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Abstract

In this paper two different approaches are proposed for simultane-
ous mass and grade estimation for Heavy-Duty Vehicles. In the first
method an observer is used which can estimate mass and time-varying
grade given their feasible range. The second approach is a recursive
time-varying least square method with forgetting. Inclusion of mul-
tiple forgetting factors makes the algorithm suitable for sitnultaneous
estimation of a constant and a fast time-varying parameter. Accurate
mass estimation and good tracking of time-varying grade is demon-
strated in simulations.

1 Introduction

Reliable on-line vehicle parameter estimation is important for re-
duced emissions, increased fuel efficiency and enhanced safety and
driveability of Heavy-Duty Vehicles (HDV). Unlike passenger cars,
an HDV's mass can vary significantly from trip to trip. Mild grades
can be serious loadings for HDVs. An anti-lock brake controller re-
lies on an estimate of mass and road grade for calculating vehicle’s
forward speed which is necessary for the calculation of wheel slip. In
longitudinal control of platoons of mixed vehicles, knowledge of the
participating vehicle mass and road grade is necessary for avoiding
issuing infeasible acceleration and braking commands [1]. Moreover,
mass estimation is essential to the engine control unit (ECU) for re-
duced emission, and to transmission control for reduced gear hunting.
The closed loop experiments performed by Yanakiev et al. [2] indi-
cate that the longitudinal controllers with fixed gains have limited ca-
pability in handling large parameter variations of an HDV. Therefore
it is necessary to use an adaptive control approach with an implicit or
explicit online estimation scheme for estimation of unknown vehicle
parameters [1, 3, 4].

Examples of adaptive controllers for vehicle control applications can
be found in the work by Liubakka et al. [5], loarmou et al. [6], and
Qda et al [7]. Yanakiev et al. [8, 9] developed an adaptive controller
for longitudinal control of an HDV using direct adaptation of P1Q
controller gains. Recently, Druzhinina et al. [10] have developed an
adaptive control scheme for the longitudinal control of HDV's during
braking. Within this scheme they provided simultaneous mass and
road grade estimation. They demonstrated convergence in estimates
for constant mass and piecewise constant road grade. This method is
an indirect estimation method since estimation is achieved in closed-
loop and as a by-product of a control scheme.

As HDV automation is increasing, there are more control functions
that could benefit from on-line estimation of the vehicle mass and
road grade. Moreover, many times estimates independent of a con-
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troller are required. In other words a direct estimation scheme is more
appealing. In an HDV’s electronically controlled powertrain, direct
estimation of mass can be accomplished using two primary methods:
(2) processing acceleration data [1]. (b) processing acceleration or
deceleration data during a gear shift [11]. In both of these meth-
ods, changes in road grade can cause poor mass estimation by biasing
the driveline torque that is available for acceleration or deceleration.
Therefore, road grade variations combined with uncertainties in vehi-
cle mass, present strong challenges for vehicle parameter estimation
and control. One remedy to the problem is to use some kind of sensor
to estimate grade and then use a parameter estimation technique to
estimate mass. In [12] using an on-board accelerometer is proposed
for grade estimation. The mass is then estimated based on this esti-
mate of the grade. Bae et al. [13] use GPS readings to obtain road
elevation and calculate the grade using the measured elevations. With
the grade known, they estimate the mass with a simple least square
method based on a simple longitudinal dynamics equation.

A model-based method, instead of a sensor-based scheme, can pro-
vide a cheaper alternative for simultancous estimation of mass and
grade or it can be used along with a sensor-based scheme to pro-
vide some redundancy. However, the fact-that grade is time-varying
demands an estimation method which is dynamic in nature and can
estimate parameters as well as keep track of their varjations. '

In this paper we propose two independent methods for simultaneous
estimation of mass and time-varying grade. Both methods are direct
estimation methods which rely on a model of longitudinal dynamics
of the vehicle, vehicle speed and engine torque measurements for es-
timation. Vehicle speed and engine torque are available in an HDV
through the }1939 port. The first approach estimates mass and grade
with a dynamic observer. The grade and mass are calculated such that
they drive the observer state to zero. Good convergence is shown in
simulations, when a reasonable range for mass and grade is known
a-priori. In the second method we use a recursive least square method
with forgetting. In this analysis we show that RLS with a single for-
getting factor is not capable of keeping track of a constant mass and
atime-varying grade. That motivates a discussion on the possibilities
for including different forgetting factors for different parameters. It
is shown in simulations that inclusion of multiple forgetting factors,
overcomes the difficulties of the single-forgetting scheme. Good con-
vergence in mass and grade estimates are shown in these simulations.

