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Abstract: This paper presents an engine-in-the-loop validation of a power management strategy for 

hybrid electric powertrains that splits the power demanded by driver between the engine and battery 

depending on the frequency content. In particular, a series hybrid electric powertrain is considered where 

the engine is a real 6.4L diesel engine and the rest of the vehicle, including the battery, generator, motors, 

vehicle dynamics, and driver, is modeled in computer. A networked engine-in-the-loop experiment is 

considered where the engine and generator constitute one site, and the rest of the system constitutes 

another site. This networked setup is used to compare the abovementioned power management strategy to 

a thermostatic strategy as the baseline. For the specific drive cycle considered, the proposed strategy 

yields about 12% increase in fuel economy, a performance that exceeds the previously reported purely 

model-based simulation results. In addition, an improvement in battery life can also be expected. 

Keywords: power management, hybrid electric vehicles, hardware-in-the-loop simulation, batteries, 

validation  

 

1. INTRODUCTION 

Vehicle powertrain hybridization is one of the promising 

technologies for improved fuel economy and reduced tailpipe 

emissions, where hydraulic accumulators or batteries are used 

in conjunction with internal combustion engines. Various 

different topologies for hybridization have been explored; 

e.g., series (Filipi and Kim, 2010, Jalil et al., 1997), parallel 

(Liu et al., 2008, Yang et al., 2012, Zheng et al., 2010), and 

power split (or series-parallel) (Liu and Peng, 2008, Yanhe 

and Kar, 2011). They all demonstrated improvements in fuel 

economy and some showed reduction in emissions. 

The hybrid powertrain technology has already been 

successfully deployed on some passenger vehicles (Duoba et 

al., 2001, Lave and MacLean, 2002). Heavy-duty military 

vehicles could benefit from this technology, as well, even 

though they have significantly different performance goals 

and driving patterns than those of passenger vehicles. Within 

the military context, requirements such as silent watch, 

increased mobility, enhanced functionality for on-board 

power, and improved export-power capabilities make hybrid 

electric configurations more attractive than hybrid hydraulic 

architectures. Among various hybrid electric configurations, 

the series configuration has drawn interest due to greater 

flexibility in vehicle design when it comes to considerations 

such as the V-shaped hull design to maximize the 

survivability of the crew during blast events (Ramasamy et 

al., 2009). Therefore, with the specific military application in 

mind, the focus of this paper is on the series hybrid electric 

architecture. 

The performance of a hybrid powertrain in terms of reducing 

both fuel consumption and emissions critically depends on 

the power management strategy; i.e., the supervisory control 

algorithm that determines how the total power demanded by 

the driver will be shared between the engine and, for example, 

the battery. Many power management strategies for series 

hybrid electric vehicles have been proposed to fully exploit 

hardware potential for minimizing fuel consumption and 

emissions (Hochgraf et al., 1996, Caratozzolo et al., 2003, 

Filipi et al., 2004, Konev et al., 2006, Pisu and Rizzoni, 2006, 

Kim and Filipi, 2007, Sciarrretta and Guzzella, 2007, Di 

Cairano et al., 2011, Jalil et al., 1997, Li and Feng, 2012).   

Among these many strategies proposed, Konev et al. and Di 

Cairano et al. highlight the importance of a smooth engine 

operation that will minimize the aggressive transient 

operation of the engine. This is important because of two 

reasons: (1) a smooth operation allows the engine to operate 

close to the steady-state conditions where the operation is 

optimal in terms of fuel efficiency; and (2) reducing 

transients also reduces emissions. To achieve such a smooth 

operation, Konev et al. and Di Cairano et al. propose methods 

to smoothen the power demand that is required from the 

engine.  

In their work, Konev et al. and Di Cairano et al. focus on the 

benefits of this strategy from the engine perspective only and 

within the context of passenger vehicles with spark-ignition 

engines. The impact of this strategy within context of military 

vehicles with diesel engines is still an open-research question. 

The impact of this type of strategy on the battery operation 

and battery health is also unknown.  



