Intro to LLM Fine Tuning

Amber Liu
2023/09

UNIVERSITY OF

ANY/4 -
/Sx_ SymbioticLab MICHIGAN

Difference Between Pre-training

Stage

Algorithm

Dataset

Resource

Pretraining Supervised Fine-tuning

Language modeling
predict the next token

Raw internet text Carefully curated text
~trillions of words ~10-100K (prompt, response)
low-quality, large quantity low quantity, high quality

1000s of GPUs months of
training
ex: GPT LLaMA, PaLM

1-100 GPUs days of training
ex: Vicuna-13B

Pretrained Models are NOT Assistants

* Base model does not answer questions
* It only wants to complete internet documents
* Language models are not aligned with user intent

@ Write a poem about bread and cheese.

When do you want Fine-Tuning!?

|. Vanilla fine-tuning

* Gain knowledge for specific downstream task
2. Prompt engineering

* Precise control over output

* No computing resources
3. Instruction tuning

* Adhere LLM to human’s instructions
(A) Pretrain—finetune (BERT, T5)

(7 N\
Pretrained Finetune on Inference . .
taskA > ontaskA (C) Instruction tuning (FLAN)
* Typically requires many ¢ Instruction-tune on
. . task-specific examples Pretrained % » Inference
Galn BehaV|0r * One specialized model mBang tgsks. on task A
for each task) St St B

Model learns to perform Inference on

Knowledge Change (B) Prompting (GPT-3) B ek e tmsshimt
=

Improve performance =)

via few-shot prompting
Pretrained or prompt engineering _ Inference
LM > ontask A
X

When do you want Fine-Tuning!?

4. Retrieval Augmented Generation (RAG) LLM

Google/Bing Retrieve task-relevant information, LLM

(Retrieval only) pack it into context (Memory only)
e.g. ChatGPT + Browsing
e.g. Bing

5. Parameter-Efficient Fine-Tuning (PEFT)

6. Reinforcement Learning from Human Feedback (RLHF)

* Align with human preference

RLHF

Fine-tuned model is not aligned with human preference

e Human Feedback
e offer a sense of emotional connection
e uncover underlying messages within the conversation

e avoid confining oneself to superficial aspects of the matter

Make machine produce sentences that sound natural to a human

|. Memory Capacity Intensive

Challenges

2. Computation Intensive

Parameter-Efficient

Sentiment QA Hate speech
model model model
t i t
Fine-tuning Fine-tuning Fine-tuning
LLM #1 LLM #2 LLM #3
1 4 4
Sentiment Question Hate speech
analysis task answering task task

(@
.) .
F I n e-tu n I ng (P E FT) ° Sentiment QA Hate speech
model model model
I I T
Base LLM
(PEFT-adaptable)

a class of methods that adapt
LLMs by updating only a small
subset of model parameters.

!

!

1

PEFT weights

PEFT weights

PEFT weights

Sentiment
analysis task

Question
answering task

Hate speech
task

(b)

Figure 5: Fine-tuning an LLM for a specific down-

stream task. (a) illustrates vanilla fine-tuning, which
requires updating the entire model, resulting in a new
model for each task. In (b), PEFT instead learns a small
subset of model parameters for each task with a fixed
base LLM. The same base model can be re-used during
inference for different tasks.

https://arxiv.org/pdf/2307.10169.pdf

PEFT Taxonomy

additive selective

BitFit LN Tuning

Ladder-Side . .
Tuning Attention Tuning
Diff-Pruning
AttentionFusion
adapters Fish-Mask LT-SFT
(1A° FAR
Sparse
LoRa
LeTS L)
Prefix-Tuning LoRa
KronA
soft prompts WARP
Intrinsic-SAID reparametrization-based

Prompt-tuning .

Figure 2: Parameter-efficient fine-tuning methods taxonomy. We identify three main classes of methods: Addi-
tion-based, Selection-based, and Reparametrization-based. Within additive methods, we distinguish two large
included groups: Adapter-like methods and Soft prompts.

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning

Addictive: Adapters

Add additional, learnable layers into a Transformer architecture. ~3%

- -

Layer Norm o Adapter
: Transformer ! : I Laver 1
! 1
1 Layer : IOOOOOO' '
I
i Adapter : ! PR E— !
: : Feedforward |
' 2x Feed-forward N ! up-project |
' layer - ! !
i ¥ ! |
: i Nonlinearity :
1
" ' ;
L 1
1 1 .
1
! : :
} I
1
1 : : Feedforward '
1 H i d ; i
! | | lown-project :
X | g_.’_d ;
I 1 i
' 1
! Multi-headed : . [O00000]| :
1 attention)
\

Parameter-efficient transfer learning for nip

Selective: BitFit

Only fine-tune the biases of the network. (<1%)

params = (p for n, p
in model.named_parameters ()

if "bias" in n)
optimizer = Optimizer (params)

Fail when model size is large

Reparametrization-based: LoRa

Pretrained
Weights

/=]RdXd

[
X | |

Figure 1: Our reparametriza-
tion. We only train A and B.

h = W0£E—|—AW$ = W()CE—FBACIZ

Only update the low-rank matrix
|0000x less trainable parameter
3x less GPU memory requirement
Apply to any linear layer

No inference overhead

QLoRa

Full Finetuning LoRA QLoRA
(No Adapters)

Optimizer /\

(S;;t:it) 0 0 0 4_ 8%%
Adapters l l l l l 1 A ATk
(16 bit) J J J J J J

" [e

Gradient Flow ===

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow ==

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

Fine-tuning Library

W -

Pytorch

Hugging Face - PEFT
Lamini

OpenAl Fine-tuning API

Reference

1.
2.
3.
4.
5.
6.
7.
8.

LoRA:_LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Prefix Tuning: P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

P-Tuning: GPT Understands. Too

Parameter-efficient transfer learning for nlp

Challenges and Applications of Large Language Models

QLORA: Efficient Finetuning of Quantized LLMs

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning

https://arxiv.org/pdf/2106.09685.pdf
https://arxiv.org/pdf/2110.07602.pdf
https://arxiv.org/pdf/2104.08691.pdf
https://arxiv.org/pdf/2103.10385.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://arxiv.org/pdf/2307.10169.pdf
https://arxiv.org/pdf/2305.14314.pdf
https://arxiv.org/pdf/2303.15647.pdf

Source

https://build.microsoft.com/en-US/sessions/db3f4859-cd30-4445-a
Ocd-553¢c3304{8e2

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture |
| -prompting-rlhf.pdf

https://www.bilibili.com/video/BV | Tu4y IR7H5/?spm_id_from=33
3.788.recommend more video.0&vd source=39940709d86c95c
61 be9bec979dfb 187

https://www.youtube.com/watch?v=dA-NhCtrrVE

https://build.microsoft.com/en-US/sessions/db3f4859-cd30-4445-a0cd-553c3304f8e2
https://build.microsoft.com/en-US/sessions/db3f4859-cd30-4445-a0cd-553c3304f8e2
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://www.bilibili.com/video/BV1Tu4y1R7H5/?spm_id_from=333.788.recommend_more_video.0&vd_source=39940709d86c95c61be9bec979dfb187
https://www.bilibili.com/video/BV1Tu4y1R7H5/?spm_id_from=333.788.recommend_more_video.0&vd_source=39940709d86c95c61be9bec979dfb187
https://www.bilibili.com/video/BV1Tu4y1R7H5/?spm_id_from=333.788.recommend_more_video.0&vd_source=39940709d86c95c61be9bec979dfb187
https://www.youtube.com/watch?v=dA-NhCtrrVE

