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Abstract— The critical task of controlling the water distri-
bution within the gas diffusion layer of a fuel cell suggests
a partial differential equation (PDE) approach. Starting from
first principles, the model of a fuel cell is represented as a
boundary value problem for a set of three coupled, nonlinear,
second-order PDEs. These three PDEs are approximated, with
justification rooted in linear systems theory and a time-scale
decomposition approach, by a single nonlinear PDE. A hybrid
set of numerical transient, analytic transient, and analytic
steady-state solutions for both the original and single PDE-
based model are presented, and a more accurate estimate
of the liquid water distribution is obtained using the single
PDE-based model. The single PDE derived represents our
main contribution on which future development of control,
estimation, and diagnostics algorithms can be based.

I. INTRODUCTION AND MOTIVATION

Fuel cell technology holds significant promise for clean
and renewable power generation for both stationary and
mobile applications. Of critical importance to the efficient
and long-life operation of a fuel cell system are:

• Maintaining humidity in a narrow range near water
vapor saturation at the membrane while avoiding excess
accumulation of liquid water in the channels (flooding).

• Keeping sufficient reactant concentration at the mem-
brane to avoid starvation.

Due to a lack of direct measurements of the critical vari-
ables at the membrane and the channels, a low-order and
compact model of the multi-component (reactants, water),
two-phase (vapor and liquid water), spatially-distributed and
dynamic behavior across the gas diffusion layer (GDL)
(Fig. 1) is needed for estimation and control. The time-
varying constituent distributions in the GDL of each elec-
trode are described by three second-order parabolic PDEs for
reactant (oxygen in the cathode and hydrogen in the anode)
concentration, water vapor concentration, and liquid water
volume. The electrochemical reactions on, and the mass
transport through, the catalyst-covered membrane couple the
anode and cathode behaviors and, together with the channel
conditions, provide the time-varying boundary values for
these PDEs.

The water (liquid and vapor) PDEs are strongly coupled
through the evaporation/condensation rate. Further, the liq-
uid water becomes a nonlinearly distributed parameter that
inhibits reactant gas and water vapor diffusion. Specifically,
liquid water occupies pore space in the GDL, impedes
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Fig. 1. Conceptual schematic showing accumulation of liquid water in the
GDL and subsequent flow to the channel where reactant-blocking film is
formed

the diffusion of reactant flow towards the membrane, and
ultimately reduces the active fuel cell area [1], causing
performance degradation.

Removal of accumulated liquid water is necessary to
regain performance, which is typically accomplished by
surging an inlet flow (e.g. anode H2 supply). Allowing
liquid water to accumulate is undesirable for performance,
efficiency, and membrane durability reasons, hence it is clear
that estimation and control of the liquid water distribution is
critical for effective fuel cell management.

Previous work has used a set of twelve difference equa-
tions to approximate the six second-order PDEs of the model
from [1]. Simulation using numerical integration showed
reasonable matching to experimental data obtained from a
2.5 kW peak power stack of 24 fuel cells with 300 cm2 active
area. The numerical model was able to predict the stack
voltage behavior during anode flooding which occurs at low
and low-medium loads typical of operating modes in fuel cell
vehicles. Despite the good prediction, the numerical model
in [1] is complex and requires numerous simulations to gain
insight of the dominant model parameters and dynamics.

In this paper we demonstrate using modal analysis that
the gas and water vapor states have much faster response
times than the liquid water states. This fact allows the use of
the water vapor steady-state solution within the liquid water
PDE to account for the evaporation/condensation coupling.
Moreover, we show that the gas diffusion is not very sensitive
to the distribution of liquid water (when liquid water is
present) and a reasonable estimated value for the liquid water
fraction is used to decouple the reactant and water vapor
PDEs from the liquid PDE. Then analytic solutions of the
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anode reactant and the water vapor concentrations are derived
using the net membrane water transport, which allows us to
study the anode GDL phenomena without having to solve
for the cathode liquid water distribution (and vice versa).

With the analytic solutions in hand, the liquid water
distribution is governed by a single nonlinear PDE. This
simplified model can greatly facilitate and enable future
studies of control, estimation, and diagnostics problems from
a rigorous control of PDEs perspective.

II. MODEL OF THE ANODE GAS DIFFUSION LAYER

We proceed with a one-dimensional treatment of the
anode GDL processes, letting x denote the spatial variable,
with x=0 corresponding to the membrane location and x=L
corresponding to the channel location, and we let t denote
the time variable.

