVM, several simulations
I(s) Ocs— I(s) 1(s) 1(s) (31) have been performed with different current demand profiles.
L As in the linear SVM the matrix C and D depend on the
V. U Acs (0, 0, Aglet (L, . s
+(5) + Acet (0,5) + ml( ) + ¢I ( S), initial value of SOC, a parameter identification procedure
) (s) (s) is necessary for every simulation tests at different opegat
(32)
conditions. It is important to note that the SVM presented
Ae here is an application of the SVM in [10] using linear
Ve(s) _ Ag (L, s) (33) parametrization techniques. Figure 2 shows the voltage out
I(s) I(s) ' put of the models to a current demand according to the

Given a full order impedance model transfer matri¥reedomCar Operation manual, consisting in a 30 A current

y(s)/I(s), the reduced order transfer matrix is defined as discharge for 10 s followed by a 40 s rest and in a 22.5 A
charge for 10 s followed by open circuit relaxation. Figure

Y (s) — 74 Xn: "kS (34) 3 shows the voltage error and the SOC prediction of the
I(s) s =\ reduced order models. Table Il highlights how both the
gnodels reproduce with a good accuracy the battery voltage.

In [10], Ax and r; are numerically generated eigenvalue . e
and n, x 1 are residue vectors (obtained as in [11]) roAAs the SVM evaluates the SOC based on a integrator, it is

spectively.Z is obtained directly from full order model as unable to predict the discontinuity on bulk concentratioe d

7 — lim,_oy(s)/I(s). Using thenth order parameters to high current demand with fast dynamics.
(ZT, N\, )T is possible to obtain theath order time
domain SVM 50

IIl. M oDEL COMPARISON

I(s)  Ocst I(s

and electrolyte phase diffusion dynamics,

i(t) = Ax(t) + BI(t) <
y*(t) = Cx(t) + DI(t) @) L]
where % 20 20 60 80 100
A = diag[\1..\,], B = [1..1]7, (36) 39
C=[rM.r ), D=[Z+37_ 1. 3851
The choice of model order is application dependent. In 5337':7
[10] a 5th order positive electrode, 5th order negative-elec &
trode and 1st order electrolyte model (later indicated as 2 >
5Ds_,5D,,1D,.) has been chosen for testing in simulation, o7 . \
and its results are compared with the other reduced orde ser %00 6095 6l
model results. The model eigenvalues are 355, 20 20 0 80 100

Time [s]

A_ = —[5.56 x 1073,6.05 x 1072,6.58 x 1071, 6.38, 62.4]

_ _ -3 -2 -1
At = [8'53 x 1077,6.08 x 10 ’5'5? x 10 ’5'82’63‘7] Fig. 2. \oltage response of complete and reduced order madaler
Ae = —9.49 x 10~ current demand profile as described in Freedom Car Manua.vBliage
(37) signals in bottom plot are respectively from Complete Mogllid blue

including the open circuit potential submodel equation) (30in€). EAM (dotted green line) and SVM (dashed red line)

with Apc = 0, the model is 12th order. Following typical .

convention SOC is defined as the fraction of capacity ~ Figures 4 and 5 show the performance of the models
stored in the cell. Given an initial SOC at time= 0 and uUnder high rate current demand. The profile is a series of

assumingl00% columbic efficiency, SOC may be calculated®0A current pulse with the period equal to 10s, followed by
as 10s of relaxation. The results, reported in Table Il, show a

1 /[t good voltage prediction compared to the complete model.
50C(t) = _6/0 I(t)dt. (38) As expected the linear SVM exhibits a greater error, in
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current demand profile. The voltage signals in bottom pletraspectively
from Complete Model (solid blue line), EAM (dotted greeneljrand SVM
(dashed red line)

experimental data. The voltage signals in bottom plot aspeetively from
Battery Data (solid blue line), EAM (dotted green line) and\& (dashed
red line)

particular during the steps in current demand (the modekder to have a device independent control and estimation
parameters were identified supposing a 30A (3C) constagystem unit. In this paper, both the models have been
request, which imply an huge superimposed perturbatiddentified off-line using several charge and discharge lefi
of +£30A). An adaptive parameter update function of theollected with a 37 V - 10 Ah lithium-ion battery, and
current demanded can drastically reduce this error. Agaén, then validated on different data sets. The results reported
main difference between the models is in SOC evaluatioin Figure 6 -7 show the voltage prediction of the two
The SVM predicts a final SOC approximately of 0.4, whilemodels during a selected experiment. The SVM appears
EAM shows a nearly complete discharge, as expected by thg be more suitable for identification and exhibits a smaller
experiments. This is because the integrator model onlystakerror in voltage prediction if compared with the EAM, as
into account the average amount of current extracted frogbnfirmed by the results summarized in Table Il. This is
the battery, neglecting the high-rate depletion. mainly due to the linearity of the model, in particular in
the parameters dependence that leads to a very good model
fit. On the contrary, EAM presents a non-linear structure
The reduced order models exhibit a very low computaand its dependence on the parameters is also non linear.
tional cost that allows not only a real time implementatiorOn the other hand for the SVM there are a total of 24
but also the possibility of a parameter identification basepgarameters to identify, i.e. the 11 eigenvalues, C and D
on current-voltage profiles obtained from experimentahdatmatrix and a static parameter function of initial SOC, while
An on-line parameters identification is particularly usefu the EAM depends on just 9 parameters describing some

IV. EXPERIMENTAL DATA IDENTIFICATION



identify and particularly suited for on-line adaptive caht

il ] and battery voltage prediction.
5 OF AT NAT eV i
Y s i | Current Profile| Model | Ellerror]] | max[[error]] | Stdo |
02 . | Simulation results |
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committed by EAM, voltage error committed by SVM and SOC eatibn : - :
(EAM (dotted blue line) and SVM (dashed green line)) TABLE Il

physical battery properties. The big amount of parameters
introduces in SVM an indetermination and may lead to errors
in parameter identification if a poor or incomplete data set1]
is used. To overcome this problem a partial subset of param-
eters was first identified and later the residual parameterg)
were added gradually, removing the voltage prediction bias
due to incorrect parameters identification. The SVM SOC
evaluation still suffers the limitation due to its definitio

and is again unable to predict discontinuities in electrodd3]
bulk concentration.

V. CONCLUSION 4]

This paper describes two different reduced order models
of a lithium-ion battery derived from a full order elec- 5
trochemical model. While the full order model is able to [g]
predict electrochemical species and potential consenvati
distribution along the cell, the reduced orders are suited f 7]
real time application. As shown, both the models are able
to predict voltage well, but they exhibit different backwaar
The EAM model is mainly aimed to the SOC estimation, (8]
being able to take into account rapid electrode bulk concenyg)
tration discontinuities and offering a highly precise agk
prediction with respect to the full order battery model an‘i‘m]
good performance with respect to the experimental data.
Furthermore, the EAM depends on few parameters, and it
is very simple to set-up because its initial conditions aepe (11
only on the battery SOC. Its main disadvantage is the strong
non-linearity, in particular the non-linearity in the pareters [12]
dependence, which make an on-line parameters identificati[)ls]
hard to implement and leads to a bigger error in voltage
prediction. Conversely the SVM model presents a poor SOC
estimation, unable to follow electrode bulk concentratioft4!
during high transient but a very precise voltage prediction
with respect to experimental data once all the parameters
have been identified. Even if the model depends on a big
amount of parameters and it is difficult to set up correctly,
the simple linear structure of the model make it easy to

ANALYSIS RESULTS ERROR ON VOLTAGE PREDICTION
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