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Notation

Variables Subscripts Constants
p pressure (kPa) 1 intake manifold ¢, = 1.0144 kJ/kg/K
T temperature (K) 2 exhaust manifold ¢, = 0.7274 kJ/kg/K
m  mass (kg) e engine R=c¢,— ¢
W mass flow (kg/s) t turbine T=2
F burnt gas fraction ¢ compressor &, = 1/14.4 (stoichiometric equivalence ratio)
N  engine speed (RPM) f fuel Va = 2.0L engine displacement
V' volume (m?) a atmospheric
p  density (kg/m?) £ post turbine
Ocgr: EGR valve position, fraction open
Ouge: VGT vane position, fraction open
MAF: mass air flow

MAP:  manifold air pressure (boost)
EXMP: exhaust manifold pressure
AFR: air to fuel ratio

r: EGR flow fraction

Combined subscripts, such as “e2,” “12,” refer to flows from the first to the second subsystem. Hence the
symbol p;, for example, refers to the intake manifold pressure in kPa and W, to the flow from compressor
to intake manifold. Thermodynamic constants are those for air at 300 K.

Introduction

Diesel engine technology has made enormous strides in the areas of materials, injection equipment, and
aftertreatment in the past decade. These new technologies mitigate the traditional disadvantages of diesel
engines, and make them an ever more serious alternative for spark-iginited (SI) engines in the market of
high performance vehicles. Diesel engines have inherently superior fuel economy compared to SI engines,
however, this comes at the price of increased levels of nitric oxides, particulate matter, noise and vibration
harshness (NVH), and a lower power density. Modern injection equipment allows lower emissions and NVH.
The low power density is offset by the extensive use of aluminum in the engine block, head and base plate,
and also by turbocharging. To achieve good boost at all speed-load conditions without sacrificing efficiency
and transient performance, variable-geometry turbochargers (VGTs) are employed in high end diesel engines.
These VGTs also help in controlling the trade-offs in emissions performance.

In VGTs, an actuator adjusts the angle of guide vanes placed at the entrance of the turbine to restrict
the incoming exhaust gas flow. Thus different flow rates and efficiencies can be achieved at identical engine
operating conditions. Exhaust gas recirculation (EGR) is used to dilute the combustion mixture, resulting



in lower peak combustion temperatures and a lower oxygen concentration and hence lower NOx emissions.
Since both EGR and turbine flow are driven by the exhaust gas, there is clearly a strong coupling between
the two flows. Traditional controllers ignore this coupling and use the VGT to control boost pressure and
the EGR valve to control mass airflow, EGR flow, or EGR rate. A generic engine configuration with the
aforementioned features is displayed in Fig. 1.

Modelling and control of diesel engines has recently generated increased interest. Diesel engine models
were presented in [1, 2, 3, 4]. The particular model used here is described in [5, 6]. Different multivariable
controllers were presented in [7, 8, 9, 10]. This article compares some of the control methodologies previously
presented and some not yet presented to evaluate their benefits experimentally. The article does not include
any new theory. Rather it refers to other sources for the development of the controllers evaluated here.
The article does present an objective comparison of advanced control methodologies on a complex industrial
problem with widespread application.

The control methodologies discussed are essentially systemn based i.e., the initial controller is developed
on an engine model. An initial calibration of the controller is computed by optimization methods or by
simulation of the model. Simulation is then used to assess the performance of this controller and calibration
in transient operation. Model-based controller design allows for shorter development times. In particular:

o Feasibility, performance, and robustness of new control schemes can be evaluated much more readily
and rapidly on the model than experimentally on the engine.

e The model can be used to aid in calibration. This reduces the often large number of calibratables to
a limited number of key parameters that need to be tuned on the engine.

e Coding errors and logical inconsistencies can be caught in a modeling environment where tracing
capabilities are much more refined and no risk of physical harm exists.

We use the qualifier model based to include controllers of conventional structure whose parameters were
populated using a model. In particular, a gain scheduled PI controller with gains computed from a model
would be model based. For the controllers presented here, fine-tuning of the calibration took place on the
engine in a dynamometer cell.

Although a fairly obvious approach in the control community, model-based controller design is only
starting to find application in the automotive industry. This can be explained in part by the limited accuracy
of control-oriented power train models. Controllers developed on the basis of these models then have to be
fine-tuned experimentally on the engine. Depending on the choice of control design method, this may not
be a straightforward task. However, without this fine-tuning, the controller may not perform acceptably at
some operating points. Thus, this article focuses on the experimental validation and ease of calibration of
various model-based control designs.

Although the control designs are based on different ideas, the objectives of these designs were to improve
robustness and performance of closed-loop operation and to decrease calibration complexity. The controllers
are assessed on their emissions and fuel economy on the extra urban drive cycle (EUDC) of the eurocycle.
The experimental conditions under which the controllers were evaluated differ from a vehicle chassis role test
used in homologation in many respects: the dynamometer does not respond the way a vehicle does, shift
transients are different, there may be problems with shaft vibrations, and engine knowledge is incomplete.
In practice, controller design happens in parallel with vehicle and engine specification, and a decision on
controller architecture has to be made more often than not based on incomplete hardware knowledge. Hence
for a system based control design approach to be useful in the automotive industry, it is imperative that
controllers can be assessed early in a program when the whole system has not necessarily been defined.
Robustness is then a crucial property that allows the controller to work correctly when the hardware further
evolves. The controllers are also evaluated on their ease of calibration and implementation and computational
load in production hardware, since these are major cost factors in controller implementation.

The development, of this article is as follows. First we describe the rapid prototyping enviroment used for
our experiments. Some of the controllers estimate the controlled variables, and this estimator is described
next. The generation of the set points for the controllers is performed on the model and presented next.
This is followed by some detail on the various control methodologies that are the subject of our comparison.
Cumulative emission numbers on the EUDC are given first, then transient plots are presented. Finally we
summarize our findings and present conclusions.



