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Abstract 

In this paper two different approaches are proposed for simultane- 
ous mass and grade estimation for Heavy-Duty Vehicles. In the first 
method an observer is used which can estimate mass and time-varying 
grade given their feasible range. The second approach is a recursive 
time-varying least square method with forgetting. Inclusion of mul- 
tiple forgetting factors makes the algorithm suitable for simultaneous 
estimation of a constant and a fast time-varying parameter. Accurate 
mass estimation and good tracking of time-varying grade is demon- 
strated in simulations. 

1 Introduction 

Reliable on-line vehicle parameter estimation is important for re- 
duced emissions, increased fuel efficiency and enhanced safety and 
driveability of Heavy-Duty Vehicles (HDV). Unlike passenger cars, 
an HDV's mass can vary significantly from trip to trip. Mild grades 
can be serious loadings for HDVs. An anti-lock brake controller re- 
lies on an estimate of mass and road grade for calculating vehicle's 
forward speed which is necessary for the calculation of wheel slip. In 
longitudinal control of platoons of mixed vehicles, knowledge of the 
participating vehicle mass and road grade is necessary for avoiding 
issuing infeasible acceleration and braking commands [ I ] .  Moreover, 
mass estimation is essential to the engine control unit (ECU) for re- 
duced emission, and to transmission control for reduced gear hunting. 
The closed loop experiments performed by Yanakiev et al. [Z] indi- 
cate that the longitudinal controllers with fixed gains have limited ca- 
pability in handling large parameter variations of an HDV. Therefore 
it is necessary to use an adaptive control approach with an implicit or 
explicit online estimation scheme for estimation of unknown vehicle 
parameters [ I .  3,4].  

Examples of adaptive controllers for vehicle control applications can 
be found in the work by Liubakka et al. [51, loannou et al. [6]. and 
Oda et al [ 7 ] .  Yanakiev et al. [8, 91 developed an adaptive controller 
for longitudinal control of an HDV using direct adaptation of PIQ 
controller gains. Recently, Drurhinina et al. [IO] have developed an 
adaptive control scheme for the longitudinal control of HDV's during 
braking. Within this scheme they provided simultaneous mass and 
road grade estimation. They demonstrated convergence in estimates 
for constant mass and piecewise constant road grade. This method is 
an indirect estimation method since estimation is achieved in closed- 
loop and as a by-product of a control scheme. 

As HDV automation is increasing, there are more control functions 
that could benefit from on-line estimation of the vehicle mass and 
road grade. Moreover, many times estimates independent of a con- 

'Corresponding Author. GO08 Waller E. Lay Auto Lab. The Universily of 

ZPresently with General Motors Research and Development, Warren MI 
Michigan. 1231 Bed Avenue, Ann Arbor, MI. 48109, avahidiOurnich.edu 

48090. 

0-7803-7896-2/03/$17.00 02003 IEEE 4951 

troller are required. In other words a direct estimation scheme is more 
appealing. In an HDV's electronically controlled powenrain, direct 
estimation of mass can be accomplished using two primay methods: 
(a) processing acceleration data 111, (b) processing acceleration or 
deceleration data during a gear sh f t  [ I  I]. In both of these meth- 
ods, changes in road grade can cause poor mass estimation by biasing 
the driveline torque that is available for acceleration or deceleration. 
Therefore, road grade variations combined with uncertainties in vehi- 
cle mass, present strong challenges for vehicle parameter estimation 
and control. One remedy to the problem is to use some kind of sensor 
to estimate grade and then use a parameter estimation technique to 
estimate mass. In [I21 using an on-board accelerometer is proposed 
for grade estimation. The mass is then estimated based on this esti- 
mate of the grade. Bae et al. [I31 use GPS readings to obtain road 
elevation and calculate the grade using the measured elevations. With 
the grade known, they estimate the mass with a simple least square 
method based on a simple longitudinal dynamics equation. 

A model-based method, instead of a sensor-based scheme, can pro- 
vide a cheaper alternative for simultaneous estimation of mass and 
grade or it can be used along with a sensor-based scheme to pro- 
vide some redundancy. However. the facthat  grade is time-varying 
demands an estimation method which is dynamic in nature and can 
estimate parameters as well as keep track of their variations. 