The state variables are as follows:
• cH2(x, t) is the hydrogen concentration (mol/m3) at

time t at a cross-section of the GDL located at x,
0 ≤ x ≤ L;

• cv,an(x, t) is the concentration of water vapor at time t
at a cross-section of GDL located at x, 0 ≤ x ≤ L;

• s(x, t) is the fraction of liquid water volume VL to the
total pore volume Vp, s = VL

Vp
. s is thus a concentration-

like variable for the liquid water at time t, at a cross-
section of GDL located at x, 0 ≤ x ≤ L.

The following intermediate variables are useful:
• NH2(x, t) is the hydrogen molar flux (mol/m2/s) at time

t at a cross-section of the GDL located at x, 0 ≤ x ≤ L;
• Nv(x, t) is the water vapor molar flux (mol/m2/s) at

time t at a cross-section of the GDL located at x, 0 ≤
x ≤ L;

• Wl(x, t) is the liquid water mass flow (kg/s) at time t
at a cross-section of the GDL located at x, 0 ≤ x ≤ L;

The molar fluxes are driven entirely by the presence of
a concentration gradient (i.e. diffusion), since bulk flow
(convection) is neglected:

NH2 = −DH2(s)
∂cH2

∂x
, Nv = −Dv(s)

∂cv,an

∂x
, (1)

where DH2(s) and Dv(s) are effective diffusivities for hy-
drogen and water vapor which depend on the liquid fraction,
s. Liquid water in the GDL occupies pore space, reducing the
diffusivity, Dj(s) = Dε,j(1 − s)m. Here Dε,j is a constant
that depends on GDL porosity (ε), and m = 2 based on [2].

The gas constituent conservation equations are,

∂cH2

∂t
= −∂NH2

∂x
,

∂cv,an

∂t
= −∂Nv

∂x
+ rv(cv,an), (2)

where rv is the evaporation rate defined as,

rv(cv,an) =
{

γ (cv,sat − cv,an) for s > 0,
min {0, γ(cv,sat − cv,an)} for s = 0

where γ is the volumetric condensation coefficient and cv,sat

is the vapor saturation concentration. Note that evaporation
can only occur if there is liquid water (s > 0) in the GDL.

Under the isothermal conditions assumed for the anode
GDL in this model, once the production or transport of

vapor exceeds the ability of the vapor to diffuse through the
GDL to the channel, the vapor supersaturates and condenses.
The mass flow of liquid water is driven by the gradient in
capillary pressure (pc) due to build-up of liquid in the porous
medium,

Wl = −εAfcρ
KKrl

µl

∂pc

∂x
, (3)

where µl is the liquid viscosity, Afc (m2) is the fuel cell
active area, and K is the material-dependent absolute per-

meability. The relative liquid permeability Krl =
(

s−sim

1−sim

)3

,
and the capillary pressure pc (Pa) is a fitted third-order
polynomial in s, the liquid water fraction. The condensed
liquid accumulates in the GDL until it has surpassed the
immobile saturation threshold (sim), at which point capillary
flow will carry it to an area of lower capillary pressure
(toward the GDL-channel interface). The immobile water
saturation sim works as stiction, i.e. there is no liquid flow
unless the liquid water fraction exceeds sim. To facilitate the
analytic solution, and express the equation in the physical
variable s, (3) is rewritten as,

Wl = −εAfcρl
K

µl

(
s − sim

1 − sim

)3
dpc

ds

ds

dx
(4)

≈ −εAfcρlκµ(s)
ds

dx
,

using an approximation κµ(s) = b1
1−sim

(
s−sim

1−sim

)b2
, where

b1 and b2 are fitted parameters, and this approximation is
only valid when s > sim.

Conservation of liquid mass is employed to determine the
rate of liquid accumulation,

∂s

∂t
= − 1

εAfcρl

∂Wl

∂x
− Mv

ρl
rv(cv,an), (5)

where Mj is the molar mass of constituent j.
Combining (1) with (2) provides the two second-order

parabolic PDEs that govern the reactant and water vapor
concentrations,

∂cH2

∂t
=

∂

∂x

(
DH2(s)

∂cH2

∂x

)
, (6)

and

∂cv,an

∂t
=

∂

∂x

(
Dv(s)

∂cv,an

∂x

)
+ rv(cv,an). (7)

A similar result is found from (4) and (5) for the liquid
water fraction PDE,

∂s

∂t
=

∂

∂x

(
κµ(s)

∂s

∂x

)
− Mv

ρl
rv(cv,an). (8)