Hardware Setup

Fig. 1 shows the engine that is the subject of this investigation, a 115-HP direct-injected diesel engine with
four valves per cylinder, a VGT and external EGR. A dSPACE rapid prototyping system is at the heart of
our setup; it was used to implement the controllers, monitor their performance, and interface to various other
control modules. The various components of this setup are shown in Fig. 2. In the production environment,
the engine is controlled by an engine control unit (ECU) in conjunction with an injection control unit (ICU),
communicating over a controller area network (CAN) link [11]. The ECU sends fueling commands (timing
and quantity) to the ICU, which executes these commands. The ICU contains the hardware drivers for
the injectors. In addition to fueling information, various diagnostics messages are sent to guarantee safe
operation of the system. The ECU normally also controls the other actuators of the engine, in particular,
the EGR and VGT, monitors the health of the engine, and processes sensor input.

In our setup, we cut the CAN link between the ECU and ICU and put a dSPACE CAN board on each
end. The dSPACE system passes all CAN messages verbatim, with the possible exception of fuel quantity
and timing. This allows one to apply controller fuel steps from dSPACE as external disturbances to the
air management system and to run transient cycles. The air management control of the ECU is bypassed
and is directly controlled by the dSPACE rapid prototyping system. This system has as measured inputs
engine speed, intake manifold pressure (boost), mass airflow (MAF), exhaust manifold pressure, air charge
temperature (ACT), VGT vane position and EGR valve position, and commanded fuel quantity. Its control
outputs are EGR valve duty cycle and VGT vane position duty cycle. The PWM duty cycles are input to
a current amplifier and sent to the current-to-vacuum transducers (CVTs) that control the EGR and VGT
actuators.

The dSPACE system also controls the dynamometer speed and load through analog output voltages. This
allows control of transient cycles: the fuel command is used as feedforward, and torque and engine speed are
controlled through a simple PID loop. As indicated above, the controllers are first tested on a mean value
model [5] in the MATLAB/Simulink environment. The same code is then run on the dSPACE Autobox to
control the engine. Use of the dSSPACE/MATLAB/Simulink environment considerably shortened the test
time and was essential to providing the ability to interface with all the different components.

Estimation of MAF and EGR Flow

Some of the controllers discussed in this article use an estimation scheme to generate several signals that
were not measured. This estimation scheme is briefly described here.

The estimator is used for controllers that assume availability of an intake manifold pressure (MAP or
p1) and an exhaust manifold pressure (EXMP or p,) sensor. This choice of sensor is less costly than the
standard choice of sensor for MAP and compressor mass airflow (MAF). From the ideal gas law, we have,
under the isothermic assumption,

P = %(Wm + Wer — Whe), (1)
Vi
where W5, is the flow through the EGR valve, W,; is the flow through the compressor, Wi, is the intake flow
to the engine, 77 is the intake manifold temperature, and V; is the intake manifold volume. If the exhaust
manifold pressure and temperature are known or can be estimated from open loop maps, we can calculate
the EGR flow from the orifice flow equation

W21 = Cd(aegr)p—QlI; (&) )
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and Cq(fegr) is a function of EGR valve position, fegr, developed from steady-state engine mapping data.
The engine intake flow is calculated from the volumetric efficiency of the engine 7y, engine speed N, and



engine displacement volume V; as

_ nvpiVaN _ D
Wie = =55 P= 3)
From (1) we obtain
Vi
Wer = —=p1 — Way + Wye. 4
1 RTlpl 21 +Wa (4)

We can approximate p; with a numerical differentiation filter
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p1, (5)

with suitable time constant 7. This time constant has to be chosen as small as possible without excessively
amplifying noise. Then, by low-pass filtering the flows:

_ 1 - 1
Wa = 7'.9—+1W21’ Wie = mwle (6)
we obtain
Vi _
Wer = RTlpl War + Wie. (7)

This gives an estimate for MAF.

Figure 3 show MAF and its estimate over the extra urban part of the European drive cycle. It shows
that the estimator underestimates MAF in transients, which has the beneficial side effect of providing extra
air in transients, leading to a faster torque response. The figure also shows that there are steady state errors,
which could be handled by offsetting the MAF set points.

Set points

Feedback controllers for diesel engine management are most typically implemented as regulators. The per-
formance variables, such as emissions, fuel consumption and torque response, can usually not be measured
in a production implementation, due to prohibitive cost. Hence a measureable variable with some corre-
lation to the performance variable is used instead. The set point for these variables is determined from a
lookup table or polynomial approximation over speed and fuel quantity, the latter being a close indication
of load. With some abuse of terms, we will refer to fuel quantity as “load” in this development. The task
of the feedback controller is then to control the actuators such that the measured variables are driven to
their respective set points. We emphasize here that the feedback controller can only be expected to control
transient performance and to provide robustness against external disturbances and system uncertainty. If
the set points do not meet the emissions and fuel consumption targets in open loop, the feedback controller
cannot be expected to improve the closed loop behavior of the engine. The set points are therefore of crucial
importance. This is especially true when the engine performance is evaluated over the European drive cycle,
which contains long stretches of steady state operation. The present section will detail the calculation of the
set points used for the controllers in this article.

Let Z; denote our performance variables, that is emissions and fuel consumption for a fized speed load
point, and let Y; denote the measured variables. In this article we also fix start of injection, so that for a
fixed speed load point, our remaining control variables are EGR valve command cg; and VGT command
0ygt- We combine the performance variables in a single cost criterion to be minimized:

J(aegr; ovgt) = Z XiZ; (eegra 0Vgt)7

where ); indicates the weight we assign to performance variable Z;. By changing the factors A; we achieve
a different trade-off between different emission species and fuel economy.



