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Optimal Power Control of Hybrid Fuel Cell Systems
for an Accelerated System Warm-Up

Eric A. Müller, Anna G. Stefanopoulou, Member, IEEE, and Lino Guzzella, Senior Member, IEEE

Abstract—Key technical challenges in hybrid fuel cell power
system applications are the power management and the thermal
control. In this paper, a charge-sustaining supervisory power
controller is developed, which minimizes the warm-up duration of
a fuel cell/battery hybrid power system by optimally controlling
the power split between the fuel cell system and the battery, as
well as the operation of an auxiliary heater. The controller is
implemented as a model-predictive feedback law. First, a con-
trol-oriented, mathematical model of the system is established and
partially validated with experimental data. An optimal control
problem is then stated, and from the necessary conditions of
Pontryagin’s minimum principle a solution is derived. The oper-
ation of the controller is demonstrated in the simulation, and the
controller’s functionality is analyzed in detail. As the controller
has a feedback structure and as it requires only low computing
power, it is adequate for an on-board, real-time application.

Index Terms—Feedback control, fuel cell system, mathematical
modeling, power management, system warm-up, time-optimal
control.

I. INTRODUCTION

FUEL CELL systems are considered to be an alternative
power source for automotive propulsion, residential power

systems, portable electricity generation, or back-up power sup-
plies, due to their clean and energy-efficient mode of operation.
The low operating temperature characteristics, the simple struc-
ture, and their ability to quickly respond to load changes make
the polymer electrolyte membrane (PEM) fuel cells preferable
for applications characterized by highly dynamic operating con-
ditions. In most applications, a minimization of the time needed
to warm up the fuel cell system is particularly important. For ex-
ample, customers of fuel cell vehicles will expect to start the ve-
hicle and drive away immediately. However, even for low-tem-
perature fuel cell systems it is a critical task to overcome the
transient power limitations during warm-up (e.g., due to water
flooding in the gas diffusion layers or reduced fuel cell effi-
ciency). A popular solution to this problem is the system hy-
bridization. The basic idea of a hybrid setup is to combine the
primary energy conversion device (the fuel cell system) with
an energy storage system, such as an electrochemical battery or
supercapacitors. In the case of a cold start, the energy storage
system can be used to guarantee the power output demanded

Manuscript received February 6, 2006; revised August 31, 2006. Manuscript
received in final form October 2, 2006. Recommended by Associate Editor D.
E. Rivera.

E. A. Müller and L. Guzzella are with the Measurement and Control Lab-
oratory, ETH Zurich, 8092 Zurich, Switzerland (e-mail: mueller@imrt.mavt.
ethz.ch; guzzella@imrt.mavt.ethz.ch).

A. G. Stefanopoulou is with the Mechanical Engineering Department,
University of Michigan, Ann Arbor, MI 48109-2121 USA (e-mail: annastef@
umich.edu).

Digital Object Identifier 10.1109/TCST.2006.886435

throughout this temperature-transient phase and, preferably in
combination with an auxiliary heating device, to accelerate the
system warm-up.

A system hybridization is accompanied by the question of
an appropriate supervisory power management. Compared with
a power system without energy storage, the hybridization cre-
ates an additional degree of freedom in the control and, thus,
offers an opportunity to optimize the system performance. If the
fuel cell system is equipped with an auxiliary coolant heater to
enable an additionally accelerated warm-up, another degree of
freedom requiring adequate control is added.

The importance of a well-designed power control strategy has
been discussed in many publications, and the technical literature
contains a variety of algorithms for the supervisory power man-
agement (see, for example, [1]–[6]). But all of these algorithms
exclude the warm-up issues and, thus, are valid for stationary
temperature conditions only. The objective is, therefore, to find
an optimal power control strategy for the operation of a fuel
cell/battery hybrid power system during the temperature-tran-
sient phase after a cold start. This strategy should be designed
such that the fuel cells overcome the temperature-induced power
limitations and efficiency losses as fast as possible and attain
their operating temperature in minimum time. Simultaneously,
the strategy should enable a charge-sustaining usage of the en-
ergy buffer and pay attention to the operational constraints of
the fuel cells. In order to allow a real-time application of the
strategy, the algorithm must not rely on a priori knowledge of
the future conditions but only on the current system information.
Additionally, for an on-board application the computing power
required must be low.

Within the framework of this project an optimal, predictive
supervisory power controller for the real-time operation of a
fuel cell/battery hybrid system during the system warm-up was
derived. The charge-sustaining power management developed,
minimizes the warm-up duration by optimally controlling the
power split between the fuel cell system and the battery, as well
as, the operation of a coolant heater. The strategy is model-based
and implemented as a feedback controller.

In the first part of this paper, a control-oriented, mathematical
model of a fuel cell/battery hybrid power system is developed.
The scope of the model is the prediction of the temperature dy-
namics of the fuel cell system and the estimation of the state
of charge of the battery. First, an overview of the model struc-
ture is given, followed by the derivation of the model equations.
The model is mainly based on the first principles and considers
the relevant energy and mass flows. Fast dynamics are modeled
quasi-statically and slow dynamics as constants. While the pa-
rameter values of the battery and of the power converter were
assumed, the fuel cell system was calibrated and validated with
experimental data.

1063-6536/$20.00 © 2007 IEEE
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The scope of the second part of this paper is the development
of an optimal power control strategy for the operation of the hy-
brid fuel cell system during the warm-up period. To this end,
a proper mathematical formulation of the problem is derived
first. This formulation includes the definition of a reduced-order
model and the statement of constraints. Applying the minimum
principle of Pontryagin then results in a set of necessary con-
ditions for the optimality of the solution. On the basis of these
conditions, a feedback control law for the power management is
derived. Implementation aspects for the real-time usage of the
control law are then addressed, and the structure of a warm-up
control system, which includes a cooling system controller, is
introduced.

In the third part of this paper, the mode of operation of the
control system derived is analyzed and discussed. The function-
ality of the control system is verified with a simulation of an op-
timally controlled system warm-up. A state-space illustration of
the power control logic is then shown to explain the controller
operation. In order to verify the controller implementation and
the impact of the assumptions made during the controller devel-
opment, the results of a performance benchmark are presented.
Therein, a direct, open-loop optimized solution, which is based
on the equations of the detailed model, is compared with the
feedback controller. Finally, a comparison of the warm-up times
of three alternative system configurations is given to demon-
strate the benefits of a system hybridization.

