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1 January 28

1.1 Where we are and what’s next

Last semester we covered local class field theory. The central theorem we proved was

Theorem 1.1. If L/K is a finite Galois extension of local fields there exists a canonical map, the
local Artin map

θL/K : K×/NL× → (Gal(L/K))ab

We proved this by methods of Galois cohomology, intepreting both sides as Tate
cohomology groups.

To prove this, we needed the following two lemmas:

• H1(L/K,L×) ∼= 0

• H2(L/K,L×) is cyclic of order [L : K].

This semester: we’ll do the analogous thing for L and K global fields. We will need
to replace K× with CK = A×K/K×.

Then the analogues of the crucial lemmas are true, but harder to prove.
Our agenda this semester:

• start with discussion of global fields and adeles.

• give the adelic statements of global class field theory, with applications (including
to the Brauer group)

• algebraic proofs of global class field theory

• then we’ll take the analytic approach e.g. L-functions, class number formula, Ceb-
otarev density, analytic proof of second inequality of global class field theory

• finally talk about complex multiplication, elliptic curves, and explicit class field
theory for imaginary quadratic fields.
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1.2 Review of global fields and valuations

Recall: have a notion of a global field K. Equivalent definitions:

• K is a finite extension of Q (number field) or of Fp(t) (function field).

• every completion of K is a local field and K has a product formula
∏
v |a|v = 1.

(The fact that the first implies the second was sketched last semester, the opposite impli-
cation is Artin-Whaples and we won’t do..)

The set of global fields is closed under taking finite extensions.
We’ll primarily focus on the number field case in this class.

Definition. A place v of a global field K is an equivalence class of absolute values on
K. We say that v is finite / nonarchimedean if it comes from a discrete absolute value,
otherwise v is infinite /archimedean (and Kv ∼= R or C).

We can pick out a distinguished element of this equivalence class, the normalized
absolute value | · |v by requiring

|πv|v = |kv|
−1

if Kv is nonarchimedean, and |a|R = a, |a|C = |a|2.
Recall from last semester:

Theorem 1.2 (Product Formula). If K is a global field then
∏
v |a|v = 1 for any a ∈ K×, where

v runs through the set of places of K.

Sketch of how this was done last semester. Check for K = Q, Fp[t], then show that if the
product formula holds for K, it holds for any finite extension L/K. (

∏
v ′ extends v |a|v ′ =

|a|v.)

Remark. K+
v has a Haar measure, unique up to scaling (if v is finite, normalize by µ(Ov) =

1, if v is infinite use the standard normalization on R and C. )
For any measurable set E ⊂ K+

v and any a ∈ K×v we have

µ(aE) = |a|vµ(E).

1.3 Adeles as a restricted topological product

Definition. Suppose that we have topological groups {Xi}i∈I are topological groups, and
open subgroups Yi ⊂ Xi for all but finitely many i. Then the restricted topological product
of the Xi with respect to the Yi is given by∐∏

i

Xi = {(xi)i∈I | xi ∈ Yi for all but finitely many i}.
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The group structure here is clear. We take as a basis of open sets those sets of the
form ∏

i∈S
Ui ×

∏
i/∈S
Yi

where S ⊂ I is an arbitrary finite set, and Ui ⊂ Xi are arbitrary open sets. Can check
that

∐∏
i Xi is a topological group and is Hausdorff if all Xi are.

(Note this is not the same as the subspace topology coming from viewing
∐∏

i Xi as a
subspace of

∏
i Xi.)

Definition. If K is a global field, define AK as the restricted topological product
∐∏

v Kv
of the Kv with respect to the Ov. Can be checked that this is a topological ring, with
open cover given by the sets

AK,S =
∏
v∈S

Kv ×
∏
v/∈S
Ov

for any finite set S containing the infinite places, and the subspace topology on each
AK,S ⊂ AK agrees with the product topology.

Likewise define A×K as
∐∏

v K
×
v , where now the restricted product is with respect to

O×v . Define A×K,S likewise.

Exercise: check the statements implict in the definition above. Show that A×K is the
group of units of AK.

Caution! The topology on A×K is not the subspace topology inherited from AK:
indeed, it shouldn’t be, because the map x → x−1 is not continuous in the subspace
topology. In general, if you have a topological ring R, the correct topology to put on R×

comes from the embedding of R× ↪→ R× R given by x 7→ (x, x−1).
(Note though that if R = K×v or O×v , this topology on R× agrees with the subspace

topology coming from R. It’s only because of the infinite restricted product that we have
issues.)

Proposition 1.3. AK is a locally compact topological ring.

Proof. all AK,S are locally compact by Tychonoff.

Hence the additive group A+
K has a Haar measure also, which can be described as

the product of the local Haar measures:

µ(
∏
v

Ev) =
∏
v

µ(Ev)

if Ev ⊂ Kv is measurable and Ev = Ov for almost all v.
Note that K+ embeds into A+

K and K× embeds into A×K , diagonally.
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Proposition 1.4. If L/K is a finite extension, then AL
∼= AK ⊗K L as topological rings. (Here

we topologize AK⊗K L as follows: by choosing a basis, identify L ∼= Kn, so AK⊗K L ∼= An
K, and

use the product topology on An
K. One can check that this doesn’t depend on choice of basis.)

Proof. (Sketch): Use fact that Kv ⊗K L ∼=
∏
v ′ extends v Lv ′ . You’ll do the details in the HW.

(In fact, you’ll also show that this is an isomorphism of Gal(L/K)-modules.)

Proposition 1.5. For K a global field, K+ is discrete (hence closed) in A+
K and A+

K/K+ is
compact.

Proof. By the previous proposition, it’s enough to check this for K = Q and K = Fp(t).
We’ll do Q; the proof for Fp(t) is similar.

Discrete: the set U =
∏
v 6=R Zv × (−1, 1) is open and Q∩U = Z∩ (−1, 1) = {0}.

Cocompact: We show this by constructing a compact set D which surjects onto
A+
K/K+. Let D =

∏
v 6=R Zv × [−1/2, 1/2]. We claim D + Q = AK, which will give

the desired result. Let a ∈ A+
K be arbitrary: we want to show that a is congruent mod

Q+ to some element of D.
Then there are finitely many primes p such that ap /∈ Zp. For each such p, there

exists rp ∈ Q such that rp ≡ ap (mod Zp) and rp ∈ Zv when v 6= p. Then let r =∑
rp ∈ Q. Then a− r ∈

∏
v 6=R Zv ×R. By subtracting off an appropriate s ∈ Z, get

a− r− s ∈
∏
v 6=R Zv × [−1/2, 1/2], as desired.

2 February 1

As before K is a global field.
Last time, we showed that K is discrete in AK and the quotient of additive groups

A+
K/K+ is compact. Our longer term goal will be to prove a similar statement for

A×K/K×.
Discreteness of K× in A×K follows from the additive statement: we know that A×K

embeds topologically in AK ×AK via the map x 7→ (x, x−1), and K× K is discrete in
AK ×AK.

On the other hand we’re about to see that, A×K/K× is not compact, so we will have
to modify our statement somewhat.

2.1 Content and Haar measure

We now show that A×K/K× is not compact by exhibiting a continuous map from A×K/K×

with non-compact image.

Definition. If a = (av) ∈ A×K , the content c(a) =
∏
v |av|v (this is defined because |av|v = 1

for all but finitely many v.)
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HW: The map c : A×K → R>0 is a continuous homomorphism. By the product
formula, it induces a map c : A×K/K× → R>0 with infinite image, which means that
A×K/K× can’t be compact.

The content also has an interpretation in terms of Haar measure.

Proposition 2.1. For any measurable set E ⊂ A+
K , and any a ∈ A×K , then µ(aE) = c(a)µ(E).

Proof. This follows from the description of µ as a product of local measures, and the
local fact that µv(aEv) = |a|vµv(Ev).

Since K+ is discrete inside A+
K , we can push forward the measure on A+

K to get a Haar
measure on A+

K/K+. To be more precise, let D be a measurable fundamental domain
for the action of K+ on A+

K . (For example with K = Q we can take D =
∏
v 6=R Zv ×

[−1/2, 1/2).) Then for E ⊂ A+
K/K+ Borel define

µAK/K(E) = µAK(π
−1(E)∩D)

where π : AK → AK/K is the projection map.
As a corollary, we get another proof of the product formula: if a ∈ K×, then mul-

tiplication by a gives an automorphism of A+
K which scales the Haar measure by c(a),

and also sends K+ to itself. Hence multiplication by a scales the Haar measure on the
quotient AK/K+ by c(a). On the other hand, µ(AK/K+) has finite measure, so c(a) must
be 1.

Next question: is A×K/K× compact? No: c is a continuous map from A×K/K× → R>0,
and the latter is not compact. However, that’s the only obstruction:

Definition. Let
A1
K = ker(c : A×K → R>0)

be the subgroup of multiplicative adeles of content 1.

Then A1
K is a closed subgroup of A×K , and K× is discrete in A1

K.
We plan to show that A1

K/K× is compact, and use this to deduce the finiteness of
class group and Dirichlet’s units theorem. But first we’re going to develop the adelic
version of Minkowski’s theorem. Recall that the classical Minkowski’s theorem says that
if L is a lattice in Rn and S is a convex subset of Rn symmetric around the origin, then
if S has large enough volume (where “large enough” depends on L) there must be a
nonzero point of S ∩ L. We’ll prove an analogous theorem replacing Rn with AK and L
with K, though we’ll work in a bit less generality and only prove the lemma for a certain
type of S.

Definition. For a ∈ A×K , let Sa ⊂ A+
K be the subset defined by

Sa = {x ∈ A+
K | |xv|v ≤ |av|v for all v}
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Theorem 2.2 (Adelic Minkowski). There exists a constant C = CK > 1, depending on K, such
that for every a = (av) ∈ A×K with c(a) > C, there exists some x ∈ K× ∩ Sa (in particular,
x 6= 0).

Proof. Let B =
∏
v finiteOv ×

∏
v infinite{x ∈ Kv | |x|v ≤ 1

2 } ⊂ A+
K . Then let C =

µ(A+
K/K+)

µ(B) .
Now, µ(aB) = µ(B)c(a) > µ(A+

K/K+). Hence there exists nonzero x1, x2 ∈ ∩aB,
x1 6= x2 such that x = x1 − x2 ∈ K+. By the nonarchimedean and archimedean triangle
inequalities, x ∈ Sa.

2.2 Applications of Adelic Minkowski

Theorem 2.3. A1
K/K× is compact.

Proof. Let C be as in the Adelic Minkowski, and let a ∈ A×K be any idele of content > C.
Then let

D = A1
K ∩ Sa = {x ∈ A1

K | |xv|v ≤ |av|v for all v}.

This set D is compact because it is a closed subset of Sa. We claim that D surjects
onto A1

K/K×. For this, let x ∈ A1
K be arbitrary: we need to show that x−1D contains an

element of K×.
For this, note that x−1Sa = Sx−1a, and c(x−1a) = c(a) > C, so by adelic Minkowski,

x−1Sa contains some y ∈ K×, and this y also lies in x−1D.

Another application which we won’t prove here is

Theorem 2.4 (Strong Approximation). For any place v0, K+ is dense in A+
K/K+

v0
=

∐∏
v 6=v0 K

+
v

(Proof on HW 2).

2.3 Class groups and S-class groups

Recall that if K is a number field, then the class group Cl(K) of K is the cokernel of the
map K× → I(K) where I(K) denotes the group of fractional ideals of OK.

We’ll now generalize this slightly in a way that also works for function fields.

Definition. K is a global field, S a nonempty finite set of places including all archimedean
ones. Let OK,S = {x ∈ K | |x|v ≤ 1 for all v /∈ S}.

If K is a number field, and S is the set of archimedean places of K, then OK,S = OK.
The ring OK,S is a Dedekind domain, and the (nonzero) primes of OK,S are in bijection
with places v /∈ S.
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If K is a number field, and S = {archimedean places} ∪ {p1, . . . , pn}, then OK,S is the
localization of K made by inverting those elements a ∈ OK such that all prime factors of
the ideal (a) are contained in the set {p1, . . . , pn}.

If K is the function field of a curve C over Fq, then the primes p1, . . . , pn can be viewed
as closed points of the scheme C, and OK,S is the ring of regular functions on the open
subset C− {p1, . . . , pn}.

Definition. Let IK,S be the group of fractional ideals of OK,S. Then we define the class
group Cl(K,S) = Cl(OK,S) of OK,S to be the cokernel of the natural map φ : K× → IK,S.

Note that kerφ : K× → IK,S is precisely the unit group O×K,S.
Next time we’ll show that the following two finiteness properties follow from com-

pactness of A×K .

Theorem 2.5. Let K be a global field and S a nonempty finite set of places of K including all
archimedean places.

Then

• Cl(K,S) = Cl(OK,S) is finite.

• O×K,S is finitely generated of rank equal to |S|− 1.

3 February 4

Today we’ll deduce the finiteness of the class group and Dirichlet’s units theorem from
the compactness of A1

K/K×.
Let A×K,S denote the group

A×K,S = {x ∈ A×K | |xv|v = 1 for all v /∈ S} =
∏
v∈S

K×v ×
∏
v/∈S
O×v

of units of AK,S.
and let A1

K,S denote A×K,S ∩A1
K: then A1

K,S is an open subgroup of A1
K.

The key exact sequence we’ll use here is

1 (A1
K,S · K×)/K× A1

K/K× A1
K/(A1

K,S · K×) 1

Here (A1
K,S ·K×)/K× is an open subgroup, hence also closed. As a consequence, the last

map A1
K/K× → A1

K/(A1
K,S ·K×) is continuous using the discrete topology on A1

K/(A1
K,S ·

K×).
Compactness of A1

K/K× then implies that the quotient A1
K/(A1

K,S ·K×) is compact in
the discrete topology, hence finite. It also implies that the subgroup (A1

K,S · K×)/K× is
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compact. From the first of these facts we’ll get the finiteness of class group, and from
the second we’ll get Dirichlet’s units theorem.

To get the finiteness of class group, we now just need

Lemma 3.1.
ClS(K) ∼= A1

K/(A1
K,S · K×).

Proof. Define a map
φ : A1

K → ClS(K)

by φ(a) =
∏

p p
vp(ap), where p ranges over the primes of OK,S (which we know are in

bijection with the places of K not in S).
Then check that φ is a surjection and that the kernel is K×A1

K,S.

Corollary 3.2. Cl(OK,S) is finite.

Now we look at the units group. This is a bit trickier.

Lemma 3.3.
(A1

K,S · K×)/K× ∼= A1
K,S/O×K,S

Proof. (This is a special case of the second isomorphism theorem: (A+ B)/B ∼= A/(A ∩
B).)

Combining our lemma with the previous exact sequence, we conclude that that
A1
K,S/O×K,S is compact. This will ultimately allow us to show that O×K,S is large enough,

but we need some technical lemmas first:

Lemma 3.4. The set {x ∈ OK,S | v(x) ∈ [1/2, 2] for all v ∈ S} is finite.

Proof. This is the intersection inside AK of the discrete set K with the compact set∏
v∈S Rv ×

∏
v/∈SOv, where Rv = {x ∈ Kv | v(x) ∈ [1/2, 2]}.

Proposition 3.5. a ∈ K× is a root of unity iff |a|v = 1 for all v, and the set of all such a is finite.

Proof. Finiteness of {a | |a|v = 1 for all v} follows from the previous lemma.
For the equivalence, ⇐ is clear. To show ⇒ observe that {a | |a|v = 1 for all v is a

finite group, hence is torsion.

Now, consider the homomorphism L : A×K,S → ∏
v∈S R = (R)S given by

(L(a))v = log(|av|v)

.
It follows from the lemma that L(O×K,S) is a discrete subset of Rn.
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The image L(A1
K,S) is contained in the hyperplane H = {

∑
v xv = 0}. It may not be all

of H, but it does span H as an R-vector space.
Let W be the R-subspace of H spanned by L(O×K,S). We’ll show that in fact W = H.
Now, L induces a map

A1
K,S/O×K,S → H/W

this map has image a compact subgroup of H/W, but H/W is isomorphic to some Ri, so
the only such compact subgroup is 0. Hence L(A1

K,S) ⊂ W: but we know that L(A1
K,S)

spans H so we must have W = H.
Hence L(OK,S) is a lattice in H, and so has rank equal to dimH = |S|− 1.
Finally, Proposition 3.5 tells us that the kernel of L contains only finitely many ele-

ments of O×K,S, so O×K,S is a finitely generated abelian group of the same rank as L(O×K,S),
and we conclude Dirichlet’s units theorem.

3.1 A×K/K× vs A1
K/K×

Recently we’ve been talking about A1
K/K×. Now we’re going to be moving on to class

field theory, where CK = A×K/K× is more important. Brief remarks on the relationship
between the two.

If K is a number field, have short exact sequence of topological groups.

1→ A1
K/K× → A×K/K× → R>0 → 1.

If v is any archimedean place of A×K/K×, then the map R>0 ↪→ Kv ↪→ A×K/K× gives a
splitting of the short exact sequence, so A×K/K× ∼= A1

K/K× ×R>0.
In the case that K is a function field with constant field Fq, have short exact sequence

1→ A1
K/K× → AK/K× → qZ → 1.

3.2 Change of field and norm map

Let L/K be a finite separable extension of global fields, not necessarily Galois. We already
know that AK is a closed subring of AL = L⊗K AK. Hence A×K is a closed subgroup of
A×L .

Proposition 3.6. The inclusion A×K/K× ↪→ A×L /L× is a closed embedding.

Proof. We’ll do the number field case:
Observe that A1

K/K× ↪→ A1
L/L× is a closed embedding for purely topological rea-

sons, because A1
K/K× is compact, and the continuous image of a compact set is compact,

hence closed.

12



Now we use the morphism of split short exact sequences

1 A1
K/K× A×K/K× R>0 1

1 A1
L/L× A×L /L× R>0 1

[L:K]

where the last map is x 7→ x[L:K]. Since the maps on the outside are both closed embed-
dings, and the short exact sequences split as topological groups, the inside map is also a
closed embedding.

(On next HW, uses a similar technique: for every v K×v ↪→ A×K/K× is a closed embed-
ding, but Kv1 × Kv2 ↪→ A×K/K× is not.).

If L/K is Galois, then Gal(L/K) acts on A×L and on CL = A×L /L×. It follows from
AL = AK ⊗K L that the invariant subgroup of (A×L )

Gal(L/K) = A×K .

Proposition 3.7. The subgroup CGal(L/K)
L of Gal(L/K)-invariants is equal to CK.

Proof. Apply the Galois cohomology long exact sequence to

1→ L× → A×L → CL → 1

to obtain
K× → A×K → (CL)

Gal(L/K) → H1(L/K,L×)

and use Hilbert 90.

(Note by contrast that for normal class groups, in general the subgroup Cl(OL)Gal(L/K)

does not equal Cl(OK).)
We’ll define a norm map N : A×L → A×K that extends the norm map L× → K×.
Three equivalent approaches:

Na : det(×a : A×L → A×L )

where we view A×L as an AK-module.

(Na)v =
∏

w extends v

NLw/Kvaw.

When L/K is Galois, then Na =
∏
g∈Gal(L/K) ga.

Theorem 3.8. The norm map N : A×L → A×K is continuous and open.

13



Proof. Can check that the image/preimage of sets of the form∏
v∈S

Ui ×
∏
v/∈S
O×v

is open, using the definition in terms of local components. For the continuity you just
need to use that local norms are continuous.

For openness you need to use the fact that local norm maps are open. We didn’t
prove this last semester, but it doesn’t take much work beyond what we did. Let U be
an open subgroup of L×w; without loss of generality assume U ⊂ O×w . We must show
that NLw/Kv(U) is open in O×v : we saw last semester that this is equivalent to being finite
index in O×v . First of all, U is a finite index subgroup of O×w because the latter is compact,
so NLw/KvU is a finite index subgroup of NLw/KvO×v . But NLw/KvO×v is finite index in
O×v by local class field theory, so we’re done.

Additionally, because of the restricted product, also need the fact, proved last semester,
that if v is a place of K, and w a place of L above v then the local norm map NLw/Kv maps
O×w onto O×v whenever Lw/Kv is unramified, which happens for all but finitely many
v.

4 February 8

Side note: related to Vaughan’s question about the class number formula last time. If K
is a number field, the locally compact group A1

K/K× has a Haar measure, unique up to
scaling, and there turns out to be a particular scaling that is particularly nice for Fourier
analysis. Then the class number formula for K has the following adelic interpretation:

Res |s=1ζK(s) = µ(A1
K/K×) =

2r1(2π)r2h(OK) reg(OK)√
|disc(K)|wK

where r1 is the number of real places of K, r2 the number of complex places, reg(OK) =
vol(H/L(O×K )) and wK = #(µ∞(OK)). This was proved by Tate in his thesis.

4.1 Statement of results of global class field theory

Let K be a global field. We’ll now introduce the statements of the results of global class
field theory without proofs.

Theorem 4.1 (Reciprocity map for finite extensions). For every finite Galois extension L/K
there is a natural reciprocity map

θL/K : CK → Gal(L/K)ab

which is surjective, and has kernel equal to NCL.
If L ′/L/K is a tower, then θL ′/K restricts to θL/K.