 

 

     

 

Thus, this paper is aimed to investigate the effects of a 

power-smoothing strategy in a series hybrid electric military 

vehicle with a diesel engine. The effects are addressed from 

the perspective of both the engine and the battery. 

Towards this end, a frequency-domain power distribution 

(FDPD) strategy is considered that has been proposed in 

(Kim et al., 2012). The FDPD strategy manages power flow 

by splitting power demand into low and high frequency 

components through signal processing. Model-based 

simulations have shown the method to be capable of 

achieving: 1) reduced battery electric loads, 2) smooth engine 

transient; and 3) less fuel consumption. This paper first 

proposes a new design strategy to tune the frequency-based 

supervisory controller. Control parameters are systematically 

optimized through the model-based multi-phase optimization 

process. Then, for the first time, the method is evaluated 

experimentally using a networked engine-in-the-loop 

simulation setup and a military vehicle and driving profile. 

The battery life is assessed explicitly through battery life 

estimation using a weighted Ah-throughput model (Serrao et 

al., 2009, Di Filippi et al., 2010). The thermostatic control 

strategy is also considered as a baseline power management 

strategy, and the FDPD is compared to the baseline strategy 

in terms of performance. 

The rest of this paper is organized as follows. Section 2 gives 

an overview of the power management strategies considered 

in this paper and also proposes a method to tune the FDPD 

strategy. Section 3 presents the vehicle system considered as 

a case study. Results are presented and discussed in Section 4, 

and conclusions are drawn in Section 5. 

2. OVERVIEW OF THE POWER MANAGEMENT 

STRATEGIES  

The primary task of a power management strategy is 

determining the power flow between the vehicle, engine and 

battery to minimize a cost function such as fuel consumption 

and emissions. Specifically, a series hybrid configuration can 

take advantage of the decoupling of the engine from the 

wheels to operate the engine around the optimal operating 

conditions. However, the decrease in total system efficiency 

due to inherent multiple energy conversions, and other 

constraints such as battery voltage and current limitations 

make the power management problem a challenging task. 

Therefore, the design of power management strategy is 

important to improve fuel economy while reducing engine 

emissions and to ensure safe battery operations.  

2.1 Thermostatic SOC Control 

The thermostatic SOC control strategy, one of heuristic 

control techniques, has been widely employed for series 

hybrid electric vehicles (Hochgraf et al., 1996, Caratozzolo et 

al., 2003, Lee et al., 2011, Li and Feng, 2012). This strategy 

is advantageous because of its ease of implementation, the 

effectiveness of SOC regulation, and the improvement of fuel 

economy. The thermostatic SOC control strategy is 

considered as a baseline strategy in this study.  

The principle of the thermostatic strategy can be summarized 

as follows. As long as current SOC is higher than the target 

SOC, the engine provides zero power (Fig. 1). The engine 

starts charging the battery with the predetermined power 

level when SOC drops to the target SOC. A dead band is 

implemented to prevent frequent engine on/off's. When the 

power demand for vehicle propulsion is higher than the 

battery discharging power limit, the engine operates in power 

assisting mode.  

However, the thermostatic SOC strategy has several 

drawbacks. Since the engine is commanded to provide power 

demand above threshold level, the engine operation changes 

suddenly and aggressively from zero power demand. This 

behaviour considerably deteriorates tailpipe emissions 

(Hagena et al., 2006, Hagena et al., 2011). Moreover, the 

engine cannot follow the aggressive command because of its 

large inertia. In terms of improving fuel economy, this 

strategy cannot avoid multiple power conversions since this 

strategy prefers using the battery power to the 

engine/generator power. More importantly, it was found that 

the Lithium-ion concentration at the surface of solid particles 

at electrodes can be depleted when high peak currents are 

drawn from the battery under aggressive conditions, possibly 

leading to battery degradation through over-discharging (Lee 

et al., 2011). Based on lessons from previous works, it is 

necessary to develop a novel power blending strategy with 

capability of resolving those drawbacks of the thermostatic 

SOC control strategy. 