II. MODEL OF THE HYBRID FUEL CELL POWER SYSTEM

A schematic overview of the fuel cell/battery hybrid power
system considered in this project is shown in Fig. 1(a). The main
elements of the configuration are a fuel cell system (including
the cooling system), a power converter, and an electrochemical
battery. A PEM fuel cell system installed on the test station at
the University of Michigan’s Fuel Cell Control Laboratory, was
used to calibrate and validate the fuel cell system model.1 De-
tailed information on the fuel cell stack and on the instrumen-
tation of the test bench can be found in [7]. The electric load
and the battery are connected in parallel to the main bus of the
power converter. For the current application, a battery was con-
sidered that is composed of a stack of ten 7.2-V modules, with
each consisting of six nickel metal hydride (NiMH) cells. Char-
acteristic parameters of the fuel cell system, the battery, and the
power converter are given in Table I.

According to the setup of the hybrid power system, the model
consists of a power generation subsystem (power section, hu-
midifier, and cooling system) and a power conversion and
storage subsystem (power converter and battery). In Fig. 1(b),
a causality diagram of the model is shown. The controllable
inputs are the desired stack current , the desired air excess
ratio , the coolant mass flow rate2 , as well as the
actuator signals of the heater , and of the fan . The
demanded system output power , the ambient pressure and
temperature and , the inlet temperature of the moist

1Note that the battery and the DC/DC power converter are not part of the
experimental setup.

2Since on the test station the flow rate of the coolant is controlled by a manual
valve, rather than a coolant pump control signal, the coolant flow rate _m , is
used as an input signal.

Fig. 1. Fuel cell/battery hybrid power system. (a) Schematic of the fuel cell/bat-
tery hybrid power system with fuel cell system, power converter, and battery.
The fuel cell system consists of a power section (PS), an integrated humidifica-
tion section (HS), and a cooling system with reservoir (Res), coolant pump (P),
manual valve (MV), heater (Ht), and heat exchanger (HX). (b) Signal flow chart
of the fuel cell/battery hybrid power system model.

air , and the inlet temperature of the moist hydrogen
, are uncontrollable but measurable input signals. The

main output signals of the system are the state of charge of
the battery SoC, the battery current , and the lumped
temperatures , , and of the power section, the
humidification section, and the cooling system, respectively.
Further output signals are the local coolant temperatures at
the power section outlet , at the humidifier outlet

, and at the cooling system outlet (the power section
inlet) . The model assumes high-level supervisory
power control and idealized low-level control for each compo-
nent. This assumption is reasonable due to a separation of time
scales. It implies that and .

A. Model of the Fuel Cell System

The power generation subsystem is the major element of the
model. It includes the thermal dynamics of the power section, of
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TABLE I
SPECIFICATIONS OF THE HYBRID FUEL CELL POWER SYSTEM

the humidification section, and of the cooling system, the char-
acteristics of the gas channels, the electrochemical characteris-
tics of the fuel cells, as well as the auxiliaries.

1) Thermal Dynamics: In order to capture the temperature
dynamics of the system, the first law of thermodynamics is ap-
plied to three separate control volumes: one for the power sec-
tion, one for the humidification section, and one for the cooling
system. Kinetic and potential energies of the mass streams are
neglected, as they are small compared with the other contribu-
tions.

For the power section, the energy balance yields the following
differential equation:

(1)

The enthalpy flow rate differences of the purged hydrogen and
the leaking hydrogen are not considered, as the impact of the
purging and leakage on the thermal dynamics is negligibly small
[7]. In the following, the relevant contributions to the energy
balance (1) are detailed.

The combination of hydrogen and oxygen to form liquid
product water is an exothermic chemical reaction. The energy
flow rate of this reaction is calculated as the difference between
the enthalpy flow rates of formation of the reactants (hydrogen
and oxygen) and the enthalpy flow rate of formation of the
product (liquid water) at the inlet and outlet, respectively

(2)

where denotes the mass-specific enthalpies of formation with
respect to a reference state. The enthalpy differences from the
present state to the reference state depend upon the tempera-
tures of the reactants and the product. The second term on the
right side of (1) stands for the electric output power. The electric

power delivered by the system equals the product of the stack
voltage and the current drawn

(3)

By determining the rate at which water evaporates (or con-
denses) inside the power section , from the temper-
atures, the pressures, and the relative humidities at the cathode
inlet and the cathode outlet, respectively, the enthalpy flow rate
due to evaporation (or condensation) can be calculated

(4)

The parameter denotes the specific evaporation en-
thalpy, which is a function of temperature. In order to determine
the third term, which is the enthalpy flow rate of the moist air,
excluding the reacting oxygen, the Dalton model is used. Hence,
it is assumed that the enthalpy of the gas mixture can be evalu-
ated as the sum of the enthalpies of the components

(5)

These follow from the respective mass flow rates and the tem-
perature difference between cathode inlet and cathode outlet.
The contribution of the coolant to the energy balance of the
power section follows from the difference of the enthalpy flow
rates between power section inlet (cooling system outlet) and
power section outlet

(6)

The calculation of the coolant temperature at the power section
outlet , is based on a quasistatic convective heat transfer
model for a fully developed, laminar flow in a tube of rectan-
gular cross section and uniform wall temperature. The expres-
sion for this temperature is given as

(7)
The remaining terms in (1) describe the heat flows. As the tem-
peratures of the fuel cell stack and its surroundings differ, heat is
lost through the stack’s surface. The heat transfer to the ambient
consists of a convective and a radiative heat flow. Additionally,
heat is transferred by conduction between the thermal reservoir
of the power section and the thermal reservoir of the humidi-
fication section. The conductive heat transfer is assumed to be
proportional to the conductivity, the contact area, and the tem-
perature difference.

Similarly to (1), the energy balance for the humidification
section yields a differential equation for the lumped humidifier
temperature , as

(8)

Most terms are built up similarly to the corresponding terms of
the power section. However, in contrast to (1), the term for the
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reaction enthalpy rate and the term for the electric power output
drop out.

The cooling system was lumped into one thermal mass of uni-
form temperature, and the variability of the total coolant mass
due to evaporation and refill was neglected. Consequently, the
differential equation defining the cooling system temperature
dynamics is given as

(9)

where is a lumped temperature. If the reduction of the
coolant mass flow rate in the humidification section due to
evaporation is neglected, the first term on the right side of (9)
amounts to

(10)

In view of the pipe volume, a time lag has to be considered
for the temperature at the cooling system outlet. To
simplify matters, this time lag was approximated by a first-order
delay

(11)

with a (variable) time constant of

(12)

The thermal power of the electric heater is assumed to be lin-
early dependent on the control signal

(13)

For the heat rejected at the heat exchanger, a convective transfer
of heat is assumed

(14)

In order to relate the convection characteristic of the heat ex-
changer to the fan control signal , an affine approximation
with the coefficients and is used

(15)
2) Gas Channels: A quasistatic, zero-dimensional model of

the gas channels was implemented to provide data on the tem-
peratures, the pressures, the relative humidities, and the mass
flow rates of the gases. The mass storage effects in the channels
are not considered, as the gas dynamics are much faster than
the thermal dynamics of the system.3 Water transport perpen-
dicular to the membrane and water accumulation inside the cells
(flooding) are not captured with this model either. Showing the
model equations of the gas channels would exceed the scope of
this paper.