14



Definition. A subgroup U of CK is normic if it is equal to NCL for some finite Galois
extension L/K.

(By the same argument as in the local field case, it’s enough to assume L/K is abelian.)
Because the norm map is open, any normic subgroup is open, and it is also finite

index by the main theorem.

Theorem 4.2 (Existence Theorem). The normic subgroups ofCK are exactly the open subgroups
of finite index.

Hence we have a bijection between open finite index subgroups of CK and finite
abelian extensions L of K. In one direction, the finite index subgroup U ⊂ CK maps
to the fixed field (Kab)θ/K(U)), while in the other direction, the finite abelian extension L
maps to the subgroup NCL = θ−1/K(Gal(Kab/L)).

We can assemble the reciprocity maps for finite extensions to get

Theorem 4.3 (Reciprocity map for infinite extensions). There is a continuous map, the global
reciprocity map

θ/K : CK = A×K/K× → Gal(Kab/K)

with dense image and kernel equal to the intersection of all the finite index open subgroups of CK.

Then ker θK is the intersection of all the finite index open subgroups of CK. Can we
describe this intersection more explicitly? It’s a subgroup of CK, and must contain the
connected component C0K. Ultimately we’ll show that it is exactly (CK)

0, but this will
require looking at CK and C0K more closely.

Note first that the connected component (A×K )
0 of the identity in A×K is precisely∏

v complex

C× ×
∏
v real

R>0.

Let π denote the projection map from A×K to CK.

Proposition 4.4. The connected component (CK)0 is equal to the closure DK = π(A×K )
0 inside

CK.

Proof. First of all, since connected components are closed, we certainly have (CK)
0 ⊃ DK.

In class we didn’t prove the other inclusion: we’ll do so here.
We’ll prove that the topological group CK/DK is totally disconnected. To this end,

we use the following homomorphism of topological groups

φ :
∏
v finite

O×v → CK/DK

15



given by composing the natural inclusion
∏
v finiteO×v ↪→ A×K with the projection A×K �

CK/DK. Because the domain of φ is totally disconnected, the image imφ is also totally
disconnected.

We’d be done if we knew that φ was surjective; unfortunately this is not the case.
However we will show that the image of φ is a finite index subgroup of CK, which is
still enough to imply topologically that CK is totally disconnected.

The cokernel of φ is equal to

cokφ = A×K/K× ·
∏
v finite

O×v
∏
v real

R>0
∏

v complex

C×.

We now prove finiteness of cokφ by the same method used to prove finiteness of
class group (in fact, cokφ is actually equal to what’s called the narrow class group of OK).
The natural map A1

K/K× → cokφ is surjective because A×K is generated by A1
K and the

subgroup R>0 of Kv for any archimedean place v. Hence cokφ is a compact topological
group, but it has the discrete topology, so it must be finite.

(Another description of DK is that it is the set of divisible elements in CK: that is,
∩n≥0(CK)n. Proof of this will be on the HW.)

If K is a function field, this means that C0K = {1}. If K is a number field, then (by
current HW) the map

∏
v infinite K

×
v ↪→ A×K/K× is a closed embedding if and only if K

has a unique infinite place (K is Q or an imaginary quadratic field). In that case C0K ∼= K×∞:
otherwise can be shown (proof is in exercises of Neukirch)

CK/C0K ∼= (S1)r2 × (A+
K/K+)r1+r2−1 ×R>0.

Theorem 4.5. If K is a number field, then CK/(CK)0 is a profinite group.

Proof. We already know that CK/(CK)0 is totally disconnected, so it’s enough to show
compact. But the compact group A1

K/K× surjects onto CK/(CK)0.

Corollary 4.6. For K a number field, C0K is the intersection of all finite index open subgroups of
CK, and θ/K induces an isomorphism CK/C0K → Gal(Kab/K).

Proof. Because CK/C0K is profinite, the intersection of all finite index open subgroups of
CK/C0K is equal to {1}. Hence the image of all finite index subgroups of CK is equal to
C0K.

This plus Theorem 4.3 shows that the map CK/C0K → Gal(Kab/K) is injective. For
surjectivity, we already know that the image is dense, but since CK/C0K is compact, the
image must also be closed, so must be all of Gal(Kab/K).

For the function field case:

16



Theorem 4.7. For K a function field, CK is totally disconnected, and {1} = C0K is the intersection
of all finite index open subgroups of CK.

The map θ/K is not surjective, but its image can be seen from the following diagram:

1 A0
K/K× CK qZ 1

1 IK Gal(Kab/K) Ẑ 1.

where IK is defined as the kernel of the map Gal(Kab/K) → Ẑ and the first downward arrow is
an isomorphism.

The global reciprocity map is determined by compatibility properties: specifically,
that the square

K×v Gal(Kab
v /Kv)

A×K/K× Gal(Kab/K).

θ/Kv

θ/K

commutes for all v. Here θ/Kv is the reciprocity map defined last semester.
More specifically, if L is a finite abelian extension of K and w is any valuation extend-

ing L, we have

K×v Gal(Lw/Kv)

A×K/K× Gal(L/K).

θLw/Kv

θL/K

and recall from last semester that, whenever Lw/Kv is unramified, then O×v ⊂ θLw/Kv
In particular this means we may define

θL/K(a) =
∏
v

θLw/Kv(av)

as the right hand side is a finite product, and take the inverse limit over all L/K finite
abelian to define θ/K(a).

4.2 Ray class fields and ray class groups

Let K be a number field now.
We’ll now define a family of open subgroups of CK containing C0K, which by the

global class field theory correspondence will give us a family of finite abelian extensions
of K.
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Definition. A modulus m of K is a function from (places of K) to Z≥0 such that

• m(v) = 0 for all but finitely many v

• if v is complex then m(v) = 0

• if v is real then m(v) = 0 or 1.

As a matter of notation we write m =
∏
v v

m(v), e.g. m = p1p2∞1.

For a modulus m =
∏
v v

m(v), define the congruence subgroup Um of A×K by

Um =
∏

p finite

Up,m(p)

∏
v infinite
m(v)=0

K×v
∏
v finite
m(v)=1

R>0

We’ll say that x ≡ 1 (mod m) if x ∈ Um.
Then let Cm

K be the congruence subgroup of CK given by Cm
K = Um ·K×/K×.

Any open subgroup of A×K must contain some Um, hence any open subgroup of CK
must contain some Cm

K .

Definition. The ray class field Lm of modulus m is the subfield of Kab fixed by θ/K(Um).

Then Lm is an abelian extension of K with Gal(Lm/K) ∼= CK/Cm
K . Next time we’ll

identify this quotient with the ray class group, a generalization of the class group defined
classically in terms of ideals.

We’ll also work out the example of K = Q.

5 February 11

5.1 Ray class fields, continued

Example. Let K = Q. Then (recall from last semester)

A×
Q

/Q× ∼=
∏
p

Z×p × R>0 ∼= Ẑ× ×R>0,

and the Artin map is given by θ/Q(a, x) is the element of Gal(Q(ζ∞)/Q) mapping ζ 7→
ζa

−1
for any ζ ∈ µ∞(K).

If m = m∞ then Um = Um∞ is identified with the subgroup {(a, x) ∈ Ẑ× ×R>0 | a ≡
±1 (mod m)}, so Lm∞ = Q(ζm).

If m = m then Um = Um is identified with the subgroup {(a, x) ∈ Ẑ× | a ≡ 1

(mod m)}, and Lm∞ = Q(ζm + ζ−1m ).

Definition. The ray class group Clm(OK) is the quotient Im/Pm, where

18



• Im is the group of fractional ideals of OK relatively prime to m (that is, vp(a) = 0

for any prime p | m).

• Pm ⊂ Im is the subgroup of principal ideals (a) such that a ∈ Up,m(p) for all finite
places p contained in the modulus m and a is positive at all real places contained
in the modulus m.

(Exercise: if m contains no infinite places, there’s a natural exact sequence

O×K → (OK/mOK)× → Clm(OK) → Cl(OK) → 1.

)

Example. K = Q, and m = m. By the previous exercise, Clm(Z) ∼= (Z/mZ)×/± 1.
Example. K = Q, and m = m∞. Then

Im∞ ∼= {a ∈ Q>0 | vp(a) = 1 for all p | m}

, and Pm is the kernel of the natural homomorphism Im∞ → (Z/mZ)×.)

Proposition 5.1. CK/Cm
K
∼= Clm(OK)

Proof. Note CK/CmK ∼= A×K/K×Um We want to mimic our earlier proof and make a ho-
momorphism from A×K → Clm(OK) with kernel K×OK. The problem here is what to do
with the factors at primes p dividing m. So instead we’re going to first map a subgroup
of A×K to Clm(OK).

Let

A×K,m = {a ∈ A×K | ap ≡ 1 (mod pm(p)) for all finite p | m and av > 0 for all real v}.

Note that A×K,m contains Um: the difference between then is that elements of A×K,m can
be non-units at finite places not dividing p, where as elements of Um must have all
components units. Let K×m = K× ∩A×K,m.

Now there’s a natural homomorphism A×K,m → Clm(OK) given by (a) 7→ ∏
p p
vp(a).

The kernel of this map is K×m ·Um.
Finally, we can map A×K,m/K×mUm → A×K/K×Um. Exercise: this map is an isomor-

phism (this follows e.g. from weak approximation).

Example. m = 1, Clm(K) = Cl(K), Lm = H is the Hilbert Class Field, the maximal field
extension unramified at any places (including infinite places).

m =
∏
vreal v, Clm(K) = Cl+(K) is called the narrow class group, Lm = H+ is narrow

Hilbert class field.
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The isomorphism
Clm(OK) → CK/Cm

K → Gal(Lm/K)

can be described explicitly. Note that Clm(OK) is generated by elements of the form [p]

where p is a fractional ideal relatively prime to m. The isomorphism Clm(OK) → CK/Cm
K

sends such a [p] to class [a] of the idele a = (av) ∈ A×K with ap = π is a uniformizer of
K×p , and av = 1 v 6= p. Then

θLm/K(a) =
(
θ(Lm)p ′/Kp

(π)
)
|Lm

is the Frobenius element Frobp in Gal(Lm/K) since the local extension is unramified.
It follows that the Frobenius element Frobp depends only on the class of p in Clm(OK).

Hence these ray class fields are class fields in (a generalization of) the sense we used last
semester

Proposition 5.2. a) Lm is unramified at all primes not dividing m.

b) if m | m ′ then Lm ⊂ Lm ′ .

c) Lm1 ∩ Lm2 = Lgcdm1,m2

d) ∪mLm = Kab,

Proof. For any prime p not dividing m, the image inside CK of O×K is contained in Um.
It follows by local-global compatibility that θLm/KpO

×
p fixes the completion (Lm)p ′ for

any prime p ′ of Lm extending p. By local class field theory, this means that (Lm)p ′/Kp is
unramified, and hence that p is unramified in the extension Lm/K.

(This also works for infinite places with the convention that a real place v is unrami-
fied if and only if every v ′ extending v stays real.)

b) and c) follow from definitions.
for d): any open subgroup of A×K contains some Um, so any open subgroup of CK

contains some Cm
K , and d) follows by Galois correspondence.

Definition. If L is a finite abelian extension of K, then the minimal m such that L ⊂ Lm
is referred to as the conductor of L, and written f = fL/K.

This means that f is minimal such that the reciprocity map θ/K : CK → Gal(L/K)
factors through Clf(K) ∼= CK/Cf

K.
Two interpretations of this: first, this tells us that for any prime p of OK not dividing

f, L is unramified at p and Frobp =
(
L/K
p

)
depends only on the image of p in Clf(OK)

Secondly, we’ve stated in the main theorem of class field theory that ker θ/K : CK →
Gal(L/K) is NL/KCL, so this says that f is minimal such that NL/KCL ⊃ Cf

K.
Exercise: the places that ramify in L are exactly those dividing fL/K.

Example. K = Q, L = Q(
√
p), p > 0, p ≡ 1 (mod 4). Here, fL/K = p meaning that

L ⊂ Q(ζp + ζ
−1
p ), and for any prime q not equal to p,

(Q(
√
p)/Q

q

)
=
(p
q

)
depends only on

the image of q in (Z/pZ)×/± 1.
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6.1 Hilbert Class Field

The case where m = 1 is particularly nice. We write L1 = H = HK and call it the Hilbert
class field of K. You actually saw this in your homework last semester.

Proposition 6.1. HK is the maximal abelian extension of K unramified at any place. (where we
use the convention that the extension C/R of archimedean places is ramified).

Proof. We’ve already shown that HK/K = K is everywhere unramified. On the other
hand, if L is an unramified extension of K, then for any finite place v of K and any place
w of L above v, the image θ/KvO×v under the local reciprocity map must be the identity
on Lw. Likewise if v is a real place of K, θ/KvR

× must fix Lw = Kv.
Using the local-global compatibility, we conclude that θ/K(C

1
K) must act as the iden-

tity on L, so L must be contained in the fixed field, namely HK.

Example. K = Q, HK = Q.
K = Q(i), HK = Q(i).
K = Q(

√
−5), HK = K(i) = Q(

√
5, i),

K = Q(
√
−23, HK = K(α) where α3 −α+ 1 = 0.

Proposition 6.2. If L/K is Galois then so is HL/K.

Proof. Any element of Aut(K̄) sends unramified extensions of L to unramified extensions
of L.

As a consequence have a short exact sequence

1→ Cl(K) ∼= Gal(HK/K) → Gal(HK/Q) → Gal(K/Q) → 1.

Caution: this SES does not have to split for general K/Q: but counterexamples are messy.
In the case where K is an imaginary quadratic extension of Q, however, we can make a
(non-canonical) splitting by choosing any embedding HK ↪→ C, and letting the nontrivial
element σ ∈ Gal(K/Q) lift to complex conjugation on HK.

However the SES does always induce an action of Gal(K/Q) on Gal(HK/K) ∼= Cl(OK)
by conjugation, and this action agrees with the standard action of Gal(K/Q) on Cl(OK)
(this will follow by facts of class field theory that we haven’t yet covered.

Proposition 6.3. Let K/Q be an imaginary quadratic extension with Hilbert class field H. For
p a prime of Q, there exists π ∈ OK with NK/Qπ = p if and only if p splits completely in OH.
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Proof. if p does not split completely in OK then neither condition is true. May assume
then that p splits completely in OK, write (p) = NK/Qp. If there exists π ∈ OK with
NK/Qπ = p we must have p = (gπ) for some g ∈ Gal(K/Q) by unique factorization.

Hence such a π exists iff p is principal. But we know p is principal iff p splits com-
pletely in OH, which is the case iff p splits completely in OH, as desired.

Example. p is a norm from Z[
√
−5] iff p = x2 + 5y2 if and only if p splits completely in

Q(
√
−5, i) iff p ≡ ±1 (mod 5) and p ≡ 1 (mod 4).

Example. p is a norm from Z[1+
√
−23
2 ] iff p = x2 + xy + 6y2 iff p splits completely in

Q(
√
−23,α) iff

(
−23
p

)
= 1 and x3 − x+ 1 has a root modulo p.

6.2 Side note on idoneal numbers

Question: for which D > 0 is the set of p which are norms from O√−D be determined by
congruence conditions? Answer: suffices (and is also necessary, but we won’t be able to
show it yet) that HK must be an abelian extension of Q, which is equivalent to Gal(K/Q)

acting trivially on Cl(K). But complex conjugation sends an ideal class to its inverse, so
this is equivalent to saying that Cl(K) is 2-torsion.

Theorem 6.4 (Weinberger ’73). There are only finitely many D for which this is the case
(“Euler’s idoneal numbers”): assuming GRH, we know the entire list.

Very rough heuristic for why we expect this: the size of Cl(O√−D) grows likeD1/2: in
fact, Brauer-Siegel tells us that #(Cl(O√−D)) can be bounded below by a constant times
D1/2−ε for any ε > 0, but the constant is completely ineffective.

On the other hand, the size of #(Cl(O√−D)[2]) of the 2-torsion subgroup can be com-
puted explicitly (you did a special case on this on HW last semester), and is (up to a
small factor) equal to the number of divisors of D. The number of divisors d(D) is on
average approximately logD, though there’s some variation in size, there’s still an upper
bound d(D) < elogD/ log logD which is o(Dε) for every ε. As a result we expect that when
D gets large enough Cl(O√−D) is too large to be all 2-torsion.

6.3 Ideals become principal in the Hilbert class field

The Hilbert class field also has another important property, which is that any fractional
ideal a of OK becomes principal in OH: that is, aOH is principal. This was the last
of Hilbert’s conjectures about the Hilbert class field to be settled, in 1929 when Artin
reduced it to a group theoretic result (which was in turn proved by Furtwangler).

In order to prove this we’ll need a little bit more about the Artin map than we’ve
done so far.
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6.4 Artin map and change of base

Suppose L/K is a finite separable extension, and suppose that L ′/K is a finite Galois
extension containing L. Then we have Artin maps θL ′/K : CK/NL ′/KCL ′ → Gal(L ′/K)ab,
and θL ′/L : CL/NL ′/LCL ′ → Gal(L ′/L)ab.

The inclusion CK ↪→ CL induces a map CK/NL ′/KCL ′ → CL/NL ′/LCL ′ . What is the
corresponding map on the Galois side?

The answer to this is most easily seen using Galois cohomology. Note that the map
above can also be described as the restriction map Res : Ĥ0(L ′/K,CL ′) → Ĥ0(L ′/L,CL ′).
Hence we expect to have (and indeed we’ll later see that we do have) a diagram

CK/NL ′/KCL ′ Ĥ0(L ′/K,CL ′) Ĥ−2(L ′/K, Z) Gal(L ′/K)ab

CL/NL ′/LCL ′ Ĥ0(L ′/L,CL ′) Ĥ−2(L ′/L, Z) Gal(L ′/L)ab

∼

Res

∼

Res V

∼ ∼

where V denotes the transfer map defined in HW last semester.

6.5 Proof of Principal ideal theorem

The group theoretic result is

Theorem 6.5 (Principal Ideal theorem of group theory). If G is a finite group, G ′ = [G,G],
G ′′ = [G ′,G ′], then the transfer map G/G ′ → G ′/G ′′ is trivial.

We won’t prove it (most class field theory books skip the proof, though Artin-Tate
includes a proof).

We’ll deduce from this

Theorem 6.6 (Principal Ideal theorem of class field theory). The natural map Cl(K) →
Cl(H) is trivial.

Proof. Let H1 be the class field of H. Observe that H1/K is unramified, and hence that H
is the maximal abelian subextension of H1.

Let G = Gal(H1/K). By the previous observation, the subgroup Gal(H1/H) is equal
to the commutator subgroup G ′ = [G,G], and G ′′ = {1}.

We get a commutative diagram

Cl(K) CK/NH/KCH Gal(H/K)ab G/G ′

CK/NH1/KCH1 Gal(H1/K)ab G/G ′

Cl(H) CH/NH1/HCH1 Gal(H1/H)ab G ′/G ′′

∼ θ

∼ ∼

θ

V V

∼ θ
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By the group-theoretic principal ideal theorem, the transfer map V is trivial, hence the
map on the left hand side is also trivial.

6.6 Class Field Towers

(We didn’t have time to go into detail about this in class.)
Question: if K is a number field does it embed in L with |Cl(L)| = 1?
one approach: take H0 = H to be the Hilbert class field of K, H1 to be the Hilbert

class field of H0, H3 the Hilbert class field of H2, etc... If this tower eventually stabilizes
at some Hn, then Hn must have class number 1.

On the other hand, if K has any finite extension L with trivial class group, then the
compositum HL is an unramified abelian extension of L, so H ⊂ L. Repeating this
argument get that every Hn is contained in L, so the class field tower must stabilize.

Hence the answer to this question is yes if and only if the class field tower stabilizes.
It was an open question for a while in the middle of the 20th century whether class

field tower must always stabilize. As it turns out, the answer is no. (Golod-Shafarevich)
The proof looks at the maximal pro-p subextension: inductively, define H0,p to be the

maximal everywhere unramified abelian extension of K with exponent p, and Hi+1,p to
be the maximal everywhere unramified abelian extension of Hi,p with exponent p. This
tower is called the p-class field tower of K.

Theorem 6.7 (Golod-Shafarevich). If the p-class field tower stabilizes, then the p-rank of Cl(K)
is at most 2+ 2

√
[K : Q] + 1

In particular, if p = [K : Q] = 2 this says that if the 2-rank of Cl(K) is ≥ 6, then K has
an infinite 2-class field tower.

Results of genus theory say that if an imaginary quadratic extension K/Q has k
ramified primes, then the 2-rank of Cl(K) is equal to k− 1. (A special case of this was
covered on HW last semester). If a real quadratic extension K/Q has k ramified primes
then the 2-rank of Cl(K) is either k− 1 or k− 2.

It follows that if K/Q is imaginary quadratic and has at least 7 ramified primes, or
real quadratic and has at least 8 ramified primes, then K has an infinite class field tower.