2.2 Frequency Domain Power Distribution 

The separation of power demand in frequency domain 

provides tailored control inputs to each power source 

considering different system dynamics. The engine system 

dynamics is much slower than the battery electrical dynamics. 

In contrast, the battery can absorb and provide high 

frequency power demand without delays in responses.  

The FDPD is a key enabler to split the total power demand 

into low frequency and high frequency components. The low 

frequency components capture the smooth trajectory of the 

power demand, whereas the high frequency components 

cover the small amplitude but aggressive and transient power 

demand. This separation is adequate when system dynamics 

of the engine and the battery are simultaneously considered. 

The reduced amplitude of the electric load is beneficial to 

mitigate electrical stress on the battery. The small amplitude 

also provides an additional margin for battery downsizing.  

 

Fig. 1. The schematic of thermostatic SOC control 
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Figure 2 shows the structure of the proposed strategy 

consisting of: 1) FDPD module; 2) SOC regulation module; 

and 3) mode decision module. 

The FDPD module for HEV mode determines the 

engine/generator power demand by splitting total power 

demand in low and high frequency ranges. The power 

demand before deciding a vehicle mode Pdmd,2 is determined 

by following steps: 

 

,2

,2 ,1

dmd

LF dmd dmd

dP
P P

dt
τ + =  

where Pdmd,0 and Pdmd,1 are power demand for vehicle 

propulsion and total power demand respectively. Pth1 and Pth2 

are threshold power levels for HEV mode incorporated with 

load-leveling, and τLF is the time constant of a low-pass filter. 

The feedback power demand ∆Pdmd for the battery SOC 

regulation is determined through the proportional-integral (PI) 

controller using the difference between the reference SOC, 

SOCref  and current SOC   

SOC SOCdmd P IP k k dt∆ = ⋅ ∆ + ∆∫ , (1) 

where kP and kI are proportional and integral gain 

respectively.  

The mode decision module determines driving modes. The 

modes change between an electric-vehicle (EV) mode, a 

hybrid electric vehicle (HEV) mode and a performance 

vehicle (PV) mode as following: 

  

where Peng,max and Pbatt,max are maximum available engine 

power and battery discharging power respectively. 

Consequently, the performance of FDPD strategy is 

determined by five control parameters; namely, τLF, Pth1, Pth2, 

kP, and kI. These five parameters are determined through a 

model-based multi-phase optimization process.  

2.3 Model-based FDPD Parameter Optimization 

In this section, we propose a systematic method to optimize 

control parameters of the FDPD strategy based on model-

based simulation. A hybrid vehicle is a complicated system 

that includes both energy conversion and energy storage 

among various power/energy sources. Since numerical round-

off, interpolation inaccuracy, and discrete events in the 

vehicle model simulation lead to discontinuity and 

computational noise in the objective function (Assanis et al., 

1999, Gao and Porandla, 2006), gradient-based optimization 

algorithms are not frequently used. Thus, multi-phase 

optimization framework was used in this study to take 

advantage of both derivative-free (global) and gradient-based 

(local) optimization algorithms. First, a non-gradient based 

optimization algorithm aggressively searches for global 

minimum over a bounded domain. Then, the set is used as an 

initial point for a gradient-based algorithm with fast 

convergence. DIRECT is used for the global optimization 

algorithm because of several advantages (Jones et al., 1993): 

(1) it searches global and local optimum; (2) tuning 

parameters is not required; (3) both equality and inequality 

constraints can be easily handled; (4) it has robust character 

for nonlinear problems. For local optimization algorithm, 

Sequential Quadratic Programming (SQP) is used.  

The control parameter optimization can be mathematically 

formulated as following: 

Objective : Maximize fuel economy 
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where v∆ the difference between the desired and actual 

vehicle speeds; the subscripts ref and end represent the 

reference and the end of driving cycles;  engP& is the derivative 

of engine power demand with respect to time; and the 

subscripts L and U denote the lower and upper bounds 

respectively.  

