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ABSTRACT
This work presents two advances to the estimation of homo-

geneous charge compression ignition (HCCI) dynamics. Com-
bustion phasing prediction in control-oriented models has been
achieved by modeling the in-cylinder temperature and composi-
tion dynamics, which are dictated by the large mass of residuals
trapped between cycles. As such, an accurate prediction of the
residual gas fraction as a function of the variable valve timing
is desired. Energy and mass conservation laws applied during
the exhaust valve opening period are complemented with online
in-cylinder pressure measurements to predict the trapped residual
mass in real time. In addition, an adaptive parameter estimation
scheme uses measured combustion phasing to adjust the residual
mass prediction. Experimental results on a multicylinder gasoline
HCCI engine demonstrate the closed loop residual estimation’s
ability to compensate for modeling errors, cylinder to cylinder
variations, and engine wear. Additionally it is shown that using
the adaptive parameter estimation reduces the model parameteri-
zation effort for a multicylinder engine.

INTRODUCTION
Recompression homogeneous charge compression ignition

(HCCI) is a promising combustion strategy that can achieve high
thermal efficiency with low engine-out emissions. It is charac-
terized by compression-driven near simultaneous auto-ignition
events at multiple sites throughout a homogeneous mixture. Auto-
ignition timing control in HCCI combustion requires careful regu-
lation of the temperature, pressure, and composition of the pre-
combustion cylinder charge. This regulation of charge properties
is carried out in recompression HCCI by retaining a large frac-
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tion of the post-combustion residual gases before they can be
exhausted [1, 2].

Since neither the temperature nor the mass of the trapped
residuals can be measured directly, model-based control of re-
compression HCCI requires the development of accurate control-
oriented models that can be run in real-time on embedded control
hardware. Examples of HCCI control-oriented models can be
found in literature [3–9]. The combustion phasing prediction
accuracy of these models is especially crucial when they are used
in model-based predictive control strategies, for example [9–12].
This is because the phasing, or timing, of HCCI combustion must
be maintained within a narrow acceptable range to satisfy stability
and mechanical constraints. The models must be robust to engine
aging, parameter drift and changes in environmental conditions.

The current work advances the state of art in two important
ways. First, the authors propose a novel, physics-based method of
calculating the residual gas mass in real-time. Second, an adap-
tive parameter estimation scheme is implemented in a previously
developed HCCI model [8, 9], and is shown in experiments to
improve prediction performance and robustness.

Accurate modeling of the residual gas fraction is important
for a control oriented model due to HCCI’s high sensitivity to
the thermal energy associated with the residual gases. If too
much residual mass is trapped the combustion can occur very
early causing potential engine damage and a loss in efficiency.
If too little mass is trapped the combustion can become highly
oscillatory [13, 14], and misfires may occur. While there have
been methods described in literature for estimating the residual
mass [15–18], none have presented an algorithm capable of online
implementation without the use of a steady-state assumption. This
work aims to provide a solution to this problem.

In addition, adaptive parameter estimation is used to increase
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the model fidelity in terms of its ability to reject disturbances
and modeling error. The current HCCI model requires parame-
terization which is non-trivial and time intensive. As the model
is propagated to multiple cylinders this task can become even
more arduous. It will be shown through experiments that a param-
eterization for a single cylinder is sufficient when the adaptive
parameter estimation is used and that the adaptation can reject
actuator bias effectively. Other advantages of using adaptation
include reducing sensitivity to engine aging, cylinder-to-cylinder
variation and unmodeled dynamics.

The paper is organized as follows: First the model and an
additional state are derived. The adaptive parameter estimation
routine is then presented followed by experimental results and
conclusions. Appendicies include nomenclature and a summary
of the model equations.

MODEL DEVELOPMENT
The following sections present the two state control oriented

model developed in [8, 9] and the derivation of an additional state
for residual mass estimation. A parametric model for adaptive
parameter estimation is also introduced.