2 Vehicle Longitudinal Dynamics

The estimation algorithms introduced in this paper rely on a mode!
of vehicle longitudinal dynamics. The dynamics of engine rotational
speed, w, can be described based on the balance between the engine
torque on the crankshaft, T, aerodynamic resistance torque, Thero,
road grade and rolling resistance torque, 7. and torque due to appli-
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cation of friction brake, Ty, i.e.,

-I:(b=n“be+TB‘TnerrJ; (1)

where J; = Mr[% + J, is the effective vehicle inertia, J, is.the engine
crankshaft inertia, M 1is the total mass of the vehicle. and r, is the
total gear ratio. The engine speed is proportional to the vehicle speed,
i.e. v=@r, as long as the wheels do not slip. The torque due to
aerodynamic resistance is given by

2 2
Toero = CqV reg = qu_gw )

in which Cj is the aerodynamic drag coefficient. The torque due to
road grade (B) and the coefficient of rolling resistance(g) is given by

Ty = (—pgMcosP + MgsinB)rg,

where g is the acceleration due to gravity. Here f = 0 comresponds to
no inclination, B > 0 corresponds to a descending grade.

3 Method I: Estimation with an observer

As an altemative to parametrization-based approach, dynamic input
observer for grade has been proposed in our previous work [14] based
on the results in [15). This observer along, is not sufficient for our ap-
plication because it requires the knowledge of the vehicle mass. In
this section we propose an extension to the previous method. We
augment an informaticn set-based adaptation algorithm of the type
studied in [16) which will enable simultaneous mass-grade estima-
tion provided a-priori known lower and upper bounds on grade. These
bounds can be obtained from the maximum and minimum allowable
grades on a highway, Bmqx and Bmir, based on construction guidelines
[171.

We consider the torque due to unknown grade, 7, as an unknown
time-varying disturbance. Thus, the system (1) has the following
form:

Jo =T, ~Tp—Coram* + W, (2)
where W (1) = —rgugMcos () + rgMgsin (1) is weated as an un-
known function of time which is bounded, together with its lime
derivative, i.e., [W({)! < L, [W(t)| < L, for some constant L. > 0, . >
0.

The dynamic observer for W(r) can be defined in the following form
{14]:

W =o(rnM+J)o—¢, 3
where o > 0 is the observer gain and € is the solution of the following
differential equation: :

£=—a(-Tp+ Tpp +Corow® - W). @

Denoting the estimatior error by e = W — W, and considering the Lya-
punov function V = e, it can be shown that V < —aV + £, which
implies that the estimation etror satisfies

WO - Wl < \/ W(O) - WO+ B <r), )

where

. i?
Ru(r) = max{ | (Winlt) — W(0))%e + ol

2
\/(Wmax{f) —~W(0))2e + %):
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and Wpin, Winay are a-priori known bounds on W{r) i.e.,
Winin (£) < W(2) € Woael1).

Thus, if mass M were known, the estimaticn error (5) coutd be made
arbitrarily small by amplifying the observer gain ¢ The accurate es-
timate of the road grade (3 could be then backtracked from W. Since
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Figure 1: Grade, mass and vehicle speed. The observer-based
method is used for estimation.

the mass M is unknown, we replace it by its estimate M in (3) and
generate the adaptation algorithm for M using the approach of [16).
The mass estimation is based on a recursive procedure for generating
a sequence of estimates M(7;) at discrete time instants #;. The esti-
mate for the mass M in the interval [r,_1, 5], M{t;_1 ), is adjusted only
when the estimate W goes out of its known boundary (i.c. W, and
Woaar). That is, if the estimate W(t) from (3) lies within allowable
bounds for given M (., ), i.e. satisfies the following inequality

Winin (fk) — Rae(tt) < W (1) S Winax (1) + Roc (1),
where
Winin = rninMrg, Fin = 48 €08 Brin + £ 510 iz,
Wnax = rmmMrg, Frnax = — 118 €08 Brax + £ 510 Brnaaxs
then M(1;_1) is not updated, i.e., M{t.—,) = M{1). Otherwise, if
Wit} > Wnar(ti) + Rulzy),

then the current estimate M (r,_;) cannot be the true value of the mass
M in the interval {t,_,¢] and, therefore, it has to be updated to make
W {r,) equal t0 Wqx(01) + Ro (1):