Actually, using a slightly sharper form of Golod-Shafarevich, in the imaginary quadratic
case can show that 6 ramified primes suffice: see Cassels-Frohlich for details.
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7.1 Review of the Brauer group

Recall from last semester that if K is any field then H2(K, (Ksep)×) is called the Brauer
group of K and will be written Br(K).
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Last semester we looked at the Brauer groups of local fields: if K is a local field then
there is a canonical isomorphism inv : Br(K) → Q/Z.

Now we’ll compute the Brauer group of K when K is a global field, assuming some
facts of global class field theory. The basic idea is to use the short exact sequence of
Gal(Ksep/K)-modules:

1→ Ksep)× → A×Ksep → CKsep → 1

where A×Ksep =
⋃
L/K finite separable A×L and likewise C×Ksep =

⋃
L/K finite separableC

×
L .

7.2 Cohomology of A×L

Let L/K be a finite extension of global fields, with Galois group G = Gal(L/K). We’ll
want to compute cohomology of A×L as a Gal(L/K)-module. Let S be any finite set of
places of K including all infinite ones, and let S̄ be the set of all primes of L lying above
some prime of S.

For simplicity, we’ll write A×L,S = A×
L,S̄.

Then
A×L,S =

∏
v∈S

∏
v ′ |v

L×
v ′ ×

∏
v/∈S

∏
v ′ |v

O×
v ′ .

For every v, choose w above v, and let Gw be the decomposition group of w:

GW = g ∈ G | gw = w.

Have natural isomorphism Gw ∼= Gal(Lw/Kv).
Also, the G-module ∏

v ′ |v

L×
v ′ =

∏
g∈G/Gw

L×gw

is induced/co-induced from the Gw-module L×w.
By Shapiro’s lemma, get Hq(G,

∏
v ′ |v L

×
v ′)

∼= Hq(Gw,L×w), and this isomorphism is
induced by

Hq(G,
∏
v ′ |v

L×
v ′)

Res−−→ Hq(Gw,
∏
v ′ |v

L×
v ′)

π∗−→ Hq(Gw,L×w).

Hence Hq(G, A×L,S)
∼=
∏
v∈SH

q(Gw,L×w)×
∏
v/∈SH

q(Gw,O×w).
Note that if v is unramified in L, then Hq(Gw,O×w) ∼= Hq(Lw/Kv,O×w) = 1: so if S

contains all ramified primes, we have

Hq(G, A×L,S)
∼=
∏
v∈S

Hq(Gw,L×w)

Now, take the direct limit over all sets S containing the ramified primes, and get
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Hq(G, A×L ) = lim
S
Hq(G, A×L,S)

∼=
⊕
v

Hq(Lw/Kv,L×w)

(This also works for Tate cohomology.)
Consequences:
H1(L/K, A×L ) = 0
H2(L/K, A×L ) =

⊕
v

1
[Lw/Kv]

Z/Z.

We’ll later show H2(L/K,CL) ∼= 1
[L/K]Z/Z, and that the diagram

H2(L/K, A×L ) H2(L/K,CL)

⊕
v

1
[Lw/Kv]

Z/Z 1
[L/K]Z/Z

∼ ∼

commutes, where the bottom map sends an element of 1
[Lw/Kv]

Z/Z to the sum of its
components.

We have a cohomology exact sequence

H1(L/K,CL) → H2(L/K,L×) → H2(L/K, A×L ) → H2(L/K,CL)

By the above observations, plus the fact (which we’ll show later) that H1(L/K,CL) = 0,
this exact sequence becomes

0→ H2(L/K,L×) →⊕
v

1

[Lw/Kv]
Z/Z → 1

[L/K]
Z/Z

After taking direct limits

Theorem 7.1 (Albert-Brauer-Hasse Noether). There exists a short exact sequence 0→ Br(K) 7→
⊕v Br(Kv) → Q/Z → 0.

(and for every v we have an isomorphism invv : Br(Kv) → Q/Z.

7.3 Introduction to Brauer Group from the point of view of Central
Simple Algebras

(Reference for all this material is Milne’s CFT notes: http://www.jmilne.org/math/

CourseNotes/CFT.pdf, chapter 4)
Take a base field K. We’ll be interested in non-commutative algebras over K, e.g. the

algebra Mn(K) of n× n matrices
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As another example of a non-commutative algebra, take the R-algebra of Hamilton’s
quaternions H = R〈i, j〉/(i2 = j2 = −1, ij = −ji), which is spanned over R by 1, i, j and
k = ij = −ji. This is a division algebra (every nonzero element has an inverse).

Note that if we try to construct the quaternions over C, would get

HC = H⊗R C = C〈i, j〉/(i2 = j2 = −1, ij = −ji)

which is isomorphic to M2(C) via the map

i 7→ (
i 0
0 −i

)
, j 7→ (

0 −1
1 0

)
.

We can say then that H is a twist or form of M2(R), since H⊗R C ∼=M2(R)⊗R (C).
Generally, for a field K, we will be interested in twists of Mn(K), that is, K-algebras A

such that A⊗K Ksep ∼=Mn(K
sep). One thing we’ll see is that these twists are classified by

elements of a non-abelian Galois cohomology set (no longer a group!) H1(K, PGLn(Ksep))

which we haven’t defined yet. We’ll get a connecting homomorphismH1(K, PGLn(Ksep) →
H2(K, (Ksep)×) = Br(K), which explains how the Brauer group comes into things.

There’s another class of noncommutative K-algebras that can be defined in an unre-
lated way, but turns out to give exactly those K-algebras that are twists of Mn(K) for
some n. We’ll do that now.

Definition. A K-algebra A is simple if A has no nonzero proper two-sided ideals. We say
that A is a central simple algebra over K if A is a simple algebra and the center Z(A) = K.

Example. If A is any division algebra, then the center Z(A) is a field K, and then A is a
central simple algebra over K.

Example. For any field K of characteristic not 2, and any a,b ∈ K×, define a generalized
quaternion algebra H(a,b) over K by

H(a,b) = K〈i, j〉/(i2 = a, j2 = b, ij = −ji).

As in the case of ordinary quaternions, H(a,b) has basis 1, i, j,k = ij.
You’ll prove on HW that H(a,b) is central simple.

Example. Mn(K) is central simple over K.

Proof. Let I be a nonzero 2-sided ideal of Mn(K). Choose x ∈ I nonzero, so xij 6= 0 for
some i, j. By rescaling may assume xij = 1. Then I also contains the matrix eij = eiixejj.
By multiplying by permutation matrices on both sides, get that I contains ekl for all k, l
in range, so I =Mn(K).
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7.4 Central Simple Algebras and the Brauer Group

Let [φ] ∈ H2(L/K,L×) be arbitrary represented by an inhomogeneous 2-cocycle φ.

Definition. Aφ = ⊕g∈GLeg, where the multiplication structure is determined by egx =

g(x)eg for all g ∈ G, x ∈ L and egeh = φ(g,h)egh.

The multiplicative identity 1 in Aφ is given by e1
φ(1,1) , and so we have a canonically

embedded copy of L inside A given by Le1 = L · 1.
(One can choose the representative cocycle φ so that φ(1, 1) = 1, and then e1 is the

identity.)
It follows from the cocycle conditions that Aφ is an associative K-algebra. Also [Aφ :

K] = |G|[L : K] = [L : K]2.
To check that Aφ is well-defined up to isomorphism by the class φ, observe that if

φ ′(g,h)/φ(g,h) = σ(g)gσ(h)/σ(gh), then the map Aφ → Aφ ′ sending eg 7→ σ(g)e ′g is
an isomorphism.

Proposition 7.2. Aφ is central simple over K.

Proof. Central: If a ∈ Z(A) then a commutes with L so a ∈ L = Le1, but also a commutes
with all eg so a is in the fixed field of Gal(L/K) namely K.

Simple: Let I be a nonzero proper ideal of A. Take an element a = c1eg1 + · · · +
cnegk ∈ I with c1, . . . , ck ∈ L, k minimal. WLOG g1 = 1. Since I is not all of A, k ≥ 2

Take x ∈ L such that g2(x) 6= x. Then xa− ax ∈ I but

xa− ax = (xc1 − c1x)e1 + (xc2 − c2g2(x))eg2 + · · · = (x− g2(x))c2(x)eg2 + · · ·

contradicts minimality of k.
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8.1 Central Simple Algebras and Tensor Product

The set of K-algebras has a natural monoid structure on it, given by tensor product:
the algebra structure on A ⊗K B is determined by (a1 ⊗ b1)(a2 ⊗ b2) = a1b1 ⊗ a2b2.
Important special case: Mn(K)⊗K A ∼=Mn(A).

We now do some results on how simpleness interacts with tensor products.

Proposition 8.1. If L is a field extension of A, and A⊗K L is a simple L-algebra, then A is a
simple K-algebra.

Proof. If I is an ideal of A, then I⊗K L is an ideal of A⊗K L.
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The converse is not true, e.g. C⊗R C ∼= C⊕C, is not simple. More generally L⊗K L
is not simple.

However, if A is central simple then A⊗K L is simple over L. More generally:

Proposition 8.2. A,B are K-algebras, A central simple, B simple implies A⊗K B simple.

Proof. Let I be an ideal of B and let
∑n
i=1 ai ⊗ bi be a nonzero element of I with n

minimal.
The ideal Aa1A is equal to all of A, so wlog can assume that a1 = 1. Take commutator

with arbitrary element a⊗ 1, minimality gives that a commutes with ai for each i. So
ai ∈ K, and get

∑n
i=1 ai⊗ bi in K⊗K B can be written as 1⊗ b. Now use that B is simple,

to get that I contains K⊗K B, hence contains A⊗K B.

Also, if we let Z(A) denote the center of a K-algebra A,

Proposition 8.3. Have Z(A⊗ B) = Z(A)⊗K Z(B)

Proof. Exercise.

It follows from the previous two problems that the set of central simple algebras /K
forms a monoid under tensor product.

From now on, we are going to require that all central simple algebras over K are
finite-dimensional.

8.2 Brauer Group in terms of Central Simple Algebras

The monoid of central simple algebras over K has a submonoid consisting of the matrix
algebras Mn(K) for n ∈ Z. We will define the Brauer group as the quotient of the
monoid of central simple algebras over K by the submonoid of matrix algebras. We need
to show that this is a group.

Definition. For a K-algebra A, define Aop to be the K-algebra which is equal to A as a
K-vector space but has the opposite multiplication: a ∗ b = ba.

Note that Aop is central / simple if and only if A is.

Proposition 8.4. If A is a central simple algebra of dimension n as a K-vector space, then
A⊗K Aop ∼= EndK(A) ∼=Mn(K).

Proof. We define a homomorphism φ : A⊗K Aop → EndK(A) as follows.
Let φ(a⊗ 1) = `a, where `a is the left multiplication map by a: `a(b) = ab.
Let φ(1⊗ a) = ra, where ra is the right multiplication map by a: ra(b) = ba.
Because A⊗K Aop is a central simple algebra, φ is injective. However, EndK(A) ∼=

Mn(K) and A⊗K Aop are both K-vector spaces of the same dimension n2, so φ must be
an isomorphism.
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Hence we may now give the original definition of the Brauer group:

Definition. The Brauer group Br(K) is the quotient of the monoid of central simple
algebras over K by the monoid of matrix algebras.

From last time, we have a map H2(L/K,L×) → Br(K). In this class we’ll skip the
proof that it’s a homomorphism (see Milne for details + references), but I will show that
it maps the identity to the identity.

LetA1 be the central simple algebra corresponding to the trivial cocycle 1 ∈ H2(L/K,L×).
That is, A1 =

⊕
g∈Gal(L/K) Leg, and the multiplication is given by egx = g(x)eg for x ∈ L

and egh = egeh.
Then we can define a homomorphism A1 → EndK−vec(L) by sending x to the multi-

plication by x map, and eg to the automorphism g : L→ L. Because A1 is central simple,
this map is injective, and must be an isomorphism by dimension counting.

8.3 Classification of Central Simple Algebras

In this section we’ll show that any central simple algebra is of the form Mn(D) =

Mn(K)⊗KD where D is a division algebra with center K.
First we need some facts about modules over non-commutative algebras.

Definition. If M is a (finitely generated) module over a K-algebra A, we say that

• M is simple if M has no nonzero proper A-submodules.

• M is semisimple if M is the direct sum of simple A-modules.

• M is indecomposable if M cannot be written as M1 ⊕M2 with M1,M2 6= 0.

Lemma 8.5. (Schur) If M is a simple A-module, then EndA(M) is a division algebra.

Proof. We need to show that any nonzero φ ∈ EndA(M) is a unit. Note that kerφ
must equal either 0 or M, but can’t be M, so must be 0. Likewise, imφ is either 0 or
M, but can’t be 0, so must be M. Hence φ is an invertible linear transformation, and
φ−1 ∈ EndA(M), so φ is a unit in EndA(M).

Proposition 8.6. If D is a division algebra, then any f.g. D-module M is isomorphic to Dn for
a unique n. Any set of n linearly independent vectors of Dn spans.

Proof. Same as for D a field.

For V a K-vector space and A a subalgebra of EndK(V), let C(A) denote the centralizer
of A in EndK(V). Observe that C(A) = EndA(V).

Theorem 8.7 (Double Centralizer). If A is simple, then C(C(A)) = A in EndK(V).
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Proof. Skipped. In Milne’s notes (Theorem 1.13 on page 121) he proves this assuming
that V semi-simple as an A-module, which is sufficient for the proof of Theorem 8.8 (and
we’ll later see, using that theorem, that all A-modules are semisimple when A is simple).
He also proves a generalization where EndK(V) is replaced by any central simple algebra
B, on page 129, but that requires more theory.

AA denotes A considered as left A-module. Note that EndA(AA) ∼= Aop, and more
generally, if V is a free A-module of rank n, EndA(V) ∼=Mn(A

op).

Theorem 8.8. Any central simple algebra over K is isomorphic to Mn(D) for D a division
algebra.

Proof. Choose a nonzero simple A-module S (eg a minimal nonzero left ideal of A).
Then A embeds in EndK(S). Let B be the centralizer of A in EndK(S): B is a division

algebra by Schur. Then A = EndB(S) by the double centralizer theorem. Since B is a
division algebra, S ∼= Bn for some n, and then A = EndB(S) ∼=Mn(B

op) as desired.

Proposition 8.9. Let A be a central simple algebra over K.
Up to isomorphism there’s a unique simple module S over A. Every finitely generated A

module is semisimple and isomorphic to Sn for some n, so are classified by dimension.

Proof. By classification, A = Mn(D). Then S = Dn is an A-module; easily seen to be
simple.

First, we decompose AA (A viewed as a (left) A-module) as a sum of simple A-
modules as follows:

AA = ⊕iSi,

where Si is the set of all matrices which are 0 outside of the ith column. Each Si ∼= S, so
is simple.

Now let M be any simple A-module, and m ∈M be a nonzero element. Then define
a map phi : A → M by φ(a) = am. For some i the restriction φ|Si must be nonzero,
and since both M and Si are simple, this implies that φ is an isomorphism S→M.

We’ll only sketch the proof of the second part: if M is a finite-dimensional A-module,
we have a surjection φ ∼= Am = Smn → M for some m. Hence A is isomorphic to a
quotient of Smn: one can show that the only such quotients are isomorphic to Sk for
some k.

Proposition 8.10. Any CSA A over K is isomorphic to Mn(D) for some division algebra D.
The division algebra D and integer n are uniquely determined by A.

Corollary 8.11. There is a bijection between the set of division algebras D with center K and
Br(K) given by sending D to the class [D] of D in the Brauer group.
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9 March 1

Proposition 9.1. Any CSA A over K is isomorphic to Mn(D) for some division algebra D. The
division algebra D and integer n are uniquely determined by A.

Corollary 9.2. There is a bijection between the set of division algebras D with center K and
Br(K) given by sending D to the class [D] of D in the Brauer group.

Corollary 9.3. Br(K) = 0 if K is algebraically closed.

Proof. Follows from the fact that any finite-dimensional division algebra over K is equal
to K (if x ∈ D, K(x) is an algebraic field extension of K, so x ∈ K).

Wedderburn’s theorem says that every finite division algebra is a field: hence Br(Fq) =
0. (We’ll see other ways of proving this later.)

Likewise, the classification of finite-dimensional division algebras over R gives Br(R) ∼=
Z/2Z, where the nonzero element is the class [H] of the quaternions.

9.1 Extension of base field:

If A is a CSA over K, and L/K is any field extension, we’ve previously seen that A⊗K L
is a CSA / L. Hence we have a homomorphism Br(K) → Br(L).

Proposition 9.4. If A is a CSA / K, then [A : K] = dimKA is a square.

Proof. We have A⊗K K ∼=Mn(K) for some n, so dimKA = dimKA⊗K K = n2.

For L/K any field extension, let Br(L/K) be the kernel of the natural map Br(K) →
Br(L). We’ll show that for L/K Galois, Br(L/K) ∼= H2(L/K,L×) (which is what we expect
from the other definition of Br(K) = H2(K, (Ksep)×) plus inflation-restriction).

We say that a CSA A/K is split by L if A⊗K L is a matrix algebra. Then A is split by
L if and only if [A] ∈ Br(L/K).

Proposition 9.5. Br(K) =
⋃
L/K finite Br(L/K)

Proof. Let A ∈ Br(K) be arbitrary. We already know that we have an isomorphism
φ :Mn(K) → A⊗K K. Take L large enough that φ(eij) lies in A⊗K L: then φ restricts to
an isomorphism Mn(L) → A⊗K L.

Later we’ll be able to sharpen this and show that any element of Br(K) is split by
a finite separable extension L of K (and so also, replacing L by its Galois closure if
necessary, by a finite Galois extension of K), but we’ll need to develop more tools first.
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9.2 Maximal Subfields of CSAs

First we’ll ask a more basic question: if A is a CSA over K, how to tell which extensions
L of K split A? Let’s work out a basic example first.

Example. K = Q, A = H(−1,−1) is the quaternion algebra with generators i, j,k and
relations i2 = j2 = k2 = −1 and ij = −ji = k.

Then for any extension L of Q, the algebra A ⊗Q L = HL(−1,−1) is a quaternion
algebra over L. By your HW, A is split by L if and only if either one of the following two
equivalent conditions holds:

• x2 + y2 + z2 = 0 has a nonzero solution in L3.

• x2 + y2 + z2 +w2 = 0 has a nonzero solution in L4

Consider the case where L = Q(
√
D) is a quadratic extension of Q, D a squarefree

integer. First of all, if D > 0, then L embeds in R: since the quadratic forms above are
positive definite, we conclude that A is not split by L.

If D is congruent to 1 (mod 8), then Q(
√
D) embeds in Q2. Again, we can check that

the quadratic form x2 + y2 + z2 = 0 has only trivial solutions in Q2 (WLOG x,y, z ∈ Z2

are relatively prime, and work mod 4), so it has no solutions in Q(
√
D).

In any other case, we can use Legendre’s three squares theorem to write −D =

a2 + b2 + c2, for a,b, c ∈ Z and then (a,b, c,
√
D) is a solution to x2 + y2 + z2 +w2 = 0,

so A is split by L.
In short, Q(

√
D) splits A iff D is negative and 1 (mod 8) iff −D is the sum of three

rational squares.
Another equivalent condition is the following: Q(

√
D) embeds in A. To see this, note

that if a = w+ xi+ yj+ zk, w, x,y, z ∈ Q, is an arbitrary element of A, a2 = D iff w = 0

and x2 + y2 + z2 = −D. This condition is one we’ll be able to generalize.

First we need the following algebraic fact, which we will state without proof:

Theorem 9.6. Double centralizer theorem for central simple algebras: if A is a CSA, B ⊂ A

simple, and C = C(B), then C is simple, B = C(C) and [A : K] = [B : K][C : K]. (As with field
extensions, [A : K] denotes the dimension of A as a K-vector space.)

Proof. (See Milne)

Corollary 9.7. If Z(B) = K then Z(C) = K and A ∼= B⊗K C.

Proof. For the first part, Z(B) = B ∩ C = Z(C). For the second part, since both B and
C are central simple over K, so is B⊗K C, and the natural map B⊗K C → A must be
injective. By dimension counting it’s an isomorphism.

Corollary 9.8. For A a CSA/K and L ⊂ A a field. TFAE:
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a) L = C(L)

b) [L : K]2 = [A : K]

c) L is a maximal commutative K-subalgebra.

Proof. a) implies b) by double centralizer. b)implies c) : if L ′ is a comm K-subalg of A,
then [L ′ : K]2 ≤ [L ′ : K][C(L ′) : K] = [A : K] = [L : K]2, so [L ′ : K] ≤ [L : K], hence L is
maximal. c) implies a) : if x ∈ C(L) \ L then L[x] is commutative.

Corollary 9.9. If D is a division algebra, the maximal commutative subfields of D all have
dimension [L : K] =

√
[D : K].

Proof. This follows because every commutative subalgebra of D is a field.

Proposition 9.10. L splits A if and only if there is an algebra B ∼ A containing a subfield
isomorphic to L such that [B : K] = [L : K]2.