The calculation of set points is now to find EGR and VGT commands that minimize J, and then the
values of the measured variables Y; that correspond to these commands. This minimization could in principle
be performed by standard optimization software. Since the model does not give the performance variables
as closed form functions of the actuator settings, each iteration would involve a simulation of the system,
keeping speed and load constant, and applying an open loop actuator effort until the system has reached
steady state. Since this is a computationally expensive procedure, one often resorts to a simpler alternative,
which is detailed in the sequel. Fortunately, the cost functions for our problem are mostly well behaved,
and one can get reasonable results by collecting some data n-tuples (fegr,Ovgt,Ys, Z;) for fixed speed and
load, and regressing Z; and Y; locally as a polynomial in fegr and 6yg:. These n-tuples can be gathered
from an engine dynamometer or a high fidelity simulation model. As an example, if we aim to minimize
brake-specific fuel consumption (bsfc) as a quadratic function of EGR and VGT, we compute a least-squares
fit of the coeflicients ¢; in the expression

2 2
bsfc = Co + Cleaegr + Clvavgt + C260egr + c2v0vgt + CZeveegrevgt;

ogr and 07, that minimize BSFC. Similarly, one can regress the measured

and can easily find the optimal 6g,,

variables Y; as quadratic functions of the fe,r and 8,,t, and substitute the optimal actuator settings 0;‘g, and
05g¢ to arrive at the set point for Y;, denoted Y;*. This procedure is repeated for several speed load points,
as many as necessary to obtain a set point matrix of the desired resolution in speed and load.

It may happpen that an [, constraint needs to be applied to either performance variables Z; or actuator
settings. This can be handled by only using those n-tuples (fegr, Ovgt, Y3, Z;) in the regression that satisfy the
constraint. This is not a fail-safe way to guarantee that the resulting optimal (feg,*, Oyge*, Y;", ZF) satisfy
the constraint, but it usually is a good start.

Applying this simplified procedure to minimze BSFC as a function of fe¢gr and 6y, while restricting
smoke to be invisible (less than 2 BSU), we arrived at set points for MAP and MAF for the PI controllers
on MAP and measured or estimated MAF. This procedure was also applied to arrive at set points for the
PI controller MAP and EGR fraction.

The controller in described under “Rank One Controller” was designed specifically for set points that
minimize feedgas NOx emissions by maximizing the burnt gas fraction Fj in the intake manifold. This
addresses the high NOx emissions common to diesel engines. To avoid excessive smoke, the air fuel ratio was
constrained to be sufficiently lean. Although, the minimum AFR level is a function of the fueling rate and
engine speed, we chose for simplicity the fixed value of textAF R,,;, = 25. A second constraint is imposed
on maximum intake manifold pressure to protect the engine from damages due to over-boost. The assumed
maximum intake manifold pressure iS pimaqz = 220 kPa.

The CLF controller decribed later used set points based on the EGR fraction set points from a production
engine of similar displacement to the one under investigation in this article, and AFR set points that were
proven feasible in simulation. The EGR and AFR set points where mapped to set points for the measured
variables MAF and EXMP using the engine model.

Since no engine mapping data for speeds lower than 1500 RPM was available, we generated set points
for these speeds by extrapolation. Thus it cannot be assured that these set points are feasible, let alone
optimal. It is of course a sign of increased robustness if a controller can still control the controlled variable
to its set point outside of the mapped speed load range.

Controllers

The following control strategies are described in this section and evaluated in the next section:

e Decentralized proportional-integral (PI) control of MAP and measured MAF, using MAP and MAF
sensors to generate duty cycle commands for EGR and VGT.

e Decentralized PI control of MAP and estimated MAF, using MAP and exhaust manifold pressure
sensors to generate duty cycle commands for EGR and VGT.

e Rank one PI control (R1) of MAP and MAF, using MAP and MAF sensors to generate position
commands for EGR and VGT.



e Multivariable linear proportional control of MAF and EXMP generating position commands for EGR
and VGT. This controller is derived from a control Lyapunov function, hence we will refer to it as a
CLF controller.

o Decentralized PI control of MAP and EGR flow fraction, using MAP and EXMP sensors to generate
duty cycle commands for EGR and VGT.

Note: The controllers that generate position rather than duty cycle commands require additional EGR
and VGT position sensors and corresponding inner-loop controllers to generate the final duty cycle command
signal to the actuators. Due to nonlinear dynamics and hysteresis, it is difficult to map position commands
to duty cycle commands in open loop fashion.

Table 1 summarizes the distinguishing features of the controllers. The qualification “coupled” refers
to the property that an error in one controlled variable will produce control effort in both actuators. All
controllers are indirectly coupled through the plant.

The controllers that replace a MAF sensor with an EXMP sensor offer a potential cost benefit. However,
the EXMP sensor may have durability problems in production due to soot deposits prevalent in diesel exhaust
manifolds.

Intake manifold pressure and mass airflow

A conventional controller for this engine would use feedforward combined with PI control on MAP and MAF,
as depicted in Figure 4.

The VGT vanes control MAP and the EGR valve controls MAF. The values for each of the four PI
gains are stored in a table, over engine speed and fueling rate. The controller parameters are tuned by
hand. Although it should be mentioned that, in practice, blocks of cells are tuned, effectively reducing the
resolution, this is still a formidable calibration task. We used tables of size 6 x 7 and generated PI gains
by scaling the inverted plant dc gain at different operating points. If the dc gain of the plant from (VGT,
EGR) duty cycles to (MAP, MAF) is K4.(N,Wy), and K, = K !, we set the proportional gain as

kp11Kg11(N,Wy) 0
K,(NNW) = 7" ’ 8
p( ) f) ( 0 kpZZKg22(N;Wf) ) ()
and we set the integral gain as
ki1 Kg11 (N, Wy) 0 )
K;(N,W;) = 9 ’ . 9
() = (R b K (N TV)) ©)

Here K,;; represents the (i,j)-th element of the matrix K, that we generated from steady-state engine
mapping data, or from the model. The gains kp11, kp22, ki11, and ki22 are the same for all operating points
and are tuned on the engine. The variability with operating point comes from the inverse of the dc gain.
Only four gains had to be tuned on the engine, presenting a considerable savings compared to conventional
practice.