3. DESCRIPTION OF THE CASE STUDY 

As a case study, a hybridized Mine Resistant Ambush 

Protected All-Terrain Vehicle (M-ATV) is considered to 

explore the effectiveness of the FDPD strategy in severe 

circumstances, i.e., frequent and high power demand. The 

specifications of the M-ATV are summarized in Table 1. 

 

Fig. 2. The schematic diagram of FDPD strategy  
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A networked engine-in-the-loop simulation (Ersal et al., 2012, 

Ersal et al., 2011a) of this vehicle system is considered, 

where the engine is the hardware component and the 

remaining components of the vehicle system (i.e., generator, 

battery, motors, vehicle dynamics, and driver) are 

mathematically modelled. The overview of the networked 

system architecture is illustrated in Fig. 3. 

One of the important considerations in such networked 

simulation is selecting the location of the coupling point 

(Ersal et al., 2011b); i.e., how to distribute the models 

between the two sites. The coupling point significantly 

affects how much the system dynamics are affected by the 

network dynamics (e.g., delay). To this end, several options 

have been considered in this study. All options kept the 

engine and battery in separate locations in anticipation of a 

future study with a battery-in-the-loop facility and varied the 

location of the PMS and Vehicle + Motor models. The 

configuration shown in Fig. 3 is found to be the best option 

among the ones considered and has thus been adopted in this 

study. 

The details of the components that comprise the system are 

given in the rest of this section. 

3.1 The Engine-in-the-Loop Setup 

The hardware component of interest for this work is a 

Navistar 6.4L V8 diesel engine with 260 kW rated power at 

3000 rpm and a rated torque of 880 Nm at 2000 rpm. It is 

intended for a variety of medium-duty truck applications 

covering the range between classes IIB and VII, and features 

technologies such as high pressure common rail fuel injection, 

twin sequential turbochargers, and exhaust gas recirculation. 

A high-fidelity, AC electric dynamometer couples the 

physical engine with the simulation models in real time and 

operates in speed control mode. The setup can be connected 

to Simulink for integration with mathematical models, 

allowing for a real-time hardware-in-the-loop simulation. 

This connection is achieved through an EMCON 400 flexible 

test bed with an ISAC 400 extension (Filipi et al., 2006). The 

photo of the setup is shown in Fig. 4. 

3.2 Motor/Generator Model 

The motor and the generator are modeled using quasi-steady 

state efficiency maps under assumption that their dynamics 

are much faster than vehicle dynamics and transients are 

negligible. As shown in Fig. 5, the efficiency of the electric 

machine (EM) ηEM is expressed as a function of electrical 

torque TEM (or electrical Power Pelec) and speed ωEM :  

mech elec EM

kP P η= ⋅ , (2)  

( )EM EM EM,EM Tη η ω= , (3)  

( ),EM EM EM elecPη η ω= , (4)  

where Pmech is mechanical power and k indicates the direction 

of power flow: k=1 represents that electrical power is 

converted to mechanical power, and k=-1 means that the 

mechanical power is converted to electrical power. Maximum 

output torque of the motor Tmax is governed between the 

continuous torque curve and the peak torque curve 

accounting for the heat index α as follows: 

Tmax = α Tcont + (1−α)Tpeak , (5)

  0.3
0.3 EM

EM cont

T
dt

T
α

τ
 

= − −  
 

∫ , (6)  

where Tpeak and Tcont are the peak and continuous torque 

respectively, and these torques are a function of the motor 

speed (Fig. 7). The heat index varies from zero to one and is 

used to emulate the change in the torque limit based on motor 

temperature. The time constant τEM, of 180 seconds is 

selected in Powertrain systems analysis toolkit developed by 

Argonne National Laboratory. 