Let’s correct the proof of the ⇒ direction, and give a proof of ⇐:

Proof. ⇒: L splits A, so also Aop, so Aop⊗K L ∼= EndL(V) for some L-vector space V with
dimL(V) =

√
[A : K].

Take B to be the centralizer of Aop in EndK(V). By Corollary 9.7 we have B⊗Aop ∼=
EndK(V), so [B] = [A] in Br(K). Also, 1⊗ L ⊂ B since Aop ⊗ 1 commutes with 1⊗ L.
Finally,

[B : K] =
[EndK(V) : K]

[Aop : K]
=

dimK(V)
2

[A : K]
= [L : K]2

dimL(V)
2

[A : K]
= [L : K]2.

For other direction, enough to show that L splits B. Say [L : K] = n so [B : K] = [L : K]2.
We need a vector space V such that B⊗K L ∼= EndL(V): since B⊗K L is of dimension n2

over L, we need V to be an n-dimensional L-vector space.
The obvious choice is V = B: however, since B is non-commutative, we’ll take the

L-vector space structure on B to have L acting by right multiplication. (Alternatively we
could take V = Bop with L acting by left multiplication, but this will be notationally
simpler.)

Then we can map B⊗K L→ EndL(V) by b⊗ 1 7→ `b (where `b is the left multiplication
by b map) and 1⊗ ` 7→ r` (where r` is right multiplication by `.) This map is an injection
because B⊗K L is simple, and is surjective by dimension count.

Corollary 9.11. Suppose [L : K] =
√

[D : K]. Then L splits D iff L embeds in D; that is, all
maximal subfields of D split D.
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Last time showed that if D is a division algebra, D is split by any maximal subfield.
Can show (see Milne) that any central division algebra contains a separable maximal
subfield.

Corollary 10.1. Any CSA A/K is split by some finite separable extension of K, so also by some
Galois extension of K.

Proof. We have A ∼=Mn(D) for some D, so A is split by any separable maximal subfield
L of D. Then A is also split by any Galois extension of K containing L (e.g. the Galois
closure of L/K).

Suppose L/K Galois, and G = Gal(L/K).

Definition. A(L/K) is the set of CSAs A of degree [L : K]2 split by L

Last time, we proved that the natural map A(L/K) → Br(L/K) is a bijection.
Recall: for [φ] ∈ H2(L/K,L×) defined

Definition. Aφ = ⊕g∈GLeg, where the multiplication structure is determined by egx =

g(x)eg for all g ∈ G, x ∈ L and egeh = φ(g,h)egh, and the identity element is e1/φ(1, 1).

This gives us a map [φ] 7→ Aφ : H2(L/K,L×) → A(L/K). Today we’ll show this map
is a bijection, and so induces an isomorphism H2(L/K,L×) → Br(L/K).

10.1 Noether-Skolem

Theorem 10.2 (Noether-Skolem). IfA,B are finite-dimensional K-algebras,A simple, B central
simple, then any two homs f,g : A→ B are conjugate: related by g = bfb−1.

Example. K arbitrary (char not 2), f,g : K(
√

(x)) → H(x,y) given by f(
√
x) = i, g(

√
x) =

−i, take b = j.

We give the important corollaries first.

Corollary 10.3. If A is a simple algebra, all automorphisms of A are inner.

Corollary 10.4. If A is a central simple algebra over K, and L is a finite extension of K, then any
two embeddings i1, i2 : L ↪→ A are conjugate to each other by some element of A (i2 = ai1a

−1

for some a ∈ A).

We now prove Noether-Skolem
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Proof of Noether-Skolem. We handle the case of B = Mn(K) first. We put two different
A-module structures on Kn extending the K-vector space structure.

Let M1 = Kn with A-module structure a ∗1 v = f(a)v, and let M2 = Kn with A-
module structure a ∗2 v = g(a)v.

Since A-modules are classified by dimension, there is an A-module isomorphism
φ :M1 →M2. Since φ is a K-linear map, it can be viewed as a matrix φ ∈Mn(K).

Then φ(f(a)v) = g(a)(φv) for all v ∈ Kn, so φf(a) = g(a)φ ∈ Mn(K), hence f and g
are conjugate as desired.

Now let B be a general central simple algebra over K. We use the fact B⊗ Bop is a
matrix algebra, and apply the first part to get that the maps f⊗ 1,g⊗ 1 : A⊗ Bop →
B⊗ Bop are conjugate. That is, there is some x ∈ B⊗ Bop with

x(f(a)⊗ b ′)x−1 = (g(a)⊗ b ′)
for all b ′ ∈ Bop. In particular, setting a = 1 get that x commutes with 1⊗Bop: implies

that x = b⊗ 1 for some b ∈ B. This b has the desired property.

10.2 Bijection between Central Simple Algebras and Cocycles

Suppose A ∈ A(L/K), and fix an embedding i : L ↪→ A (by Noether-Skolem, i is unique
up to inner automorphisms of A.) Identify L with i(L) ⊂ A.

Take any g ∈ Gal(L/K). By Noether-Skolem applied to i, i ◦ g : L → A there exists
ag ∈ A× such that g(x) = agxa

−1
g for all x ∈ L. Here ag is well defined up to left

multiplication by elements of C(L) = L, since if

g(x) = agxa
−1
g = bgxb

−1
g

for all x ∈ L we have that agb−1g commutes with g(x) for all x ∈ L.
(Alternatively, ag is well-defined up to right multiplication by elements of C(L) = L,

since a−1g bg commutes with all x ∈ L. But these come down to the same thing since
ag` = g(`)ag for all ell ∈ L.)

Now note that for g,h ∈ G (agah)x(agah)
−1 = g(h(x)), so agah must equal φ(g,h)

for some φ(g,h) ∈ L.
This φ = φA will give our desired cohomology class in H2(G,L×). To check that φ is

a cocycle, expand(ag1ag2)ag3 = ag1(ag2ag3) and cancel the unit ag1g2g3 from both sides.
Now, the elements ag are only defined up to multiplication by elements of L. If we

choose a different set of elements a ′g = ψ(g)ag, then the new cocyle φ ′ is given by

φ ′(g,h) =
ψ(g,h)

ψ(g) · gψ(h)φ(g,h)

so represents the same class in H2(G,L×).
Easily checked that A 7→ Aφ and φ 7→ φA are inverses.
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Example. A = H(a,b), L = K(
√

(a)) ∼= K(i). Can take a1 = 1, a2 = j. Write G = {1,σ}.
Here φ(1, 1) = φ(1,σ) = φ(σ, 1) = 1 and φ(σ,σ) = b.

As well, the following diagrams commute (though again we’ll skip proofs)

Br(L/K) Br(E/K)

H2(L/K,L×) H2(E/K,E×)

∼ ∼

inf

where E ⊃ L is a field with E/K finite Galois.
and

Br(L/K) Br(L/M)

H2(L/K,L×) H2(L/M,L×)

A 7→A⊗KM
∼ ∼

Res

where M is any intermediate field.
As a consequence of the first diagram above we get an isomorphism

Br(K) =
⋃
L/K

Br(L/K) = lim−→
L

Br(L/K) = lim−→
L

H2(L/K,L×) = H2(K, (Ksep)×)

(where L runs through all finite Galois extensions of K), justifying the terminology Br(K)
used previously in this class.

Corollary 10.5. If [L : K] = n, Br(L/K) is an n-torsion group. Br(K) is a torsion group.

Observe that if K is a local field of characterstic not 2 and H/K is a quaternion al-
gebra, then the class [H] is in the 2-torsion subgroup of Br(K). Hence there are exactly
two isomorphism classes of quaternion algebras over K, one represented by M2(K) (the
“split” quaternion algebra) and one by the unique division algebra D/K of degree 4
(“nonsplit”).

10.3 Brauer Groups of Local Fields

First we deal with archimedean local fields. Br(C) = 0 because C is algebraically closed.
For R we can compute via cohomology: Br(R) = H2(R, C×) ∼= Ĥ0(R, C×) = R×/NC× is
cyclic of order 2.

If K is a nonarchimedean local field: we have already constructed an isomorphism
inv : Br(K) ∼= H2(K, (Ksep)×) → Q/Z.
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We also know that if L/K has degree n, the following diagram commutes

Br(K) Br(L)

Q/Z Q/Z.

Res

inv inv

×n

Hence if x ∈ Br(K) has inv(x) ∈ 1
nZ, then x is split by any extension L with [L : K] = n.

In particular, x is split by the unramified extension Kn of K of degree n. Now, Kn/K is
cyclic, so any element of Br(Kn/K) is of the form Aa for some a ∈ K×/NL× (see problem
2 on current problem set).

10.4 Global Fields

If K is a global field, we can now apply

Theorem 10.6 (Albert-Brauer-Hasse-Noether). There exists a short exact sequence 0→ Br(K) 7→
⊕v Br(Kv) → Q/Z → 0.

Example. K = Q, A = H(a,b) is a quaternion algebra. Then ABHN says that H(a,b) is
non-split at an even number of places e.g.

∏
v(a,b)v is 1. And conversely, given a set S

of places with even cardinality, we can produce a quaternion algebra that is split exactly
at those places (this is a little stronger than ABHN).

Specialize to case of a = p,b = q positive primes. Then
∏
v(p,q)v = 1. (p,q)∞ = 1,

also (p,q)p is
(q
p

)
, and (p,q)q is

(p
q

)
, and (p,q)2 = (−1)(p−1)(q−1)/2. Hence in this case we

get quadratic reciprocity again!

Let K be a number field now. Just as in the case of local field, there is a special class
of fields that splits every element of Br(K).

Definition. An extension L/K is cyclic cyclotomic if L ⊂ K(ζn) for some n and Gal(L/K)
is cyclic.

Homework problem: If K is a number field, S a finite set of places of K, m a positive
integer there exists L/K cyclic cyclotomic such that m | [Lw : Kv] for all places v in S and
all w above v.

Corollary 10.7. If K is a number field and A is any CSA/K there exists a cyclic cyclotomic field
that splits A.

Proof. Choose S to be the set of places for which invv(A⊗K Kv) 6= 0 and let m be the least
common denominator of the values of invv(A⊗K Kv).

Then for any v and w as above, invv(A⊗K Lw) = [Lw : Kv] invv(A⊗K Kv) = 0 ∈ Q/Z.
Hence the class [A⊗K L] ∈ Br(L) maps to the 0 element in

∏
w Br(Lw), so L must split

A.
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11 March 8

11.1 Digression on sums of three cubes

88661289752875283 + (−8778405442862239)3 + (−2736111468807040)3 = 33

(Andrew Booker, https://people.maths.bris.ac.uk/~maarb/papers/cubesv1.pdf, 2019.
Originally announced at https://pub.ist.ac.at/ tbrownin/)

General question: which n can be written as a3 + b3 + c3 | a,b, c ∈ Z, and in how
many ways? FLT tells us that 0 is not possible, but that’s a special case. Local considera-
tions tell us that n 6≡ ±4 (mod 9). Current best guess is that for every other n there is a
solution, in fact infinitely many such. Solutions have been found for every 1 ≤ n < 114
not ±4 (mod 9) except for n = 42, but except for special values of n we only know
finitely many solutions.

Case of n = 3: known solutions are (1, 1, 1) and (4, 4,−5) (up to permutation). As
above, infinitely many solutions are expected. If a3 + b3 + c3 = 3 local 3-adic consid-
erations show a ≡ b ≡ c ≡ 1 (mod 3). Using cubic reciprocity can show that also
a ≡ b ≡ c (mod 9).

(Hint: 3 is a cube mod ωa+ω2b.)

11.2 Anabelian philosophy

Anabelian philosophy: can understand a field K by studying the absolute Galois group
GK. More generally, given a scheme X, can understand X by studying πét

1 (X).
(Topological analogues: topological 2-manifolds are determined up to homeomor-

phism by their fundamental groups. Mostow rigidity: in dimension ≥ 3 manifolds of
constant negative curvature are determined (as Riemannian manifolds) by their funda-
mental groups.)

Neukirch-Uchida theorem: if K and L are global fields, GK ∼= GL if and only if K ∼= L,
and in fact any isomorphism GK → GL is induced by an isomorphism K→ L.

11.3 Class formations

Class formations are a way of formalizing the algebraic structure that is common to local
and global class field theory: they follow the anabelian philosophy in that they start with
the absolute Galois group, viewed as a profinite group.

Let G be a profinite group. We consider the set of open subgroups of G (necessarily
of finite index), which we write as {GK | K ∈ X}, and refer to these indices K as “fields”.
The field K0 with GK0 = G is called the “base field.”

Write K ⊂ L if GL ⊂ GK. A pair K, L with K ⊂ L is called a “layer” L/K. The
degree of the layer is [GK : GL]. We say that L/K is normal if GL is normal in GK, write
GL/K = GK/GL.
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Can formally define intersection and union of subgroups. Define gK by GgK =

gGKg
−1.

A formation A is a G-module on which G acts continuously when A is given the
discrete topology.

Equivalently: A = ∪U⊂G openA
U

Write AGK = AK, so A = ∪KAK.
E.g. K0 local, G = Gal(Ksep

0 /K0), A = (K
sep
0 )×.

Or K0 global, G = Gal(Ksep
0 /K0), A = lim−→K/K0 finiteCK.

Write AL = AGL .
Write Hq(L/K) = Hq(GL/K,AL). (Also write Hq(/K) = Hq(GK,A).)
If E/L/K with E/K and L/K normal layers then get inflation map
Hq(L/K) = Hq(GL/K,AGL/K/GE/K

E ) → Hq(GE/K,AE) = Hq(E/K).
Also: restriction map Res : Hq(L/K) → Hq(L/M) and corestriction Cor : Hq(L/M) →

Hq(L/K).
Suppose that L/K is a normal layer and g ∈ G is arbitrary. Then there are natural

isomorphisms GL/K
∼= GgL/gK and AL → AgL. The isomorphisms induce a natural

homomorphism g∗ : Hq(L/K) → Hq(gL/gK). If g ∈ GK then gK = K but also gL = L as
L/K is normal. Exercise: g∗ is the identity.

Definition. A is a field formation if for every layer L/K, H1(L/K) = 0.

Example. If K0 is any field, G = Gal((K0)sep/K0), A = ((K
sep
0 )×). (More generally, K any

algebraic extension of K0, G = Gal(K/K0), A = K×.)

Example. If K0 is a global field, G = Gal((K0)sep/K0), A = lim−→K/K0 finite AK as K runs
through finite extensions of K0.

If A is a field formation then have inflation restriction exact sequence in deg 2:

1→ H2(L/K) → H2(E/K) → H2(E/L).

In particular, this means that H2(/K) =
⋃
LH

2(L/K).

Definition. A is a class formation if for every normal layer L/K there is an isomorphism
invL/K : H2(L/K) → 1

[L:K]Z/Z such that the diagrams

H2(L/K) 1
[L:K]Z/Z

H2(E/K) 1
[E:K]Z/Z

invL/K

inf

invE/K
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H2(L/K) 1
[L:K]Z/Z

H2(L/M) 1
[L:M]Z/Z

Res

invL/K

×[M:K]

invL/M

commute.

Example. The simplest example of a class formation:
G = Ẑ, A = Z with trivial action. GKn = nẐ, AKn = Z.
Then, for m | n, Kn/Km is a layer and H1(Kn/Km) = H1(GKm/GKn , Z) = 0 because

GKm/GKn is cyclic of order n/m.
Likewise, H2(Kn/Km) ∼= Ĥ0(Kn/Km) ∼= Z/(n/m)Z, and we can define invKn/Km by

composing with × 1
n/m : Z/(n/m)Z → 1

n/mZ/Z.

Example. K0 local field: G = Gal(Ksep
0 /K0), A = (K

sep
0 )× is a class formation by last

semester.
K0 global field: G = Gal(Ksep

0 /K0), A = lim−→L/K finiteCL: we haven’t proved this is a
class formation, but we will.

Proposition 11.1. Suppose that A is a class formation. Then

a)

H2(L/M) 1
[L:M]Z/Z

H2(L/K) 1
[L:K]Z/Z

Cor

invL/M

invL/K

commutes

b)

H2(L/K) 1
[L:K]Z/Z

H2(gL/gK) 1
[L:K]Z/Z

invL/K

g∗ ∼

invgL/gK

commutes
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Proof. For a), we make a big commutative diagram:

H2(L/K) 1
[L:K]Z/Z

H2(L/M) 1
[L:M]Z/Z

H2(L/K) 1
[L:K]Z/Z

invL/K

Res ×[M:K]

Cor

invL/M

invL/K

The top square commutes by class formation axiom, and the entire rectangle commutes
because Cor ◦Res = [L : K]. Since the two top vertical arrows are surjective, we can chase
the diagram to find that the bottom square commutes.

Part b) will be done on HW, but here’s a sketch: first of all, we’ve observed that if
g ∈ K, then gL = L, gK = K, and g∗ : H2(L/K) → H2(L/K) is the identity map, so we
already have the commutative diagram.

For the general case, find a field L ′ extending L such that L ′/K0 is normal. Construct
injection H2(L/K) → H2(L ′/K0) and use that to transfer the result from L ′/K0 to L/K.

Definition. Fundamental class uL/K ∈ H2(L/K) defined by inv(uL/K) =
1

[L:K] .

Proposition 11.2. Let E/L/K be fields with E/K normal. Then

a) ResL uE/K = uE/L

b) uL/K = [E : L] infuE/K if [L : K] normal

c) CorK uE/L = [L : K]uE/K

d) g∗(uE/K) = ugE/gK

proof: exercise.

Theorem 11.3. For any normal layer L/K, cup product with uL/K gives an isomorphism
Ĥq(GL/K, Z) → Ĥq+2(L/K)

Proof. Exactly the same as in local case.

In particular, do the case q = −2: get isomorphismGab
L/K

∼= Ĥ−2(GL/K, Z) → Ĥ0(L/K) =
AK/NAL.

As before, we denote the inverse isomorphism Ĥ−2(GL/K, Z) → Gab
L/K by θL/K.

Our goals now: show that GK,CK is a class formation. (will focus on number fields
case)
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Need to show two things: H1(L/K) is trivial, and construct invariant map H2(L/K) →
1

[L:K]Z/Z.
Intermediate steps:
First inequality: show that if L/K is cyclic then |H2(L/K)| ≥ [L : K] (We’ll do this by

showing that the Herbrand quotient H2(L/K)/H1(L/K) = [L : K].)
Second inequality: show that if L/K is cyclic of prime order, then |H2(L/K)| ≤ [L : K].
(Combining Second inequality with Herbrand quotient, get |H2(L/K)| = [L : K] and

H1(L/K) = 0 for cyclic layers. For non-cyclic layers, can deduce that H1(L/K) vanishes
and H2(L/K) ≤ [L : K]. ) Then: construct invL/K from local reciprocity maps.

12 March 11

12.1 First inequality and Herbrand quotient for CL
Recall: if G is a cylic group and A is a G-module, the Herbrand quotient h(A) is equal
to |Ĥ0(G,A)|/|Ĥ1(G,A)|. We’ll use the following facts

• the Herbrand quotient is multiplicative in short exact sequences

• h(A) = 0 if A finite

• h(Z) = |G|.

We’re going to set ourselves up to compute the Herbrand quotient for CL. First,
choose a set of places S of K large enough that:

(a) S contains all infinite places.

(b) S contains all places that ramify in L.

(c) A×L,S surjects onto CL (can do this by making sure that S̄ contains a set of generators
for Cl(OK))

(d) A×K,S surjects onto CK (likewise)

Then we have a short exact sequence

1→ O×L,S → A×L,S → CL → 1,

so the Herbrand quotient h(CL) =
h(A×L,S)

h(O×L,S)
.

Recall that we’ve already computed Ĥi(A×L,S) =
∏
v∈S Ĥ

i(Lw/Kv,L×w). Hence the
Herbrand quotient h(A×L,S) is equal to the product of the local Herbrand quotients of
L×w, namely

∏
v∈S[Lw : Kv].
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12.2 The Herbrand quotient of O×L,S

Our strategy here is to show that the Herbrand quotient of O×L,S only depends on the
R[G]-module O×L,S ⊗Z R, which we can describe by Dirichlet’s units theorem.

Lemma 12.1. G is a finite group.
L/K fields, K infinite.
Two K[G]-modules V1, V2 are isomorphic iff V1 ⊗K L and V2 ⊗K L are isomorphic L[G]-

modules.

Proof. We have an isomorphism: HomL[G](V1 ⊗K L,V2 ⊗K L) ∼= HomK[G](V1,V2)⊗ L.
We choose K-bases for V1 and V2.
We have then have determinant maps det : HomL[G](V1 ⊗K L,V2 ⊗K L) → L which

restricts to det : HomK[G](V1,V2) → K. Observe that det is a polynomial map. Be-
cause of the assumption that V1 ⊗K L ∼= V2 ⊗K L, we know that det not identically 0
on HomL[G](V1 ⊗K L,V2 ⊗K L). Hence its restriction to HomK[G](V1,V2) is not the zero
polynomial either, and there must be some φ ∈ HomK[G](V1,V2) with detφ 6= 0.

