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Difference Between Pre-training

Stage

Algorithm

Dataset

Resource

Pretraining Supervised Fine-tuning

Language modeling
predict the next token

Raw internet text Carefully curated text
~trillions of words ~10-100K (prompt, response)
low-quality, large quantity low quantity, high quality

1000s of GPUs months of
training
ex: GPT LLaMA, PaLM

1-100 GPUs days of training
ex: Vicuna-13B



Pretrained Models are NOT Assistants

* Base model does not answer questions
* It only wants to complete internet documents
* Language models are not aligned with user intent

@ Write a poem about bread and cheese.




When do you want Fine-Tuning!?

|. Vanilla fine-tuning

* Gain knowledge for specific downstream task
2. Prompt engineering

* Precise control over output

* No computing resources
3. Instruction tuning

* Adhere LLM to human’s instructions
(A) Pretrain—finetune (BERT, T5)
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When do you want Fine-Tuning!?

4. Retrieval Augmented Generation (RAG) LLM

Google/Bing Retrieve task-relevant information, LLM

(Retrieval only) pack it into context (Memory only)
e.g. ChatGPT + Browsing
e.g. Bing

5. Parameter-Efficient Fine-Tuning (PEFT)

6. Reinforcement Learning from Human Feedback (RLHF)

* Align with human preference



RLHF

Fine-tuned model is not aligned with human preference

e Human Feedback
e offer a sense of emotional connection
e uncover underlying messages within the conversation

e avoid confining oneself to superficial aspects of the matter

Make machine produce sentences that sound natural to a human



|. Memory Capacity Intensive

Challenges

2. Computation Intensive




Parameter-Efficient
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Figure 5: Fine-tuning an LLM for a specific down-

stream task. (a) illustrates vanilla fine-tuning, which
requires updating the entire model, resulting in a new
model for each task. In (b), PEFT instead learns a small
subset of model parameters for each task with a fixed
base LLM. The same base model can be re-used during
inference for different tasks.

https://arxiv.org/pdf/2307.10169.pdf



PEFT Taxonomy

additive selective
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Figure 2: Parameter-efficient fine-tuning methods taxonomy. We identify three main classes of methods: Addi-
tion-based, Selection-based, and Reparametrization-based. Within additive methods, we distinguish two large
included groups: Adapter-like methods and Soft prompts.

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning



Addictive: Adapters

Add additional, learnable layers into a Transformer architecture. ~3%

__________________
- -

Layer Norm o Adapter
: Transformer ! : I Laver 1
! 1
1 Layer : IOOOOOO' '
I
i Adapter : ! PR E— !
: : Feedforward |
' 2x Feed-forward N ! up-project |
' layer - ! !
i ¥ ! |
: i Nonlinearity :
1
" ' ;
L 1
1 1 .
1
! : :
} I
1
1 : : Feedforward '
1 H i d ; i
! | | lown-project :
X | g_.’_d ;
I 1 i
' 1
! Multi-headed : . [O00000]| :
1 attention )
\

____________________

Parameter-efficient transfer learning for nip



Selective: BitFit

Only fine-tune the biases of the network. (<1%)

params = (p for n, p
in model.named_parameters ()

if "bias" in n)
optimizer = Optimizer (params)

Fail when model size is large



Reparametrization-based: LoRa

Pretrained
Weights
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Figure 1: Our reparametriza-
tion. We only train A and B.

h = W0£E—|—AW$ = W()CE—FBACIZ

Only update the low-rank matrix
|0000x less trainable parameter
3x less GPU memory requirement
Apply to any linear layer

No inference overhead



QLoRa
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Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.



Fine-tuning Library

W -

Pytorch

Hugging Face - PEFT
Lamini

OpenAl Fine-tuning API
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