The code implementing the strategy does not contain any part of the engine model, thereby reducing the
chronometric load and implementation effort. Since only four gains had to be tuned, the calibration task is
modest.

In experiments, we used the following antiwindup strategy. The contribution of the integral term was
limited to a certain threshold value. If this value threatened to be exceeded, integration would stop until
the integral term came within bounds. The threshold was set to 20 % duty cycle for both EGR and VGT.
That means that the feedforward and proportional control should drive the actuator to within a band of 20
% of the right value.

Intake manifold pressure and estimated mass airflow

The controller architecture is exactly the same as described above, except that MAF is not measured but is
estimated from MAP and an exhaust manifold pressure measurement as detailed under “Estimated Signals”.
The estimate of MAF is fed to the controller in place of measured MAF. The architecture is as in Figure 4,
with measured MAF replaced by estimated MAF.

The MAF estimation requires the implementation of the scheme outlined in Section , thus increasing the
chronometric load. The calibration task is the same as for the PI controller on MAP and MAF.



Rank one controller

The control design objective is to coordinate the actuators with the control input u = [ fegr, Ovgt ]T
to (i) speed up the engine open loop dynamics in order to reduce transient AFR excursions, and (ii) to
regulate AFR and Fj close to a new setpoint according to the maximum Fj strategy. The performance
variables are not measured directly, and the control scheme relies on the measurements of MAF and MAP,
ie,y=[ MAF, MAP ]T. The characteristics of the engine behavior at these maximum F; operating
points dictate a multivariable controller architecture that is rank one. We summarize next the characteristic
feature of the open loop plant that dictate this special controller architecture, the implications of this feature
in the feedback control design, the design of a feedback controller that directly addresses the open loop plant
characteristic at the maximum Fj operating points. Detailed discussion of the nominal and robust properties
of the closed loop system, as well as simulation and experimental results can be found in [8] and [10].

The rank one controller configuration is shown in Fig. 5. The error, é, which is fed to the PI controller
is formed as a linear combination of MAF and MAP errors, with weights h; and hs. The signal generated
by the controller, i, is distributed to EGR and VGT position commands through weights g; and g2. The
commands for EGR and VGT positions are then fed to the inner-loop PI controllers that generate duty cycle
inputs for the actuators. The scheme is a particular way of coordinating EGR and VGT actuators.

The rationale for the proposed arrangement is best understood by considering the linearization of the
plant model at a given operating point where the control signal is u = [JEGR, §VGT]T, the measured
output is y = [[M AF, M AP]T and the performance output is z = [0Fy, JAFR]T. The output z is chosen
as a performance output because it has strong influence on emissions such as smoke and NOx. The objective
is to drive z to a value which is, indirectly, specified by the set-point for the measured output, y4-

Let P, denote the dc-gain of the plant from the input v to the output y and let P, denote the dc-
gain from the input u to the output z. The development is motivated by the fact that the matrix P, is
“almost” singular, and P, is “very” regular. This property holds at the operating points corresponding to
the maximum F) strategy (see Section ). The controller was designed to operate primarily with this strategy.
The intuitive reason for this property is clear: when the burnt gas fraction increases, the fresh air charge is
displaced from the intake manifold and the in-cylinder air-to-fuel ratio decreases.

Let us now consider the singular value decomposition (SVD) of P,(0):

PZ(O) = Ulwl’UT + 0'2’11}21); (10)

where o1 and oo are the largest and smallest singular values of P,(0), and (wi,w2) and (v1,vs) are the
corresponding sets of left and right singular vectors, respectively. For our problem, P,(0) is “almost” rank
deficient, in the sense that it has both a large condition number (k =~ 64) and a small singular value
(0min = 0.04). Furthermore, scaling cannot alter the underlying redundancy as shown in [10]. It follows
that relatively small commands may result in large control signals. On the other hand, commands that
satisfy 0z* € R(w;) may be tracked without using large control signals; we say that such commands lie in
the “effective range” of the plant and we refer to them as “feasible”. A controller with an integrator for each
input-output pair (or, simply, high-gain) will thus achieve perfect steady state tracking of all commands
at the expense of large control signals, which are undesirable because they may result in frequent actuator
saturation.

Notably, the operating point defined by the triple [ uB 2B YB ] shows that the actuator redundancy
dissappears as the operating point moves inside the performance range. Thus, one can design a high-gain
controller augmenting the plant with 2 integrators if we do not require operation at the maximum F} strategy
for a given AF'R constraint. This explains why the all the other controller structures, decentralized PI and
CLF controllers, did not face any serious difficulties in regulating to their corresponding set points. Indeed,
both the minimum fuel economy and the EGR fraction set points correspond to internal points in the
performance range with full rank open loop plants.

Note that the problem of actuator redundancy is caused by the necessity to operate at optimized operating
points. In addition, the fact that we have optimized the performance variables implies that the desired
operating points tend to lie on the boundary of the performance range. In light of the difficulties that these
operating points impose to the feedback controller design, a possible solution is to generate a different set-
point strategy that results in engine operation away from “optimal” but “difficult” set points. However, this
solution would degrade feedgas NOx emission performance of the engine and may be undesirable due to the
very stringent NOx emission regulations currently being put in place. In light of the redundancy, a simple
controller architecture could utilize only one actuator and track only one set-point variable. The decision of



which pair of signals should be utilized by the controller can be determined based on actuator reliability or
sensor cost. Another approach is to design a rank one controller that utilizes both actuators and ensures
maximum control authority.

