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Abstract— This paper presents a nonlinear controller based
on Sontag’s feedback to render the electromechanical valve
actuator (EVA) globally asymptotically stable (GAS). Elec-
tromechanical valve actuators have received much attention
recently due to their potential for improving the performance of
the internal combustion engine. Various control schemes for the
EVA have been proposed, however stability is often neglected
due to the bounded motion of the EVA or proven based on a
linearized plant model. Here, we demonstrate and prove that
our controller renders the system GAS without any assumption
of linearity.

|. INTRODUCTION

Variable valve timing (VVT) can significantly improve
the performance of the internal combustion engine by de-
coupling the engine valve timing from other engine events.
This flexibility allows for better engine performance which
can potentially reduce automotive emissions by 12% to
15% [13], improve torque output by 20% [3], and reduce
fuel consumption by 18% to 23% [7].

Devices capable of achieving VVT range from switching
between multiple cam profiles [9], individual cam drives [4],
piezo’s [17], and hydraulic systems [8]. Electromechanical
valve actuators (EVA) which use electromagnets to actuate
the engine valves are becoming increasingly popular due to
their ability to achieve continuously variable lift, duration,
and phasing of the valves. Unfortunately, the EVA suffers
from large impacts at various internal locations. These im-
pacts must be kept under 0.1 m/s as they are otherwise
excessively loud and damaging to the actuator and engine
valve.

Controllers that eliminate or reduce these impacts often
neglect stability as the motion of the EVA is bounded
by physical constraints [1], [10]. Those which do prove
stability [5], [11], [14], [15] do so based on a linearized
plant model, thus only proving stability locally about the
equilibrium point. The resulting stability is never shown
experimentally as the moving components of the EVA are
only ever brought to rest against physical constraints which
is achievable with open loop control.

This paper presents a nonlinear controller based on Son-
tag’s feedback which renders the electromechanical valve
actuator globally asymptotically stable (GAS). This result is
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proven mathematically and shown experimentally by stabiliz-
ing the system away from the physical constraints. Addition-
ally, a methodology for achieving the desired performance is
given.

Il. THE ELECTROMECHANICAL VALVE ACTUATOR

The electromechanical valve actuator and experimental
setup are shown in Fig. 1. The actuator consists of an
armature mounted between two opposing magnetic coils and
springs. The experimental setup consists of a 200 VV power
supply, two Pulse Width Modulated (PWM) drivers, an eddy
current sensor mounted on the rear of the actuator, a laser
vibrometer, and a 1103 dSpace processing board. During
operation the dSpace processing board regulates the duty
cycle command to the PWM drivers in order to govern the
motion of the armature. The commands from the dSpace
processing board are based on either open loop instructions
or measurements from the various sensors. The position of
the armature/valve is measured by an eddy current sensor
that detects changes in the magnetic field due to the motion
of the sensor target. The velocity of the armature/valve is
measured by a laser vibrometer. Lastly, the current in each
electromagnet is measured by sensors build into each PWM
driver. The controller, which is presented in Sec. lll, is
implemented using the eddy current sensor and the sensors
bundled with the PWM drivers. The laser vibrometer is used
to verify the system performance for the experimental results.

At the beginning of a valve opening/closing procedure the
armature is held in contact with one of the two magnetic
coils, referred to as the releasing coil, creating a force imbal-
ance between the two springs. The current in the releasing
coil is reduced to zero and the springs drive the armature
across the gap, where it is then caught and held in place
by the opposing magnetic coil, referred to as the catching
coil. The forcing of the armature between the two extreme
positions thereby opens or shuts the valve. If the voltage to
the catching coil is not carefully regulated large impacts can
occur between it and the armature. These impacts must be
kept below 0.1 m/s to avoid damage and excessively loud
operation.

In modeling the EVA [2], [16] the effects of the releasing
coil are neglected as only the catching coil is used to stabilize
the armature. Furthermore, the current in the releasing coil
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Fig. 1. Electromechanica valve actuator and experimental setup.

is reduced to zero very rapidly using the technique described

in [16].
The states are defined as:
z the distance between the armature and catching coil
[m].
v the armature velocity [m/s].
A the magnetic flux in the catching coil
4/ (vam).