Table 1.  Vehicle Specification 

Component Specification 

Vehicle Hybridized Mine Resistant Ambush 

Protected All-Terrain Vehicle 

(M-ATV) 

Weight 14,403 kg 

Payload 1814 kg 

Frontal Area 5.72 m
2
 

Engine 6.4L V8 turbo-diesel: 260 kW 

Generator Permanent Magnet: 265 kW 

Battery Li-ion : 9.27 kWh 

Motors Permanent Magnet: 380 kW 

 

 

Fig. 3. The overview of the vehicle system simulation 

architecture used in this case study. Italicized components are 

physical and the rest remaining ones are simulation models. 

 

Fig. 4. A photo of the engine-in-the-loop testing facility 
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3.3 Optimal Engine/Generator Operation 

The best efficient operating points of engine/generator 

combined system are different from the best engine-efficient 

operating points. In a series hybrid configuration, the 

attached generator possibly shifts the best fuel efficient 

operating points of the combined system to other operating 

points. The combined system brake specific fuel consumption 

(bsfc) map is obtained by dividing the engine bsfc map by the 

generator efficiency map. The bsfc of the engine/generator 

unit bsfceng/gen can be calculated by using 

bsfceng/gen= bsfceng/ηgen . (7) 

The best fuel-efficient operating line is then determined by 

searching the minimum fuel consumption point for any given 

power demand. Figure 6 shows the combined bsfceng/gen and 

optimal operation line of the engine/generator unit which is 

used in this study.  

3.4 Battery Model 

The battery is modeled using an equivalent circuit approach 

as shown in Fig. 7. The equivalent circuit model can predict 

the battery state of charge (SOC) accurate enough to be used 

in developing a model-based supervisory controller. The 

open circuit voltage VOC and internal resistances (Rs, R1, and 

R2) and capacitors (C1 and C2) during discharging and 

charging are obtained using parameter identification from the 

experiments.  

Current I and terminal voltage Vt of the battery are calculated 

by using 

( ) ( )2

1 2 1 2 4

2

OC c c OC c c s b

s

V V V V V V R P
I

R

− − − − − −
= , (8) 

1 2t OC s c c
V V IR V V= − − − , (9)  

where Pb is battery power drawn. Vc1 and Vc2 are voltage 

across the capacitors C1 and C2 respectively, and calculated 

based on the following dynamic equations: 

1
1

1 1

1 c

c

Vd
V I

dt C R

 
= − 

 
, (10) 

2
2

2 2

1 c

c

Vd
V I

dt C R

 
= − 

 
. (11)  

Maximum discharging and charging power limit can be 

obtained by the following equations: 

( )min

,max min max min

int

OC

batt

V V
P V I V

R

−
= ⋅ =  , (12)  

( )max

,min max min max

int

OC

batt

V V
P V I V

R

−
= ⋅ =  ,  (13)  

where Imin and Imax are the minimum and maximum available 

current respectively; Vmax and Vmin are the manufacturer 

specified voltage limits. The battery is assumed to be 

perfectly regulated around a desired temperature so that the 

effect of temperature is negligible. The battery SOC is 

predicted based on coulomb counting:  

1d
SOC I

dt Q
= −  , (14)  

where Q is battery capacity. Positive current denotes battery 

discharging for sign convention. 

3.4 Vehicle Dynamics Model 

The longitudinal dynamics of the vehicle is calculated by 

 

Fig. 5. Efficiency contour map of an electric motor 

superimposed by maximum and continuous torque 

 

Fig. 6. bsfc of engine/generator unit obtained by combining 

engine bsfc and generator efficiency and superimposed by 

optimal operation lines of the engine/generator unit and the 

engine only 

 

Fig. 7. Equivalent circuit (OCV-R-RC-RC) battery model 

0
.8

0
.8
2

0
.8
2

0
.8
4

0
.8
4

0
.8
6

0
. 8
6

0
.8
8

0
.8
8

0
. 8
8

0
.9

0
.9

0
. 9

0
.9
2

0
.9
2

0
. 9
2

0
.9
2

0
.9
4

0
.9
4

0.94 0.94

0
. 9
4

0
.9
5

0.95

0.95 0
. 9
5

0.
96

0.96

0
.9
6

Speed (rpm)

T
o
rq
u
e
 (
N
m
)

 

 