The rank one controller configuration is shown in Figure 5. The fictitious error, €, which is fed to the
PI (or a high-gain) controller is formed as a linear combination of th measured MAF and MAP errors, with
weights h; and ho, which are designed to reduce the impact of strategy errors by not attempting to track
infeasible set points. The signal generated by the PI controller, 4, is distributed to EGR and VGT position
commands through weights g; and g» that are designed to coordinate the actuators to achieve maximum
authority. The commands for EGR and VGT positions are then fed to the inner-loop PI controllers that
generate duty cycle inputs for the actuators. The PI controller gains K, and K; are fixed throughout the
operating range and need only be tuned at a single operating point. We briefly describe the control design
and properties here.

Let the rank one controller be C(s) = GK¢(s)H where H = [h; hg] and G = [¢1 gg]T are constant
matrices in R?*! and where K¢(s) = K, + £i is a PI controller. We choose H so that the controller
attempts to track only those y-commands corresponding to z-commands that lie in the effective range of
P,(0):

H = w{ P;(0)P;" (0)/llw] P:(0)P; (0)]I- (11)

The transfer function mapping y-commands to the control signal is given by C(s) (I 4+ P,(s)C(s))™" and has
dc gain of magnitude ||GH||/|HP,(0)G| = ||Gw] P.(0)P,"(0)||/|w] P.(0)G|. Because w{ P(0)G = o1v] G,
it is easy to verify that choosing G = v; minimizes the size of the steady-state control signal. Indeed, a small
step change in reference command can be decomposed into the part that belongs to the effective range of
P,(0) (feasible component) and its orthogonal complement with appropriate scalars oy and ao:

Sy* = a1 P,(0)P,(0) " 'w; +a2Py(0)P,(0) w,. (12)
feasible (:gmponent

This reference command will generate the steady-state control signal

Suss = GHOY"|(HP,(0)G)
- vlw{/pz(o)py (0)Léy*/(HP,(0)G) (13)

Moreover, the combination of H and G ensures that the smallest control signal will be used to achieve steady
state tracking of the component of dy that corresponds to the effective range of the performance variables.
Indeed, consider the control signal from (13), then the measured output is

8yss = P,(0)6uss = a1 Py(0)v1 /o1 = a1 P,(0)P,(0)~ wy,

which is the feasible component of the reference input.

Preliminary evaluation of the controller on fuel steps at 1500 rpm has demonstrated a time constant of
MAF response of about 0.2 sec. Fast transient performance is important for turbo-lag reduction, which is
a large concern in diesel engines. Moreover, as the load increases, the controller tends to open the VGT in
coordination with closing the EGR. This tends to keep engine backpressure small, thereby providing good
fuel economy.

As the experimental data in we will show later indicate, due to model uncertainty the air-to-fuel ratio
went as low as 20 in steady state. This indicates the need for a more conservative AFR,,,;, = 30 value in
the future development of maximum F1 strategy set points.

The code implementing the strategy does not contain any part of the engine model, thereby reducing the
chronometric load and implementation effort. The matrices G and H are based on the SVD of the dc gain
of the engine model at different operating points that span the maximum F1 strategy. Since only the two
gains K, and K; had to be tuned, the calibration task is modest.

CLF controller

This controller was developed using a design method proposed in [12] that applies to nonlinear multivariable
systems for which a control Lyapunov function can be constructed. The motivation for considering this
method is that it provides a robustness guarantee equivalent to linear SISO gain and phase margins.



Our control objective is to regulate the in-cylinder air-to-fuel ratio, defined by
AFR = (1 - )Wy, /W,
where F is the burnt gas fraction in the intake manifold, and the flow fraction
r=Wa/(We + Wai), (14)

to their desired set point values appropriate for the current operating conditions (engine speed and driver
fuel request W}i) Due to limited time available to develop set points for this controller, the desired set
points,

AFRYN,W{) and r*(N,W}),

have been obtained by taking an EGR schedule for a different, 1.9-liter turbocharged diesel engine and,
somewhat arbitrarily, scheduling the air-to-fuel ratio to get feasible operating points in simulations on a
2.0L diesel engine model. Because no experimental data were available to validate the model in the low-
speed region, the set points have only been obtained and stored for engine speed values between 1500 and
3000 RPM and for fueling rates that exceed 1 kg/hr. Outside this region the set points are generated by
extrapolation and are, in general, infeasible.

Because neither AF'R nor r can be directly measured, we transformed these set points into the desired
set points for MAF (W2), MAP (p{), and EXMP (p?):
Wi =W{ [AFRY(1 —r?) +14.6 r7),

c

W
= Fo(l—1d)’ (15)

Wd d -
P8 = (1 - ity 7= (B -1) ",

p

T =

where p 1= ”—;1 = 0.286, k. is the engine pumping coefficient (defined as Wi, /p1, proportional to volumetric

efficiency), assumed here to be a function of engine speed only, 7* := Dmneisnt.is is the total efficiency
of the turbocharger, p, is the ambient pressure, and T, is the ambient temperature. For simulations and
dynamometer testing, the set points (15) have been computed using k. = a1 N, n* = as + a;,»W;f, and
T> = a4+ 55a, with oz, i =1,...,5, being positive constants chosen to match approximately the behavior
of the engine model.

A CLF, required for this design method, has been constructed using input-output linearization of a
simplified third-order diesel engine model. The EGR mass flow rate W2; and the turbine mass flow rate
Wy, are considered the inputs to the system and denoted by v; and wvs, respectively. The two outputs for
feedback linearization, y; := W, — ch1 and yo := py — pg (not necessarily the measured signals), have been
selected so that the system is “minimum-phase.” This property is required for input-output linearization to
produce a stabilizing control law and may also have a positive effect on the performance and robustness of
the closed-loop system.