The dynamics of the electromechanical valve actuator are
described by

dz
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where rs\zzis the combined mass of the armature and valve
in kg, % is the magnetic force generated by the catching

coil in N, &, is the spring constant in N/m, [ is half the total
armature travel in m, b is the damping coefficient in kg/s, V.
is the applied voltage in V, r is the resistance of both the
wiring and magnetic coil in €2, and &, and k; are constants
determined by the physical properties of the EVA. Here we
assume that the frequency of the PWM drivers are sufficiently
fast that the applied voltage is equivalent to the commanded
duty cycle multiplied by the supply voltage, which has been
set to 180 V.

I1l. RENDERING THE EVA GLOBALLY ASYMPTOTICALLY
STABLE

This section presents a controller capable of rending the
electromechanical valve actuator GAS. First the state space

representation of the system is translated such that the
equilibrium is located at the origin. Next we propose a
Lyapunov function and prove that it satisfies the condition for
a Control Lyapunov function. Finally, the system is rendered
GAS using Sontag’s feedback.

A. Translated State Space Representation

By defining the new set of coordinates =z =
[ 21 x2 x3 | andinput u as

L1 = 2= Zeg 4)
Ty = U= Vg ®)
T3 = A= ¢ (6)

u = Vo= Ve O

Where zeq, veq, and Ay are the equilibrium values of the
states corresponding to the input V.4, the equilibrium is
translated so that it resides at the origin. In the derivation
which follows it is assumed that zeq, Veq, Aeg, and V4 are
not necessarily constant and are once differentiable.

The new state space representation is derived by differen-
tiating (4) (5) (6) with respect to time. Beginning with (4)
we get:

dzq dzeq
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For feasibility, the constraint % = veq Must be satisfied
yielding

dx
d—tl = . 9)

Next, the rate of change of z. is given by

dzxo . 1 (z3 + )\eq)2
& " m ( 1k T3 ze)
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Let
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resulting in
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Finally, the dynamics of the state z3 are described by

dzz V. — (T3 + Aeg) (kb + T1 + 2eg) T deq

dt - c 2k, dt (12)
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B. Proposed Control Lyapunov Function

As this new state space representation is valid for all
values of [ zeq Veq Aeg | Without loss of generality we
can stabilize the system about any generic equilibrium point
[ Zeg eqg Aeq |- As such, a Lyapunov function is pro-
posed here and shown to satisfy the conditions of a Control
Lyapunov Function (CLF). Sontag’s feedback is then used to
render the system GAS.

We propose the Lyapunov function

V:[.’I}l Io :|P|:1L'1 D) :|T+’Y$§ (15)

as a candidate CLF, where «y is constant and positive and the
matrix P satisfies the equation

ATP+PA+I=0 (16)
where
0 1
4= [ —ky/m  —b/m an

Since the eigenvalues of A are all strictly less than zero the
matrix P is positive definite.
Therefore (15) satisfies the conditions

V>0 VzeR? (18)
V=0 iffz=0 (19)
V= o as ||z|| = oo. (20)

In order to be a Control Lyapunov function it must also
satisfy the additional constraints

LfV <0 VzeR?
LfV =0 iffz=0

when LgV =0 (21)

(22)

where LfV and LgV are the Lie derivatives of V' with
respect to f (z) and g (z) defined as

av

dv
LfV = Ef(w) and LgV = 227 (). (23)
Solving for LgV
Lgv = [& & 4V 119 o 1]7 (24)
LgV = 2vz; (25)
Therefore
LgV =0 iff z3=0. (26)
When z3 = 0, LfV is given as
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which satisfies both (21) (22). Thus (15) is a Control Lya-
punov function.