. £(tg) + Rafty) — afo0(2
M(tk) — (k) a( ;c) € (k) (6)
O] 0rg — Fmacry
Similarly, if
Wirk) < Wnin(#k) — Rex(ty),
then the current estimate M(7;_ ) has to be updated as follows:
. &{ty) — Re(n) — ol {1
M(.fk)= (k) 0.( k) ¢ {k) 1))

m(tk)a’? — Iminly
where €(t;) is the solution of (4) at time 7.
We tested through simulations the performance of the proposed esti-

mation scheme. In particular, we consider the vehicle operation dur-
ing a braking maneuver on a downhill grade. We assume that the
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grade varies sinusoidally between 2 and 4 degrees. The real vehicle
mass is 20,000 kg, while an initial guess for M(zg) is taken as 25,000
kg. The estimates of vehicle mass and road grade tend to vicinity of
their true values in 7 seconds, as shown in Figure 1.

4 Method I1: Estimation with Recursive Least Square

It was shown in (1) that a linear relationship exists between engine
torque, external loads on the vehicle and engine speed. The coeffi-
cients in this relationship are functions of mass and grade. Therefore
in case of constant mass and grade, a simple recursive least square
method can be used to estimate mass and grade online based on mea-
sured signals. However in a real scenario when the grade and possi-
bly mass are changing during the course of a trip, the classical least-
square method averages all the pastiinformation and calculates a con-
stant estimate based on the averaged data which is not the right esti-
mate. For estimation of time-varying parameters of a linear system,
a modified version of least square method is generally used in which
older information is gradually discarded by decreasing its weight in
the estimation as time progresses [18, 19]. This method is called least
square with exponential forgetting. In this section we first formulate
the time-varying least square problem and then introduce a modifica-
tion in parameter update scheme which will enable mass and grade
estimation when they vary with different rates. Equation (1) can be
reorganized to yield:

1 ey .
v e sin(B—PBy) &)

rai = (T — Typ — Taero — Jetd)

where tan 3, = pt. We can rewrite the equation in the following linear
form,
y=0"8, 0=1[0: %], 8=[01 6" ©)

Where

0= 01,057 = [, sin(B~ B,

is the parameter of the model to be determined and

" grg
= roo, =T, — Trp — Tyero — Jo 0, =
y=rg o e~ fb— Laero — Je 02 cosd

can be calculated based on measured signals and known variables.

0 is selected such that it minimizes the least square loss function.
When 0 is time-varying, the loss-function is defined as follows:

. L ERY:

V(0.6 = 3 XA (5 - o ()00 (10
i=1

where A is a positive parameter smaller than | and is called the for-
getting factor. 1t is introduced (o discard elder information in favor of
newer information. This method is a pragmatic approach to capture
the time-varying nature of the parameter, 8. The problem is called
least-square with exponential forgetting and 8 can be calculated re-
cursively as follows. More detailed derivation can be found in books
on parameter estimation such as {18]:

8 =0(k- 1)+ LK) (Y -0 (WBGK-1)) D

where

L(k}

-1
PRIB(K) = P(k— 1)0(K) {2+ (DP(k— Dok
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and . : i
P(k) = (1 —L(k)d)T(k)) Pk 1)3-

The least-square method with exponential forgetiing, as described
above, is suitable for keeping track of the parameters when all vary
with similar rates. In our case however, the first parameter, 6y, is only
a function of mass and is constant. The second parameter, 8;, only
depends on the grade and can vary relatively fast. In simulations, we
observed that the described least square with forgetting does not con-
verge when the grade is constantly changing. Figure 2 shows the per-
formance of RLS with a single forgetting factor for sinusoidal varia-
tions in grade. The well-known phenomenon of estimator “blow-up”
or “wind-up” can be seen during grade changes and errors in both
mass and grade estimates become very large. The estimates converge
back to the real values only when the grade becomes constant. Here
a forgetting factor of 0.9 is chosen. We noticed that reducing the
forgetting factor will only worsen the problem. When realistic mea-
suremenl noise is introduced in the data, the performance is sacri-
ficed even more. In [20, 21, 22] a vector-type forgetting scheme is
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Figure 2: Poor estimation of mass and grade when RLS with a single
forgetting is used. The forgetting factor is 0.99. Smaller
forgetting factors worsens the performance.