In this paper we propose two independent methods for simultaneous 
estimation of mass and time-viuying grade. Both methods are direct 
estimation methods which rely on a model of longitudinal dynamics 
of the vehicle, vehicle speed and engine torque measurements for es- 
timation. Vehicle speed and engine torque are available in an HDV 
through the 11939 port. The first approach estimates mass and grade 
with a dynamic observer. The grade and mass are calculated such that 
they drive the observer state to zero. Good convergence is shown in 
simulations, when a reasonable range for mass and grade is known 
a-priori. In the second method we use a recursive least square method 
with forgetting. In this analysis we show that RLS with a single for- 
getting factor is not capable of keeping track of a constant mass and 
a time-varying grade. That motivates a discussion on the possibilities 
for including different forgetting factors for different parameters. It 
is shown in simulations that inclusion of multiple forgetting factors, 
overcomes the difficulties of the single-forgetting scheme. Good con- 
vergence in mass and grade estimates are shown in these simulations. 

2 Vehicle Longitudinal Dynamics 

The estimation algorithms introduced in this paper rely on a model 
of vehicle longitudinal dynamics. The dynamics of engine rotational 
speed, w, can be described based on the balance between the engine 
torque on the crankshaft, 7,. aerodynamic resistance torque, T,,,, 
road grade and rolling resistance torque, To. and torque due to appli- 
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cation of friction brake, Tfb, i.e., 

JrO = T, - Tfb + T, - Tam,3 (1) 

where Jr = Mrj + J, is the effective vehicle inertia, J, is the engine 
crankshaft inertia, M is the total mass of the vehicle, and ra is the 
total gear ratio. The engine speed is propnional  to the vehicle speed, 
i.e. v = wrR as long as the wheels do not slip. The torque due to 
aerodynamic resistance is given by 

Tae,<, = C,v2rg = C,$W', 

in which C, is the aerodynamic drag coefficient. The torque due to 
road grade (B) and the coefficient of rolling resistance(&) is given by 

T, = (-pgMcosp+Mgsinp)rg,  

where g is the acceleration due to gravity. Here i? = 0 corresponds to 
no inclination, > 0 corresponds to a descending grade. 

3 Method I: Estimation with an observer 

As an alternative to parametrization-based approach, dynamic input 
observer for grade has been proposed in our previous work 1141 based 
on the results in [15]. This observer alone, is not sufficient for our ap- 
plication because it requires the knowledge of the vehicle mass. In 
this section we propose an extension to the previous method. We 
augment an information set-based adaptation algorithm of the type 
studied in [I61 which will enable simultaneous mass-grade estima- 
tion provided a-priori known lower and upper bounds on grade.These 
bounds can be obtained from the maximum and minimum allowable 
grades on a highway, pm, and o m i n .  based on construction guidelines 
[171. 

We consider the torque due to unknown grade, TB, as an unknown 
time-varying disturbance. Thus, the system (I) has the following 
form: 

(2) 
whcre W ( r )  = - - ~ ~ l l p M ~ ~ ~ P ( l ) + ~ ~ M g s i n P ( r )  is treated as an un- 
known function of time which is bounded, together with its time 
derivative,i.e.. IW(f) l  5 L, IW(f) l  5 L, forsomeconstantL>O, L >  
0. 

The dynamic observer for W ( r )  can he defined in the following form 

JIO = T, - T,b -Cq$w2 + W ,  

[14]: 

where a > 0 is the observer gain and E is the solution of the following 
differential equation: 

W = a((M+J,)w-&, (3) 

E = -a(-T,+ T,b +Cqriwz - W ) .  (4) 

Denoting the estimation error by e = W - W ,  and considering the Lya- 
punov function V = ie'. it can he shown that V 5 -aV + &, which 
implies that the estimation error satisfies 

-1 

4952 

and Wmin, W,, are a-priori known bounds on W ( f )  i.e., 

Wrni&) s w(r) s W,,(t). 