C. Sontag's Feedback

We briefly show here that Sontag’s feedback does indeed
render the origin GAS. For more information on Lyapunov
stability and Sontag’s feedback the reader is refereed to [6],
[12].

As (15) satisfies the constraints given
in (18) (19) (20) (21) (22) application of Sontag’s
feedback

LfV++/LfV24+LgV*
u = o LgV LgV 7é 0
0 LgV =0

will render the system globally asymptotically stable about
the origin.

Taking the derivative of V' with respect to time and
applying the chain rule

for
for

(27)

av oVdz OV
% - Bz dt oz (f () + g(z)u) (28)
% = LfV + LgVu. (29)

When LgV =0, % is given by
v =LfV. (30)

dt



When LgV # 0, % is given by

d

d—{: = LfV + LgVu (31)
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Where by construction both (30) and (33) satisfy the condi-
tions

dv 3
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Therefore the system is GAS about the origin.

IV. EQUILIBRIUM SELECTION

In the preceding section the electromechanical valve ac-
tuator was rendered globally asymptotically stable for any
generic equilibrium set that is once differentiable. However
no mention was made of what a practical equilibrium set
might be. Since Sontag’s feedback only guarantees stability
and not performance, we hope to achieve the desired perfor-
mance of the EVA by careful selection of the equilibrium
set. Recall that the desired final state is the armature at rest
against the catching magnetic coil. Unfortunately use of this
equilibrium set may lead to actuator saturation and degraded
performance as the magnetic force is significantly less than
the spring force for distances greater than approximately
1 mm away from the catching coil. As the armature nears the
catching coil the magnetic flux increases significantly. The
application of large control inputs when the armature is not
near the catching coil will therefore result in large impact
velocities, which is exactly what we wish to avoid.

This approach fails to take into account that the armature is
initially held against the opposing magnetic coil compressing
the corresponding spring. The potential energy stored in the
spring does the majority of the work in driving the armature
across the gap. The controller need only provide slight
compensation during the majority of the armature travel, and
then stabilize it against the magnetic coil at the end of the
transition.

Therefore the controller is implemented with two different
sets of equilibria. The first set is based on the tracking
of a perfect cosine wave. A cosine wave is selected as
it represents the free motion of the armature without the
effects of damping. As the armature trajectory approaches
a cosine wave the impact velocity will tend toward zero,
i.e. the velocity of armature becomes a sin-wave with zero
terminal velocity. Therefore the equilibrium voltage, V.4, acts
as a pseudo feed-forward term to help guide the armature
along the desired trajectory, and the controller compensates

for deviations captured in the states [ z1 z> z3 |. The
second set corresponds to the armature at rest against the
magnetic coil so that the armature ends in the desired final
state.

A. 1% Equilibrium Set
For the first set of equilibria, [ zeq Veq Aeq |, let

Zeq = | + L cos (wt) (36)

ks .

where w = 4/ — is the natural frequency of the system. Thus
m

Veg IS given by

Veg = —lwsin (wt). (37)

Using (10) (36) (37), A¢q is given by

Aeg = 2\/k:a (—lmw2 cos (wt) — bveq — mdzzq ), (38)

noting that

% = —lw? cos (wt) (39)
yields
Aeg = 24/bkglwsin (wt). (40)
Solving for Acq
deq 21bk,w? cos (wt)
= 41
dt Neq (4)
we find
2
Vi = 2lbkow? cos (wt)  Aeq (kp + zeq)r‘ 42)
Neq okq

Veq corresponds to the feed forward voltage applied to the
EVA to improve tracking of the desired trajectory (36).
The controller based on Sontag’s Feedback designed in
Sec. Ill then compensates for deviations captured by the
states [ @1 x> z3 |

B. 274 Equilibrium Set
For the second set of equilibria, [ zeq veq Aeq | let

Zeq = 0 (43)

Vgq = 0 (44)

)\eq = 2 ks ka,l (45)
_ )\eq ka

Veg = T (46)

which corresponds to the armature at rest against the mag-
netic coil.