3) Fuel Cell Stack Voltage: In order to predict the voltage
output of the fuel cells, a quasistatic4 electrochemical model

3In [8], the time constants are estimated to be in the order of magnitude of
10 s for the gas dynamics and 10 s for the stack temperature dynamics.

4In [8], the time constants of the electrochemistry and of the capacitive el-
ement of the electrode/membrane system are estimated to be in the order of
magnitude of 10 s.

was implemented. In several studies, different voltage models
have been developed. In the present paper, the model of [9]
was adopted, as it is calibrated and experimentally validated
for the fuel cell stack considered in this project. This static
voltage model considers the thermodynamic equilibrium po-
tential , the activation overvoltage , and the ohmic over-
voltage

(16)

Concentration losses are not considered. The overvoltages are
expressed as a combination of physical and empirical relation-
ships. The empirical parameters were determined in [9] using
linear least square regression on fuel cell polarization data. The
following dependencies on operational variables were identi-
fied:

(17)

(18)

(19)

The variable is the current density generated at the mem-
brane surface area, while and are the partial pressures
of oxygen in the cathode and hydrogen in the anode, respec-
tively. The variable denotes the membrane humidity. The
stack voltage is defined as the sum of the individual cell volt-
ages, which are assumed to be uniform

(20)

Note that due to the system configuration used in the present
study (internal humidification section), the membrane was pre-
sumed to be always fully humidified. However, the extension of
the gas channel model with a membrane humidity model is pos-
sible.

4) Auxiliary Components: For the operation of a fuel cell
system, auxiliary power is needed. The main power consumers
of the fuel cell system investigated are the coolant pump, the air
compressor, and the electrical heater. Since the power consump-
tions of the former two are two to three orders of magnitude
smaller than that of the electrical heater, they were neglected.5

Note that the system investigated is a low-pressure system. The
inclusion of a current-dependent air-compressor load is recom-
mended when dealing with higher-pressure systems. The elec-
tric power of the resistance heater is assumed to be linearly de-
pendent on the control signal

(21)

B. Model of the Power Converter and the Battery

The power converter module determines the additional re-
quired power from the battery or the surplus power supplied to
the battery, respectively, to provide the desired output power

(22)

5According to the correlations for the calculation of auxiliary component
power given in [10], the power input of the coolant pump is estimated to stay
below 20 W, and the power input of the air compressor is assessed to be below
15 W. By contrast, the resistance heater nominally draws approximately 750 W
of electric power.
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The model also allows for negative values of . Negative
power demands may occur during regenerative braking in a hy-
brid vehicle application, for example.

In the battery module, the battery current and the amount of
energy stored are calculated. The level variable of the buffered
energy is the state of charge SoC of the battery. The evaluation
of the state of charge follows as

SoC if
if

(23)

where the parameter denotes the battery capacity and
is the battery coulombic efficiency [11]. By convention, the bat-
tery current is positive in the case of discharge. In order
to avoid damage to the battery, the state of charge has to be
held between a lower and an upper limit of the charge state. A
basic physical model of the battery voltage can be derived
by considering an equivalent circuit of the system [12]. If the
battery is represented by an ideal open-circuit voltage source

SoC in series with an internal resistance SoC ,
the battery voltage results as

SoC SoC (24)

The battery voltage is bounded by a lower and an upper limit.
The open-circuit voltage SoC depends on the battery state
of charge, whereas the internal resistance SoC is a
function of the battery state of charge and additionally distin-
guishes between charging and discharging. Both parameters are
tabulated. The battery current is inferred from the battery power
as

(25)

Since the battery voltage is a function of the battery current, the
latter can only be computed recursively from the battery power.
The influence of temperature on the battery performance was
not taken into consideration for this model. This omission is jus-
tifiable since, in order to maximize performance and lifetime of
the battery packs, in many applications the battery temperature
is held constant by active cooling [13], [14].

C. Parameter Estimation and Model Validation

As the model established is control-oriented and lumped-pa-
rameter, and as the formulation of the equations is mainly based
on the first principles, the model is relatively easy to calibrate.
Where necessary and feasible, parameter values were identified
with measurement data recorded on the test bench. Many param-
eters are geometrical parameters and can, thus, be determined in
a straightforward fashion. Others, such as heat transfer coeffi-
cients, were calculated based on known correlations, and some
parameter values were estimated.

The power generation module was validated against experi-
mental data. In order to be able to estimate the dynamic quality
of the model, the important input signals were varied during the
experiments. Fig. 2(a) shows the stack current , the coolant
mass flow rate , and the heater and fan control signals
and , respectively. The predicted coolant temperatures at
the cooling system outlet , and at the humidifier outlet

Fig. 2. Validation of the fuel cell system model. (a) Input signals (the
remaining inputs of the model were assumed to be constant � � 2,
p � 1:013 bar, T � 25 C, T � 20 C, T � 40 C).
(b) Comparison of experiment and prediction of the coolant temperatures at the
cooling system outlet (top) and at the humidifier outlet (bottom).

, were compared with the corresponding measurement
data to rate the quality of the model. As shown in Fig. 2(b), the
prediction is very accurate. The root-mean-square deviation is
0.9 K for the coolant temperature at the cooling system outlet
and 0.7 K for the coolant temperature at the humidification sec-
tion outlet. The good agreement of the experimental data and the
simulation, even during heavy transients, reveals that the model
derived captures the main static and dynamic properties of the
fuel cell system as expected.

III. DEFINITION OF THE OPTIMAL CONTROL PROBLEM

The formulation of an optimal control problem requires a
mathematical model of the system, the definition of constraints,
and the setup of a performance functional. These elements are
discussed in the following, leading to the statement of the op-
timal control problem.

A. System Dynamics

The fifth-order model derived in the previous section is too
extensive to be used for the derivation of an optimal controller.6

Therefore, a model of reduced complexity is proposed. This re-
duced-order model results from the following simplifications:

6However, it is applied later (Section VI) for the verification of the controller
functionality, for a benchmark analysis, and to investigate various alternative
system configurations.