Remark. Can also prove this via Galois descent when L/K finite Galois, and then deduce
the case where L/K is arbitrary. To do this, we observe that IsomL[G](V1,V2) is a torsor
for the group AutL[G](V1). Can show that AutL[G](V1) is the group of units in a central
simple algebra over L, and that H1(G, AutL[G](V1)) is trivial. Hence IsomL[G](V1,V2) is
the trivial torsor, which implies that IsomL[G](V1,V2)G = IsomL[G](V1,V2) is nonempty.

Proposition 12.2. If A, B are G-modules that are f.g. as abelian groups, and A⊗Z R ∼= B⊗Z R

then h(A) = h(B).

Proof. By Lemma, A⊗Z Q ∼= B⊗Z Q.
exercise: this means that there is a finite index subgroup A ′ of A/T(A) isomorphic

(as G-module) to a finite index subgroup B ′ of B/T(B).
Hence h(A) = h(A ′) = h(B ′) = h(B).

Have isomorphism (O×L,S)⊗Z R ∼= H ⊂
∏
v ′∈S̄ R+ given by

(a)⊗ 1 7→ (log |a|v ′)v ′∈S̄

Extend to isomorphism

(O×L,S ⊕Z)⊗Z R ∼=
∏
v ′∈S̄

R+

So we can apply Proposition 12.2 for the following G-modules:
Let A = (O×L,S ⊕Z). Then h(A) = [L : K]h(O×L,S).
Let B =

∏
v∈S̄ Z: can decompose as B =

∏
v∈S Bv, where Bv =

∏
v ′ |v Z ∼= coIndGGw Z.
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By Shapiro’s lemma, the Herbrand quotient of the G-module Bv = coIndGGw Z is equal
to the Herbrand quotient of the Gw-module Z (with trivial action), but we know that the
latter is equal to |Gw|.

Hence h(B) =
∏
v h(Bv) =

∏
v∈S |Gw| =

∏
v∈S[Lw : Kv].

Conclude that h(A) =
∏
v∈S[Lw : Kv], and so h(O×L,S) =

∏
v∈S[Lw:Kv]
[L:K] .

Now can compute

h(CL) =
h(A×L,S)

h(O×K,S)
=

∏
v∈S[Lw : Kv]∏

v∈S[Lw : Kv]/[L : K]
= [L : K],

completing our proof of the first inequality.
We’ve now proved that |Ĥ0(L/K,CL)| ≥ [L : K], that is, |CL/NCK| ≥ [L : K]. Note

CL/NCK ∼= A×L /L×NL/KA×K .

12.3 Corollaries of First Inequality

Corollary 12.3. L/K finite abelian (or more generally solvable), D ⊂ A×K with D ⊂ NL/KA×L ,
K×D is dense in A×K , then L = K.

Proof. Without loss of generality we may assume L/K cyclic: otherwise replace L with
L ′ ⊂ L such that L ′/K is cyclic.

The subgroupNL/KA×L is open in A×K , so K×NL/KA×L is an open subgroup of A×K . On
the other hand, K×NL/KA×L contains K×D, so is also dense. Hence A×K = K×NL/KA×L ,
so

|Ĥ0(L/K,CL)| = 1

implying L = K by first inequality.

Corollary 12.4. Let L/K be a finite abelian extension with L 6= K. Then there are infinitely
many primes of K that do not split completely in L.

Proof. We prove the contrapositive: suppose all but finitely many primes split completely
in L

Let S contain the infinite primes and all the primes that don’t split completely in L.
Let D = {x | xv = 1 for all v ∈ S}. Then D is contained in NA×L by assumption, and

K×D is dense in A×K . (This is weak approximation: K× is dense in
∏
v∈S K

×
v .)

Applying the previous corollary, then get L = K.

Corollary 12.5. If S is a finite set of places of K and L/K is finite abelian, then Gal(L/K) is
generated by

(
L/K
v

)
= Frobv ∈ Gal(L/K) for v /∈ S.
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Proof. (Wlog S contains all ramified and infinite primes.)
Let H be the subgroup of Gal(L/K) generated by {Frobv | v /∈ S}.
Let M be the subfield of L fixed by H. Then all primes of K that do not lie above

primes in S must split completely in M. By the contrapositive of previous corollary,
must have M = K. By Galois correspondence, H = Gal(L/K).

12.4 The Second Inequality

We’ll next work towards proving

Theorem 12.6 (Second Inequality). K a number field, L/K cyclic of degree p, |Ĥ0(L/K,CL)| =
|CL/NL/KCK| ≤ p

Claim: it’s enough to show this when K contains the pth roots of unity.

Proof of Claim: Suppose L/K is any cyclic extension of global fields of degree p. let K ′ =
K(ζp), L ′ = L(ζp) = LK ′.

Observe that the degree d of K ′/K divides p− 1, so K ′ and L are linearly disjoint, and
[L ′ : L] = d also.

We get a commutative diagram

CL CL ′ CL

CK CK ′ CK

CK/NL/KCL CK ′/NL ′/K ′CL ′ CK/NL/KCL

NL/K ×d

NL ′/L

NL ′/K ′ NL/K

×d

NK ′/K

×d

Observe that CK/NCL is a group of exponent p relatively prime to d, so multiplication by
d is an automorphism of CK/NCL. Looking at the bottom row, we see that the induced
map CK/NL/KCL → CK ′/NL ′/K ′CL ′ must be injective, and CK ′/NL ′/K ′CL ′ → CK/NL/KCL
must be surjective.

Hence |CK/NL/KCL| ≤ |C ′K/NL ′/K ′C ′L|, and so it’s enough to bound the size of the
latter.
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13 March 15

13.1 Proof of Second Inequality, continued

Last time we showed we could assume K contains µp. By Kummer L = K( n
√
a) for some

a ∈ K×.
Need to show that [A×K : K×NA×L ] ≤ p.
We’ll actually show that [A×K : K×F] ≤ p, where F ⊂ NA×L is an appropriately chosen

subgroup.
Let S be any finite set of places of K satisfying the following

(a) S contains all infinite places and all primes dividing p,

(b) S contains all v with |a|v 6= 1. (so a is an S-unit)

(c) A×K,S → CK is a surjection (we saw that we could do this last time)

Let v1, . . . , vk be additional places of K, to be chosen later, subject to the condition
that each vi splits completely in L. Choosing the vi is the hardest part of the proof.

Let S∗ = S∪ {v1, . . . , vk}.
Now take

F =
∏
v∈S

(K×v )
p

k∏
i=1

Kvi

∏
v/∈S∗
O×v .

We check that F ⊂ NA×L : we know that we can do this locally.
For v ∈ S, (K×v )p ⊂ NLw/KvL

×
w as [Lw : Kv] divides p.

For each vi, Lwi = Kvi as vi splits completely. So NLwi/KviL
×
wi

= K×vi as needed.
For v /∈ S∗, we know that Lw/Kv is unramified, so NLw/KvL

×
w includes O×v as needed.

Lemma 13.1. Let K be a global field, v a finite place of K such that Kv does not have residue
characteristic p, and b ∈ K×. Then v is unramified in K( p

√
b)/K iff b ∈ O×v · (Kv)p, and v

splits completely iff b ∈ Kpv .

Proof. exercise.

Corollary: L/K is unramified outside S, as needed in the proof above that F ⊂
NL/KA×L .

Now we break up [A×K : K×F] into a local and global component.
Observe that F ⊂ A×K,S∗ : since A×K,S∗ surjects onto A×K/K×, we have that

A×K,S∗ � A×K/K×F

with kernel O×K,S · F, so

A×K/K×F ∼= A×K,S∗/O
×
K,S∗ · F
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Now, have SES:

0→ O×K,S∗ · F/F→ AK,S∗/F→ AK,S∗/O×K,S∗ · F→ 1

where the first term O×K,S∗ · F/F ∼= O×K,S∗/F∩O
×
K,S∗ by the second isomorphism theorem.

So
[A×K : K×F] = [AK,S∗ : F]/[OK,S∗ : F∩O×K,S∗ ]. (1)

and we just need to find [AK,S∗ : F] and [OK,S∗ : F∩O×K,S∗ ].
The first one is a product of local factors:

[AK,S∗ : F] =
∏
v∈S

K×v /(K×v )
p

By HW: if Kv is a local field containing µp, then K×v /(K×v )p = p2 · |p|−1v .
Hence [AK,S∗ : F] =

∏
v∈S p

2 ·
∏
v∈S |p|

−1
v .

The second term vanishes by the product formula (using |p|v = 1 for v /∈ S), so.

[AK,S∗ : F] = p
2|S|

For the global part, observe that F∩O×K,S∗ contains (O×K,S∗)
p. So

[OK,S∗ : F∩O×K,S∗ ] = [OK,S∗ : (O×K,S∗)
p]/[F∩O×K,S∗ : (O

×
K,S∗)

p]

[OK,S∗ : (O×K,S∗)
p] = p|S

∗ | = p|S|+k

by Dirichlet’s units theorem plus the fact that K contains µp.
So, plugging into equation 1, get

[AK : K×F] = p|S|−k[F∩O×K,S∗ : (O
×
K,S∗)

p]

We’ll show we can choose places v1, . . . , vk, split in L/K with k = |S|− 1 and F∩O×K,S∗ =

(O×K,S∗)
p.

Proposition 13.2. Suppose that v1, . . . , vk are places of K such that if K( p
√
b) is unramified

outside S∗ and completely split at all primes of S, then b ∈ (K×)p. Then F∩OK,S∗ = OpK,S∗ .

Proof. Proof: suppose b ∈ F ∩ OK,S∗ . Then by lemma 13.1, K( p
√
b) has the appropriate

behavior, hence b ∈ (K×)p, but since b is an S∗-unit, in fact b ∈ OpK,S∗ .

Now it’s enough to show we can choose v1, . . . , vk with k = |S| − 1 satisfying the
conditions of Proposition and such that each vi splits completely in L.

Let T = K( p
√
O×K,S). Then T/K is an extension of exponent p with

Gal(T/K) ∼= Hom(OK,S/(OK,S)
p,µp) ∼= (Z/p)|S|.
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Note that L = K( p
√
a) ⊂ T , and Gal(T/L) is an extension of exponent p with Gal(T/L) ∼=

(Z/p)k where k = |S|− 1. Choose places w1, . . . ,wk of L, not lying above any places of S,
such that Frobw1 , . . . , Frobwk ∈ Gal(T/L) form a basis for Gal(T/L) as a Fp-vector space:
this here is where we are using the first inequality.

Let v1, . . . , vk be the places of K below w1, . . . ,wk.
We now look at their splitting behavior in L. Observe that the elements Frobwi ∈

Gal(T/L) and Frobvi ∈ Gal(T/K) are related by Frobwi = Frob
ewi/vi
vi where e = ewi/vi

is the inertia degree, which can be either 1 or p. But if e = p, then have Frobwi = 0,
contradicting that Frobwi generates, so e = 1 and vi splits completely in L.

Choose one more place vk+1 so that Frobv1 , . . . , Frobvk+1 generate Gal(T/K).
Next, we show that

Lemma 13.3. The natural map

φ : O×K,S/(O×K,S)
p → k+1∏

i=1

O×vi/(O
×
vi
)p

is bijective.

Proof. Injectivity is Kummer theory: Suppose c ∈ O×K,S, is such that [c] ∈ kerφ. Then
consider the extension K( p

√
c) ⊂ T .

For each i, c is a pth power in O×vi , so v splits completely in K( p
√
c), hence Frobvi fixes

K( p
√
c) for 1 ≤ i ≤ k+ 1. Since the Frobvi generate, we have K( p

√
c) = K, so c is a pth

power and [c] = 1.
Surjectivity then follows by counting orders: RHS has order pk+1, LHS has order

p|S| = pk+1

Corollary 13.4. The map

O×K,S/(O×K,S)
p → k∏

i=1

O×vi/(O
×
vi
)p

is surjective.

Now we can show that the places vi satisfy Proposition 13.1.
For this: Let M = K( p

√
b). Then let D =

∏
v∈S K

×
v ×

∏
vi
(Kvi)

p ×
∏
v/∈S∗ O×v . Then for

the same reasons as previously, D ⊂ NA×M.
On the other hand, DK× contains DO×K,S, which contains A×K,S by the previous corol-

lary. By assumption on S, A×K = A×K,SK
×, so DK× contains all of AK. By our corollary to

the first inequality, M = K as required.
(Vague discussion at the end of class about what is really going on with this proof,

and the relationship between F and D. I think this is probably related to Tate duality:
see the exercises on page 404 of Neukirch’s Algebraic Number Theory for statements.)
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14 March 25

14.1 What we know now

We proved last week that if L/K is a degree p cyclic extension of number fields, then
|Ĥ0(L/K,CL)| = |H2(L/K),CL| = p, and |H1(L/K,CL)| = 1.

By HW, this implies that H1(L/K,CL) = 1 for any Galois extension L/K, and also
|H2(L/K),CL| ≤ [L : K].

Some consequences:

Corollary 14.1. For any finite Galois extension L/K of number fields, the map H2(L/K,L×) →⊕
vH

2(Lw/Kv,L×w) is injective.

Proof. Use short exact sequence 0→ L× → A×L → CL → 0.

Corollary 14.2 (Hasse Norm Theorem). If L/K is a cyclic extension and a ∈ K×, then
a ∈ NL×w for all primes w of L× implies a ∈ NL×.

Proof. This is just the statement that Ĥ0(L/K,L×) → ∏
w Ĥ

0(Lw/Kv,L×w) is injective, but
Ĥ0 ∼= H2 by periodicity.

Note that the statement that L/K is cyclic is critical here: there are counterexamples
without, e.g. L = Q(

√
13,
√
17), e.g. a = 52. (However can show that the subgroup of

global norms is still finite index in the local norms, that is, |K× ∩NA×L /NL×| <∞.)

14.2 Towards a global invariant map

We want to show that CK̄ is a class formation. What we have so far shows that it is a
field formation, but we still need the invariant map H2(L/K,CL) → 1

[L:K]Z/Z.

We can easily define a closely related map invL/K : H2(L/K, A×L ) → 1
[L:K]Z/Z by

invL/K(c) =
∑
v invLw/Kv c. We want to make a map inv : H2(L/K,CL) → 1

[L:K]Z/Z that
completes the commutative triangle. However we have the issue that the induced map
H2(L/K, A×L ) → H2(L/K,CL) is neither injective or surjective. To deal with the failure of
injectivity we need to prove a reciprocity law.

14.3 Reciprocity Laws

Let L/K be a finite extension of number fields. We’re going to work towards proving the
following reciprocity laws:

(a) inv-reciprocity: for L/K if α ∈ H2(L/K,L×) then
∑
v invv α = 0 in Q/Z.

(b) θ-reciprocity: for L/K if α ∈ K× then
∏
v θLw/Kvα = 1 in Gal(L/K)ab.
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We want these to hold for all L/K. This week we’ll prove inv-reciprocity and θ-reciprocity
for all L/K.

Before this, we need some technical lemmas which will let us reduce to the case of
cyclotomic extensions.

Remember from our discussion of Brauer Groups + HW:

Proposition 14.3. If K is a number field, and α ∈ Br(K) = H2(K, K̄×), there exists some cyclic
cyclotomic extension L/K such that Resα = 0 ∈ Br(L), or equivalently, such that α lies in the
image of the inflation map H2(L/K,L×) → Br(K).

(In terms of central simple algebras: α is split by L)

Compatibilities between the maps invL/K : H2(L/K, A×L ) → 1
[L:K]Z/Z:

invN/K(inf c) = invL/K(c)

when N/L/K is a tower with N/K and L/K Galois, and

invN/L(ResL/K c) = [L : K] invN/K(c)

invN/L(Cor c) = invN/K(c)

when N/L/K is a tower with N/K Galois (so also N/L)
In other words, we almost have a class formation, except that invL/K is not an iso-

morphism: in general it’s neither injective nor surjective.
We check

invN/L(ResL/K c) = [L : K] invN/K(c)

which is the hardest of these. Indeed:

invN/L(ResL/K c) =
∑
w

invNw ′/Lw(ResLw/Kv c)

=
∑
w

[Lw : Kv] invNw ′/Kv c

=
∑
v

∑
w|v

[Lw : Kv] invNw ′/Kv c

= [L : K] invN/K(c).

Let’s also define θL/K : A×K → Gal(L/K)ab by θL/K(a) =
∏
v θLw/Kvav. That is, θ-

reciprocity is the statement that K× ⊂ ker θ.
These maps are related by

Proposition 14.4. χ(θL/K(a)) = invL/K([a]∪ δχ).
for any χ ∈ Hom(Gal(L/K), Q/Z) ∼= H1(L/K, Q/Z), and a ∈ A×K .
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Proof. Follows from the same statement for local θ and inv, which we proved last
semester.

For any L/K, inv-reciprocity implies θ-reciprocity.
Observe that θ-reciprocity implies inv-reciprocity if L/K cyclic. Indeed choose χ to

generate H1(L/K, Q/Z), so δχ generates H2(L/K, Z). For any [a] ∈ Ĥ0(L/K,L×) we
have, 0 = χ(θL/K(a)) = invL/K([a] ∪ δχ). But − ∪ δχ is an isomorphism Ĥ0(L/K,L×) →
H2(L/K,L×), so invL/K is 0 on all of H2(L/K,L×).

14.4 Checking reciprocity laws

We start out by checking θ-reciprocity for K = Q and L a cyclotomic extension: note
that for us this will mean that L is any subfield of Q(ζn): but it’s enough to check when
L = Q(ζn).

In fact, it’s enough to check when L = Q(ζ`r), since any cyclotomic extension is a
compositum of such.

We just need to check θ-reciprocity for a generating set of Q×: we check it for a = `,
a = p 6= `, and a = −1.
a = p 6= `

• θ`(p) sends ζ 7→ ζp
−1

(Lubin-tate)

• θp(p) = Frobp (unramified theory) which sends ζ 7→ ζp

• θp ′(p) = 1 (unramified)

• θ∞(p) = 1

a = `

• θ`(`) = 1 (Lubin-Tate)

• θp ′(`) = 1 (unramified theory) when p ′ 6= `

• θ∞(`) = 1

a = −1

• θp ′(−1) = 1 all p ′ 6= `

• θ`(−1) sends ζ 7→ ζ−1 (Lubin-Tate)

• θ∞(−1) is complex conjugation.

So everything checks out and θ-reciprocity holds for L/Q cyclotomic. It follows that
inv-reciprocity holds for L/Q cyclic cyclotomic.
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15 March 29

15.1 Checking reciprocity laws, continued

Recall we have two statements of reciprocity:

(a) inv-reciprocity for L/K : if α ∈ H2(L/K,L×) then invα =
∑
v invv α = 0 in Q/Z.

(b) θ-reciprocity for L/K : if α ∈ K× then θ(α) =
∏
v θLw/Kvα = 1 in Gal(L/K)ab.

We know that inv-reciprocity implies θ-reciprocity, but only get the converse when L/K
cyclic.

We explicitly checked θ-reciprocity for L/Q cyclotomic. Hence inv-reciprocity also
holds for L/Q cyclic cyclotomic.

However, last time we showed that any element of Br(Q) is represented by some
H2(L/Q,L×) where L is cyclic cyclotomic. It follows from compatibility with inflation
that inv-reciprocity holds for K = Q, L arbitrary.

Now, suppose that K and L are arbitrary. Let E/Q be a Galois extension with L ⊂ E.

Then have H2(L/K,L×) inf−→ H2(E/K,E×) Cor−−→ H2(E/Q, Q×), and both maps are com-
patible with inv, so inv-reciprocity holds for arbitrary L/K. Hence also θ-reciprocity
holds.

Observe: now we have a map θ : A×K/K×NA×L → Gal(L/K)ab. One route would be
to stop here and show that this map is an isomorphism, but instead we’ll push on and
work on showing that the ideles form a class formation, which will automatically give
us everything.

15.2 The inv map for cyclic extensions.

We now look at the case when L/K is cyclic. In this case we’ll see that the map inv :

H2(L/K, A×L ) → 1
[L:K]Z/Z induces a unique isomorphism inv : H2(L/K,CL) → 1

[L:K]Z/Z.

Proposition 15.1.

1→ H2(L/K,L×) i∗−→ H2(L/K, A×L )
inv−−→ 1

[L : K]
Z/Z → 0

is exact when L/K is cyclic.

Proof. Surjectivity: need to show that [L : K] is the least common multiple of the local
degrees [Lw : Kv]. This follows from the fact that elements Frobv, of order [Lw : Kv]

generate the cyclic group Gal(L/K) of order [L : K].
ker inv = im i∗: We already have ker inv ⊃ im i∗. To get equality, we count orders,

and compare with the following exact sequence:

53



1→ H2(L/K,L×) → H2(L/K, A×L )
j∗−→ H2(L/K,CL)

δ−→ H3(L/K,K×) = 1

where the final term is 1 by Hilbert 90 and periodicity of cohomology for cyclic groups.
Surjectivity of inv tells us that the index of ker inv in H2(L/K, A×L ) is precisely [L : K].
On the other hand, the cohomology exact sequence tells us that index of im i∗ in

H2(L/K, A×L ) is equal to |H2(L/K,CL)|, which is at most [L : K] by the second inequality.
Since we know already ker inv ⊃ im i∗, the index of the former in H2(L/K, A×L ) is

at most that of the latter: comparing with the previous two observations, equality must
hold and ker inv = im i∗ (and both have index [L : K] in H2(L/K, A×L ).