C. Switching Between the Equilibria Sets

To achieve the desired performance our controller uses the
equilibrium set defined by (36) (37) (38) and feed forward
voltage

if Aeg =0

ifdeg 20 )

0
V;q = { 21bkaw? cos(wt) + Xeq(kp+zeg)T
Xeq 2ka
when ¢ < 7/w and z > 1 mm. Otherwise the second set
of equilibria defined by (43) (44) (45) (46) is used. It is
important to note that once the controller switches to the
second set of equilibria it can not switch back.

To reiterate, the controller compensates for the energy
loss due to damping by attempting to make the armature
track a perfect cosine wave. This is accomplished through
the use of feed forward, V¢4, and feedback to adjust for
deviations from the desired trajectory, [ 1 22 3 |. As
the armature trajectory approaches a cosine wave the impact
velocity tends toward zero (i.e. the velocity of the armature
becomes a sin-wave with zero terminal velocity). Once the
armature is brought near the catching coil, the controller
switches to the second set of equilibria and stabilizes it in
the desired final state.

A discontinuity is created in both the input, u, and the
state, z, due to the switching from one equilibrium set to
the other. This discontinuity does not effect the stability of
the system since the controller renders both sets GAS. Let
us consider the only two possibilities which can occur

1) The discontinuity occurs because the armature has
passed the z = 1 mm boundary before t = m/w.
2) The discontinuity occurs at ¢ = =/w because the
armature has not yet passed z = 1 mm.
In either case the discontinuity must occur and the con-
troller must switch to the 2" set of equilibria defined
by (43) (44) (45) (46). After the switch the system can be
viewed as having initial conditions defined by the values of
the states after the discontinuity. Since the controller can
not switch back to the 1°¢ set of equilibria and the 27¢ set
of equilibria is GAS, we conclude that the system is GAS
despite the presence of the discontinuity.

V. OBSERVER DESIGN

The feedback designed in Sec. Il is implemented using

1) An eddy current sensor to measure the position of the
armature.

2) A current sensor to measure the current in the catching
coil.

3) A nonlinear observer to estimate the armature velocity.

As described in Sec. 11, an eddy current sensor mounted on
the rear of the EVA detects the position of the armature
by measuring changes in the magnetic field caused by the
motion of the sensor target. The magnetic flux is determined
through the relationship

2kt
= 48
ky + 2 (48)
where 7 is the measured current in the magnetic coil.
The observer is then implemented as
dz
— = ©v+T z 49
pr 1+ 7T (2,2) (49)
dv 1 ~ N ~
E = E(ks (l_z) —b’U)+F2 ()\,Z,Z), (50)
where
Ty(2,2) = g1(2-72) (51)
L(A#d) = -2 hg(-7). 6D
2 (A%, 2 = m 4k, g2\ —z).

Computing the error dynamics, e = [ r-z ]
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dt | e2 -
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A
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The gains g; and go are selected based on a Kalman filter
of (4,,C,) to achieve the desired performance.

VI. EXPERIMENTAL RESULTS

Experimental results obtained using the nonlinear con-
troller are given in Table I and Fig. 2. As seen the controller
does indeed stabilize the armature against the magnetic coil
while achieving a mean impact velocity of 0.12 m/s. The
switch from the first equilibrium set to the second is seen
at approximately 4.0 ms by the discontinuity in the input
voltage. It is important to note that the real input to the
system is a duty cycle command to the PWM drivers equal
to the commanded voltage shown in Fig. 2 divided by the
supply voltage of 180 V.

TABLE |
STATISTICAL RESULTS FOR THE GAS NONLINEAR CONTROLLER.

Impact Velocity
Mean 0.12 m/s
o 0.07 m/s
Max 0.32 m/s
Min 0.04 m/s

In order to show stability experimentally the controller
drives the system to a constant equilibrium corresponding
to the armature hovering 2.0 mm away from the catching
coil, Fig. 3. Thereby stabilizing the armature away from
the physical constraints, i.e. the magnetic coils. As proven
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Fig. 2. Experimental results achieved using the GAS nonlinear controller.

in [15] all equilibrium points less than gl mm (approximately
2.6 mm) away from the catching coil are open loop unstable.
Hovering the armature often is not practical from a power
consumption point of view, but may be advantageous under
certain engine conditions or in other applications/systems that
have similar dynamics to the EVA.