MÜLLER et al.: OPTIMAL POWER CONTROL OF HYBRID FUEL CELL SYSTEMS FOR AN ACCELERATED SYSTEM WARM-UP 295

• combination of the temperature variables , , ,
and into one lumped state variable describing a
mean system temperature;

• modeling the enthalpy rate of reaction being inde-
pendent of reactant and product temperatures;

• neglect of the enthalpy flow rate difference of the moist
air across the humidification section and of the
enthalpy flow rate difference of the moist excess air across
the power section ;7

• assumption that ;
• removal of the heat exchanger fan input;8

• usage of average (constant) values for the battery open-
circuit voltage and the battery internal resistance.

These simplifications yield a nonlinear, second-order system of
ordinary differential equations

(26a)

SoC (26b)

with the state variables (mean system temperature) and
SoC (state of charge of the battery), and the control variables

(desired stack current) and (heater control signal). The
desired air excess ratio , the output power , the am-
bient pressure , and the ambient temperature , are ex-
ternal influences (disturbances), since they are not controllable
(applies for , , and ) or are assumed to be con-
trolled on a different level of the control hierarchy (applies for

). Note that the coolant mass flow rate does not enter
the system equations of the reduced-order model. The equations
of the reduced-order model are explicitly given in Appendix I
and are briefly discussed in the following. Subsequently, the re-
duced-order model is contrasted with the detailed model to pro-
vide a verification of the simplifications previously introduced.

1) Temperature Dynamics: The differential equation of the
mean system temperature results from a combination of
(1), (8), (9), and (11), and the consideration of the simplifica-
tions stated before. It is linear in the control variable but
nonlinear in the control variable and the state variable

. Additionally, it depends on the air excess ratio and
the ambient pressure and temperature and . Please
compare Appendix I for details. Most parameters of the re-
duced-order model follow directly from the parameters of the
detailed model. Specifically, the lumped heat transfer parame-
ters of the convective and of the radiative heat losses are cal-
culated by summation from the heat transfer parameters of the
components. However, the parameter cannot be de-
duced directly from the thermal capacities of the components,
as the dynamics of are influenced by the time delay (11)
as well. Therefore, the thermal capacity was identi-
fied by parameter estimation.

2) Battery State of Charge: The state of charge of the bat-
tery is determined by (23) as a function of the battery current.
By virtue of an approximation of the open-circuit voltage and of
the internal resistance through their average values, the implicit

7This simplification is motivated by the results presented in [7].
8This represents no restriction, as the fan can be assumed to be off during the

entire warm-up period for obvious reasons.

Fig. 3. Verification of the reduced-order model. (a) Input signals (the remaining
inputs were assumed to be constant, u � 0, P � 500 W, p �

1:013 bar, T � 25 C, T � 20 C, T � 40 C). (b) Com-
parison of the detailed model and the reduced-order model for the mean system
temperature (top) and the state of charge (bottom).

relation for the battery current [following from (24) and (25)]
can be solved. The battery power follows from (22) and is
a direct function of , , and . Via the stack voltage,
it additionally depends on , , and . Therefore,
the differential equation for the battery state of charge is a non-
linear function of the state variable and the control vari-
able , and depends linearly on the control variable . For
details, please see Appendix I.

3) Verification of the Reduced-Order Model: In Fig. 3(b), the
reduced-order model is contrasted with the detailed model for a
set of arbitrarily chosen, variable input signals, which are shown
in Fig. 3(a). A weighted mean temperature

(27)

was defined as a reference signal for the temperature . As
the results demonstrate, the reduced-order model can be applied
to accurately predict the mean temperature of the system and the
state of charge of the battery. This verifies that the simplifica-
tions introduced before are reasonable. Additionally, the results
confirm that the coolant mass flow rate has no influence on the
mean system temperature (but only on the spreading of the com-
ponent temperatures).
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B. Constraints

The optimal control problem formulation involves the defi-
nition of a set of admissible inputs and a requirement on the
output. These elements are translated into two kinds of con-
straints: magnitude constraints on the control variables and ter-
minal state constraints (i.e., constraints on the state variables at
terminal time). First, the magnitude constraints are discussed,
then the constraints on the terminal state are derived.

The warm-up of a fuel cell system is susceptible to being neg-
atively affected by electrode water flooding, which reduces the
effective fuel cell area. Hence, in order to optimize the warm-up
phase, the accumulation of liquid water inside the cells has to be
kept low. This can be achieved by limiting the stack current to
a maximum value

(28)

As the system temperature and the reactant mass flow rates sig-
nificantly affect the water removal, the stack current restriction
was defined as a function of the variables and

(29)

To simplify matters, the relation (28) is modified by introducing
a normalized variable for the stack current control signal

(30)

to

(31)

According to the control variable’s definition (13), the magni-
tude constraint on the heater control signal is given as

(32)

From the question of “where do we want our system to go”
it is possible to derive the constraints on the state variables at
terminal time. The aim was formulated that the power manage-
ment strategy should be charge-sustaining over the warm-up pe-
riod. A charge-sustaining operation of the hybrid power system
can be guaranteed by enforcing the value of the battery’s state
of charge at terminal time SoC to be equal or more than
the initial state of charge. However, this constraint would not
prevent high state of charge values, which are usually not de-
sired (consider, for example, a hybrid vehicle application where
the battery should allow to store regenerative braking energy).
Therefore, an equality constraint SoC SoC was applied
to predefine the value of the battery’s state of charge at terminal
time. The terminal time is unspecified and follows from the
evolution of the temperature trajectory: when the mean system
temperature reaches a predefined operating temperature
value the warm-up phase is defined to be terminated. Re-
capitulating, the terminal state constraints are

(33a)

SoC SoC (33b)

where the terminal time is free.
The minimum/maximum SoC and voltage constraints in-

duced by the battery are assumed not to be violated during the
warm-up phase and, thus, are not considered explicitly for the
optimization. Of course, the validity of this assumption has to
be verified a posteriori.

C. Performance Index

The definition of the performance index follows from the
question of “how to reach the terminal state.” The nominal
system temperature should be attained as fast as possible in
order to overcome the temperature-induced limitation of per-
formance quickly. Accordingly, the performance index to be
minimized was defined as the duration of the warm-up

free (34)

D. Optimal Control Problem

Prior to the statement of the optimal control problem, the fol-
lowing substitutions are introduced for the state vector, the con-
trol vector, and the vector of disturbances, in order to abbreviate
the notation during the subsequent part:

SoC (35a)

(35b)

(35c)

The components of the signal are generally not known
in advance. For the formulation of the optimal control problem
they are assumed to be constant

(36)

Later, the disturbances are considered as additional controller
inputs. The assumption (36) is reasonable due to the fact that
rather than the fluctuations, mainly the average values of the
external influences are relevant for the optimal control problem.9

The optimal control problem, thus, may be stated as follows.
OCP 1: Given the system

(37a)
where is a constant parameter vector. Let be a given initial
state of the system and be a specified terminal state. Find an
admissible control vector with

(37b)

such that the following conditions are met:

(37c)

(37d)

(37e)

9Consider that the impact on the battery state of charge and on the engine
temperature of the disturbances is damped by the battery capacity and by the
thermal mass of the system, respectively.