Thus, if mass M were known, the estimation error (5 )  could be made 
arbitrarily small by amplifying the observer gain a. The accurate es- 
timate of the road grade P could be then backtracked from W .  Since 

Figure 1: Grade, mass and vehicle speed. The obse,ner-based 
method is used for estimation. 

the mass M is unknown, we replace it by its estimate 0 in ( 3 )  and 
generate the adaptation algorithm for fi using the approach of 1161. 
The mass estimation is based on a recursive procedure for generating 
a sequence of estimates M(rx) at discrete time instants f k .  The esti- 
mateforthemassMintheinterva1 [rk~t.rk],M(rk_,),isadjustedonly 
when the estimate W goes out of its known boundary (i.e. W,,, and 
Wmm). That is, if the estimate W ( r k )  from ( 3 )  lies within allowable 
bounds for given M(1k-l). i.e. satisfies the following inequality 

Wmin(fk) - R a ( t k )  5 W ( b )  5 W m a r ( h + R a ( f x ) ,  

where 

%in = rminMrg, rnlm = -figcosPmin +gsinB,in,  

wmm =rmaMrg,  rm, = -pgcosbm+gsinPm,, 

W h )  > Wm&+R&),  

then A(fk-1) is notupdated, i.e., A(rk-1) =U(&).  Otherwise. if 

then the current estimate M(rk-1) cannot he the true value of the mass 
M in the interval [fk-l , f x ]  and, therefore. i t  has to be updated to make 
W ( e )  equal to W,,(rk) + R a p x ) :  

Similarly. if 

then the current estimate M ( f k - 1 )  has to be updated as follows: 
W k k )  < Wmin(fk) - R a ( f d .  

where E(fk)  is the solution of (4) at time fk 

We tested through simulations the performance of the proposed esti- 
mation scheme. In particular, we consider the vehicle operation dur- 
ing a braking maneuver on a downhill grade. We assume that the 
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grade varies sinusoidally between 2 and 4 degrees. The real vehicle 
mass is 20,000 kg, while an initial guess for &(io) is taken as 25,000 
kg. The estimates of vehicle mass and road grade tend to vicinity of 
their true values in 7 seconds, as shown in Figure 1 

4 Method II: Estimation with RecursiveLeast Square 

It was shown in ( I )  that a linear relationship exists between engine 
torque, external loads on the vehicle and engine speed. The coeffi- 
cients in this relationship are functions of mass and grade. Therefore 
in case of constant mass and grade, a simple recursive least square 
method can he used to estimate mass and grade online based on mea- 
sured signals. However in a real scenario when the grade and possi- 
bly mass arc changing during the course of a trip, the classical least- 
square method averages all the pas1:information and calculates a con- 
stant estimate based on the averaged data which is not the right esti- 
mate. For estimation of time-varying parameters of a linear system, 
a modified version of least square method is generally used in which 
older information is gradually discarded by decreasing its weight in 
the estimation as time progresses [I 8, 191. This method is called least 
square with exponential forgetting. In this section we first formulate 
the time-varying least square problem and then introduce a modifica- 
tion in parameter update scheme which will enable mass and grade 
estimation when they vary with different rates. Equation (1) can he 
reorganized to yield 

I g 4  . r i w =  ( T . - T , ~ - T , , , ~ - J , ~ ) - + - ~ I ~ ( B - B ~ )  (8) 
M cosa  

where tanbp = ~r. We can rewrite the equation in the following linear 
form, 

(9) 
Where 

Y = $'e, 0 = [ol blT, e = [e1 e21T 

I 
9=[91,92]'=[-, sin(P-p,,)]' 

M 

is the parameter of the model to be determined and 

2 
1 .  grg 

y = r p ,  $1 = T, - Tfb - T,,," - J&, $2 = - 

can be calculated based on measured signals and known variables. 

6 is selected such that it minimizes the least square loss function. 
When 9 is time-varying, the loss-function is defined as follows: 

c o s a  

where A is  a positive parameter smaller than I and is called the for- 
getting factor. It is introduced to discard older information in favor of 
newer information. This method is a pragmatic approach to capture 
the time-varying nature of the parameter, 9. The problem is called 
least-square with exponential forgetting and 6 can be calculated re- 
cursively as follows. More detailed derivation can be found in hooks 
on parameter estimation such as [18]: 

where 

L(k) = P(k)$ (k )  = P ( k -  l)$(k) ( h + $ T ( k ) P ( k -  I)$(k))-' 