suggested to account for different rate of changes of different param-
eters. Yoshitani and Hasegawa [23] have used this vector-type forget-
ting scheme for parameter estimation in control of strip temperature
for the heating furnace. For a self-tuning cruise control Oda et al. [7]
used this method for detecting step changes in the parameters of a
transfer function. We employ a similar update scheme for the matrix,
P(k). which bypasses the limitation of a single forgetting factor. In
this scheme the covariance matrix P is updated in the following way:

P(E) =A™ (I—L(k)q}r(k)) Pk — 1A (12)
where A = diag(Ay,X;) and A; and A, are the forgetting factors for
the first and second parameters respectively. Choosing two values for
At and Ay will allow more degrees of freedom in the update of the
two entries of L{k) = [L;{k}, L2(k)] and enhances the stability of the
classical method quite noticeably. Before employing the vector-type
forgetting, and to remedy the problems associated with different rates
of variations, the authors had formulated a multiple forgetting method
which has similarities to and differences from the above-mentioned
scheme. It has shown very good convergence and tracking capabili-
ties in simulation and experiments and the way it is formulated makes
an intuitive sense. Since it provides some motivation on the concept
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of multiple forgetting, we discuss the formulation and the structure of
the problem in the next section.

4.1 A Recursive Least Square Scheme with Multiple Forgetting
When working on the particular mass and grade estimation problem,
the authors neticed that the difficulties in RLS with single forgetting
stem from the following facts: 1. In the standard method it is assumed
that the parameters vary with similar rates. 2. In the formulation of
the loss-function defined in (10) and subsequently the resulting recur-
sive scheme, the errors due to all parameters are lumped into a single
scalar term. So the algorithm has no way to realize if the error is due
to one or more parameters. As a result if there is drift in a single
parameter, corrections of the same order will be applied to all param-
eters which results in over-shoot or undershoot in the estimates. If
the drift continues for sometime it might cause poor overall perfor-
mance of the estimator or even the so-called estimator “wind-up” or
“blow-up”. It is true that we are fundamentally restricted by the fact
that the number of existing equations is less than number of param-
eters which we are estimating, but in a tracking problem we can use
our past estimation results more wisely by introducing some kind of
“‘decompasition” in the error due to different parameters. Therefore,
our intention is to“separate” the error due to each parameter and sub-
sequently apply a suitable forgetting factor for each. Without loss of
generality and for more simple demonstration, we shall assume that
there are only two parameters to estimate. We define:

V(8 (k),éz_(k),k) = \
>R CORTAGEND ~02()0:()+
L3E 57 (000 — 01981 (1) — 02(1)Ba ()

With this definition for the loss function the first term on the right
hand side of (13) represents only the error of the step k due 1o first
parameter estimate, 0, (£) and the second term corresponds to the
second parameter estimate, 82(k). Now each of these errors can be
discounted by an exclusive forgetting factor. Notice that 0, (k) and
8- (k) are unknown. We will later replace them with their estimates,

(13)

Here A; and A; are forgetting factors for first and second parameters
respectively. Incorporating multiple forgetting factors provides more
degrees of freedom for tuning the estimator, and as a resull, param-
eters with different rates of variation could possibly be tracked more
accurately. The optimal estimates are those that minimize the loss
function and are obtained as follows:

v

k . .
N 0= 3 M (00 (D) ()~ 01 (D81 (k) — 02(1)02(0)) =0

i=1
i (14)
Rearranging (14}, 6, (k) is found to be:

X s
) (k) = (2 k’{"f¢1(i)2) (2 MO —¢z(i)ez(i})) (13)
i=1 =1

Similarly 8, (k) will be:

13 sk
Ba(k) = (z A’;"m(z)z) (2 M) - 01 (1)8y (i))) (16)
=1 i=1

For real-time estimation a recursive form is required. With some al-
gebraic manipulations, and similar to derivation of regular RLS for-
mulation [19], the recursive form can be written as follows:

B1(k) =01 (k— 1)+ L1 (k) (v(K) = 01 ()1 (k — 1) — 92(K)B2 (k) )
(Im

4954

where
’ -1
Ly (k) = Py (k= 1)91(6) (A + 0] ()21 (k — 1o (k)