Two State Model
The model consists of two dynamic states used to capture

cycle to cycle interactions which are:

1. Tbd : The temperature of the blowdown gases, which is used
to represent the recycled thermal energy.

2. bbd : The burned gas fraction of the blowdown process, which
represents the composition dynamics.

The blowdown process is a rapid expansion of exhaust gases dur-
ing the exhaust stroke where the pressures of the cylinder and
exhaust system equalize quickly. The states are defined immedi-
ately after the blowdown process and are given by Eq. (1) and (2).
A summary of the equations from [8, 9] from which these states
are derived can be found in the appendix.

Tbd(k+1) = Tevo(k)
(

pevo

pem

) 1−n
n

= Tivc(k)
(
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bbd(k+1) =
(AFRs +1)m f (k)

mc(k)
+ xr(k)bbd(k) (2)

The model has three inputs: the mass of fuel injected (m f ),
the injection timing (SOI), and the timing of the exhaust valve
closing (EVC). The EVC timing controls the amount of NVO, the
crank angle difference between EVC and intake valve opening
(IVO), with which the engine operates. This has a direct impact
on the charge composition and temperature. The model has two

Adaptation
Eq. (13)
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Figure 1. Graphical representation of model structure. The figure in-
dicates when the time series data is broken into discrete elements, the
model inputs and outputs as well as the states. Also shown is the basic
block diagram of the model indicated what measurements are used.

outputs, the combustion phasing of 50% burn (θ̂50) and the engine
torque (IMEP). Therefore this is a three input two output system.
A visual representation of the model is given in Fig. 1.

Residual Mass State
The hot residual mass trapped in recompression HCCI com-

prises a significant portion of the charge, and therefore thermal
energy. Since the combustion depends on this thermal energy,
accurate prediction of the residual mass is imperative. Previously,
the model’s formulation of residual mass was a static function of
EVC, manifold pressures, engine speed and the state Tbd which
was tuned using steady state data. The function can be found in
Eq. (26) of the appendix. The regression can be complicated to
parameterize and does not benefit from knowledge of in-cylinder
pressure measurements which provide the most direct information
available about the combustion process in real time. It is therefore
desired to develop a state for the residual mass which can take
advantage of these measurements to increase model fidelity.

The residual mass state is derived using the offline analy-
sis techniques presented in [15, 19] as a basis. To summarize,
an analysis of the heat loss per unit mass due to the exhaust is
performed by splitting it into two segments of equal time. It is
physically reasonable to assume that the heat (and therefore mass)
losses in the first and second halves of the exhaust will be similar,
i.e. q(evo→ re f ) = q(re f → evc) where the value of re f is the
halfway point of the exhaust process in the crank angle domain
defined as: θre f = (θevo +θevc)/2. Specifically these heat losses,
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q, can be expressed as:∫ Tre f
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where the values of Px and Tx refer to the pressure and temperature
inside the cylinder at specific locations in the cycle, for example
Pevo = Pcyl(θevo). After approximation of the integrals we have:
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Further, algebraic simplification yields:
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)
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R
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)
.

Equation (3) has two unknowns, Tevo & Tevc, and other vari-
ables which are either known or can be measured with the excep-
tion of Tre f . The value of Tre f cannot be measured however it is
close to the value of the blowdown temperature which is a state of
this model, Eq. (1), and will be used as such. It is recognized that
there maybe a discrepancy between the Tre f and Tbd values which
provides motivation for the introduction of an adaptive parameter
to make corrections to the model when necessary.