MÜLLER et al.: OPTIMAL POWER CONTROL OF HYBRID FUEL CELL SYSTEMS FOR AN ACCELERATED SYSTEM WARM-UP 297

and the performance index

free (37f)

is minimized.
The present problem constitutes a time-invariant, minimum-

time optimal control problem with a predefined terminal state at
an unspecified terminal time and with magnitude constraints on
the control variables. In (37d) the function repre-
sents the system dynamics from (26a) and (26b). The condition
(37e) constrains the components of the state vector at terminal
time to the prescribed target state SoC . The
Hamiltonian function associ-
ated with this optimal control problem is given by

(38)
where denotes the costate vector and
is a constant introduced to handle pathological cases.

IV. SOLUTION OF THE OPTIMAL CONTROL PROBLEM

For the solution of the optimal control problem OCP 1, the
following is assumed:

• an optimal solution exists;
• the optimal control problem is not pathological (thus, we

set );
• the optimal control problem is normal (hence, that the op-

timal solution contains no singular arc).
Some remarks on the existence of an optimal solution and on
singular solutions follow (Section IV-C).

A. Necessary Conditions for the Optimality of a Solution

The application of the minimum principle yields the fol-
lowing statement of necessary conditions [15], [16].

Necessary Conditions 1: If is an optimal
control (for the optimal control problem OCP 1), the following
necessary conditions hold:

(39a)

(39b)

(39c)

(39d)

(39e)

(39f)

The pathological case, where , was excluded by assump-
tion.

In the following, the explicit statement of the time depen-
dency is omitted for the sake of brevity.

B. Derivation of a Feedback Control Law

Next, the derivation of a feedback control law is presented.
This derivation consists of two consecutive parts. As a first step,
the -minimal control is derived from the condition (39e) for
the Hamiltonian function affinely approximated in the control.10

This preliminary control law relates the control signal to the
state and to the costate . In a second step, two equations are
deduced from the necessary conditions (39a)–(d) and (f) in order
to eliminate the costate vector.

1) -Minimal Control: The Hamiltonian function is affinely
approximated to avoid the need for any second-order condition
during the minimization. Physically interpreted, this step cor-
responds to affine approximations of the equation for the stack
power and of the equation for the battery
current , where the coulombic efficiency of
the battery is neglected. [Compare (38) and the equations of the
reduced-order model given in Appendix I.] The affine approxi-
mation of the Hamiltonian in the control vector , yields

(40)

where , , etc. are aggregated system coeffi-
cients. If (40) is inserted into the condition (39e) for the global
minimization of the Hamiltonian, and if equal terms on both
sides are cancelled, the (approximative) -minimal control can
be expressed as

if
if
if

for

(41a)
In (41a), the following substitutions for the coefficients of the
control components were introduced (switching functions):

(41b)

(41c)

Since the optimal control problem was assumed to be normal, by
definition, the switching functions can be zero only at isolated
instants of time [15]. Hence, the time-optimal controls and

consist of piecewise constant functions (of value 0 or 1) with
simple jumps, i.e., they are bang-bang.

2) Elimination of the Costate Vector: Under the restriction

(42)

the necessary condition (39f) can be transformed into an equa-
tion for the costate component . If the affine Hamiltonian (40)
is considered, this equation follows as

(43)

10The affine approximation of the Hamiltonian entails a suboptimality of the
solution.
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The substitution of (43) into the switching functions (41b) and
(41c) eliminates the first costate component and, after being ex-
panded with the denominator of , yields the following modi-
fied control law:

if
if

if

for

(44a)
with the modified switching functions

(44b)

(44c)

In (44b) and (c), the existing coefficients , ,
etc. were aggregated into the new coefficients ,

, and , to shorten the notation. Further,
it is presumed that

(45)

to prevent any sign changes in the conditions of the control law
(44a). This restriction is necessary due to the previous expan-
sion with the denominator of . The implicit relations

and following from
(44a)–(c) can uniquely be solved to determine and , as can
be shown. Details may be found in Appendix II. Consequently,
the control law can be expressed as

(46)

From the necessary condition (39d) it is deduced that the costate
has to be constant on an optimal trajectory, as does not

emerge in the Hamiltonian

(47)

By integrating the system dynamics (39a) and considering the
boundary constraints (39b) and (c), the following necessary con-
ditions for the optimal trajectories are obtained:

(48a)

(48b)

Note that the second component of the state (which corresponds
to the state of charge of the battery) does not appear in nor in

. The conditions (48a) and (b) can, therefore, be transformed
to

(49)

by substituting

(50)

into (48b), adapting the integration limits, and replacing
with the control law (46). The substitution (50) holds for

. The integral equation (49) is the desired
relation required to remove the second costate component from
the control law (46). It implicitly defines the optimal (constant)
value of the second costate component

(51)

Substituting (51) into (46) eventually yields the feedback con-
trol law

(52)

The implicit equation (49) for guarantees that the terminal
state constraints are met. It is important to note that (49) is not
based upon the affine approximation of the Hamiltonian.

C. Remarks Concerning the Existence and Uniqueness of an
Optimal Control and the Existence of Singular Solutions

The existence of an optimal control for all fixed (including
) implies the existence of an optimal control when the

terminal time is left unspecified [15]. However, the question
about the existence of optimal controls from any initial state to
any target set is extremely difficult to answer in general. Sim-
ilarly, the proper treatment of singular solutions is very com-
plex. Therefore, motivated from an engineering point of view,
the control law derived was extended with a heuristic control
law. The heuristic control law comes into operation if no zero

of the integral equation (49) is found under the restriction
. The possible ex-

istence of multiple extremal or optimal solutions cannot be ex-
cluded, as (49) may have multiple zeros. The heuristic extension
of the control law is introduced in Section V.

V. WARM-UP CONTROL SYSTEM

While in Section IV a feedback control law for the operation
of the fuel cell stack and the coolant heater was derived, this
section details how this supervisory power control law is aug-
mented to an implementable controller. Together with a cooling
system controller, the supervisory power controller constitutes
a warm-up control system. The warm-up controller operates the
hybrid power system during the temperature-transient phase,
where . After completion of the warm-up, the
control has to be transferred to an ordinary power management
strategy (sequential control).