The boundary conditions depend on the controllable outlet
valve that determines the flow out of the anode channel, and
on the disturbance input which is the current density drawn
from the fuel cell, i(t) (A/m2).
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For cH2(x, t), mixed Neumann-Dirichlet (Robin) type
boundary conditions are imposed. The channel (ch) boundary
condition is,

cH2 |x=L = cH2,ch = pH2,ch/ (RT ) , (9)

where R is the universal gas constant, T is the temperature,
and the hydrogen partial pressure in the anode channel,
pH2,ch, depends on the control input, u(t), as discussed in
Sec. III. The membrane (mb) boundary condition is,

∂cH2

∂x

∣∣∣∣
x=0

= − 1
DH2(s)|x=0

· i(t)
2F

= − NH2,rct

DH2(s)|x=0
, (10)

where the rct subscript indicates the reaction of H2 at the
anode catalyst, which depends on the current density i, and
F is Faraday’s constant.

For cv,an(x, t), similar Robin boundary conditions are
imposed:

cv,an|x=L = cv,an,ch = pv,an,ch/ (RT ) , (11)

∂cv,an

∂x

∣∣∣∣
x=0

=
−Nmb

Dv(s)
= βw(cv,ca−cv,an)|x=0−kv,0 ·i(t), (12)

where βw is a stack temperature-dependent parameter (influ-
enced by membrane material properties, humidity, and active
area) that is adapted from the back diffusion membrane water
transport phenomenon in [3], and kv,0 is a function of the
unknown membrane water transport. We use a constant kv,0

and justify this assumption in Sec. V-B.
Finally, for s(x, t), Robin boundary conditions are again

imposed. Specifically, since water passing through the mem-
brane and into the GDL is in vapor form,

∂s

∂x

∣∣∣∣
x=0

= 0. (13)

Since liquid water will be drawn away from the GDL due
to its hydrophobic nature ([2]),

s(t, L) = sim. (14)

III. ANODE CHANNEL EQUATIONS

For the anode channel calculations the governing equations
for hydrogen and water are:

dmH2,ch/dt = (WH2,in − WH2,out + WH2,GDL),

dmw,ch/dt = (Ww,GDL − Wv,out),
(15)

where the anode inlet flow is dry hydrogen, WH2,in =
kan,in(p∗an − pan,ch) with kan,in as the proportionality con-
stant for the error-driven pressure regulator used to determine
inlet flow rate such that pan,ch tracks the reference pressure
p∗an. This reference is typically set near the cathode pressure
for membrane safety.

The H2 and water vapor partial pressures, which represent
the channel boundary conditions, are calculated from:

pH2,ch = mH2,chRT

MH2Vch
,

pv,an,ch = min
{

mw,chRT
MvVch

, pv,sat

}
,

pan,ch = pH2,ch + pv,an,ch.

(16)

The anode exit flow rate to the ambient (amb),

Wan,out = u · kan,out(pan,ch − pamb), (17)

is a controllable valve flow 0 ≤ u(t) ≤ 1 for anode gas to
remove both water, and unfortunately, hydrogen,

WH2,out =
m

H2 ,an,ch

man,ch
Wan,out,

Wv,out = Wan,out − WH2,out,

(18)

where man,ch = mH2,an,ch + pv,an,chVanMv/(RT ). The
hydrogen and water mass flow rate from the GDL to the
anode are calculated using:

WH2,GDL = −εAfcMH2

(
DH2(s)

∂cH2

∂x

) ∣∣∣∣
x=L

,

(19)

Ww,GDL = −εAfc

(
ρlκµ(s)

∂s

∂x
+ MvDv(s)

∂cv,an

∂x

) ∣∣∣∣
x=L

.

IV. NUMERICAL SOLUTION ANALYSIS

In previous work [1], [4], [5], the one-dimensional sys-
tem of interconnected parabolic PDEs of (6)-(8), combined
with three similar PDEs describing the spatial and temporal
evolution of the cathode oxygen reactant O2, water vapor,
and liquid fraction was modeled and discretized. The model
was parameterized using data from an experimental fuel
cell [1]. The discretized model was then used for model
order reduction studies [4], [5]. A portion of the findings of
these studies is summarized next because it is instrumental
in condensing three coupled PDEs (6)-(8) to one parabolic
PDE for the liquid fraction as shown in Sec. V.

A. System Discretization

It is because the boundary conditions for each of the
constituents include a Neumann type that the discretization
is performed on three pairs of first-order DEs (1)-(4) instead
of on three second-order PDEs.