From here we deviate from the derivation in [19] by defining
the unknown temperatures with the ideal gas law:

Tevo =
PevoVevo

mevoR
, Tevc =

PevcVevc

mevcR
,

and define the masses as follows:

mevo(k) = min(k)+mres(k), mevc(k+1) = mres(k+1). (4)

The transient residual mass, Eq. (4), can then be substituted into
Eq. (3) which allows the masses to evolve in time and change
from cycle-to-cycle depending on the manifold dynamics and
cylinder conditions. The result is one equation in terms of mres(k)
and mres(k+1)

γ
PevoVevo

(min(k)+mres(k))R
+ζ

PevcVevc

mres(k+1)R

= Tbd(k)

{
−2cp +

R
2

ln

(
P2

re f

PevoPevc

)}
. (5)

This equation can be greatly simplified by grouping terms and
lumping constant coefficients:

mres(k+1) =
α(k)+β(k)mres(k)

A(k)+mres(k)
(6)

where α(k), β(k) and A(k) are functions of the constants R and cp,
known inputs, Tbd , and measured values; namely the in-cylinder
pressure at specific locations (Pevo, Pevc and Pre f ) and the mass of
fresh air inducted into the cylinder. By defining the masses as in

Figure 2. Convergence of the state mres, in milligrams, from various ini-
tial guesses. Simulation was run at 1800 rpm and 3 bar IMEP.

(4) we accomplish three goals, first we no longer assume that the
residual mass is in steady state, second, the equation depends on
known, or measurable values. Finally, the equation is causal and
sufficiently simple for online implementation.

The result found in Eq. (6) predicts the amount of residual
mass in cycle k + 1 based on measured data and the value of
the residual mass in the previous cycle. Therefore, the only
unknown is the initial guess of mres(0). A numerical example of
the convergence from various initial guesses is given in Fig. 2.
When the coefficients α, β and A are constant an equation of this
form is referred to as the Riccati Difference equation [20]. For
a given operating condition it is reasonable to assume that the
coefficients will not change much from cycle to cycle and can be
assumed constant. With this assumption it can be shown that for
physically reasonable pressure data and a positive initial guess
of residual mass, the state will converge to a stable, fixed–point
equilibrium. The proof is omitted to conserve space, however a
summary of this proof can be found in [20–22].

In summary, the model, augmented with the third state, in its
functional form is given by:

Tbd(k+1) = f1(Tbd(k),xr(k),m f (k),Tim,Pint,exhV,cv) (7a)
bbd(k+1) = f2(Tbd(k),xr(k),m f (k),bbd(k)) (7b)

mres(k+1) = f3(Tbd(k),mres(k),Pcyl ,V ) (7c)

where xr(k) =
mres(k)
mc(k)

=
mres(k)

mres(k)+mair(k)+m f (k)
. (8)

The values for Tim, Pint , Tex, Pexh are the measured intake and
exhaust temperatures and pressures respectively.

Parametric Model
The HCCI combustion model is not well suited for use with

adaptive parameter estimation due to its highly non-linear re-
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lationships and state couplings. As such, the placement of an
adaptive parameter or parameters is challenging. In this section
we develop a parametric model to adapt our prediction of xr in
Eq. (8) as defined by:

x̂r(k) = Θ(k)xr(k), (9)

where Θ(k) is the adaptive parameter and x̂r(k) is the new residual
gas fraction to be used in the model. To determine the parameter
Θ(k) we employ the influence that x̂r has on Tivc as shown in
Eq. (10),

Tivc(k+1) = x̂r(k)Tres(k)+(1− x̂r(k))Tim, (10)

where Tim is a constant and Tres is from the model as in
Eq. (29). This adapted residual gas fraction is also substituted
into Eqs. (7a,b). In HCCI, the combustion phasing is directly
influenced by the temperature of the charge at IVC. As such it
makes physical sense to place an adaptive parameter into this
regression to have the most direct influence over the prediction of
the combustion phasing.

Equation (10) yields a parametric model by distributing terms
and manipulating the equation into the from µ = Θϕ where:

µ =
Tivc−Tim

Tres−Tim
and ϕ = xr.