0 1000 2000 3000 4000
0

100

200

300

400

500

600

700
Efficiency

T
max

T
cont

0.80.80.8

0.8

0.820.820.82

0.82

0.840.84
0.84

0
.8
4

0.84

0.
86

0.86

0.860.86

0.86

0
.8
8

0
.8
8

0.88 0.
88

0.88

0
.9

0.9 0.
9

0.9

0
.9
2

0.92

0.92

0
.9
2

0.9
4

Generator speed (rpm)

G
e
n
e
ra
to
r 
to
rq
u
e
 (
N
m
)

0 2000 4000
0

500

1000

1500

2
0
4

205205

208

2
0
8

214

21
4

220

22
0

230 230

230

240 240

240

2
5
0

250

250

25
0

260 260

260

26
0

280
280

280

400 400
400

Engine speed (rpm)

E
n
g
in
e
 t
o
rq
u
e
 (
N
m
)

1000 1500 2000 2500 3000
0

200

400

600

800

1000

2
2
4

227

2
2
7

230

2
3
0

238

23
8

252
252

25
2

260 260

26
0

2
7
3

273

273

290
290

290

325 325

325

390
390

390

Speed (rpm)
1000 1500 2000 2500 3000

0

200

400

600

800

1000

T
o
rq

u
e
 (
N
m
)

Speed (RPM)

Best Engine/Generator Operation Line

Maximum Torque Line

Best Engine Operation Line

bsfc (g/kW-h)

RS

R1 R2

C1 C2

+
-

Voc

+

-

Vt



 

 

     

 

using 

veh

veh prop RR WR GR brk

dv
M F F F F F

dt
= − − − − , (15)  

where Mveh and vveh are the mass and velocity of the vehicle 

respectively, Fprop is the propulsion force, and FRR is the 

rolling resistance force expressed by 

RR veh cos
r

F f M g θ= , (16)  

where fr is rolling resistance, g is gravitational acceleration, 

and θ is the road grade. The wind resistance force FWR is 

calculated by using 

2

WR air veh veh

1

2
d

F C A vρ= , (17)  

where ρair is the air density, Cd is the drag coefficient, and 

Aveh is frontal area of the vehicle. The grade resistance force, 

FGR = Mveh g sinθ, is set to zero in the driving cycles in this 

study. 

3.5 Driver Model 

The driver model, which takes the desired and actual vehicle 

velocities as inputs, is a PI controller with saturation and anti-

windup in conjunction with 1, 2, and 3 s preview. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of power management strategies are 

investigated using an aggressive military driving cycle, 

Urban Assault Cycle (Lee et al., 2011). Frequent high 

acceleration and deceleration events create aggressive 

propulsion and braking situations. The velocity profile of this 

driving cycle is displayed in Fig. 8. The parameters of the 

baseline thermostatic SOC control and the optimized FDPD 

strategies are summarized in Tables 2 and 3.  

To highlight the performances of the power management 

strategies, specific time periods are shown in Fig 9. The 

engine power demand gradually changes under the FDPD 

strategy. In contrast, the baseline thermostatic SOC strategy 

always commands engine power demand above threshold 

level. Moreover, it can be seen that the diesel engine cannot 

follow an aggressive step-like command due to the slow 

dynamics; therefore, the battery has to provide the remaining 

propulsion power until the engine power demand is satisfied. 

This difference between command and response during 

transients can be decreased by the FDPD strategy. 

Furthermore, the FDPD strategy does not emphasize battery 

charging as much as the thermostatic SOC control does, since 

it often sends part of the power output directly to the traction 

motors. This behavior reduces multiple power conversions, 

which improves system efficiency. As seen from Fig. 10, the 

cumulative fuel consumption can be decreased under the 

FDPD strategy. Specifically, the fuel economy is improved 

from 3.03 km/l to 3.40 km/l by 12 percent compared to the 

thermostatic SOC control over the over Urban Assault Cycle.  

The battery SOC and current per cell are compared in Fig. 11. 