The forward-difference method is used for the discretiza-
tions of the flux and flow equations,

NH2(k) � −DH2(s)
cH2(k + 1) − cH2(k)

δx
, (20)

Nv(k) � −Dv(s)
cv,an(k + 1) − cv,an(k)

δx
, (21)

Wl(k) � −εAfcρlκµ(s(k))
s(k + 1) − s(k)

δx
, (22)

where δx = x(k + 1) − x(k).
Next, since the fluxes across the membrane are included in

the model, and form the boundary conditions, the difference
equations relating the states to the fluxes are formed using
the backward-difference method:

dcH2(k)
dt

� −NH2(k) − NH2(k − 1)
δx

, (23)

dcv,an(k)

dt
� −Nv(k) − Nv(k − 1)

δx
+ rv(cv,an(k)), (24)

ds(k)

dt
� −Wl(k) − Wl(k − 1)

δx
− Mv

ρl
rv(cv,an(k)). (25)
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B. Time-Scale Decomposition

Insight into the relative response speeds of the system
states is gained by linear time-scale decomposition tech-
niques. Linearization of the 24-state system that resulted
from the discretization of Sec. IV-A was performed around
an operating point of i = 0.25A/cm2, T = 60oC, 100%
saturated cathode inlet flow, and dry H2 at the anode
inlet. This operating point represents the midrange of the
normal operation of the experimental fuel cell on which the
model was tuned and consequently validated (imax = 0.45
A/cm2) [1].

Let v be the eigenevectors of the discretized and linearized
system matrix A (ẋ = Ax + Bu). The full fuel cell model
(both anode and cathode) has 24 states that can be grouped
as follows:

• Gas constituents in GDL: 13
• Liquid constituents in GDL: 6
• Gas constituents in channels: 5

We hypothesize that there is a similarity transformation
AT = T−1AT that will practically partition the system into
two subsystems, one consisting only of gas states, and the
other of only liquid states. This representation was accom-
plished by applying the balancing algorithm of [6], where
each row-column pair of the system matrix A is scaled via
similarity transformation T to have equal norms. This proce-
dure generates a system of eigenvectors that are practically
decoupled with vT = T−1v, and VT = [vT,1|vT,2|...|vT,n]
defining the eigenspace of the transformed system. Nor-
malizing those eigenvectors, and eliminating insignificant
components, it is found that the eigenspace has the form:

VT ≈
[

0 VT,l,6×6

VT,g,18×18 0

]
, (26)

where the subscripts g and l indicate gas or liquid states. This
shows that, though not a perfect mathematical decoupling,
with reasonable thresholds a transformation can be found that
results in a practical decoupling of the liquid and gas states.
Note that the resulting eigenvectors cannot be associated
with individual states of the original system, only that each
eigenvector can be assigned to a linear combination of either
only gas states or only liquid states.

The degree of gas/liquid coupling is tracked by the infinity
norm of the set of VT matrix elements that correspond to
liquid states in the predominantly gas state eigenvectors plus
the gas states in the predominantly liquid state eigenvectors.
Using the same method, transformations for linearizations
about the low and high end operating points showed that the
strength of the gas/liquid coupling grows with the current
density (i), though it does not exceed a negligible 2% at
maximum current density (Table I).

TABLE I

GAS AND LIQUID STATE COUPLING VERSUS CURRENT DENSITY i.

i (A/cm)2 0.10 0.25 0.45

Coupling 0.05% 0.3% 1.9%

Next, analysis of the eigenvalues indicated a two-order
of magnitude gap between the minimum gas set eigenvalue
and the maximum liquid set eigenvalue. The slow mode time
constants (liquid) range from 7 to 132 seconds, while the fast
modes (gas) have time constants ranging 0.32 ms to 0.14 sec.

This large scale separation indicates that the water vapor
and H2 concentrations reach equilibrium very fast, and thus
the system behavior can be approximated with their steady-
state solution when the goal is to control the liquid water
accumulation. In our model simplification we thus need to
maintain the temporal evolution of only the liquid water
fraction PDE (5).

V. SIMPLIFIED MODEL

A study for the minimum necessary spatial discretization
of the fuel cell dynamics model of [1], while maintaining the
physical meanings of the states, was presented in [5]. Over-
discretization was investigated using an energy-based metric
known as Activity [7] to determine the degree of nonlinearity
of a spatial gradient approximated by difference equations.