The value of Tivc at this point is unknown and to form the error
term, ε = µ− Θ̂xr, we must calculate an estimate of Tivc,e from
measurements. This is done by inverting the model for combus-
tion phasing prediction given by Eq. (17) using the calculated
combustion phasing, θ50, from a net heat release analysis done by
the engine control unit (ECU) online:

Tivc,e =
−αθ2−

√
α2

θ2−4αθ1(αθ3−θ50)

2αθ1
. (11)

The value of µ is then simply:

µ =
Tivc,e−Tim

Tres−Tim
. (12)

ADAPTIVE LAW
The least squares algorithm with a forgetting factor follows

from the derivation in [23, 24] and is summarized here:

Θ(k) =

(
k

∑
i=1

ϕ(i)κ(k−i)
ϕ(i)T

)−1( k

∑
i=1

ϕ(i)κ(k−i)µ(i)

)
(13)

When κ = 1, this is the pure least squares algorithm. As κ is
decreased there is more discounting of previous values but an
increase in sensitivity to noise. To allow the parameter to change
with operating conditions it is necessary to have some forgetting
(κ < 1). Simulations for this model have shown that a value
of κ = 0.95 is a good balance for the trade off of adapting to
transients and rejecting noise. Other adaptive laws were also
tested in simulation, specifically a pure least squares algorithm, a

least squares with covariance resetting and a gradient algorithm.
However, least squares with forgetting factors provided the best
balance of accuracy and noise suppression while still maintaining
an ability to be implemented in real time.

It can be seen from induction that the sum in the denominator
of Eq. (13) can be written as D(k) = κD(k−1)+ϕ(k)ϕ(k)T and
the sum in the numerator can be written as N(k) = κN(k−1)+
ϕ(k)µ(k). Since everything is scalar, Θ(k) = N(k)

D(k) . There are
two conditions to avoid: D(k) = 0 and either N(k),D(K)→ ∞.
Since D(k) is driven by ϕ2, it will stay positive, provided it starts
positive. Further, since ϕ ∈ [0,1], Tres� Tim, and κ < 1, neither
N(k) nor D(k) can grow indefinitely given physically reasonable
data. To avoid unphysical behavior however, the value of Θ is
also restricted to be within Θ ∈ [0.75, 1.25].

EXPERIMENTAL RESULTS
A four cylinder 2.0 liter GM LNF Ecotec engine running

on premium grade indolene was used as the baseline platform.
Modifications to accommodate HCCI combustion include increas-
ing the compression ratio to 11.25:1 and using camshafts with
shorter duration and lower lift to allow for unthrottled operation.
In addition to the stock turbo charger the engine was augmented
with a small supercharger (Eaton M24) to provide boost. Results
presented here were run at slightly boosted conditions, approxi-
mately 1.1 bar intake manifold pressure, λ =1.2, an engine speed
of 1800 RPM and a load of approximately 3 bar net IMEP. The
spark was left on, but at a position of 40◦ after top dead center.
Since the mixture is lean and highly diluted with residuals the
spark will have little influence on the combustion. Having the
spark on late only helps to prevent the spark plug from fouling.
Cylinder pressures were sampled at a resolution of 0.1 cad.

The model presented in this paper was implemented using a
combination of C and Matlab code, and was tested in real-time
using an ETAS ES910 rapid prototyping module. The module
uses an 800 MHz Freescale PowerQUICC

TM
III MPC8548 proces-

sor with double precision floating point arithmetic and 512 MB
of RAM. All experiments were run in open loop. Steady state
experimental data was used to parametrize the model. However,
the model was only tuned based on data for cylinder 1. This
parameterization was propagated to all four cylinders on the rapid
prototyping hardware despite the fact that there is cylinder-to-
cylinder variation warranting a parameterization for each cylinder
individually.

Because HCCI combustion must operate in a narrow band of
combustion phasing, it is crucial that the control oriented model
makes accurate predictions of the engine’s phasing despite de-
viations from a nominal operating point or drift in parameters.
As stated previously, the purpose of the adaptive model is to al-
low these changes to be captured. The adaptive law is driven
by error between the predicted and measured θ50 and as such
it should correct for these various errors. This will be shown
through experimental results.
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Multicylinder Results
Tuning the model is a difficult and time consuming task, in

addition, the engine’s parameters can drift on a day-to-day basis,
it is therefore desired to be able to minimize this task and allow
for the model to make adaptations online.