and 
P ( k )  = ( I - L ( k ) $ T ( k ) ) P ( k -  1 

The least-square method with exponential forgetting, as described 
above, is suitable for keeping track of the parameters when all vary 
with similar rates. In our case however, the first parameter. 81, is only 
a function of mass and is constant. The second parameter, 92. only 
depends on the grade and can vary relatively fast. In simulations, we 
observed that the described least square with forgetting does not con- 
verge when the grade is constantly changing. Figure 2 shows the per- 
formance of RLS with a single forgetting factor for sinusoidal varia- 
tions in grade. The well-known phenomenon of estimator "blow-up" 
or "wind-up" can he seen during grade changes and errors in both 
mass and grade estimates become vely large. The estimates converge 
hack to the real values only when the grade becomes constant. Here 
a forgetting factor of 0.9 is chosen. We noticed that reducing the 
forgetting factor will only worsen the problem. When realistic mea- 
surement noise is introduced in the data, the performance is sacri- 
ficed even more. In [20, 21. 221 a vector-type forgetting scheme is 

F igu re  2: Poor estimation of mass and grade when RLS with a single 
forgetting is used. The forgetting factor is 0.99. Smaller 
forgetting factors worsens the performance. 

suggested to account for different rate of changes of different param- 
eters Yoshitani and Hasegawa [23] have used this vector-type forget- 
ting scheme for parameter estimation in control of strip temperature 
for the heating furnace. For a self-tuning cruise control Oda et al. [71 
used this method for detecting step changes in the parameters of a 
transfer function. We employ a similar update scheme for the matrix, 
P ( k ) ,  which bypasses the limilation of a single forgetting factor. In 
this scheme the covariance matrix P is updated in the following way: 

P ( k )  = A - '  ( I - L ( k ) c f ( k ) ) P ( k -  1)A-I (12) 

where A = diag(h1 ,hz)  and hl and h2 arc the forgetting factors for 
the first and second parameters respectively. Choosing two values for 
hl and h2 will allow more degrees of freedom in the update of the 
two entries of L ( k )  = [LI (k) ,LZ(k)l  and enhances the stability of the 
classical method quite noticeably. Before employing the vector-type 
forgetting, and to remedy the problems associated with different rates 
of variations, the authors had formulated a multiple forgetting method 
which has similarities to and differences from the above-mentioned 
scheme. It has shown very good convergence and tracking capabili- 
ties in simulation and experiments and the way i t  is formulated makes 
an intuitive sense. Since it provides some motivation on the concept 
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of multiple forgetting, we discuss the formulation and the stlucture of 
the problem in the next section. 

4.1 A Recursive Least Square Scheme with Multiple Forgetting 
When working on the particular mass and grade estimation problem. 
the authors noticed that the difficulties in RLS with single forgetting 
stem from the following facts: I .  In the standard method it is assumed 
that the parameters vary with similar rates. 2.  In the formulation of 
the loss-function defined in (IO) and subsequently the resulting recur- 
sive scheme, the errors due to all parameters are lumped into a single 
scalar term. So the algorithm has no way to realize if the error is due 
to one or more parameters. As a result if there is drift in a single 
parameter, corrections of the same order will be applied to all param- 
eters which results in over-shoot or undershoot in the estimates. If 
the drift continues for sometime i t  might cause poor overall perfor- 
mance of the estimator or even the so-called estimator “wind-up” or 
“blow-up”. It is tlue that we are fundamentally restricted by the fact 
that the number of existing equations is less than number of param- 
eters which we are estimating, but in a tracking problem we can use 
our past estimation results more wisely by introducing some kind of 
“decomposition” in the error due to different parameters. Therefore, 
our intention is toGCseparate” the error due to each parameter and sub- 
sequently apply a suitable forgetting factor for each. Without loss of 
generality and for more simple demonstration, we shall assume that 
there are only two parameters to estimate. We define: 

hand side of (13) represents only the error of the step k due to first 
parameter estimate, 6, ( k )  and the second term corresponds to the 
second parameter estimate, &(k). Now each of these errors can be 
discounted by an exclusive forgetting factor. Notice that 81 ( k )  and 
Bz(k )  are unknown. We will later replace them with their estimates, 
el(k)andi)z(k). 