A key result of [5] was that the reduction of a 3-
section liquid water discretization to a 1-section (i.e. lumped)
approximation yielded very little degradation in cell output
voltage prediction. Using the same methodology, the spatial
distribution of the hydrogen concentration in the anode
was found and confirmed to be linear (linearity is also
confirmed in this work by the analytic solution found below).
However, the same conclusion could not be reached for the
water vapor concentration. In order to accurately predict
the water vapor concentration at the membrane, a lumped-
parameter approach was found to be unacceptable due to
large error in membrane transport and GDL-channel water
flow estimations.

A. Coupling Sensitivity of the Gaseous and Liquid States

There are two phenomena responsible for the coupling
between the liquid and the gas states occurring in this system.
The first is the direct coupling between water vapor concen-
tration and liquid fraction due to evaporation/condensation,
which is clear from (5). Second, the amount of liquid water
present has an influence on the gas fluxes via the diffusivity’s
dependence on s (1).

The results of our numerical modeling indicate that with
an assumption of constant diffusivity calculated using the
average liquid water fraction, approximation errors are neg-
ligible, i.e. with Dv(savg)=Dv

1
L

∫ L

0
s(x)dx). Since average

liquid water fraction is, in general, unknown, a constant
diffusivity calculated based on s = sim, i.e. Dv(sim), has
been implemented instead and shown to produce a slightly
deteriorated, but still acceptable, approximation. See, for in-
stance, Fig. 2 which compares the prediction of the difference
(cv,an − cv,sat)

∣∣
x=0

, which is a critical value for estimation
of membrane water transport.

Note that the results of Sec. IV-B suggest that the diffusiv-
ities can be treated as time-invariant parameters for solving
the gas PDEs due to the significant separation in time-scale
relative to the liquid fraction PDE.
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Fig. 2. Steady-state error in (cv,an − cv,sat)|x=0 for varying choices of
constant liquid water fraction.

With the assumption of constant diffusivities, denoted D̄v

and D̄H2 for the water vapor and H2 cases respectively, it is
possible to solve the cH2(x, t) and cv,an(x, t) second-order
PDEs analytically using separation of variables.

B. The Gas Constituent Solutions

Under the condition that the GDL is assumed to have
liquid water present at all points x, i.e. s > 0 so that the
evaporation reaction term is active, the solutions are:

cH2(x, t) =
∞∑

n=0

e−D̄H2ηntAn cos(
√

ηnx) +

NH2rct

D̄H2

(L − x) + cH2,ch, (27)

cv,an(x, t) =
∞∑

n=0

e−ζntBn cos(
√

ηnx) +

(α1e
βx + α2e

−βx) + cv,sat, (28)

where
ηn = (n + 1/2)2π2/L2, (29)

and

β =
√

γ/D̄v ζn = (D̄vηn + γ). (30)

Figure 3 shows the transitions from an initial distribution
to the next steady-state distribution required due to a change
in boundary conditions. The changes in slopes at the mem-
brane are caused by a step current density input at t = to = 0
ms. The fast time constants derived in Sec. IV-B are apparent.

An and Bn are coefficients of the infinite series approx-
imation for the shape of the distribution of the respective
concentrations at time t = 0. For the H2 solution, the
coefficients An are

An =
2
L

[
NH2,rct|t=0− − NH2,rct|t=0

D̄H2ηn
+

(−1)n(cH2,ch|t=0− − cH2,ch|t=0)√
ηn

]
. (31)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

39.8

39.85

39.9

39.95

40

40.05

40.1

GDL Position (m)

H
2
 C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

Membrane Channel

 

 

Initial
Steady State
Transients

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

7.1

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

W
a

te
r 

V
a

p
o

r 
C

o
n

c
e

n
tr

a
ti
o

n
 (

m
o

l/
m

3
)

t = [ 0.1ms 0.2ms 1ms ] 

t = [ 0.3ms 2ms 4ms ] 

Fig. 3. Transient solutions of cH2 and cv,an for a step in current density
(0.15 → 0.30 A/cm2).

From (28) it can be seen that the water vapor transient
response solution is thus a transition from one exponential
form steady-state solution to the next, described by the
product of a decaying exponential in time and an infinite
Fourier series. The coefficients for the water vapor transient
solution are,

Bn =
2

L(β2 + ηn)
[β(φ2 − φ1) +

√
ηn(−1)n(φ1e

βL + φ2e
−βL)], (32)

where
φi = αi|t=0 − αi|t=∞. (33)

The αi are functions of the membrane water vapor trans-
port (Nmb) and the anode channel condition,

α1e
βL + α2e

−βL = cv,an,ch − cv,sat,
α1 − α2 = −Nmb/βD̄v.