Position (mm)

0 5 10 15 20 25
Time (ms)
Fig. 3. Stabilizing the armature 2.0 mm away from the catching coil.
VII. SUMMARY

This paper has presented a controller which renders the
electromechanical valve actuator GAS without assuming
linearity. Stability is both proven mathematically and shown
experimentally. Future work will focus on improving the
performance of the system through careful selection of the
Lyapunov function as well as cycle to cycle based compen-
sation [5], [10], [14]. In addition sensitivity to parameters
and robustness issues will be investigated.

VIII. REFERENCES
[1] S. Butzmann, J. Melbert, and A. Kock, “Sensor-less

control of electromagnetic actuators for variable valve
train,” SAE 2000-01-1225.

[2] N. Cheung, K. Lim, and M. Rahman, “Modeling a
linear and limited travel solenoid,” Proceedings of the
IECON, pp. 1567-1572, 1993.

[3] K. Hatano, K. Lida, H. Higashi, and S. Murata, “De-
velopment of a new multi-mode variable valve timing
engine,” SAE 930878.

[4] R. Henry and B. Lequesne, “A novel, fully flexible,
electro-mechanical engine valve actuation system,” SAE
970249.

[5] W. Hoffmann, K. Peterson, and A. Stefanopoulou,
“Iterative learning control for soft landing of elec-
tromechanical valve actuator in camless engines,” |IEEE
Transactions on Control Systems Technology, vol. 11,
no. 2, pp. 174-184, March 2003.

[6] H. Khalil, Nonlinear Systems, 2nd ed.
1996.

[7] T. Leone, E. Christenson, and R. Stein, “Comparison of
variable camshaft timing strategies at part load,” SAE
960584.

[8] M. Levin and M. Schechter, “Camless engine,” SAE
960581.

[9] M. Matsuki, K. Nakano, T. Amemiya, Y. Tanabe,
D. Shimizu, and I. Ochmura, “Development of a lean
burn engine with a variable valve timing mechanism,”
SAE 960583.

[10] K. Peterson, A. Stefanopoulou, Y. Wang, and M. Hagh-
gooie, “Nonlinear self-tuning control for soft landing
of an electromechanical valve actuator,” Proceedings of
2002 IFAC on Mechatronics, pp. 207-212, Nov 2002.

[11] K. Peterson, A. Stefanopoulou, Y. Wang, and T. Megli,
“Output observer based feedback for soft landing of
electromechanical camless valvetrain actuator,” Pro-
ceedings of 2002 ACC, pp. 1413-1418, May 2002.

[12] E. Sontag, “A universal construction of artstein’s the-
orem on nonlinear stabilization,” Systems and Control
Letters, vol. 13, no. 2, pp. 117-123, 1989.

[13] R. Stein, K. Galietti, and T. Leone, “Dual equal vct-
a variable camshaft timing strategy for improved fuel
economy and emissions,” SAE 950975.

[14] C. Tai, A. Stubbs, and T. Tsao, “Modeling and con-
troller design of an electromagnetic engine valve,”
Proceedings American Control Conference, pp. 2890-
2895, June 2001.

[15] C. Tai and T. Tsao, “Control of an electromechanical
camless valve actuator,” Proceedings American Control
Conference, May 2002.

[16] Y. Wang, T. Megli, M. Haghgooie, K. Peterson, and
A. Stefanopoulou, “Modeling and control of electrome-
chanical valve actuator,” SAE 2002-01-1106.

[17] C. Weddle and D. Leo, “Embedded actuation systems
for camless engines,” Proceedings of Ninth Interna-
tional Conference on Adaptive Sructures and Technolo-
gies, October 1998.

Prentice Hall,