To test the adaptive model’s capability to correct for model-
ing and parameterization errors it was run in real time at steady
state conditions with and without adaptation while the response
in predicted combustion phasing was observed. The results can
be found in Fig. 3. Despite the model being parameterized for
cylinder 1, day-to-day drift and uncontrollable changes in en-
vironmental conditions caused there to be a difference in the
predicted versus calculated values. Cylinder number 2 also had
large errors while cylinders 3 and 4 appear to have an accurate
parameterization. Regardless, when adaptation is turned on at ap-
proximately cycle 200, the adaptive parameter makes adjustments
to the model and the prediction of combustion phasing becomes
more accurate. As expected, the adaptive parameter deviats from
unity further when the error is larger, as is the case for cylinders 1
and 2. The RMS error, averaged over all four cylinders, between
the predicted and actual values of combustion phasing with no
adaptation was 2.51cad while the RMS error with adaptation
was 1.73cad. Similar reductions in error were observed on all
experimental results presented, there were no observations of the
adaptive routine increasing RMS error of the combustion phasing.

It should be noted that when the prediction of residual gas
fraction, x̂r, causes the model to predict a combustion phasing
that is earlier than that of the ECU, then Θ < 1. For the results
presented here, the value of Θ was always less than one. This is
due to the model always predicting a combustion phasing which
is earlier than that of the actual value, an over prediction of the
residual gas fraction. For a different parameterization of the model
the prediction could have been later than the actual phasing, this
would cause the adaptive parameter to be greater than 1. This was
explored in simulations but did not present itself in experiments.

Single Actuator Steps
To evaluate the effectiveness of the adaptive model and resid-

ual gas fraction estimation in transients, actuator steps of the
model inputs were performed in open loop. Sensor measurements
were obtained in real time from the engine’s ECU and used by
the model for real time prediction of θ50. The actuator steps were
repeated for both the adaptive and non–adaptive model.

A step in EVC is shown in Fig. 4 for cylinder 1. The step
is from 256 to 253◦aT DC (degrees after top dead center) and
back again and causes the amount of NVO to increase as a result.
Intuitively, the amount of residual mass trapped in the cylinder
should also increase, this is reflected in the prediction of the resid-
ual gas fraction as shown in Fig. 4. Also shown is the result of
an offline analysis of the residual gas fraction derived from an
iterative method described in [15, 19]. While the absolute differ-
ence between the two results is slightly different, the magnitude
and direction of the transient response is similar. As described
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Figure 3. Combustion phasing prediction versus ECU calculation for the
adaptive and non-adaptive versions of the model. It can be seen that with
adaptation the error in combustion phasing is reduced.

in previous sections, it is expected that the absolute values may
not be equal due to the difference in the value of the exhaust gas
temperature and that of the state Tbd . As a consequence, the model
prediction of θ50 differs from that of the ECU. However, when the
adaptive parameter is introduced at approximately 1400 cycles,
and the step is repeated, it is clear that the residual gas fraction
drops to that of the offline analysis and the model prediction of
θ50 becomes much more accurate on an absolute scale. It is not
expected that the value of xr always be equivalent to that of the
offline processing except in the case of minimal modeling errors
and environmental disturbances.

The model’s response to steps in SOI and mass of fuel can
be found in Figs. 5 and 6. The prediction of θ50 is improved
in both responses. It should be noted that while the value of Θ

stayed relatively constant during the EVC step, it has a visible
response to the steps in SOI and fuel. This suggests that the
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Figure 4. An EVC step for cylinder 1 with and without an adaptive model.
It can be observed that the model prediction is more accurate when adap-
tation is applied.

model’s parameterization may not fully capture the step response,
however the adaptive parameter corrects for these errors.