It follows from the previous proof that if L/K is cyclic, the invariant map inv :

H2(L/K, AL) → 1
[L:K]Z/Z factors through H2(L/K,CL). Then the induced map, which

we denote by

inv : H2(L/K,CL) → 1

[L : K]
Z/Z,

is an isomorphism.
Unfortunately this approach doesn’t work to define inv : H2(L/K,CL) → 1

[L:K]Z/Z

when L is not cyclic. We’ll have to do the same thing we did last semester, which is to
diagram-chase to move inv from the extensions we understand to the ones we don’t.

We’ll need to show the following lemma:

Lemma 15.2. L/K any Galois extension, L ′/K cyclic with [L ′ : K] = [L : K], then H2(L/K,CL)
and H2(L ′/K,CL) have same image inside H2(K̄/K,CK̄) =

⋃
MH

2(M/K,CM).

Proof. For brevity let H2(L/K) denote H2(L/K,CL).
To show infH2(L ′/K) ⊂ infH2(L/K): let N = LL ′, so N/L is cyclic with [N : L] | [L ′ :

K].
There’s a left exact sequence: 1→ H2(L/K) → H2(N/K) → H2(N/L).
Suppose c ∈ H2(L ′/K). Then lift c to c̃ ∈ H2(L ′/K, A×L ).
We need to show that ResL/K infN/L ′ c = 0 inside H2(N/L): for this enough to check

that it has invariant 0.

invN/L(ResL/K infN/L ′ c) = invN/L(ResL/K infN/L ′ j∗(c̃))

= invN/L j∗(ResL/K infN/L ′(c̃))

= invN/L(ResL/K infN/L ′(c̃))

= [L : K] invL ′/K(c̃)
= 0.

for equality, compare orders and use second inequality.
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The maps inv : H2(L ′/K) → 1
[L ′ :K]Z/Z for L ′/K cyclic glue to give an isomorphism

inv/K : H2(K̄/K) = lim
L/K Galois

H2(L/K) = lim
L/K cyclic

H2(L/K) → Q/Z.

By the previous lemma, this restricts to an isomorphism invL/K : H2(L/K) → 1
[L:K]Z/Z.

We define the fundamental class uL/K ∈ H2(L/K) by inv(uL/K) =
1

[L:K]

Observe that the following diagram commutes

H2(L/K, A×K )

1
[L:K]Z/Z

H2(L/K,CK)

inv

j∗

inv

Now we know that CK is a class formation. (Really we need to check that inv is
compatible with inflation and restriction, but that’s straightforward.) By Tate’s theorem
∪uL/K : Ĥi(L/K, Z) → Ĥi+2(L/K,CK) is an isomorphism.

In particular, for i = −2, we get an isomorphism Gal(L/K)ab → CK/NCL.
Let θL/K be the inverse of this isomorphism. The cup product is compatible with

inflation, restriction, corestriction, conjugation, so θL/K is also.
The argument we did last semester for χ(θL/K(a)) = inv(a ∪ δχ) works equally well

in any class formation, and this property determines θ.
To check that θL/K : CK/NCL → Gal(L/K)ab is given by θ([a]) =

∏
v θvav, let θ ′([a]) =∏

v θvav, and we check χ(θ ′(a)) = inv(a∪ δχ): but we’ve previously observed this (using
the inv map from H2(L/K, A×K ), but we’ve seen that the two different inv maps are
compatible).

Proposition 15.3. θL/K is continuous using the adelic topology on CK and the discrete topology
on Gal(L/K)ab

Proof. This is equivalent to showing that kerθL/K = NL/KCL is open in CK, which we’ve
already seen.

Alternatively, use formula for θL/K as a product of local factors and show continuity
directly.

16 April 1

16.1 Existence

We observed at the end of last time that θL/K : CK → Gal(L/K) is continuous.
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Taking the direct limit over all finite Galois L/K, we observe that θ/K : CK →
Gal(K̄/K) is also continuous.

The kernel of θ/K is the intersection of all normic subgroups of CK. Where, analo-
gously to last semester, A ⊂ CK is normic if A = NCL for some L/K finite Galois. We
now need to prove

Theorem 16.1 (Existence Theorem). The normic subgroups of CK are exactly the finite index
open subgroups.

We’ve already shown that normic subgroups are open and finite index: the hard part
is the other direction.

16.2 Basic facts about normic extensions

In the local field context, we proved a bunch of theorems about basic properties of normic
subgroups, and these results carry over automatically.

Basic facts of normic subgroups move over: normic subgroups correspond 1-1 to
finite abelian extensions of K, and if A corresponds to L then [CK : A] = [L : K].
A and B normic implies A∩ B normic,
A normic implies A ′ ⊃ A normic.
We’ll show that any finite index open subgroup of CK is normic.
For any finite set S of primes of K, let US be the image of

∏
v∈S 1×

∏
v/∈SO×v in CK.

Any open subgroup of finite index in CK must contain (CK)
nUS for some n and S.

Theorem 16.2. Let K be a number field, and S is a finite set of primes of K such that

• S contains the infinite primes and primes dividing n

• A×K,S surjects onto CK.

If K contains µn then (CK)
nUS is the norm group of T = K( n

√
(O×K,S))/K.

If K does not contain µn then (CK)
nUS is still normic.

(The motivation for this choice of field is that the fixed field of θ/K((CK)
nUS) is the

maximal exponent n extension of K unramified outside K. We know how to find this by
Kummer theory.)

Proof. This is going to be a lot like our proof of the second inequality. First we observe
that

Gal(T/K) ∼= Hom(O×K,S/(O×K,S)
n, Z/nZ) ∼= (Z/nZ)|S|

One consequence is that (CK)n is in the kernel of θT/K, and so (CK)
n ⊂ NT/KCT .

Also T is unramified outside S, so
∏
v∈S 1×

∏
v/∈SO×v ⊂ NT/KA×T .

This gives one inclusion (CK)
nUS ⊂ NCT .
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To get the other inclusion, we show that |CK/(CK)nUS| = |CK/NCT |. First |CK/NCT | =
|Gal(T/K)| which is n|S| by our previous computation of Gal(T/K).

It will take more work to compute |CK/(CK)nUS|.
We use our assumption that AK,S surjects onto CK. Since

AK,S =
∏
v∈S

K×v
∏
v/∈S
O×v

we also have that
∏
v∈S K

×
v surjects onto CK/US, and there is a short exact sequence

1→ O×K,S → ∏
v∈S

K×v → CK/US → 1.

Quotienting out by nth powers (or equivalently tensoring with Z/nZ) , we get a
right exact sequence

O×K,S/(O×K,S)
n → ∏

v∈S
(K×v )/(K

×
v )
n → CK/(CK)nUS → 1 (2)

We can calculate the orders of everything here:
We already know that |O×K,S/(O×K,S)

n| = n|S|.
For each n, (K×v )/(K×v )n has order n2|n|−1v (We’ve seen this for n prime: exercise to

extend this to all n).
Multiplying together and using the product formula, we see that

∏
v∈S(K

×
v )/(K×v )n

has order n2|S|
∏
v∈S |n|

−1
v = n2|S|.

If we show that O×K,S/(O×K,S)
n injects into

∏
v K
×
v /(K×v )n, it will follow from (2) that

|CK/(CK)nUS| = p|N| = |Gal(T/K)| = |CK/NCT |

and thus we must have (CK)
NUS = CT .

Again, we use Kummer theory: if [a] is in the kernel of the map

O×K,S/(O×K,S)
n → ∏

v

K×v /(K×v )
n,

then L = K( n
√
a) is unramified outside S and totally split everywhere in S, meaning that

AK,S ⊂ NA×L , and so CK = NCL and K = L = K( n
√
a). It follows that a ∈ (O×K,S)

n.
That proves the theorem when K contains the nth roots of unity.
For the part when K does not contain nth roots of unity, we do the same thing we

did for local fields.
let K ′ = K(µn), S ′ the set of primes above S, then exists L ′/K ′ such that (CK ′)nUS ′ =

NL ′/K ′CL ′ . Extend L ′ to L/K Galois.
ThenNL/KCL ⊂ NK ′/KNL ′/K ′(C ′L) = NK ′/K(CK ′)nUS ′ ⊂ (CK)

nUS, so (CK)
nUS contains

a normic subgroup, and is itself normic.
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16.3 Dirichlet L-functions + generalizations

Dirichlet L-functions: Let K be a number field and let m be a modulus of OK. Then a
Dirichlet character χ of modulus m is a homomorphism Clm(OK) → S1, and the associ-
ated Dirichlet L-function is

L(s,χ) =
∑

(a,m)=1

χ(a)

(Na)s
=

∏
p-m

1

1− χ(p)Np−s

where here Np is the absolute norm Np = #(OK/p).
Example: K = Q, m = m∞, χ is a character Z/mZ× → S1.
We’ll be spending this section of the class studying Dirichlet L-functions, but before

doing that I want to briefly mention a couple generalizations.
Hecke L-functions : instead of taking a character Clm ∼= CK/Cm

K → S1, use an arbitrary
continuous homomorphism ψ : CK → S1, which can now be surjective rather than having
finite image. The Hecke L-function of ψ is∏

p/∈S

1

1−ψ(πp)Np−s
.

Here πp ∈ CK is the element represented by the idele which is a uniformizer πp in
the p-component, and 1 everywhere else. This factor is well-defined independent of πp
provided that ψ is constant on the image of O×p . By continuity, this is the case for all but
a finite set S of primes, which are referred to as the “ramified” primes and are excluded
from the Euler product.

While Dirichlet L-functions are can be used to show e.g. Dirichlet’s theorem that the
residues of primes of Z, are equidistributed in Z/mZ×, Hecke L-functions can be used
to show that the arguments of prime ideals of Z[i] are equidistributed. More precisely,
any prime ideal of Z[i] can be written as (π) for a unique π in the upper right-hand
quadrant, and the arguments of those generators π are equidistributed in the interval
[0,π/2].

Artin L-functions: Recall that Cm
∼= Gal(Lm/K) is the Galois group of the ray class

field of modulus m. Hence we can view Dirichlet L-functions as being of the form∏
p-m

1

1− χ(Frobp)Np−s
(3)

where now χ is a character Gal(Lm/K) → S1, and Frobp ∈ Gal(Lm/K).
If now we replace Lm by an arbitrary, possibly non-abelian, Galois extension L/K, then

(3) still describes an L-function. Of course, if χ is just a homomorphism Gal(L/K) → S1

then χ factors through the Galois group of the maximal abelian subextension and we
get nothing new. However if we expand our notion of character to include characters of
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irreducible representations of Gal(L/K), of any dimension, then we get a larger class of
L-functions knows an Artin L-functions which play an important role in modern number
theory.

17 April 5

17.1 Convergence results for general Dirichlet Series

(The reference for this part of the class is Milne’s notes. In general we’ll just sketch the
proofs of the analytic results, but Milne proves things in more detail.)

Given a Dirichlet series
∑ an

ns , we now consider its domain of convergence.
As long as an is O(nb) for some b, the Dirichlet series will converge locally uniformly

and absolutely to an analytic function in the half-plane Re s > b+ 1. For the Riemann
zeta function, this is the best we can do as ζ(s) → ∞ as s→ 1. However, can sometimes
extend further: e.g. the Dirichlet L-function of a non-trivial Dirichlet character converges
locally uniformly (but not absolutely) for Re s > 1.

Proposition 17.1. Let S(x) =
∑
n≤x as be the sequence of partial sums. If S(x) = O(xb), then∑ an

ns converges locally uniformly to an holomorphic function in the half plane Re s > b.

Proof. (Non-rigorous Sketch, see pg 181 of Milne’s Class Field Theory for a full proof).
Partial summation: rewrite the sum as∑

n

S(n)(
1

ns
−

1

(n+ 1)s
)

Then we can approximate the finite difference

1

ns
−

1

(n+ 1)s

by the derivative (
d

dx
−x−s

)
|x=n = sn−s−1

. Hence S(n)( 1ns −
1

(n+1)s ) is O(nb−s−1) = O(nb−Re s−1), so the series converges locally
uniformly for Re s > b.

Proposition 17.2. Can meromorphically continue ζ(s) to the strip Re s > 0, with at most a pole
at s = 1.

Proof. We can’t apply the previous proposition to ζ(s) because it’s not holomorphic at
s = 1, so we multiply it by a factor to kill the pole, and consider

ζ2(s) = ζ(s)(1− 2
1−s) =

1

1s
−
1

2s
+
1

3s
−
1

4s
+
1

5s
−
1

6s
· · ·
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The Dirichlet series for ζ2(s) is holomorphic for Re s > 0 by the previous proposition.
Hence we can meromorphically extend ζ(s) to Re s > 0 by ζ(s) = ζ2(s)

1−21−s
. This tells us

that ζ(s) is holomorphic everywhere in the region except possibly at s = 1+ k 2πilog 2 for
k ∈ Z: this is not quite good enough, since we want ζ(s) holomorphic everywhere but
s = 1.

So we do the same thing again with 3 in place of 2: let

ζ3(s) = ζs(1− 3
1−s) =

1

1s
+
1

2s
−
2

3s
+
1

4s
+
1

5s
−
2

6s
+ · · ·

The same argument as before tells us that ζ(s) is holomorphic at all points of Re s > 0
except possibly 1+ k 2πilog 3 for k ∈ Z. Since log 2

log 3 /∈ Q, combining this our previous result
tells us that ζ(s) is holomorphic everywhere in Re s > 0 excepting s = 1, where it may
have a pole.

Lemma 17.3. For s real and s > 1, ζ(s) ∈ [ 1
s−1 , 1+ 1

s−1 ], so the Riemann zeta function has a
simple pole at s = 1 with residue 1.

Proof. Consider upper and lower Riemann sums for
∫∞
1 x

−s = 1
s−1 .

Proposition 17.4. if S(n) −a0n ≤ Cnb,
∑ an

ns can be analytically continued to a meromorphic
function on <(s) > b with a simple pole at s = 1 with residue a0.

Proof. Use ∑ an

ns
= a0ζn(s) +

∑ an − a0
ns

.

17.2 Behavior of partial ζ-functions and Dirichlet L-functions

Now want to understand the behavior of Dirichlet L-functions.
Let m be a modulus of K, and let K be a class in Clm(OK). Then we can define the

partial zeta function:

ζ(s,K) =
∑
a∈K

1

Nas
.

This not an L function (no Euler product), but the partial zeta functions of modulus m

have the same linear span as the Dirichlet L-functions of modulus m.
To apply Prop 17.4 we’ll need to get bounds on

S(x,K) = #{ ideals a ∈ K | Na ≤ x}

The relevant bounds are the following, whose proof we’ll only sketch
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Proposition 17.5.
S(x,K) = gmx+O(x1−1/d)

where
gm =

2r(2π)s reg(m)

wmNm|Disc(K)|1/2

In particular, it doesn’t depend on K.

We haven’t defined all the notation in the definition of gm, so let’s do that now. As
usual, r is the number of real places of K and s the number of complex places.

The norm Nm is equal to N(mfin)2
rm where mfin is the finite part of m and rm is the

number of real places of m. (I forgot the 2rm in class!)
The last two factors reg(m) and wm both involve the unit group

O×K,m = {a ∈ O×K | a ≡ 1 (mod m) and |a|v > 0for all real v | m}.

First of all, wm is the number of roots of unity in O×K,m.
Then reg(m) = regulator of m: recall we have a map L = O×K ↪→ ∏

v|∞ R+ given
by a 7→ | logav1 , · · · logavr+s |: in fact the image is a lattice inside a hyperplane H. The
regulator reg(m) is the covolume of L(O×K,m) inside H.

If m = 1, we write reg(m) = reg(OK), and this is called the regulator of OK.
In the case where K is a real quadratic field then reg(m) = log |u| where u ∈ K ⊂ R×,

u > 0 is a generator for O×K,m with |u| > 1.
We won’t give a full proof of Proposition 17.5, but some comments:
To count

S(x,K) = #{ ideals a ∈ K | Na ≤ x},

choose any representative c ∈ K. Then any a ∈ K is of the form a = ac where a ∈ c−1

and a ≡ 1 (mod m), and a is uniquely defined up to multiplication by elements of O×K,m.
In class we sketched out how this count works when K is imaginary quadratic or real

quadratic.
If K is imaginary quadratic: for simplicity assume that wm = 1, so O×K,m is trivial.

Then the region of allowable a is the intersection of the disc |Na| < x
|Nc| with the lattice

{a ∈ c−1 | a ≡ 1 (mod m)}, so can use geometry of numbers to count the number of
lattice points in a region.

Now let K be real quadratic (and again we’ll assume wm = 1 for simplicity). Then OK
embeds as a lattice inside R×R, of which {a ∈ c−1 | a ≡ 1 (mod m)} is a sublattice. In
this case the set

{a ∈ R×R | |Na| <
x

|Nc|
}

is a region bounded by hyperbolas, having infinite volume, and containing infinitely
many lattice points. However, in this case a is only unique up to multiplication by
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elements of O×K,m, and one can show that the volume of a fundamental domain is pro-

portional to x regm
|Nc| =

x log |u|
|Nc| .

Now, we give a sketch proof of Proposition 17.5:

Sketch: Let c be any representative of the ray class K. By the argument given above,
S(x,K) counts the number of a ∈ c−1 with a ≡ 1 (mod m) (and a positive at all real
places of m), such that Na < x

Nc , modulo the action of O×K .
Let F be a fundamental domain for

∏
v|∞ Kv/O×K . Then we are counting the number

of points of a certain lattice that lie in F and have Nf < y. We can estimate this with
geometry of numbers:

The volume of {f ∈ F | Nf < x
Nc } is equal to 2r(2π)s reg(m)

wmNc x. The lattice {a ∈ c−1 | a ≡ 1
(mod m)} has covolume

√
|Disc(K)|Nm

Nc .
Hence

S(x,K) =
2r(2π)s reg(m)

wmNm|Disc(K)|1/2x+O(x
1−1/d)

(the error term is proportional to the surface area of F ), as desired.

Combining with Proposition 17.4, we get.

Proposition 17.6. The partial zeta function ζ(s,K) has analytic continuation to Re s > 1− 1
d

with a simple pole at s = 1 of residue gm, and no other poles.

Theorem 17.7. The function L(s,χ) analytically continues to Re s > 1− 1
d (where d = [K : Q])

If χ is not the trivial character then L(s,χ) is holomorphic at s = 1. If χ is trivial then L(s,χ)
has a pole of residue |Clm(OK)|gm.

Proof. We have L(s,χ) =
∑

K χ(K)ζ(s,K), so it analytically continues to Re s > 1− 1
d , with

only pole at s = 1 with residue
∑

K χ(K)gm.

Specializing to m = (1) and χ = 1:

Theorem 17.8 (Class Number Formula). ζK(s) has a simple pole at s = 1 with residue
2r(2π)s reg(K)hK
wK|Disc(K)|1/2 .

Special cases: when K is imaginary quadratic this is 2πhK
|Disc(K)|1/2 : so we actually get a

formula for hK.
When K is real quadratic this is reg(K)hK

wK|Disc(K)|1/2 .
The Class Number Formula is important for a number of reasons: one is that it’s anal-

ogous to the Birch and Swinnerton-Dyer conjecture (see Zagier “The Birch-Swinnerton-
Dyer Conjecture from a Naive Point of View”, and Lemmermeyer “Conics: A poor man’s
elliptic curve”)
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18 April 8

18.1 Densities for sets of primes

Let T be a set of primes of OK. There are multiple reasonable notions of density for T .

Definition. The natural density is limx→∞ #{p∈T |Np≤x}
#{p|Np≤x} .

Definition. Dirichlet density: if
∑
p∈T

1
Nps = δ log 1

1−s + O(1) as s → 1+, then T has
Dirichlet density δ.

Definition. Polar density: if (
∏

p∈T (1−
1
Nps )

−1)n can be meromorphically continued to
a neighborhood of s = 1 with a pole of order m at s = 1, then the polar density of T is
m/n.

All three densities have the following properties

• They are monotonic where defined.

• finite additivity

• if T has density 0, so does any subset of T .

• finite sets have density 0

Verifications of these are straightforward.

Proposition 18.1. If T has a natural density, then T also has a Dirichlet density and the two are
equal.

If T has a polar density, then T also has a Dirichlet density and the two are equal.

Sketches. For natural density, use partial summation.
For polar density, use

log(
∏
p∈T

(1−
1

Nps
)−1) =

∑
p∈T

1

Nps
+O(1)

as s→ 1+

Remark. The set of primes of Z with leading digit 1 (in decimal) has a Dirichlet density
( log 2

log 10 ) but no natural density.

Remark. Polar density must be a rational number, whereas natural and Dirichlet densities
can be irrational.

Proposition 18.2. The set of all primes of OK has density 1 in all three definitions.
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Proof. This is clear for natural density, so must also hold for Dirichlet density.
For polar density, note that we’ve proved that ζK(s) =

∏
p⊂OK(1−

1
Nps )

−1 has a simple
pole at s = 1.