The controller design proceeds through steps of input-output linearization, construction of a CLF, and
domination redesign, which provides the final control law. Details can be found in [13, 7]. The resulting
control law takes the form

rd

v = ngl -M (_Cla(Wcl — W) — caka(p2 — p§) + cskopp) ™ (P - (p(li)“)) ) (16)

(Wi +W§) =7 (c1b(Wer = WS) — caka(p2 — p3)) -

V2

The coefficients a and b were derived as nonlinear functions of the states, but to simplify the controller,
we have fixed their values to be constant. The gain ko, which is defined as R‘ZZ, is also kept constant in
the controller. The parameters 71,2, ¢1, C2, c3 are the adjustable gains of the controller. These gains have
been selected based on extensive simulations. As a result, the gain c3 has been set to zero (that is, the
MAP feedback has been turned off). This has left the control law (16) a linear proportional multivariable

(cross-coupled) feedback in compressor air flow and the exhaust manifold pressure regulation errors:

v = ¢ + k11 (Wer — W2) + k12 (p2 — p9),

(17)
v2 = 0§ — ka1 S(Wer — W2) + K22 (p2 — pd)



where v = %chl and v§ = Wg + W¢ are the set points for the EGR valve and turbine flows and
kij > 0 are the proportional gains. Once the “inputs” vi = Wa; and vy = Wy are computed, appropriate
orifice flow relationships of the form (2) are inverted to obtain the desired EGR valve position 6.4 and
VGT vane position 6,4:. Note that this inversion becomes ill-conditioned for low pressure drops. Indeed, a
considerable amount of dynamometer time was spend to regularize these inversions. The position values are
then commanded to the inner loop controllers for the two actuators. We believe that this extraction of the
nonlinearities contained in the maps 0cgr — Wa1 and 8,5¢ — Way, allowed the system to be controlled by
fixed-gain linear feedback (17). The configuration of the CLF controller is shown in Figure 6.

The CLF controller design specifically targets fast air flow response which is important for turbo-lag
reduction. The faster the increase in the compressor air-flow, the smaller the delay between driver’s demand
and fuel (torque) delivery for larger tip-ins. Preliminary experimental evaluation of the controller at engine
speeds above 1500 rpm has shown a MAF response time constant of 0.16 sec or less, independent of engine
speed. MAF and EXMP signals correspond to the minimum-phase outputs, so the achievable response speed
is not limited by the presence of unstable zeros. The gains that can be used are limited by the unmodeled
actuator dynamics and by Butterworth filters used to filter out measurement noise (20 rad/s bandwidth).
The latter limitation can be reduced, and possibly completely removed, if the sampling is crank angle based.
In the current hardware setup sampling is time-based, so the Butterworth filters had to be used.

Integral action could have been added to one or both of the output channels. This has not been done
for two reasons: (a) addition of integrators would have likely slowed down the air flow response possibly
increasing the turbo-lag; (b) a degradation in performance and even stability loss may result for a MIMO
architecture due to VGT-to-MAF dc gain reversal if the set points are infeasible. The steady-state error is
reduced by selecting gains of the proportional feedback that are high enough.

The code implementing the strategy contains EGR and turbine orifice flow models, thereby increasing the
chronometric load. On the other hand, the controller does not require gain-scheduling, thus reducing memory
usage compared to other control designs. On a fixed-point processor, the nonlinear functions occurring in
the orifice flow inversion would have to be approximated by table look-up reducing the chronometric load,
but increasing memory usage. Since only four gains would have to be tuned for experimental calibration,
the calibration task is modest. Due to the lack of integral control, the steady-state error depends on the
magnitude of the proportional gain.

Intake manifold pressure and EGR flow fraction controller

Like the PI controller on MAP and estimated MAF this controller was developed to address the situation
where an EXMP sensor and a MAP sensor are available but a MAF sensor is absent. In this situation,
available sensor measurements can be used to estimate EGR flow and MAF as detailed under “Estimated
Signals.” If MAP and MAF sensors are available but not an EXMP sensor, the controller can still be used.
The estimate of EGR flow required for this mode of operation can be generated using an algorithm similar to
the one we use to estimate MAF from MAP and EXMP measurements. If EXMP and MAP are measured,
errors in estimating MAF may exceed those in estimating EGR flow. The controller evaluated here uses
estimated (as opposed to measured) MAF to calculate the EGR rate set points.

The controller architecture is the same as depicted in Fig. 4), except that the controlled variables are
now MAP (which is measured) and EGR flow fraction, r, defined as the ratio of EGR flow (W51) to the sum
of EGR flow and MAF (W), Eq. (14). Of course, the EGR flow fraction is not directly measured by sensors
but is estimated. There are two decentralized loops: one from the VGT actuator duty cycle to MAP and
one from the EGR valve actuator duty cycle to EGR flow fraction. Just as for the MAP/MAF controller,
only four gains need be tuned on the engine. These gains are then scaled by coefficients depending on engine
speed and fueling rate that are generated from engine steady-state mapping data. These details and those
of the antiwindup compensation are exactly the same as for the MAP /measured MAF controller.

The choice of the controlled outputs deserves some discussion. Initially, we considered selecting EGR
flow, Wa1, as the second controlled output. The motivation for this choice was twofold. First, small errors
in MAF sensor calibration or MAF estimation may translate into large errors in EGR flow and thus poor
emissions performance. Secondly, during phases where the driver demands a large acceleration, it is critical
to reduce EGR flow as quickly as possible so that the engine is provided with as much fresh air charge as
possible. The actuators have a more direct effect on EGR flow than on MAF and can reduce it quickly
when commanded to do so. Unfortunately, the selection of EGR flow as a controlled output has a very
important drawback. We found it very advantageous if the steady-state map from actuator to measured
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variable is monotonic over the engine operating range. That is, regardless of the operating point, increasing
the actuator effort will always increase (or decrease) the value of the controlled variable. If this is not the
case, the controller gains have to change sign depending on the operating point. Since the point where a sign
change occurs is never known precisely, this means that in certain operating ranges, the controller gains will
be of the wrong sign, with obvious disastrous results. The gain from VGT to MAF, for example, changes
gain from positive at low engine speed to negative at high engine speed. Similarly, the gain from EGR valve
duty cycle to EGR flow changes sign, albeit in small operating ranges with the EGR valve almost entirely
open. This can be explained from the decrease in exhaust manifold pressure that occurs with opening the
EGR valve. Consequently, we decided to use EGR flow fraction, r, as the second controlled output. It was
confirmed that the dc gain from EGR valve position or EGR valve duty cycle to EGR flow fraction is always
positive. The dc gain from VGT actuator position or VGT actuator duty cycle to MAP does not change
sign either.