Actuator Bias
It is common for engine components to wear and sensors

to become more noisy with time, this can present a problem
when running highly parameterized models online. It is therefore
desired that the adaptive model be able to reject such disturbances.
To test this the model was run online with the engine operating at
steady state, all actuators fixed. The measurement of EVC used by
the model was then replaced with one with a bias for a short period
of time as seen in Fig. 7. This bias represents camshaft wear over
time. One can see that when the bias is applied at 250 cycles that
the combustion phasing prediction starts to deviate quickly from
the calculated value. However, the adaptive parameter makes
adjustments to the residual gas fraction in order to minimize the
error. A similar response can be seen at 750 cycles when the bias
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Figure 5. Model response to an SOI step with and without adaptation.
When adaptation is applied the prediction of θ50 is more accurate.

is removed. In a more realistic scenario this bias will be slowly
occurring over a long period of time as the cam is mechanically
worn due to friction. Another example of this could be a parameter
could drift over time, for instance engine temperature changing
based on weather conditions. This experiment considers the worst
case situation of the bias being applied instantaneously.

CONCLUSIONS
A physics-based method of computing the residual gas frac-

tion of a recompression HCCI engine using cylinder pressure
measurements in real time is presented along with an adaptive pa-
rameter estimation routine. It is important that the model predicts
residual gas fraction trends accurately for control purposes. Ex-
perimental results show that the estimator of xr captures expected
trends well for single actuator steps and that with the adaptive
algorithm, the absolute value of xr is comparable to that of a
higher fidelity, offline analysis.

In addition to correcting the residual gas fraction prediction
to match offline analysis, the adaptive routine helps to mitigate
errors in the prediction of combustion phasing in the presence of
many sources of error by creating a nonlinear estimator of the
model states. It has been shown that a single parameterization
may be sufficient for a multicylinder engine using an adaptive
parameter. Also, the algorithm can reject errors due to engine
wear or parameter drift.
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Appendix A: Nomenclature
m f Fuel mass per cycle
mres Trapped residual mass
mc Mass of total charge
xr Residual gas fraction
ηm Combustion efficiency
cv Specific heat for a given composition
R Gas constant for a given composition
qlhv Heating value of the fuel
AFRs Stoichiometric air-fuel ratio
SOI Start of injection
EVO/C Exhaust valve open/close
IVO/C Intake valve open/close
NVO Negative valve overlap
ω Engine speed
V Cylinder volume
θx Crank angle of position x
θ50 Measured crank angle of 50% burned
θ̂50 Model prediction of θ50
T Temperature
P Pressure
λ Air-fuel ratio
κ Forgetting factor
Θ Adaptive parameter
Tivc,e An estimate of Tivc based on model inversion
cad Crank angle degrees
RMS Root mean square

Appendix B: Model Equations
Combustion Phasing Autoignition is predicted using

the integrated Arrhenius rate threshold model using a fixed acti-
vation temperature (B = Ea

Ru
) and pre-exponential factor A. The

integration is carried out until the threshold (Kth) is hit at the start
of combustion (θsoc). The model can be expressed as follows:

Kth(θsoi) = k0−usoi =
∫

θsoc

θivc

A
ω

pc(θ)
np exp

(
B

Tc (θ)

)
dθ (14)

The pressure (pc) and temperature (Tc) of the charge in the cylin-
der are given by a polytropic compression:

pc(θ) = pivc

(
Vivc

V (θ)

)n

, Tc(θ) = Tivc

(
Vivc

V (θ)

)n−1

. (15)

The output θ50 is modeled as a linear function of θsoc:

θ50 = b1θsoc +b0. (16)

For a restricted range of operating conditions, the prediction of
combustion phasing can be well approximated by a quadratic
whose coefficients vary as linear functions of injection timing:

θ50 = αθ1(soi)T 2
ivc +αθ2(soi)Tivc +αθ3(soi) (17)
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In-cylinder Temperature Combustion is thermally mod-
eled as an instantaneous heat release at θ50 concatenated with a
polytropic compression from θivc and a polytropic expansion to
θevo. The charge temperature after combustion (Tac) and the
temperature rise due to combustion (∆T ) are given by:

Tac = Tivc

(
Vivc

Vc

)n−1

+∆T (18)

∆T = ηm(k)
qlhvm f (k)
cv(k)mc(k)

=
ηm(k)qlhvR
cv(k)pivcVivc

m f (k)Tivc(k). (19)

Here ηm is the combustion efficiency, and n is the polytropic
exponent. The specific heat of combustion cv varies as a function
of composition (bc) to capture variations in mixture properties.