We’ll be working with Dirichlet densities here: the sets we’ll be considering will also
have natural density, but that would require more careful error-bounding.

Proposition 18.3. The set T of primes p ofOK such thatNp is not a prime of Z has polar density
0.

Proof. Let d = [K : Q]. Write

∏
p∈T

(1−
1

Nps
)−1 =

d∏
j=2

∏
p

(1− p−js)−#{p|Np=pj}

Because #{p | Np = pj} ≤ d always, this is a sub-product of ζ(2s)dζ(3s)d · · · ζ(ds)d, which
converges for <s > 1/2.

Hence ∏
p∈T

(1−
1

Nps
)−1

also converges to a holomorphic function on <s > 1/2.

Proposition 18.4. Let L be a finite Galois extension of K. Then the set of primes of K that split
completely in L, denoted Spl(L/K), has polar density 1

[L:K] .

Proof. Let S be this set, and let T be the set of primes above S.
We observe if pL is a prime of L with NpL prime, and which does not lie above a

ramified prime of K, then pL ∈ T . For this note that if we let pK be the prime of K under
L, we have NpL = Np

[L:K]/g
K , where g is the number of primes of L above K. Hence NpL is

only prime in the case g = [L : K], which means that pK ∈ Spl(L/K).
Then T has polar density 1 by the previous proposition and the fact that there are

only finitely many ramified primes. We also observe∏
pL∈T

(1−
1

NpsL
)−1) =

∏
pK∈S

(1−
1

Nps
)−1)[L:K]

so S must have polar density 1
[L:K] .

Now we work towards the proof of the second inequality. Note that we haven’t used
any class field theory so far.

Theorem 18.5. Let H be any subgroup of Clm = Clm(OK), and let G = Clm(OK)/H .
Then at most one character χ of H can have L(1,χ) = 0, and it must be a simple zero.
The Dirichlet density δ(p | [p] ∈ H) is 1

|G|
if L(1,χ) 6= 0 for all characters of Clm /H, and 0 if

L(1,χ) = 0 for some χ.
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Proof. Consider the behavior of f(s) = 1
|G|

∑
χ log(L(s,χ)) as s→ 1+ where χ ranges over

all characters of G.
This is ∑

p

1

|G|

∑
χ

− log(1− χ(p)Np−s) =

(∑
p

1

|G|

∑
χ

χ(p)Np−s

)
+O(1)

=
∑
[p]∈H

Np−s +O(1)

(we skip the details of checking convergence).
On the other hand, we also have

f(s) =
1

|G|
log

1

1− s

(
−
∑
χ

ords=1 L(s,χ)

)
+O(1).

Hence ∑
[p]∈H

Np−s =
1

|G|
log

1

1− s

(
−
∑
χ

ords=1 L(s,χ)

)
+O(1)

so the set {p | [p] ∈ H} has Dirichlet density
1−

∑
χ 6=1 ords=1 L(s,χ)

|G|
.

Since Dirichlet density is non-negative, we can only have ords=1 L(s,χ) > 0 for one
nontrivial χ, and that χ must have a simple zero. The result follows.

To get rid of the annoying possibility that some L(1,χ) might have a zero at s = 1,
we’ll have to use class field theory. But first we’ll give the analytic proof of the second
inequality.

Theorem 18.6. L/K Galois, m a modulus:
Then |C×K/NL/KC

×
L Um| ≤ [L : K].

Since we can take m such that Um ⊂ C×L , we get also that |C×K/NL/KC
×
L | ≤ [L : K].

Proof. G = C×K/NL/KC
×
L Um

∼= Clm(OK)/H, where H is the subgroup of Clm(OK) gener-
ated by ideals which are norms from L.

We know that Dirichlet density δ{p | [p] ∈ H} is either 1
|G|

or 0.
On the other hand, if p splits completely in L, then [p] ∈ H, so the density must be

≥ 1
[L:K] , and we must have |G| ≤ [L : K].
As a corollary, we see that for any nontrivial character χ of G, L(1,χ) 6= 0.

Corollary 18.7. If χ is a nontrivial character of Clm(OK) then L(1,χ) 6= 0.

Proof. In the setup of the previous theorem, take L such that NL/KC
×
L ⊂ Um (here we are

using the existence theorem of class field theory). Then G = Clm(OK) and we see, as in
the proof above, that for any nontrivial character χ of G, L(1,χ) 6= 0.
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Proposition 18.8. Let C be any subset of Clm = Clm(OK). Then the Dirichlet density of
{p | |[p] ∈ C}is |C|

|Clm |

Proof. Enough to do when C = {K} is a singleton.
Then, by the same argument used in the proof of Theorem 18.5∑

p∈K

1

Nps
=

1

|Clm |

∑
χ

χ(K) logL(s,χ) +O(1) =
1

|Clm |
log(1/(1− s)) +O(1) as s→ 1+

where χ runs over all characters of modulus m. Here the 1
|Cl(m)| log(1/(1 − s)) comes

from L(s, 1), and all other L-functions are O(1) as s→ 1+.

This is the natural generalization of Dirichlet’s theorem to arbitrary number fields,
and is enough to give Cebotarev density for abelian extensions. Next time we’ll prove
full Cebotarev density.

19 April 12

19.1 Cebotarev Density Theorem

Setup: let L/K be a Galois extension of number fields. Then we have a map
(unramified primes of K) → (conjugacy classes of Gal(L/K))
given by p 7→ [Frobp].

Theorem 19.1 (Cebotarev Density Theorem). For any conjugacy class [g] of G = Gal(L/K),
the set of primes

Tg = {p | [Frobp] = [g]}

has Dirichlet density |[g]|
|G|

.

Remark. Lagarias and Odlyzko have developed effective versions of Cebotarev which
give an upper bound on the size of the smallest element of Tg.

We’ve already proved this for the special case where g = 1: in that case T1 = Spl(L/K).
We first apply the results from last time to get the case when L/K is abelian, and then

we’ll bootstrap from there using the same argument that worked when g = 1.

Proposition 19.2 (Abelian Cebotarev Density). Let L/K be an abelian extension. Then L/K
satisfies the Cebotarev density theorem.

Proof. Pick m with L ⊂ Lm, and letH ⊂ Clm be the subgroup corresponding to Gal(L/K) ⊂
Gal(Lm/K). Then Frobp = g ∈ Gal(L/K) if and only if [p] ∈ gH, and the result follows
from Proposition 18.8.
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Proof of Full Cebotarev Density. We’ll ignore all primes of K that ramify in L, since there
are only finitely many such. Let [L : K] = n, and let the order of the element g ∈ G be m.

Let M be the intermediate field L〈g〉 fixed by the cyclic subgroup generated by g, so
L/M is cyclic of degree m. Importantly, L/M is abelian, so we’ll be able to use Abelian
Cebotarev. On the other hand M/K might not even be Galois, but that will be fine.

First we look at what it means for p to belong to the set Tg. If that is the case then
[Frobp] = [g], and for some prime pL above p, the Frobenius element of Gal(L/K) at pL is
equal to g. In particular, this means that g generates the decomposition group DpL , and
M is the decomposition field of pL.

Let pM be the unique prime of M under pL. Then the inertia degree fM/K = 1, and
FrobpM = g ∈ Gal(L/M). Let TM,g be the set of pM satisfying these properties. If we have
any pM ∈ TM,g, then p = pM ∩OK belongs to Tg (but the map pM 7→ p is not one-to-one).

Observe that∑
pM∈TM,g

1

NpsM
=

∑
Frob(pM)=g

1

NpsM
+O(1) =

1

m
log(1/(1− s)) +O(1) (4)

by abelian Cebotarev.
Now we need to move down to K. To do this we need to know how many pM ∈ TM,g

lie above some p in Tg. Since pL is uniquely determined by pM, it’s enough to count the
number of pL lying above p with FrobpL = g.

For this, first choose some pL,0 with FrobpL,0 = g. Any other prime of L lying above p

takes the form pL = hpL0 , where h is unique up to right multiplication by powers of g.
Then FrobhpL0 = hgh−1, which equals g iff h is in the centralizer of g. So the number of

possible pL is equal to |C(g)|
m = n

|[g]|m .
Combining with (4), we get that∑

p∈Tg

1

Nps
=

|[g]|m

n

∑
pM∈TM,g

1

NpsM
=

|[g]|

n
log(1/(1− s)) +O(1)

19.2 Splitting sets of an extension

Recall that for L/K a finite extension, Spl(L/K) denotes the set of primes of K that split
completely in L. The notation Spl(L/K) makes sense regardless of whether L/K is Galois.

Exercise: Spl(L/K) = Spl(L ′/K) where L ′/K is the Galois closure of L/K.
Hence if L/K is not Galois the Dirichlet density of Spl(L/K) = Spl(L ′/K) is 1

[L ′ :K] .
Galois extensions are entirely characterized by their splitting sets.

Theorem 19.3. If L,L ′ are Galois extensions of K, then Spl(L/K) = Spl(L ′/K) implies L = L ′.
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Proof. If Spl(L/K) = Spl(L ′/K) then Spl(LL ′/K) = Spl(L/K). But Spl(LL ′/K) has density
1

[LL ′ :K] and Spl(L/K) has density 1
[L:K] , so [LL ′ : K] = [L : K] and L ′ ⊂ L. Likewise L ⊂ L

and L = L ′.

In fact this proves a little bit more. Write S .
= T if the sets S \ T and T \ S are both

finite. Then the proof above shows that Spl(L/K) .
= Spl(L ′/K) implies L = L ′.

Note that this fails if L and L ′ are not Galois: in fact, there exist non-isomorphic
non-Galois extensions L,L ′ of a number field K such that every prime of K has the same
splitting behavior in L as in L ′. (See pages 362-363 of Cassels-Frohlich for an outline.)

Corollary 19.4. If f(x) ∈ Z[x] is a polynomial such that f splits into linear factors in Fp for all
but finitely many p, then f splits into linear factors in Z[x].

In fact (HW) a stronger fact is true: if f is irreducible and has a root in Fp for all but
finitely many p, then f has a root in Q. (Irreducibility is necessary: for a counterexample
see (x2 − 2)(x2 − 3)(x2 − 6).)

I mentioned also that there are irreducible polynomials over Z such that their reduc-
tion mod all but finitely many primes is irreducible, but didn’t give an example. One
simple example is f(x) = x4 + 1: here 2 is the only ramified prime in the splitting field
K = Q[x]/(x4 + 1). If p is odd, the element Frobp will be an element of order either 1 or
2

19.3 Intro Complex Multiplication

Recall that for Q Kronecker-Weber gives us an explicit description of Qab =
⋃
n Q(ζn).

More specifically, the field Q(ζn) is the ray class field of modulus n∞.
The reason this works is that we’re adjoining torsion points of an algebraic group. In

this case, the algebraic group is the multiplicative group Gm, which has endomorphism
ring End(Gm) ∼= Z. For every n we have the torsion subgroupGm[n] = µn of points
killed by the nth power map. Then we have an inclusion Gal(Q(ζn)/Q) ↪→ Aut(Gm[n]) ∼=
(Z/nZ)×, which we’ve seen is an isomorphism.

Ideally we’d like to generalize this setup with Q replaced by some other number field
K. (Ultimately this will only work for K imaginary quadratic.) However, if K 6= Q, Kab is
larger than K(ζ∞) = Qab.

So we’ll want to replace Gm by some other one-dimensional algebraic group. We
don’t have many choices: in fact, the only other thing we can really do is take E to be an
elliptic curve defined over K.

If we just take E to be a general elliptic curve defined over K, then the n-torsion
subgroup E[n] = E[n](K̄) is isomorphic to (Z/nZ)2. The extension K(E[n]) then has
Galois group embedding into Aut(E[n]) ∼= GL2(Z/nZ), so this is not a reliable way of
producing abelian extensions.
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Instead, as in the Lubin-Tate theory, we will want to consider elliptic curves with
extra endomorphisms. We’ll later see the important theorem:

Proposition 19.5. If E is an elliptic curve over C, then the endomorphism algebra End(E) is
isomorphic either to Z or to an order O in an imaginary quadratic field.

In the latter case we say E has CM by O.
So we might try the following: let K be an imaginary quadratic field. Suppose we can

find an elliptic curve E defined over Kwith CM by OK, and such that all endomorphisms
of E are defined over K. Then for any ideal a of OK let E[a] be the a-torsion subgroup of
E, namely

E[a] = {x ∈ E(C) | ax = 0 for all a ∈ a}.

Then one can show E[a] ∼= OK/a as OK/a-modules, and AutOK(E[a])
∼= (OK/a)×.

Hence we’d get an injection

Gal(K(E[a])/K) ↪→ AutOK(E[a])
∼= (OK/a)×,

meaning that here K(E[a]) is legitimately an abelian extension of K.
The bad news here is this setup works out for only finitely many imaginary quadratic

fields K: in fact, exactly those with class number 1, because E is not generally defined
over K.

However, leads us to ask what is the minimal field of definition of an elliptic curve
E with CM over K, which turns out to be a great question. The answer here is that any
elliptic curve E with complex multiplication by K is defined, not over K, but over the
Hilbert class field H of K.

20 April 15

20.1 Complex Multiplication and Ray Class Fields

If K is an imaginary quadratic field, then any elliptic curve E with complex multipli-
cation by E is defined, not over K, but over the Hilbert class field H of K. In fact,
H = K(j(E)) is generated by the j-invariant, and the minimal polynomial for j(E) over K
is
∏
E ′ CM by OK(x− j(E

′)). So this already gives us a way to get explicit generators for H.
Note that this means that the number of elliptic curves with CM by OK is finite and

equal to hK.
If we want to go beyond H and construct the ray class field Lm, then we follow the

plan sketched last time. Let E be any elliptic curve with CM by O. We know that E is
defined over H, so the field H(E[m]) generated by adjoining coordinates of the m-torsion
points of E is an abelian extension of H, which one can show is unramified only over
primes dividing m. By the argument above H(E[m]) is an abelian extension of H, and we
have an injection Gal(H(E[m])/H) ↪→ (OK/m)×: this should in fact be an isomorphism.
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Then H(E[m]) may not be an abelian extension of K, but one can show [H(E[m]) :

Lm] ≤ 6, so we’re not very far off.
In support of this, note that Gal(Lm/H) is the kernel of the natural map Clm(OK) →

Cl(OK), which is in turn the quotient of (OK/m)× by the image of O×K . On the other
hand, Gal(H(E[m])/H) ∼= (OK/m)×, so this is consistent with H(E[m])/H being a subex-
tension of Gal(Lm/H) (and note this means that the degree [H(E[m])/H : Lm] is at most
6).

We’ll now develop enough of the theory of elliptic curves to be able to prove all
this. We’ll start from the analytic point of view, via elliptic functions. References for
this section are Cox Primes of the Form x2 + ny2 and Silverman Advanced Topics in the
Arithmetic of Elliptic Curves. I’ll start out following Cox, but eventually we’ll go beyond
what Cox does

20.2 Elliptic Functions

Let L be a lattice in C. Then an elliptic function for L is a meromorphic function on
C/L. Equivalently, if ω1,ω2 are generators for L, an elliptic function is a meromorphic
function f on C with f(z) = f(z+ω1) = f(z+ω2).

Weierstrass ℘-function.

℘(z,L) =
1

z2
+

∑
ω∈Lr{0}

(
1

(z−ω)2
−
1

ω2

)
.

Fix L and write ℘(z) = ℘(z,L).

Proposition 20.1. ℘(z) is an elliptic function for L whose only poles are double poles at the
points of L.

Proof. To show convergence we’ll need
Exercise: if L is a lattice in C and r > 2 is a positive integer then Gr(L) =

∑
ω∈Lr{0}

1
ωr

converges absolutely. (This is an Eisenstein series for L.)
Then, assuming z, 1

z−ω bounded,

1

(z−ω)2
−
1

ω2
=
ω2 − (z−ω)2

ω2(z−ω)2
= O(ω−3)

so the series for ℘(z) converges locally uniformly and absolutely on C2 − L.
Likewise, for any ω ∈ L, in the neighborhood of z = ω, we have ℘(z) = 1

(z−ω)2
+

holomorphic.
First, we have ℘(−z) = ℘(z): clear since ω ∈ L iff −ω ∈ L.
Now, to check periodicity, observe that for any ω ∈ L, the function ℘(z,L) − ℘(z+

ω,L) is entire, so must be constant. But picking z = −ω/2 we have that the constant
must be 0. Hence ℘(z,L) is an elliptic function.
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The Weierstrass ℘-function does not generate the field of meromorphic functions on
C/L: to do that we must also add in the derivative

℘ ′(z) = −2
∑
ω∈L

1

(z−ω)3
.

This is a function on C/L with a pole of order 3 at 0: hence it must have three zeroes.
Can check that these occur at the three nonzero points of 12L/L.

We’ll be able to get an algebraic relation between these two. For this it will be useful
to get a power series for ℘(z) at the origin.

Lemma 20.2.
℘(z) =

1

z2
+
∑
n≥1

(2n+ 1)G2n+2z
2n.

Recall Gn =
∑
ω∈L−0ω

−n.

Proof. Sum (
1

(z−ω)2
−
1

ω2

)
=

∑
m≥1

(m+ 1)ω−m−2zm

over all ω ∈ Lr 0, and observe that the terms with even exponent vanish.

Can check that
(℘ ′(z))2 = 4℘(z)3 − g2(L)℘(z) − g3(L)

where g2(L) = 60G4(L) and g3(L) = 140G6(L): check this by checking that the difference
between both sides is entire and vanishes at the origin.

As a corollary, get (exercise: by induction) that all G2n(L) are polynomials in g2(L)
and g3(L). If we put a grading on the ring generated by g2 and g3 by saying that g2 has
weight 2 and g3 has weight 3 then G2n has weight n.

If we let E be the elliptic curve with equation y2 = 4x3 − g2x − g3, the map z 7→
(℘(z),℘ ′(z)) is a map of Riemann surfaces C/L→ E. We’ll next show that it’s an isomor-
phism.

Proposition 20.3. ℘(z) = ℘(w) iff z ≡ ±w (mod L).

Proof. View ℘(z) − ℘(w) as a function of z ∈ C/L. It has its only pole of order 2 at z = 0,
so must have exactly two zeroes (with multiplicity). If w /∈ L/2 then these are two single
zeroes at ±w, if w ∈ L/2 then this is one double zero at w.

Corollary 20.4. The map C/L→ E given by z 7→ (℘(z),℘ ′(z)) is an isomorphism.
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Proof. First we show injectivity: suppose (℘(z),℘ ′(z)) = (℘(w),℘ ′(w)) . By the previous
proposition we have w ≡ ±z (mod L). If z ∈ 1/2L then we’re done. Otherwise, we
only know that w ≡ ±z (mod L). But ℘ ′(z) 6= 0, so ℘ ′(−z) = −℘ ′(z) 6= ℘ ′(z), ruling out
w ≡ −z.

Surjectivity follows from complex analysis: the image of the map must be open and
compact, so the map is surjective.

It then follows that z 7→ (℘(z),℘ ′(z)) is injective, so gives an isomorphism CL
∼= E.)

Consequence: any elliptic function is a rational function in p, p ′.

Proposition 20.5. Addition Theorem:

℘(z+w) = −℘(z) − ℘(w) +

(
1

4

℘ ′(z) − ℘ ′(w)

℘(z) − ℘(w)

)2
Sketch. Viewed as a function of z the difference of both sides is holomorphic everywhere
and vanishes at the origin.

Define discriminant
∆(L) = g32 − 27g

2
3

this is (up to a factor of 16) the discriminant of the polynomial 4x3 − g2x − g3 and is
never 0.

and define j(L) = 1728g
3
2
∆ .

Theorem 20.6. If L and L ′ are lattices in C then j(L) = j(L ′) iff L ′ is homothetic to L.

Proof. Only if direction is clear. If j(L) = j(L ′) then there exists λ with g2(L) = λ2g2(L
′),

g3(L) = λ
3g3(L

′). As consequence G2n(L) = λnG2n(L ′).
Hence ℘L(λz) = ℘L ′(z). Comparing poles we have λ−1L = L ′.

Now we study which C/L have extra endomorphisms. Terminology: an isogeny
from E→ E ′ is a nonzero homomorphism of complex Lie groups.

Note that if φ : C/L→ C/L ′ is an isogeny, then φ lifts to a homomorphism φ̃ : C →
C, and φ̃ must be multiplication by some α.

Theorem 20.7. L a lattice, ℘(z) = ℘L(z), α ∈ C not an integer.
Then TFAE:

a) The multiplication by α map C → C induces an isogeny C/L→ C/L.

b) αL ⊂ L

c) ℘(αz) is a rational function in ℘(z)
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d) There is an order O in an imaginary quadratic field K such that α ∈ O and L is homothetic
to a proper fractional O-ideal.

(Here an order O of K is a subring of K which is a Z-module of rank 2, or equivalently, is a
finite index subring of OK.)