A. Structure of the Feedback Control System

A signal flow chart of the control system is depicted in Fig. 4
The control system optimizes the system warm-up online. The
power controller computes the desired stack current and
the heater control signal . Feedback signals of this controller
are the mean system temperature and the state of charge
of the battery. The mean system temperature can be obtained
from measurements of the coolant temperatures, according to
the definition (27), whereas the state of charge has to be inferred
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Fig. 4. Signal flow chart of the warm-up control system. The control system
features a supervisory power controller and a cooling system controller.

through estimation. The details on the process of estimating the
state of charge of a battery lie outside the scope of this paper
and are, therefore, not considered here. For reference, see for
example [17] and [18]. Aside from the feedback signals, the
desired air excess ratio , the output power , and the
ambient pressure and temperature and , appear as
controller inputs. The desired air excess ratio is available from
the air control system, whereas the disturbances , ,
and have to be inferred from measurements. The coolant
mass flow rate and the control signal of the fan are
regulated by the cooling system controller. The feedback signal
of the cooling system controller is the difference of the coolant
temperatures across the power section,

.

B. Supervisory Power Controller

The supervisory power controller is based upon the control
strategy (52), which constitutes a model-predictive feedback
law and operates according to the iteration scheme outlined in
Fig. 5. It is assumed to work with a sample time of and
to require a computing time of . In the following, the main
parts of the control algorithm of Fig. 5 are detailed.

1) Input Signal Processing: The control law (52) determines
the control signals under the assumption that the disturbance
signals (35c) are constant on their average values. In practice,
these signals are not known a priori. Therefore, aside from the
state feedback signals, the supervisory power controller has to
consider the signals , , , and , as well, in
order to adapt the predicted future average values of the distur-
bances. Since the ambient conditions and , and the
air excess ratio , usually do not change fast, they can be
directly used as estimates for their average future values. How-
ever, the demanded output power can fluctuate rapidly.
The prediction of the average future power demand is, therefore,
inferred from the past load conditions. To this end, the power
signal is low-pass filtered (with the time constant ) at the
input of the controller.

2) Iterative Calculation of : As the equation (49) for the
costate component is an implicit equation, its solution is

Fig. 5. Iteration scheme of the supervisory power controller.

found iteratively. The iteration terminates if a given function
tolerance (corresponding to a tolerance in the terminal state of
charge) is met and aborts if a maximum number of iterations is
reached, or if the constraint ,
is violated for any . If the algorithm fails in finding
a solution, the controller switches to the heuristic control law.

The optimal value of the costate component would be
constant for an entire warm-up if the real system behaved ex-
actly like the model. In practice, obviously, this value has to be
adapted while the warm-up proceeds. As an initial guess for ,
the value of the previous iteration is taken at each step.

3) Calculation of the Control Signals: If a value for
is found, the control signals are determined according to the
equations of Appendix II. Alternatively, if no value for is
available, the controls are defined by heuristic rules. The reason
for the choice of the heuristic rules becomes obvious later
(Section VI-D), when the control law is analyzed in the state
space.
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C. Cooling System Controller

The cooling system controller determines the operation of the
fan and the rate of coolant flowing. During the warm-up, the fan
is off

(53)

Upon completion of the warm-up, the fan has to be operated
to hold the desired system temperature. The coolant flow rate

is controlled such as to avoid large temperature gradients
within the fuel cell stack. This guarantees a high conversion
efficiency of the fuel cells on the one hand and avoids damage to
the stack through mechanical stress or local temperature peaks,
on the other hand. The coolant flow controller was realized as a
PI controller with an artificial output saturation and an anti-reset
windup addition. The artificial output saturation

(54)

ensures that the controller keeps a minimum flow rate during
low power conditions. During high power demands, the coolant
flow rate is increased such that a maximally allowed temperature
difference over the power section (the set-point of the controller)

, is not (severely) exceeded.

D. Controller Settings and Application Parameters

The operation of the power controller is defined by the values
of the target temperature , the target state of charge of the
battery SoC , the stack current constraint ,
the input filter time constant , and the sample time . The
cooling system controller, on the other hand, relies on the pa-
rameters of the minimum coolant mass flow rate , and the
maximum temperature gap across the power section .
Aside from the controller settings, the warm-up controller also
includes the parameters of the reduced-order system model.

VI. RESULTS AND DISCUSSION

As a basis for the subsequent evaluation some preliminary
definitions are required. First, nominal operating conditions and
controller settings are defined. Then, a direct, open-loop opti-
mization method is introduced. Open-loop optimized solutions
were used for two purposes. For one, they served as performance
benchmarks for the feedback controller. Second, the direct op-
timization method was applied to quantify the influence on the
warm-up time of the hybridization and of the extension of the
fuel cell system with an auxiliary heater.

A. Controller Settings and Nominal Operating Conditions

The nominal operating conditions and controller settings are
given in Table II. Two cases are distinguished. For both cases,
the desired terminal temperature of the fuel cell system (the
temperature at which the warm-up is defined to be completed)
is set to the lower bound of the preferred fuel cell operating
temperature range, namely C. A typical value of
SoC is used to predefine the terminal state of charge
of the battery. For the maximum stack current, a variable upper
limit, , is defined for case 1 to take
into account cold-start transient power limitations. A constant

TABLE II
DEFINITION OF CONTROLLER SETTINGS AND

NOMINAL OPERATING CONDITIONS

value of A is specified for case 2.11 In the present
project, the variable current limit was chosen arbitrarily. How-
ever, a more sophisticated approach, for instance, based on a
model of the membrane and the gas diffusion layers, could al-
ternatively be applied.12 The time constant of the input filter is
defined as s. It can be shown that the choice of the
time constant is not critical, i.e., over a broad range of values the
elapsed warm-up time is only slightly affected by . For the
sample time of the power controller, a value of s is as-
sumed. Some comments on the choice of the sample time follow
in Section VI-C. The mass flow rate of the coolant is assumed
to be controlled by the cooling system controller for case 1 and
is set to g/s for case 2. The parameter values of the
cooling system controller are defined as C for
the maximum temperature gap over the power section, and as

g/s for the minimum coolant mass flow rate, re-
spectively. The nominal values of the input signals represent
typical operating conditions of the power system. All signals
are constant, except for the power demand of case 2, which is
time-variant. The system is initialized as follows: the tempera-
ture variables are initialized with ambient temperature, whereas
the initial condition of the battery charge is set to SoC .

B. Direct Open-Loop Optimization

Besides the development of a feedback controller, the op-
timal control problem considered was also solved by a direct
trajectory optimization method in an open-loop manner, based
on the detailed, fifth-order model of the system. Therefore, the
problem of minimizing the warm-up time was implemented in
GESOP, a software system for numerical trajectory optimization
of dynamic systems [21]. In order to discretize the optimal con-
trol problem and to transcribe it into a parametrized, finite-di-

11This value for the maximum stack current corresponds to a maximum cur-
rent density of 0.5 A/cm .