(34)

Determination of Nmb requires knowledge of the water vapor
concentrations on both sides of the membrane, and since the
water vapor PDE steady-state solution takes the form,

cv,e(x) =
(
α1e

βx + α2e
−βx

)
+ cv,sat, (35)

then,
cv,an,mb = (α1 + α2) + cv,sat

cv,ca,mb = (ν1 + ν2) + cv,sat,
(36)

where the mb subscript signifies the value is taken at the
membrane (x=0). The νi, similar to the αi, are depen-
dent upon Nmb and the cathode channel condition, but are
additionally influenced by the water vapor reaction term
Nv,rct = i

2F from the reformation of H2O at the cathode
catalyst,

ν1e
−βL + ν2e

βL = cv,ca,ch − cv,sat

ν1 − ν2 = (−Nmb + Nv,rct)/βD̄v.
(37)

Finally, Nmb can be found from,

Nmb = βw(cv,ca,mb − cv,an,mb) −
i
F (0.0029λ2

mb + 0.05λmb),
(38)
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anode steady-state liquid water fraction solution s(x), which displays strong
nonlinearity as x → L.

where λmb is the water content of the membrane, and is a
linear function of the average of cv,ca,mb and cv,an,mb.

The second term on the right side of (38) can be very
well approximated when humidity is near 100% by a linear
function of i to enable simple matrix algebra solutions of
(34)-(38) to be calculated online,

i

F
(0.0029λ2

mb + 0.05λmb) ∼= 1.512 × 10−5i. (39)

Figure 4 shows the steady-state solutions for water vapor
concentrations in the anode and cathode GDLs found using
the simultaneous system solution process. For reference, the
steady-state solution for the liquid water fraction is also
shown. We now have the ability to determine the net steady
state water transport across the membrane using only channel
boundary conditions.

C. Liquid Water Governing Equation

The liquid water distribution in the porous medium is
obtained by substituting (4) into (5), and replacing the
cv,an(x, t) coupling term by its steady-state solution (35)
(since it has been shown that the time constant of the water
vapor is multiple orders of magnitude faster than that of the
liquid water),

∂s

∂t
=

∂

∂x

(
κµ(s)

∂s

∂x

)
+

Mv

ρl
γ(α1e

βx + α2e
−βx). (40)

This equation can be integrated twice to obtain the steady-
state solution,

s0(x) = βz(β(α1 − α2)(x − L) + cv,an,ch − cv,sat

−(α1e
βx + α2e

−βx))
1

b2+1 + sim, (41)

where β and αi are as defined in the cv,an(x, t) solution
previously, and

βz = (1 − sim)
(

εAfcMvγ(b2 + 1)
β2b1

) 1
b2+1

. (42)

For comparison to the original 24-state system, a numeric
solution to the second-order difference equation is obtained
by substituting (22) into (25), and using the steady-state
vapor solution (35) for the evaporation/condensation term,

ds(k)
dt

� Θ(k + 1) − 2Θ(k) + Θ(k − 1)
δx2

+ (43)

Mvγ

ρl

(
α1e

βx(k) + α2e
−βx(k)

)
,

where Θ(k) =
∫

κµ(s(k))ds, and κµ(s) is as introduced in
(4).

The explicit solution to (40) has yet to be found and we
therefore implement the model based on (27), (28), and (43),
and refer to it as a semi-analytic model.

Comparison to voltage prediction of the numeric model
confirms that there is virtually no difference in the voltage
predictive capability of the semi-analytic model versus the
coarse numeric model. The voltage prediction model used
requires significant explanation, and this, along with detailed
results, will be discussed in future publications.

VI. CONCLUSIONS

A first principles model describing the reactant, water
vapor, and liquid water dynamics in a polymer electrolyte
membrane fuel cell anode GDL has been reduced to two
analytic solutions (hydrogen and water vapor) and one
second-order discretized PDE (liquid water) given by (43).
Additionally, a method to simultaneously obtain the water
vapor concentration analytic solutions across the membrane
is provided so that solutions can be obtained using only
channel variables. These two contributions enable fast and
computationally inexpensive estimation of states within the
GDL, as evidenced by a 36% reduction in simulation steps
for identical experimental inputs and a 61% reduction in
function calls. These improvements facilitate the next step
of control of liquid water in the GDL to prevent voltage
degradation.
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