The code implementing the strategy does contain the orifice flow equation (2) to compute the estimated
MAF, increasing the chronometric load and implementation effort. Since only four gains had to be tuned,
the calibration task is modest.

Dynamometer Data

Drive cycle

The controllers were tested on the extra urban driving cycle of the eurocycle (i.e., the last 400 sec). As
mentioned earlier, we did not have mapping data for low engine speeds, hence the higher engine speeds of
the EUDC better reflected the design methodologies.

To simulate the drive cycle we need to control engine speed and load torque. The torque was regulated
through a PI controller using low pass filtered shaft torque as an input, and controlling the fuel rack position
as an output. The commanded engine speed was sent as a voltage to the dyno controller, which uses an
internal feedback loop to control speed. The dyno controls engine speed with the electric brake. Since this
internal feedback is of high bandwidth, tracking engine speed is no problem.

We used a MATLAB model of a Ford Mondeo to compute the engine speed and load from the vehicle
speed and gear strategy. Fig. 7 shows the vehicle speed, engine speed, engine torque, and requested fuel for
the EUDC.

Particulate emissions

Since a direct particulate measurement was not available, we use a correlation that expresses particulate
matter as a function of smoke and hydrocarbons proposed by [14]. This method relies on an expression for
carbon concentration proposed by [15]:

_ 10
[C]kg/m3 = 581.4 10 6(log(m))1.413 a8)

and a linear correlation proposed by [16]:
[PM]ig/s = 1.024 [Clrg/s + 0.505 [HClgys, (19)

where Bn is the smoke number in Bosch smoke units and [HC] is the mass flow of hydrocarbons in the
exhaust gas in kg/s. To convert the carbon concentration from kg/m® to kg/s, we assume steady-state
relations hold, in which case Wa, = W,.1. With the density of the exhaust gas in kg/m3, expressed in post
turbine pressure p, in kPa and post turbine temperature T, in Kelvin, as follows:

Dz
Pz = RTwa (20)
we get
Clio/ms - Wt po/s
(Cligys = (st Tetsale (21)
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Substituting (21) into (19) gives the desired quantity. This expression has limited quantitative accuracy but
is a useful qualitative measure.

Controller statistics

For each controller, we calculate the total NOx, HC, CO, and PM emissions and the total time in seconds
that smoke was visible (> 2 BSU). Care has to be exercised in interpreting these results. First, one should
keep in mind that we are dealing with feedgas emissions and not tailpipe emissions. Exhaust aftertreament
will change the numbers for tailpipe emissions considerably. Second, as we will see, the set points have a
large influence on the resulting emission and fuel economy numbers, and not all controllers were evaluated
on the same set points.

The results are normalized with respect to open-loop operation and tabulated in Table 2. The rank one
controller using maximum Fj set points produced excessive smoke, since these set points try to maximize
EGR content in the intake manifold, and a small positive error in F; will lead to visible smoke. The set
points for the maximum Fj strategy were developed on the model, and discrepancies between the model and
the engine, even at mapped engine speeds, can be responsible for this behavior. The rank one controller also
produced considerably more CO than the other controllers. This points at incomplete combustion which
correlates with the high smoke numbers. The engine running in open-loop produced excessive NOx. The
CLF controller on AFR and EGR fraction also produced visible smoke for 1.8 sec, and the PI controller on
MAP and measured MAF produced visible smoke for 0.05 sec.

It is extremely interesting to plot NOx against particulate emissions as is done in Fig. 8, where the par-
ticulate matter emissions were calculated as detailed above. This illustrates the well-known NOx-particulate
tradeoff which is a fundamental limitation of the diesel combustion system. Diesel combustion is an extremely
complex interaction between mixing dynamics and chemistry, but a intuitive, albeit very approximate, ex-
planation can be given for this tradeoff. Increased air fuel ratio improves combustion speed and quality to
a ceratin extent, hence raises temperature, resulting in higher NOx. Conversely, low air fuel ratio inhibits
complete combustion, resulting in high particulates. Good fuel economy favors complete and fast combus-
tion, and tends to result in lower particulates. This is in correspondeance with the location of the points in
Fig. 8 for the controllers run with low fuel consumption set points. The NOx-PM tradeoff limitation cannot
be overcome by feedback control. The set points can control the location of the emissions on the NOx-PM
curve, but cannot move the curve up or down. The points in Figure 8 are clustered by the type of set points
used, rather than by controller, sensor set or controlled variable. This indicates that the set points are a
major factor for emission results.

Since the fuel consumption values of all controllers were quite close, between 4.2 and 4.45 1/100 km,
they will not be tabulated. Noteworthy is perhaps that the engine running open-loop has the worst fuel
consumption of 4.55 1/100 km.

Transient data

This subsection shows some transient data for each of the controllers. Since part of the EUDC prescribes
engine speeds outside of the range where mapping data was available, we concentrate on a 100 second time
interval corresponding to the last big acceleration. This interval suffices to point out the interesting traits
of all controllers.

Fig. 9 shows MAP and MAF for the PI controller on MAP and measured MAF. This controller outputs
duty cycle commands for EGR and VGT actuators, hence position signals are omitted. The EGR and VGT
control signals have very low frequency content, translating in a slow following of the transients. Due to
the integral action, the steady state errors are zero. This is also true for the steady state errors outside of
the mapped engine range. MAF overshoots in accelerations, which is conducive to fast torque response. It
also implies low EGR rates, which correlates with the high NOx for this controller. MAP response is slow
in transients. Since fast MAP response requires closing the VGT quickly, which impedes engine breathing
and hence fast MAF response, there is a tradeoff in transient MAF and MAP response. This is also clearly
visible in the subsequent controller plots.