Here hl and kz are forgetting factors for first and second parameters 
respectively. Incorporating multiple forgetting factors provides more 
degrees of freedom for tuning the estimator. and as a result. param- 
eters with different rates of variation could possibly be tracked more 
accurately. The optimal estimates are those that minimize the loss 
function and are obtained as follows: 

~. . 
1 1  

Using the fact that PI and P2 are always positive it can be proved 
that the determinant of H is always nonzero and therefore the inverse 
always exists. With some more mathematical manipulations, (21) can 
be written in the form of (1 1): 

6 ( k )  = B ( k -  l )+L , , , (k )  ( y ( k )  - V ( k ) b ( k -  I ) )  (22) 

where L,,,,(k) is defined as follows: 

1 r pL(k-t)+l(k) 1 
k av ~- -O=+ xk{-‘(-@t(i))  (Ai) - 9 t ( i ) a t ( k ) ~ 9 z ( i ) 8 z ( i ) )  = O  

adt ( k )  i= I 
(14) The proposed method incorporates different forgetting factors for 

each parameter. To this end, it does what the vector-type forgetting 
method does. Eq. (22) is similar in form to the standard update of 
( I  I ) .  However the gains of the standard and the proposed form are 

the latter does not. In other words the covariance matrix of the pro- 
posed method is diagonal. This will result in update of the two pa- 
rameters proportional to Pl(k) and Pz(k ) .  

In short, introduction of the loss-function (13) with decomposed er- 
rors and different forgetting factors for each have two distinct impli- 
cations: 

I )  Parameters are updated with different forgetting factors. That is 
done by scaling the covariances by different forgettings. This is more 
or less what is done in the RLS with vector-type forgetting as well. 
However our approach is based on minimization of a loss-function 

Rearranging (14), 61 ( k )  is found to be: 

&(k) = ( i k i - i O t ( i ) z ) - ’  ( i k i - ’ b ( i )  -$z(i)ez(i)) (15) different. Specifically the former has a cross-termPlz(k- I ) ,  while 
i= I i= I 

Similarly & ( k )  will be: 

6 2  ( k )  = (i k;-i@2(i)z) -’ (i A$’ (y(i) - $1 (i)et (i))) (16) 

For real-time estimation a recursive form is required. With some al- 
gebraic manipulations, and similar to derivation of regular RLS for- 
mulation [19], the recursive form can be written as follows: 

i= I i=l 

el ( k )  = el (k - I )  + L~ ( k )  ( Y W  -$I  weI ( k  - 1) - $z(k)e2(k)) 
(17) 

4954 
Proceedings of the American Conlml Conference 

Denver, Colorado June 4-6.2003 



while the vector-type approach introduces multiple forgetting factors 
in an ad-hoc fashion. 

2 )  It decouples the updating step of the covariance of different param- 
eters. This is different from standard RLS or RLS with vector-type 
forgetting. We believe that when the parameters are independent of 
each other this makes an intuitive sense. 

Simulation analysis showed that the performance is similar to the 
RLS with vector forgetting when similar forgetting factors arc used. 
We tested this algorithm in our application by simulations and with 
various grade change patterns. Every time initial estimates of mass 
and grade were calculated using the regular least-square method and 
based on the first few second batch of data. We assumed that the pa- 
rameters were constant within this period. Once the initial estimates 
were obtained. the proposed recursive algorithm was employed for 
updating the estimates. Figure 3 shows the performance of the esti- 

I 

Consrant mass 

I '  I I 
20 2s I Y  

Tim. .. 

- 
3 40 

E E 10 :;E T,_.l 20 s 

Figure 3: Grade and mass estimates versus the actual values. RLS 
with multiple forgetting factors is used for estimation. 

mator when grade has sinusoidal variations. Mass is estimated within 
0.04 percent and grade is estimated within 0.5 percent and with very 
small lag. Even with a much higher speed of variations. the estimator 
performs reasonably well. In simulation we observed that i l  the for- 
getting factors are chosen so that they roughly reflect relative rate of 
change of parameters. parameter changes are tracked well. In this ex- 
ample forgetting factors of 0.8 and I .O are chosen for grade and mass 
respectively. Unlike estimation with single forgetting, the estimation 
is very smooth and the estimates converge much faster. Because a 
forgetting factor of I .O is chosen for mass, the mass estimates are not 
as sensitive to changes in grade. A summary of some other scenar- 
ios is shown in Table I .  The results shown in this table are based on 
numerical data that is not noisy. Simulations with data contaminated 
by noise show that noise deteriorates the performance of the single 
forgetting estimation, The multiple forgetting scheme showed much 
better robustness in presence of noise. 