ηm(k) =
a0

1+ exp
{

θ50(k)−a1
a2

} (1+a3ω(k)) (20)

cv(k) = 1+a4bc(k) (21)

Polytropic expansion after combustion gives the charge tem-
perature at θevo, (Tevo), to be:

Tevo(k) = Tac

(
Vc

Vevo

)n−1

= Tivc(k)
(

Vivc

Vevo

)n−1 [
1+

ηmqlhvRVc
n−1

cv pivcVivc
n m f (k)

]
. (22)

Using the ideal gas law, the pressure at θevo is:

pevo(k) = pivc(k)
Vivc

Vevo

Tevo(k)
Tivc(k)

= pivc(k)
(

Vivc

Vevo

)n [
1+

ηmqlhvRVc
n−1

cv pivcVivc
n m f (k)

]
. (23)

Expansion is followed by the blowdown process, which is
modeled as a polytropic expansion from the pressure at θevo,
(pevo), to the exhaust manifold pressure (pem), with the polytropic
exponent n. The temperature at blowdown (Tbd) is:

Tbd(k+1) = Tevo(k)
(

pevo

pem

) 1−n
n

= Tivc(k)
(

pivc(k)
pem

) 1−n
n
[

1+
ηmqlhvRVc

n−1

cv pivcVivc
n m f (k)

] 1
n

. (24)

Coupling between Cycles
In recompression HCCI a large fraction of the in-cylinder

charge is trapped before it can be exhausted. The hot residual
gases retained between engine cycles have a significant impact
on the temperature and composition of the in-cylinder charge of
the subsequent cycle. This internal coupling between cycles is
quantified by the residual gas fraction (xr). In the model presented
in [8, 9] the residual gas fraction was a static function for a given

exhaust valve closing timing θevc, temperature of blowdown gases
Tbd , engine speed ω, and pressure ratio across the engine Π:

xr(k) = 1− (c0 + c1θevc)Π
c2Tbd(k)

c3ω(k)c4 (25)

where Π =
pim(k)
pem(k)

.

Thermal Coupling The cooling of the charge from θevo
to θevc is modeled by a scaling constant ce. This cooled charge is
polytropically compressed and expanded during the NVO region
to obtain the residual gas temperature.

Tevc(k+1) = ceTbd(k+1) (26)

Tsoi(k+1) = Tevc(k+1)
(

Vevc

Vsoi

)n−1

−a4m f (k) (27)

Tres(k+1) = Tsoi(k+1)
(

Vsoi

Vivo

)n−1

(28)

Tres(k+1) =

[
ceTbd(k+1)

(
Vevc

Vsoi

)n−1
−a4m f (k)

](
Vsoi

Vivo

)n−1
(29)

The thermal coupling between cycles is modeled by an energy
balance equation at θivc. The temperature of the hot residuals is
assumed to be Tres while the rest of the charge is considered to
be at the intake manifold temperature (Tim). Assuming constant
specific heats, an energy balance leads to:

Tivc(k+1) = xrTres(k+1)+(1− xr)Tim. (30)

Composition Coupling The burned gas fraction before
(bc) and after (bbd) combustion can be related by simple equations
that assume that the fuel combines with a stoichiometric mass of
air to form an equal mass of burned gases. Further, an xr portion
of the burned gases is trapped between cycles:

bc(k) = xr(k)bbd(k) (31)

bbd(k+1) =
(AFRs +1)m f (k)

mc(k)
+bc(k)

=
(AFRs +1)R

pivcVivc
Tivc(k)m f (k)+bc(k). (32)
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