The duration of high current rate can be considerably 

decreased during aggressive acceleration and deceleration. 

Figure 12 shows the histogram of battery cell operation and 

engine operation with two power management strategies. It 

can be seen that high current conditions and aggressive 

 

Fig. 8. The speed profile of Urban Assault Cycle 

Table 2. Parameters of the thermostatic SOC strategy 

Parameter Value 

Target SOC 0.5 

Deadband 0.02 

Max. Power SOC 0.05 

Max. Power 260 kW 

Threshold Power 100 kW 

Table 3. Optimized variables of the FDPD strategy 

Variable Value 

Cut-off frequency, τLF 0.0792 

Threshold Power 1, Pth1 15.6 kW 

Threshold Power 2, Pth2 105.5 kW 

Proportional gain, kP 13867.2 

Integral gain, kI 3302.5 

 

Fig. 9. Comparison of engine power demand, actual engine 

power, and battery power demand under different power 

management strategies 

 

Fig. 10. Comparison of cumulative fuel consumption under 

different power management strategies 
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engine power demand (as quantified by the engine power rate) 

are significantly reduced in case of FDPD strategy, leading to 

the decrease of average and deviation of current inputs. This 

behavior is possibly beneficial for the prolonged battery life 

as well as the reduced emissions. It is noticed that both 

control strategies show that SOC is regulated around the 

target value 0.5; however, the FDPD strategy effectively 

reduces the duration of high current operations. 

Battery degradation over the driving cycle is explicitly 

estimated by using the weighted Ah-throughput model 

introduced by Serrao and Onori in 2009. This approach uses 

the linear cumulative damage concept to analyze battery 

degradation. Since operating conditions such as temperature 

and current rate affect the degree of degradation, the severity 

factor w, a nonlinear function, was introduced. The effective 

accumulated Ah-throughput is calculated by using 

effAh w I dt= ∫ . (18)  

As mentioned in the model description section, operating 

temperature is assumed to be regulated perfectly. Thus, the 

severity factor becomes a function of current rate only. Due 

to the narrow operating range of the battery SOC, the severity 

factor is assumed to be constant in this paper as a first 

approximation. The FDPD can considerably decrease the Ah-

throughput, resulting in less electrical stress on the battery. 

Specifically, the FDPD provides a 33% reduction of Ah-

throughput over the Urban Assault Cycle compared to the 

thermostatic SOC strategy. 

5. CONCLUSIONS 

The original contributions of this paper can be summarized as 

follows. A control parameter tuning strategy has been 

proposed for the frequency-domain power distribution 

strategy (FDPD). Control parameters are systematically 

determined through the model-based multi-phase 

optimization process, where non-gradient and gradient based 

algorithms are sequentially combined to take advantage of 

both algorithms.  

A case study has been conducted to experimentally compare 

the performance of the FDPD to the thermostatic SOC 

control strategy as the baseline. A networked engine-in-the-

loop simulation platform has been developed for this purpose 

and a Mine Resistant Ambush Protected All-Terrain Vehicle 

(M-ATV) has been considered as the vehicle system.  

The results show that the FDPD strategy successfully reduces 

aggressive engine power demand and excessive electric 

battery loads while improving fuel economy by 12% 

compared to the baseline strategy in the specific scenario 

considered. The smooth engine power demand results in the 

decrease of high current rate operation of the battery during 

propulsion. In addition, battery life is explicitly compared by 

using the weighted Ah-throughput model. The results show 

that the FDPD strategy can extend the battery lifespan over 

typical military driving conditions. The FDPD strategy will 

be further validated by including a real battery system in the 

framework. 

To the best knowledge of the authors, this paper presents the 

first effort for investigating the effect of engine power 

smoothing to the battery operation in a series hybrid electric 

powertrain. It is also the first to explore the performance of 

this power management strategy in diesel engines and under 

military drive cycles. 

Future work will compare the FDPD strategy to optimal 

strategies such as Dynamic Programming and Model-

Predictive Control based strategies to investigate the potential 

of the FDPD strategy further.  
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