Fig. 10 shows MAP and MAF for the PI controller on MAP and estimated MAF. As noted, the MAF
estimator underestimates MAF in transients and overestimates MAF in high load conditions. The qualitative
response of MAF is very similar to the PI controller on MAP and measured MAF. Here, MAF is higher due
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to estimation errors, which correlates with higher NOx. Around ¢ = 1120 sec the estimated MAF does not
have time to converge to the set point due to integrator windup.

Fig. 11 shows MAP and MAF for the rank one controller.

This controller outputs desired EGR and VGT position, as opposed to duty cycle, and relies on a low
level PI controller to regulate to the commanded positions. Since this controller was designed for maximum
F; set points, these were the set points used. Steady state tracking is quite good, even though there is only
one integrator. It was verified that MAP tracking is lost for minimum fuel consumption set points, fow which
the controller was not designed. The high EGR levels bring exhaust and intake manifold pressures close
together, which moves the flow characteristic of the EGR valve in a high gradient region: a small pressure
disturbance has a large effect on flow. This shows up in the severe EGR valve oscillations atound ¢ = 1120
seconds, which translate to the MAP and MAF signals through the coupling of the plant.

Fig. 12 shows EXMP and MAF for the CLF controller. The measured MAF signal and not the estimated
MAF from the estimator was input into the controller, The controller is not supposed to track MAP (the
corresponding gains were set to 0). This controller was designed for accurate transient MAF response, which
is indeed quite visible in the figure. The EXMP response is accordingly slower. Due to the lack of integral
action, the MAF error is nonzero for the first 10 sec, and the EXMP trace exhibits nonzero steady state
error between ¢ = 1080 and ¢t = 1100. The fast MAF response is reflected both in the EGR and VGT control
signal, due to the coupling of the controller. For the CLF controller the complete set point generation and
gain calibration have been performed on the diesel engine model, after the gains had been set to constants.
It is interesting to point out that about half of the 1.8 second interval with visible smoke occured on the
tip-out at ¢ = 1075s. Apparently, the MAF response is fast enough that the amount of air dropped before
the actual injected fuel had decreased. Because the response is overdamped (no overshoot) and there is little
effect of measurement noise, it seems that higher gains could have been used.

Fig. 13 shows MAP and EGR fraction for the PI controller on MAP and EGR fraction. Steady state
tracking of MAP is quite good, but the integrator on EGR fraction is winding up at ¢ = 1050 and 1115
seconds, which makes the transients very slow. This results in the EGR valve staying closed longer than it
should, and the conmensurately high NOx in Table 2. Clearly, the antiwindup parameters need redesign for
this controller.

Summary and Conclusions

The development and experimental validation of model-based control algorithms were described for a high-
speed DI diesel engine with EGR and VGT. The controllers were developed and tested on the simulation
model of the engine. Some additional fine-tuning of control parameters was done on the engine. The dSPACE
rapid prototyping equipment allowed the same code to be used in simulation and experiment, resulting in a
short turn around time.

We showed that the set point strategy is crucial to the closed loop performance. Indeed, the set points
chosen largely governed the trade-off between NOx and particulate emissions over the European drive cycle
for the controllers we tested. In the paradigm of set point regulating controllers, the feedback controller
cannot do better then achieve the set point as best as possible. It is important to remember that the role of
feedback control is to provide robustness and rapid transient response. The European drive cycle does not
evaluate aggressive driving patterns, hence transient operation is not heavily emphasized in our comparison.
It may also be that a set point strategy mandates a certain controller architecture, as in the case with the
rank one controller.

Other important criteria by which to evaluate automotive controllers are the required sensor and ac-
tuator set, their computational load, and the calibration effort. Indeed, much of the calibration effort is
spent in understanding the operation of the strategy. The requirement of a low computational load favors
simple PI controllers on measured variables, where as little as possible of the engine model is implemented
in the controller code. Engine models can enable a significant calibration effort reduction without increasing
chronometric load. However, since control oriented engine models are still limited in accuracy, it is im-
portant to maintain a controller architecture that can be adjusted on the engine for final fine-tuning. We
demonstrated the possibility of replacing the mass air flow sensor with an exhaust manifold pressure sensor,
thereby achieving potential cost savings.
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Controller integrators | type output measured coupled | computational
(controlled variables) variables load
PI(MAP, meas MAF) 2 PI duty cycle (MAP, MAF) No lower

PI(MAP, est MAF) 2 PI duty cycle | (MAP, EXMP) No higher

R1(hiMAF+haMAP) 1 PI position (MAP, MAF) Yes lower
CLF(MAF, EXMP) 0 P flow (MAF, EXMP) | Yes higher

PI(MAP, EGR{) 2 PI duty cycle | (MAP, EXMP) No higher

2 Tables

Table 1: Controller summary.

30




| Controller: [ section | tot NOx | tot THC | tot CO [ smoke [sec] | tot PM

open loop 1.0000 1.0000 1.0000 0.0000 1.0000
PI(MAP, meas MAF) 0.5423 1.1052 1.0668 0.0500 1.2179
PI(MAP, est MAF) 0.6256 1.0551 0.9333 0.0000 1.1699
R1 minspfc 0.6969 1.0107 0.9458 0.0000 1.0842

R1 maxF1 0.2357 1.1723 1.6949 26.3000 2.4819
CLF(EXMP, MAF) 0.2664 0.9843 1.1105 1.8000 1.9019
PI(MAP, EGRS) 0.7299 1.0088 0.8391 0.0000 1.0671

Table 2: Emissions for various controllers over EUDC. Emissions are normalized with respect to open-loop.
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