To demonstrate the influence o f  noise, we added zero mean Gaussian 
white-noise, generated by a the Simulink Random number generator, 
to both torque and engine speed measurements. Noise powers of 10 
and 0.01 were chosen for engine torque and engine speed signals re- 
speclively. The signals are sampled at 50 Hz. To avoid numerical 
problems in differentiating the noisy engine speed signal, we inte- 
grated both sides of (8) and applied the least square method to the 
resulting equation. Also a bigger batch span was used to get more 

goad esllmation gwd estimation 

Table  1: Comparison of the performance of single and multiple for- 

Sinusoidal change of grade 
constant mass 

getting RLS algorithms 
Scenario I Single Forgetting 1 Multiple Forgetting 

Constant made 1 I 

good estimation bad estimation 

Constant mass I overshoots in estimates I goad estimation 
Linear change of grade 1 I 

m 30 
Tim., 

Figure 4: Trajectories of grade and mass estimates versus the actual 
values when simulated noise is added to measurements, 

accurate initial estimate. The results in Figure 4 show that mass and 
grade are estimated within five and fifteen percent respectively. 

4.2 Comparison with a Kalman Filter 
When a model of a system with varying parameters is available, a 
Kalman filter approach can be used to obtain "optimal" estimates for 
the parameters relying on the model and measurements. In our case 
such a model does not exist. Mass is known to be constant hut vari- 
ations of grade can not be modelled. An ad hoc estimation approach 
could he using a Kalman filter with the assumption that parameter 
variation is described by a random walk process: 

e ( k +  I )  = ~ ( k )  +v,(k) E [ v ~ ( ~ ) v : ( ~ ) I  = ~ , ( k )  (24) 

The measurement noise i s  assumed to be Gaussian white: 

The Kalman estimator will resemble equation I 1  but with the gains 
updated as follows [241: 

and 
P(k) = ( l - L ( k ) $ r ( k ) ) P ( k - l ) + R l ( k ) .  

However due to the difference between the assumed model and the 
actual variation in parameters. the estimates are usually poor. It was 
observed in simulations that depending on the scenario, this assump- 
tion could cause large deviations from actual parameter values or slow 
down the convergence. Figure 5 shows estimation results when a 
Kalman filter was used. The covariance matrix RI is chosen to be 
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diag(0.0000M)1.0.01) as a tuning parameter and R2 is chosen to be 
zero assuming no measurement noise. It can be seen that the mass 
and grade are not estimated as well as previous schemes. 

Figure 5:  Kalman filter estimation of grade and mass versus the 
actual values. 

5 Concluding Remarks 

Two algorithms for the problem of simultaneous mass-grade estima- 
tion for heavy-duty vehicles are proposed. Both methods use engine 
speed and engine torque readings to estimate mass and time-varying 
grade. In the first method an observer is designed for estimation of 
mass and grade. It is shown through a Lyapunov function and also in 
simulations that the estimates converge to their actual values, given 
a-priori knowledge of their feasible range. In the second method use 
of recursive least-square with vector-type forgetting is proposed. We 
show in simulations that a single forgetting factor cannot estimate pa- 
rameters with different rates of variation. Ways to incorporate more 
than one forgctting factor for estimation of multiple parameters with 
different rates of variation are discussed and the effectiveness of the 
algorithm with multiple forgetting in estimating a constant mass and 
time-varying grade is shown with simulations. It is shown that if 
the chosen forgetting factors reflect relative rate of vanation of the 
parameters, both parameters can be estimated with good accuracy. 
In the second method no bound for parameter values was assumed 
while the first method finds the parameters in a pre-specified range. 
The first method ensures both estimates remain within their feasible 
range under all driving conditions and even when inputs are not per- 
sistently exciting. A robust solution in the second method can be 
achieved with persistent excitations. To avoid poor results during pe- 
riods of low excitations. bounds on estimates can be enforced, similar 
t o  the first method, to ensure that the estimates remain in their feasi- 
ble range. While with persistent excitations. the least square approach 
guarantees convergence of both mass and grade estimates. the ob- 
server based approach may allow deviations from INe values as long 
as the estimates remain in their feasible range. Also measurement 
noise might trigger unwanted updates in estimates. A combination of 
the two methods can provide the desired redundancy for robust esti- 
mation. 
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