P@) = (T- L @00 () P k= D)7
and similarly,

G2(k) = B2k — 1) + La(k) (y(k) — 61 (k)01 (k) — 2 (k}D2(k — 1)()18)

where
£4(0) = Palke = 1)02(8) (2 + ] ()Palk— )02(0))

Pat) = (1~ LaOF () Palk— D)5

In the two aforementioned equations 8y (k), 82(k), 81 (k), and 02(k)
are the unknowns. As is customary in similar problems, 8; (k}, and
62 (k) can be replaced with their estimates, 6,{k} and 8,(k). Upon
substitution for 8 (k} and 8;(k) and rearranging (17) and (18) we
obtain:

81 (k) + Ly (k)92 (k)8 (k) = 8y (k— 1) +Ly (k) (¥(k) — &1 (£)B1 {k ~ 1)9))
(

Ly (K1 (k)8 (k) + B2 (k) = Bz (k — 1) + Ly (k) {y(k) — b2 (k) B2 (K — 1))
(20)

For which the solution is,

[ 81 (k) ] _ g [ B (k— 1) -+ Ly k) (y(0) - 01 (1)1 (k — 1)) ]
B2 (k) B2k — 1) + Lo (k) (y(k) — 02(K)8a(k — 1))(21)
Where H is [

[ 1 Ly (K)p2(k) }
Ly (k)91 (k) 1 '
Using the fact that P1 and P2 are always positive it can be proved
that the determinant of H is always nonzero and therefore the inverse

always exists. With some more mathematical manipulations, (21) can
be written in the form of (I 1):

8(k) = 6(k— 1) + Luew () (y(6) =" (B 1))  @2)
where Lnew (k) is defined as follows:
1 Puik=1) (k)
Lnew(k) = 1+P](k—i)l¢|(k)2 +Pz(k—£¢z(k)z [ Lk—r]:)qh_(kl J 23)

The proposed method incorporates different forgetting factors for
cach parameter. To this end, it does what the vector-type forgetting
method does. Eq. (22) is similar in form to the standard update of
(11). However the gains of the standard and the proposed form are
different. Specifically the former has a cross-term Pz (k — 1), while
the latter does not. In other words the covariance matrix of the pro-
posed method is diagonal. This will result in update of the two pa-
rameters proportional to Py (k) and P (k).

In short, introduction of the loss-function (13) with decomposed er-
rors and different forgetting factors for each have two distinct impli-
cations:

I} Parameters are updated with different forgetting factors. That is
done by scaling the covariances by different forgettings. This is more
or less what is done in the RLS with vector-type forgetting as well.
However our approach is based on minimization of a foss-function
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while the vector-type approach introduces multiple forgetting factors
in an ad-hoc fashion.

2) It decouples the updating step of the covariance of different param-
eters. This is different from standard RLS or RLS with vector-type
forgetting. We believe that when the parameters are independent of
each other this makes an intuitive sense.

Simulation analysis showed that the performance is similar to the
RLS with vector forgetting when similar forgetting factors are used.
We tested this algorithm in our application by simulations and with
various grade change patterns. Every time initial estimates of mass
and grade were calculated using the regular least-square method and
based on the first few second balch of data. We assumed that the pa-
rameters were constant within this period. Once the initial estimates
were obtained, the proposed recursive algorithm was employed for
updating the estimates. Figure 3 shows the performance of the esti-
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Figure 3: Grade and mass estimates versus the actual values. RLS
with multiple forgetting factors is used for estimation.

mator when grade has sinusoidal variations. Mass is estimated within
0.04 percent and grade is estimated within G.5 percent and with very
small lag. Even with a much higher speed of variations, the estimator
performs reasonably well. In simulation we observed that if the for-
getting factors are chosen so that they roughly reflect relative rate of
change of parameters, parameter changes are tracked well. In this ex-
ample forgetting factors of 0.8 and 1.0 are chosen for grade and mass
respectively. Unlike estimation with single forgetting, the estimation
is very smooth and the estimates converge much faster. Because a
forgetting factor of 1.0 is chosen for mass, the mass estimates are not
as sensitive 10 changes in grade. A summary of some other scenar-
ios is shown in Table 1. The results shown in this table are based on
numerical data that is not noisy. Simulations with data contaminated
by noise show that noise deteriorates the performance of the single
forgetting estimation. The multiple forgetting scheme showed much
better robustness in presence of noise.