12Compare, for example, [19] and [20].
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mensional optimization problem, the multiple shooting method
PROMIS13 was used. The standard nonlinear program solver
SLLSQP14 was then applied to solve the resulting algebraic opti-
mization problems for various operating conditions and param-
eter values. The control signals were approximated by piece-
wise linear functions. For the problem at hand, the number of
corresponding subintervals was set to 12, resulting in 11 in-
ternal nodes whose positions, in turn, are subject to optimiza-
tion. Additional control refinement points were defined where
necessary.

C. Simulation of an Optimally Controlled System Warm-Up
Under Variable Operating Conditions

In order to demonstrate the full functionality of the feedback
control system, a simulated warm-up under variable power de-
mands was analyzed. The simulation is based on the detailed
model of the system. For this analysis, the nominal controller
settings and operating values of case 1 (Table II) were used. In
Fig. 6(a) the variable power demand and the low-pass-fil-
tered power signal , are displayed. The first and the second
subplots of Fig. 6(b) show the output signals of the supervi-
sory power controller and , respectively. The transient
power limitation of the current is indicated by a dotted line. The
heater signal , is selected between 0 (off) and 1 (on with
nominal power). In the third subplot, the mean system temper-
ature and the component temperatures , , and

are shown. The state of charge of the battery SOC is shown
in the fourth graph. The terminal conditions C and
SoC , are each identified by a triangle. In the fifth subplot
the battery current , is plotted. Positive values mean dis-
charging of the battery, negative values indicate charging. The
lowermost subplot of Fig. 6(b) shows the control signal of
the cooling system controller and the feedback signal .

At the beginning of the warm-up, the heater is on and the
power is drawn from the battery. Consequently, the tempera-
ture of the system (specifically the temperature of the cooling
system) rises and the state of charge of the battery decreases.
After approximately 190 s the fuel cell stack is turned on to gen-
erate the maximum allowed electric power. The surplus power
recharges the battery and the waste heat of the stack causes an
increased heat flow to the system. After an elapsed time of ap-
proximately 300 s, the heater is switched off. Towards the end
of the warm-up, the heater is switched on again, and the con-
troller toggles the control signals to compensate for prediction
errors.15 The warm-up is defined to be completed when the ter-
minal temperature is reached. In the sample simulation shown
in Fig. 6, a warm-up time of 438 s results (indicated by a dotted
vertical line). During the entire warm-up phase, the power
controller keeps the fuel cell stack within the operating limits
(i.e., the stack current does not exceed the variable current con-
straint). At the end of the warm-up phase the predefined state
of charge of the battery is met exactly, although the controller
does not know the power profile a priori.

13Parametrized trajectory optimization by direct multiple shooting.
14Sequential linear least squares quadratic programming.
15Generally, two possible sources of prediction errors arise. First, a model

is always only an idealized representation of the real system. Second, the time
dependent evolution of the external signals are (usually) not known in advance.

Fig. 6. Simulation results of an optimally controlled system warm-up under
nominal operating conditions (case 1 of Table II). (a) Power demand and low-
pass filtered power signal; (b) control signals and resulting system trajectory.

The cooling system controller regulates the coolant mass flow
rate as expected. When the heat generation inside the power sec-
tion is low, the coolant mass flow rate is at its minimum value
(10 g/s). Once the maximum tolerated temperature difference
(10 C) is reached, the controller increases the mass flow rate ac-
cordingly, in order to maintain the conditions. During this phase,
temperature overshoots of less than 0.2 C are observed. Im-
plemented in Matlab 6.5.1 and processed on an Intel Pentium
III, 1.2-GHz Mobile CPU, the maximum computing time that
is needed for the power controller to determine its next move is
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Fig. 7. State-plane illustration of the power controller.

1.51 s, in contrast to a sample time of s. The average
computing time amounts to 0.16 s.

D. Illustration of the Supervisory Power Controller
in the State Space

In this section, the operation of the supervisory power con-
troller is analyzed in the state space. If constant operating con-
ditions are assumed, there are sets or regions of the state space
over which the control signals are constant (0 or 1), since the
control signals of the power controller are piecewise constant
functions of time, but also functions of the states. In a 2-D state
space, these sets are separated by switch curves. It is the equa-
tion and shape of these switch curves that determine the control
actions. A schematic of the power controller’s switch curves for
typical conditions is sketched in Fig. 7. Note that the exact shape
and position of the switch curves varies with the operating con-
ditions (e.g., the value of ) and the controller settings (the
target state vector and the stack current constraint). The switch
curve is the locus of all points which can be
forced to the target state by the control .
Similarly, the controls and define the
switch curves and , respectively. It follows from the
control law that the stack control signal is zero , and the
heater is on , for state vectors inside the region . In-
side the region , the control signals are and .
The regions and represent the sets of state vectors for
which the control law yields no solution. Inside these areas, the
controls are determined by the heuristic rules: If , the
fuel cell stack is turned-on, , and the heater switched-off,

. However, if , both control signals are zero,
. The optimal state trajectories are defined by

a sequence of control actions. Every trajectory starting in is
forced to the target state by a control sequence ,
where the control switches at the moment the trajectory reaches
the switch curve. Equally, trajectories starting in the set

reach the target state by a control sequence .
Inside the region , the heuristic rules cause the system to
reach the switch curve. The switch curve then leads
the system to the target state. By contrast, when starting in ,

TABLE III
BENCHMARK RESULTS FOR THE POWER CONTROLLER

UNDER VARIOUS OPERATING CONDITIONS

the heuristic controls force the system trajectory to proceed in
parallel to the region boundary. Hence, with a bang-bang con-
trol, trajectories inside the set cannot reach the target state.
However, with the control , the system is forced to
get as close as possible to the target state.

E. Benchmark Analysis for the Supervisory Power Controller

During the development of the power controller, at some
points certain approximations or assumptions had to be made
(e.g., model reduction, linearization of the Hamiltonian). In
order to quantify their impact and that of the discrete controller
operation on the performance of the controller, some perfor-
mance values of the feedback controller, applied to the detailed
model, were compared with the optimal warm-up times ,
emerging from the direct, open-loop optimization. In Table III
the results of the benchmark analysis are shown. For the situa-
tions investigated, the maximum relative performance loss of
the controller with respect to the open-loop optimized solution

, is 2.3%. This result not only indicates that the assumptions
and approximations made are feasible in principle, but it legiti-
mates the methods applied for the controller development and
implementation.