To demonstrate the influence of noise, we added zero mean Gaussian
white-noise, generated by a the Simulink Random number generator,
to both torque and engine speed measurements, Noise powers of 10
and 0.01 were chosen for engine torque and engine speed signals re-
spectively., The signals are sampled at 5¢ Hz. To avoid numerical
problems in differentiating the noisy engine speed signal, we inte-
grated both sides of (8) and applied the least square method to the
resulting equation. Also a bigger batch span was used to get more

Table 1: Comparison of the performance of single and muitiple for-
getting RLS algorithms

Scenario | Single Porgetting | Multiple Forgetting

4855

Constant grade
Constant mass
Step changes in grade
Constant mass

good estimation good estimation

avershools in estimates good estimation

Linear change of grade

Constant mass bad estimation good estimation

Sinusoidal change of grade

cOnSstant mass bad estimation

good estimation
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Figure 4: Trajectories of grade and mass estimates versus the actual
values when simulated noise is added to measurements.

accurate initial estimate. The results in Figure 4 show that mass and
grade are estimated within five and fifteen percent respectively.

4.2 Comparison with a Kalman Filter

When a model of a system with varying parameters is available, a
Kalman filter approach can be used to obtain “optimal” estimates for
the parameters relying on the model and measurements. In our case
such a model does not exist. Mass is known o be constant but vari-
ations of grade can net be modelled. An ad hoc estimation approach
could be using a Kalman filter with the assumption that parameter
variation is described by a random walk process:

Bk +1)=0(k) +vi(k) EM(kv ()] =Ri(k) (24
The measurement noise is assumed to be Gaussian white:
y=0" ()0 +vak) Elv2(kvi(K)] = Ra(k) (25

The Kalman estimator will resemble equation 11 but with the gains
updated as follows [24]:

. -1
L(k) = P(k = 1jo(k) (Ra(k) -+ o7 ()P (K~ 1o(k))

and
P(k) = (I = L{)oT (k)P (k—1) + Ry (k).

However due to the difference between the assumed model and the
actual variation in parameters, the estimates are usually poor. It was
observed in simulations that depending on the scenario, this assump-
tion could cause large deviations from actual parameter values or slow
down the convergence. Figure 5 shows estimation results when a
Kalman filter was used. The covariance matrix R; is chosen to be
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diag(0.0000001,0.01) as a tuning parameter and R; is chosen to be
Zero assuming no measurement noise. It can be seen that the mass
and grade are not estimated as well as previous schemes.
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Figure 5: Kalman filter estimation of grade and mass versus the
actual values.

5 Concluding Remarks

Two algorithms for the problem of simultaneous mass-grade estima-
tion for heavy-duty vehicles are proposed. Both methods use engine
speed and engine torque readings to estimate mass and time-varying
grade.. In the first method an observer is designed for estimation of
mass and grade. It is shown through a Lyapunov function and also in
simulations that the estimates converge to their actual values, given
a-prieri knowledge of their feasible range. In the second method use
of recursive least-square with vector-type forgetting is proposed. We
show in simulations that a single forgetting factor cannot estimate pa-
rameters with different rates of variation. Ways-to incorporate more
than one forgetting factor for estimation of multiple parameters with
different rates of variation are discussed and the effectiveness of the
algorithm with multiple forgetting in estimating a constant mass and
time-varying grade is shown with simulations. It is shown that if
the chosen forgetting factors refiect relative rate of variation of the
parameters, both parameters can be estimated with good accuracy.
In the second method no bound for parameter values was assumed
while the first method finds the parameters in a pre-specified range.
The first method ensures both estimates remain within their feasible
range under all driving conditions and even when inputs are not per-
sistently exciting. A robust solution in the second method can be
achieved with persistent excitations. To avoid poor results during pe-
riods of low excitations, bounds on estimates can be enforced, similar
to the first method, to ensure that the estimates remain in their feasi-
ble range. While with persistent excitations, the least square approach
guarantees convergence of both mass and grade estimates, the ob-
server based approach may allow deviations from true values as long
as the estimates remain in their feasible range. Also measurement
noise might trigger unwanted updates in estimates. A combination of
the two methods can provide the desired redundancy for robust esti-
matiot.
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