F. Investigation of Alternative System Configurations

After the detailed analysis of the control law, the proposed
configuration of the power system (fuel cell system with elec-
trical heater and battery), was compared with alternative system
configurations in terms of the duration of the warm-up phase.
To this end, three alternative configurations were proposed first:

#1: fuel cell power system without battery nor heater;
#2: fuel cell/battery hybrid power system without heater;
#3: fuel cell power system without battery but with an elec-

trical auxiliary heater.
The system configuration proposed in this text (battery and
heater) is termed as configuration #0. In a second step direct,
open-loop optimizations (based on the detailed model equa-
tions) were performed to compute the optimal performance
values of the four configurations, under the nominal operating
conditions of case 2 (Table II). Charge-sustaining operation
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TABLE IV
OPTIMAL PERFORMANCES OF DIFFERENT SYSTEM CONFIGURATIONS UNDER

NOMINAL OPERATING CONDITIONS (CASE 2 OF TABLE II)

was enforced for configurations containing a battery. The com-
puted performance values , i.e., the minimal warm-up times,
are shown in Table IV. The configuration without battery nor
heater (configuration #1) serves as a basis for the comparison.
Under nominal operating conditions this system takes almost
1.2 h (4250 s) to reach the operating temperature of 50 C. The
hybridization with a battery reduces the elapsed warm-up time
by 78% to 943 s, provided that an optimal power management
is applied. Another 67% reduction to 309 s can be gained by
adding an (optimally operated) auxiliary heater. Hence, the
combination of hybridization and auxiliary heating yields a
warm-up time of 7% of the reference value of configuration #1.
A system configuration with auxiliary heater but without bat-
tery (configuration #3) has a warm-up period reduced by 90%,
with respect to the warm-up time of the reference configuration.

The improvement achieved with the hybridization is ex-
plained by the additional degree of freedom.16 As a direct
consequence of the possibility to store energy, the fuel cell
stack can be operated independently of the power demand,
hence, only part time and at a higher (maximum) current. This,
in turn, results in an increased production of heat and reduced
losses of heat to the ambient. Similarly, the auxiliary heater
adds a degree of freedom to the system as well, but the heater
has two effects on the warm-up behavior. Primarily, it delivers
energy to the system directly in terms of heat. Secondarily, and
analogously to the battery, it permits the fuel cell stack to be
operated on a higher power level. However, in contrast to the
battery, the heater does not allow the fuel cells to be operated
completely decoupled from the power demand.

VII. CONCLUSIONS

With the optimal supervisory power controller developed in
this project, an important contribution is made to mitigating
the problems concomitant with the warm-up phase of a hybrid
fuel cell power system. The controller operates a fuel cell/bat-
tery hybrid power system that is equipped with an auxiliary
heater during the transient phase after a cold start, ensures a
fast, charge-sustaining system warm-up, and considers the tem-
perature-induced power limitations of the fuel cells. It is model-
based and implemented as a feedback controller.

The aim of minimizing the duration of the system warm-up
was formulated as an optimal control problem. From the neces-
sary conditions of Pontryagin’s minimum principle, a solution
to the problem was educed. In particular, the appropriate combi-
nation of the conditions for optimality and the careful statement

16Note that for configurations without an energy storage unit (configurations
#1 and #3), the stack current follows directly from the total power demand.

of simplifications and assumptions allowed the formulation of
the solution as a feedback control law. Due to its simple struc-
ture, this control law is suited to be applied online. In order to
determine the control signals, no numerical optimization is re-
quired but only the solution of one implicit equation has to be
computed, aside from algebraic calculations. Moreover, the ap-
plication of the control law to different systems should be fea-
sible with minor efforts only, since its design is model-based.

A simulated system warm-up demonstrated the functionality
of the controller. The performance of the controller was verified
with a direct, open-loop optimization for various operating con-
ditions and controller settings. The results confirmed the func-
tions of the control system derived as the relative performance
losses, which mainly originate from the simplifications made
during the controller design, amount to a few percent only. Fi-
nally, an analysis of various system configurations proved the
benefits of a hybrid setup including an auxiliary heater in terms
of a fast system warm-up. For the optimally controlled config-
uration proposed, the simulation showed a drastically reduced
warm-up time, compared with the warm-up duration of a pure
fuel cell system without battery nor auxiliary heater.

APPENDIX I
REDUCED-ORDER MODEL

In the following, the equations of the reduced-order model
are given. The state variables are the mean system temperature

and the battery state of charge SoC. Unless otherwise
stated, the parameters of the model are assumed to be constant.

The temperature characteristics of the system are captured by
the following differential equation:

(55)

The parameter is the reversible open circuit voltage of the
stack for standard conditions

(56)

The stack voltage is calculated as

(57)

where the cell voltage follows from the voltage model
presented in [9]. The cell voltage is a function of the current
density , of the system temperature , and of the partial
pressures of the oxygen in the cathode and of the hydrogen in
the anode and , respectively. The equations to calculate
these quantities from the input signals are given as follows. The
current density generated at the membrane surface area
is defined as

(58)

The partial pressure of oxygen in the cathode is calculated from

(59)
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where the mean oxygen mole fraction of air in the cathode ,
the mean cathode relative humidity , and the mean cathode
pressure , follow as

(60)

(61)

(62)

For the estimation of the pressure at the cathode inlet (the hu-
midifier outlet), a linear nozzle equation (with nozzle constant

) is proposed

(63)

where the mass flow rate of air is proportional to the electric
current

(64)

The partial pressure of hydrogen in the anode follows as

(65)

The term in (55) represents the enthalpy flow rate due
to evaporation. It results from a water mass balance between air
inlet and air outlet

(66)

The remaining terms in (55) consider the convective and the ra-
diative heat losses to the ambient and the heat flow rate supplied
by the coolant heater

(67)

(68)

(69)

Note that the impact of the cooling system fan could easily be
included in the model. The battery state of charge is given by
the following relation:

SoC
if

if
(70)

where the battery current , is calculated as

(71)

Fig. 8. Possible algorithm to determine the controls u and u .

The battery current is a function of the battery power ,
which follows from the following equation:

(72)

APPENDIX II
RESOLVING THE IMPLICIT RELATIONS OF THE

PRELIMINARY CONTROL LAWS

In this appendix an approach is shown which serves to
uniquely determine the controls and from the implicit
relations (44a)–(c). The cases where the switching functions
vanish are not relevant, as the switching functions can only
vanish at isolated instants of time. If these cases are excluded,
the preliminary control laws (44a)–(c) can be restated as

if
if

(73a)

and

if
if

(73b)

respectively. As the linear terms of the switching functions
in (73a) and (b) have different signs, the controls and
are uniquely determined by the control laws (73a) and (b). A
possible algorithm to determine the controls and , given
the coefficients , , and , is
shown in Fig. 8.
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