Proof. a) ⇔ b) is clear.
For c) implies b), if ℘(αz) is a rational function in ℘(z), then the set of poles of ℘(αz)

must be invariant under translation by L. But that set is α−1L, so must have α−1L ⊃ L,
equivalent to b)

a) implies c): pull back the function ℘(z) by the map α : C/L → C/L to get that
℘(αz) is a meromorphic function on C/L, that is, an elliptic function for L. We also have
℘(αz) = ℘(−αz), so ℘(αz) is an even elliptic function for L. Exercise: ℘(z) generates the
field of even elliptic functions on C/L, and the implication follows.

d) implies b) is clear.
for b) implies d): wlog 1 ∈ L. Then, since αL ⊂ L, we have Z[α] ⊂ L. Hence Z[α] is

a Z-module of rank 2, so α must be an algebraic integer of degree 2. Also, since Z[α]

is discrete in C, the ring K(α) must be an imaginary quadratic field. Let O = Z[α]: we
have L ⊃ O, and both are lattices in C, so we must also have 1

nO ⊃ L for some n. As
well, OL ⊂ L, so L is a fractional ideal of O, as desired.

21 April 19

21.1 Facts about orders in imaginary quadratic fields and their ideals

Recall:

Definition. An order O in an imaginary quadratic field K is a subring of K which is a
Z-module of rank 2, or equivalently, is a finite index subring of OK.

Proposition 21.1. If O is an order in an imaginary quadratic field K, the order O can be written
as O = Z + fOK for some f ∈ Z, called the conductor of O.

Proof. Take f = [OK : O]. Then certainly O ⊃ Z + fOK, but both rings have index f in
O.

(More generally, the conductor of an order O in an arbitrary number field K is the
largest ideal f of OK such that O ⊃ f.)

If O is an order in an imaginary quadratic field, then the class group Cl(O) is the
quotient of the group of all invertible fractional ideals of O, modded out by all principal
fractional ideals. Let h(O) = |Cl(O)|.
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Definition. A fractional ideal a of a quadratic order O is proper if and only if a is not a
fractional ideal of O ′ for O ′ ⊃ O. Equivalently, the set EndO(a) = {x | xa ⊂ a} is equal
to O.

Example. If τ is a root of ax2 + bx+ c = 0, with gcd(a,b, c) = 1, then the lattice 〈1, τ〉 is a
proper ideal of Z[aτ].

Theorem 21.2. A fractional ideal a of an order O is proper of if and only if a is invertible.

Proof. ⇐: if ab = O then xa ⊂ a implies xO ⊂ O, so x ∈ O.⇒: WLOG a = 〈1, τ〉 with aτ2 + bτ+ c = 0. Let b = 〈1, τ̄〉. Then ab = 〈1, τ, τ̄, ττ̄〉 =
1
aZ[aτ].

(Remark: the generalization to orders in higher degree number fields is not true:
counterexample K = Z( 3

√
2), O = Z + 2OK, a = 〈8, 2 3

√
2, 2 3
√
4〉.)

This means that if L ⊂ C is a lattice such that C/L has complex multiplication, there
is a unique imaginary quadratic order O such that L is homothetic to an invertible ideal
of O. This order O is given by {α ∈ C | αL ⊂ L} = End(C/L).

21.2 Proof that CM j-invariants are algebraic

Theorem 21.3. Let O be an order in an imaginary quadratic field, and let a be a proper fractional
O-ideal. Then j(a) is an algebraic number of degree at most h(O).

Proof. Consider the set S = {j(E) | End(E) ∼= O} ⊂ C: this set is invariant under Aut(C).
However the set C r Q̄ of all transcendentals forms a single infinite orbit for Aut(C)

(proof uses the theory of transcendence bases), so the finite set S can’t contain any
transcendentals.

Now we know S ⊂ Q̄ is invariant under Gal(Q̄/Q) and has size equal to h(O). It
follows that any element of S is an algebraic number of degree ≤ h(O). In particular,
j(a) ∈ S so we’re done.

21.3 Ring class fields

Later we’ll show this is sharp, and that j(E) generates the ring class field of O, which we
now define. In the case where O = OK the ring class field of O is the Hilbert class field
of K.

Definition. If O is an order in an imaginary quadratic field K, the ring class field LO is
the abelian extension of K defined by the condition that

Gal(LO/K) = A×K/K× ·
∏
vfinite

U×v ×C×
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where Uv is the closure of O in the ring of integers O×v of the localization K×v . Exercise:
Gal(LO/K) ∼= Cl(O).

In particular O can be written as Z+ fOK, and then Uv = (Zp+ fOv)×. Observe that
LO ⊂ Lf where Lf is the ray class field of K with modulus f.

Exercise: if p is a prime of Z relatively prime to discO = f2 discOK, p splits com-
pletely in LO if and only if p = ππ̄ for π ∈ O. (We previously did this when O = OK.)

So far we’ve seen that if L is a lattice with End(L) = O is larger than Z (“L has
complex multiplication by O”), then O is an order in an imaginary quadratic field, L is
homothetic to some proper fractional ideal a of O (write L ∼ a), and j(L) = (a) is an
algebraic number of degree at most equal to h(O).

We want to improve this by showing that j(L) is an algebraic integer of degree pre-
cisely equal to h(O), and that K(j(L)) is the ring class field LO.

21.4 Sketch of proof that j(L) generates the ring class field

We’re going to be giving Deuring’s original proof of this fact, roughly following the
exposition in Cox’s book.

Three key ingredients:
First: Characterization of lattices with complex multiplication using cyclic sublattices.

Definition. A sublattice L ′ of L with L/L ′ ∼= Z/mZ is called a cyclic sublattice of index m.

Proposition 21.4. A lattice L has complex multiplication if and only if there is a prime p (in
fact, infinitely many such!) and a cyclic index p sublattice L ′ of L such that L ′ is homothetic to
L.

Proof. The ⇐ implication is clear.
For ⇒: WLOG L = a, where a is an ideal of O = Z+ fOK. Let p be a prime relatively

prime to a and DiscO such that p splits in the ring class field LO, so p = ππ̄ for π ∈ O.
Then let L ′ = πL: certainly L ′ is homothetic to L, and also L ′/L ∼= OK/πOK ∼= Z/pZ.

Second: Modular forms and q-expansions:
We’ll use these to show that there exists an equation Φm(X, Y) ∈ Z[X, Y] the modular

equation of level m such that if L is a lattice in C and L ′ a cyclic sublattice of index m,
then Φm(j(L), j(L ′)) = 0. Combining this with the first part, we get if L has complex
multiplication, then Φm(j(L), j(L)) = 0 for some m. We’ll be able to show that the
leading coefficient of Φm(X,X) is 1 when m is prime, giving integrality.

Third: It still remains to show that K(j(L)) = LO. We’ll do this by checking that the
same primes of K split completely in both fields. (Actually we’ll have to be a little more
careful than that, because we won’t yet know that K(j(L)) is Galois.)
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21.5 The j-function as modular function

Theorem 21.5. For any τ in the upper half-plane H = {Im τ > 0}, Define g2(τ) = g2([1, τ]),
g3(τ) = g3([1, τ]) and j(τ) = j([1, τ]) as the corresponding functions of the lattice in C generated
by 1 and τ.

Let SL2(Z) act on H by γ(τ) = aτ+b
cτ+d where γ =

(
a b
c d

)
. Note that if [1, τ] = L then

[1,γτ] = (cτ+ d)−1L is homothetic to L.
We then observe that for any matrix γ =

(
a b
c d

)
∈ SL2(Z), we have g2(γ(τ)) = (cτ+

d)4g2(τ), g3(γ(τ)) = (cτ+ d)6g3(τ).
Finally, j(γ(τ)) = j(τ), so j descends to a function on the modular curve Y(1) =

SL2(Z)\H. Draw standard fundamental domain for SL2(Z)\H, and observe that Y(1) is
a punctured sphere.

We can compactify Y(1) to a compact Riemann surface X(1) by adding a point at
infinity. The function field of X(1) is then the field of modular functions defined by

Definition. A meromorphic function f(τ) on the upper half-plane is a modular function
for SL2(Z) if f(γτ) = f(τ) for all γ ∈ SL2(Z), and if f(τ) can be written as a Laurent
series

∑
n≥−k cnq

n in q = e2πiτ that converges for Im τ sufficiently large.

22 April 22

22.1 Explicit formulas

Let q = e2πiτ. Then

G2k(τ) = G2k([1, τ]) = 2ζ(2k) + 2
(2πi)2k

(2k− 1)!

∑
n≥1

σ2k−1(n)q
n

where σ2k−1(n) is the sum of the (2k− 1)st powers of the divisors of n. (Proof will be on
HW.)

Specifically,

g2(τ) = 60G4(τ) =
4

3
π4(1+ 240

∑
σ3(n)q

n)

and
g3(τ) = 140G6(τ) =

8

27
π6(1− 504

∑
σ5(n)q

n).

∆(τ) = g2(τ)
3 − 27g3(τ)

2 = (2π)12
∑
n≥1

τ(n)qn

where all τ(n) ∈ Z and τ(1) = 1. .
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j(z) =
1728g32
∆

=
1

q
+
∑
n≥0

c(n)qn =
1

q
+ 744+ 196884q+ · · ·

where all coefficients are integers.
Hence j(z) in in fact a modular function – indeed, j is a meromorphic function on

X(1) with a simple pole at the cusp. Hence j induces an isomorphism X(1) → CP1.
In particular, this means that

Theorem 22.1. The field of modular functions for SL2(Z) is equal to C(j(z)).

22.2 Modular forms for Γ0(m):

Γ0(m) = {

(
a b

c d

)
| c ≡ 0 (mod m)}

Y0(m) = Γ0(m)\H.
Last time we constructed a fundamental domain F for the upper half-plane under

the action of SL2(Z): this means that the translates {γF | γ ∈ SL2(Z)} form a tiling of
the hyperbolic plane H. Then, if SL2(Z) = Γ0(m)γ1 ∪ · · · ∪ Γ0(m)γdm is a right coset
decomposition, Fm = ∪iγiF is a fundamental domain for Γ0(m).

(e.g. Y0(p) has index p+ 1 in SL2(Z), sketch fundamental domain).

Proposition 22.2. Y0(m) = Γ0(m)\H parametrizes pairs of lattices L,L ′ ⊂ C where L ′ ⊂ L is
cyclic of index m, up to homothety

Proof. The parametrization is given by τ 7→ [1, τ], [1,mτ]. Easily seen to be well-defined
and surjective.

We already know that SL2(Z)\H parametrizes lattices L, so it’s enough to show that
for γ = a b

c d ∈ SL2(Z)

[1,mτ] ∼ [1,mγτ]

(∼ denotes homothety) iff γ ∈ Γ0(m).
But

[1,mγτ] = [1,
m(aτ+ b)

cτ+ d
] ∼ [cτ+ d,m(aτ+ b)]

and the latter is an indexm sublattice of L, so it equals [1,mτ] if and only if it is contained
in [1,mτ], which happens exactly when c ≡ 0 (mod m).

Compactify Y0(m) to X0(m) by adding in points at cusps (there will be multiple cusps
now). A modular function for Γ0(m) is a meromorphic function on X0(m).

Equivalent condition: f is a function on H with f(γτ) = f(τ) for any γ in Γ0(τ), and
also for any γ ∈ SL2(Z), f(γ(τ)) is a Laurent series in q1/m.
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Of course any modular function for SL2(Z), e.g. j(τ) is also a modular function for
the subgroup Γ0(m). On the other hand, j(mτ) is a modular function for Γ0(m), since
we’ve seen that the homothety type of the lattice [1,mτ] is Γ0(m) invariant.

Observe that X0(m) is a ramified cover of X(1) with degree equal to (HW!)

[SL2(Z) : Γ0(m)] = m
∏
p|m

(1+
1

p
).

Denote this degree by dm.
Hence the field of modular functions for Γ0(m) is a degree dm extension of C(j(z)).

In particular, this tell us already that there’s some algebraic relation between j(z) and
j(mz), of degree at most dm.

Caution: the covering of curves X0(m) → X(1) is not normal, and likewise, the exten-
sion of function fields is not Galois.

Proposition 22.3. j(τ) and j(mτ) generate the field of modular functions for Γ0(m).

Proof. It’ll be enough to show that [C(j(τ), j(mτ)) : C(j(τ))] ≥ dm.
For this, we use the following strategy: if L/K is a field extension (not necessarily

Galois), to show [L : K] ≥ d it’s enough to exhibit a (possibly infinite) extension field
E/K and d distinct embeddings L ↪→ E extending the fixed embedding K ↪→ E.

In our case, K = C(j(τ)), L = C(j(τ), j(mτ)), and E is the field of meromorphic
functions on the upper half plane. We aready have a natural embedding of K into E.
Then for any [γ] ∈ Γ0(m)\ SL2(Z), define an embedding φγ : L ↪→ E by

j(τ) 7→ j(γ(τ)) = j(τ), j(mτ) 7→ j(mγτ).

These embeddings are all distinct, (the lattices [1,mγτ] are generically distinct, so
have distinct j-invariants), and the result follows.

Our agenda here is to construct a minimal polynomialΦm(X, Y) such thatΦm(j(mτ), j(τ)) =
0. This polynomial is known as the modular polynomial or modular equation.

Note that we must have Φm(j(mγτ), j(τ)) = 0 for every γ ∈ SL2(Z).
Let

fm(X, τ) =
∏

γ∈Γ0(m)\ SL2(Z)

(X− j(mγτ)) =
∏

L ′⊂[1,τ] cyclic index m

(X− j(L ′)) (5)

This is a polynomial in X whose coeffs are functions of τ. We’ll show that actually this
can be written as fm(X, τ) = Φm(X, j(τ)) with Φm ∈ Z[X, Y].

First, observe that fm(X, τ) = fm(X,γτ) so each coeff of Xi of fm(X, τ) is a holomorphic
function on SL2(Z)\H. To show that these coefficients are actually modular functions,
we need to show that they can be expressed as power series in q = e2πiτ.

We’ll work on making our formula for fm(X, τ) more explicit, so that we can show
that the coefficients of fm(X, τ) are not just modular function, but elements of Z[j].
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22.3 Classification of cyclic index m sublattices

Let L = [1, τ]: then any cyclic index m sublattice L ′ ⊂ L must have generators of the form
[d,aτ+ b] where ad = m, 0 ≤ b < d and (a,d) = 1.

In other words: Let C(m) = {
(
a b
0 d

)
| ad = m, 0 ≤ b < d, (a,b,d) = 1}. Then any

cyclic index m sublattice of [1, τ] is homothetic to [1,γτ] for some γ ∈ Cm.
Equivalently, get a classification of cosets Γ0(m)\ SL2(Z): these are all of the form

SL2(Z)∩ γσ−10 SL2(Z)σ, where σ0 =
(
m 0
0 1

)
, and σ ∈ C(m) is arbitrary.

23 April 26

23.1 Proof that the modular polynomial exists and has integer coeffi-
cients

Theorem 23.1. The function fm(X, τ) defined in (5) can be written as Φm(X, j(τ)) where Φm ∈
Z[X, Y]. Furthermore, Φm is irreducible as an element of C(Y)[X].

Proof. We’ve previously observed that the coefficients of fm(X, τ) are invariant under the
SL2(Z) action on τ ∈ H. If we also show that they belong to Z((q)), this will say that
they are modular functions with integer q-expansions that are holomorphic away from
the cusp. Exercise: the ring of such modular functions is precisely Z[j(τ)]. The theorem
will then follow.

Recall
fm(X, τ) =

∏
L ′⊂[1,τ] cyclic index m

(X− j(L ′)) =
∏

σ∈C(m)

(X− j(στ))

so its coefficients are, up to sign, elementary symmetric polynomials in the set j(στ).
Let Q = q1/m = e2πiτ/m and ζm = e2πi/m. For any σ =

(
a b
0 d

)
, e2πiστ = ζabm Q

a2 , and
so

j(στ) = ζ−abm Q−a2 +
∑
k≥0

ckζ
abk
m Qa

2k.

is a Laurent series in Q = q1/m with integer coefficients. Hence the coefficient of Xi in
fm(X, τ) is an element of Z[ζm]((q

1/m)). However, we also have fm(X, τ) = fm(X, τ+ 1),
so this Laurent series must actually belong to Z[ζm]((q)). Additionally, we observe that
the set of q-series for {j(στ) | σ ∈ C(m)} is invariant under the action of Gal(Q(ζm)/Q),
so all coefficients of fm(X, τ) actually belong to Z((q)).

Finally, we check irreducibility: We already know that the minimal polynomial of
j(mτ) over the field C(j(τ)) has degree dm, so it must be equal to Φm(X, j(τ)) (up to
scaling by elements of the field C(j(τ)). It follows that Φm must be irreducible as a
polynomial in C(Y)[X].

Properties of the modular equation:
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Proposition 23.2. (a) Φm(X, Y) = Φm(Y,X) if m > 1

(b) If m is not a square, then Φm(X,X) is a polynomial of degree > 1 with leading coefficient
±1

(c) If m is a prime then Φp(X, Y) ≡ (Xp − Y)(X− Yp) (mod p). (Kronecker congruence).

Proof. a): the roots of Φm(j(L),X) are the j-invariants of the lattices L ′ such that L ′ has
a cyclic index m sublattice homothetic to L. However (argue) this is the case iff L has
a cyclic index m sublattice homothetic to L ′. This shows that Φm(j(L),X) is equal to
Φm(X, j(L))) up to a constant factor. Since j(L) can be any complex number, we have that
Φm(Y,X) = cΦm(X, Y), and the constant c must be ±1. But if c were equal to −1, we’d
have Φm(X,X) = 0 for all X, which is impossible since we know Φm(j(L), j(L)) 6= 0 when
L doesn’t have CM.

b) : Enough to show that if Φm(j(τ), j(τ)) =
∑
k≥−N ckq

k then c−N = 1.
Each factor here is

j(τ) − j(σ(τ)) = (Q−n − ζabQ−a2) + holomorphic

by assumption the leading terms don’t cancel, so leading coefficient c−N is a root of
unity.

But we also have c−N ∈ Z so c−N = ±1.
c) The set C(p) has the following p− 1 elements: σi =

(
1 i
0 p

)
for i = 0, . . . ,p− 1, and

σ∞ =
(
p 0
0 1

)
.

We’ll work in Z[ζp][X]((Q)), and show that

Φm(X, j(τ)) ≡ (j(τ)p −X)(Xp − j(τ)) (mod 1− ζp)

First, since e2πiσ∞τ = Qp2 = qp, j(σ∞τ) ≡ j(τ)pmod1− ζp by Frobenius.
On the other hand, observe that

j(σiτ) = ζ
−i
p Q

−1 +
∑
k≥0

ckζ
ik
mQ

k ≡ Q−1 +
∑
k≥0

ckQ
k (mod 1− ζp)

for i = 0, . . . ,p− 1.
We now multiply the factors together, and get

Φm(X, j(τ)) ≡ (X− j(τ)p)(X−Q−1 −
∑
k≥0

ckQ
k)p ≡ (X− j(τ)p)(Xp − j(τ)) (mod 1− ζp).

Since both sides of this equality have integer coefficients, the equality also holds mod p.
Hence the difference of both sides is an element of pZ[X]((q)) ∩ C[X, j(τ)] = Z[X, j(τ)]
and the result follows.
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Corollary 23.3. If L has complex multiplication by O, then j(L) is an algebraic integer.

Proof. We’ve previously seen that there exists a prime p (in fact, infinitely many such)
and a cyclic sublattice L ′ of L of index p such that L ′ is homothetic to L.

Hence Φp(j(L), j(L)) = Φp(j(L
′), j(L)) = 0, but we’ve just seen that Φp has leading

coefficient ±1.

23.2 The Main Theorem of Complex Multiplication

We now prove

Theorem 23.4 (Main Theorem of Complex multiplication). If a is an invertible ideal of an
order O in a quadratic field K, then K((a)) = LO.

Proof. Exercise: LO is Galois over Q. In fact Gal(LO/Q) ∼= Cl(O)o Z/2Z. (Here the
nontrivial element σ ∈ Z/2Z acts on Cl(O) by σ([a]) = [a−1]).

LetM = K(j(a)), and L = LO. First we show thatM ⊂ L by showing that, with finitely
many exceptions, any prime of Q that splits completely in L also splits completely in M.

Exclude the primes p that divide DiscO. Also exclude any primes p such that p
divides the index [OM : OK[j(a)]].

If p splits completely in LO then (by HW) p = Nπ where π ∈ O. Then πa is homoth-
etic to a, so j(a) is a root of the polynomial Φp(X,X).

Note that the mod p reduction of Φp(X,X) is −(Xp − X)2. So if pM is any prime of
M above p, then j(a)p ≡ j(a) (mod p)M. Hence the reduction j(a) ∈ OM/pM actually
belongs to Fp.

Because of our assumption that p - [OM : OK[j(a)]], we know OM/pM is generated
by j(a), and so OM/pM ∼= Fp. Since we chose pM over p arbitrary, it follows that p splits
completely in Km.

For the other direction: we’ll show that, with finitely many exceptions, any prime in
Spl ′(M/Q) (that is, any p in Q with at least one completely split factor in M) is also in
Spl(L/Q). By Problem 1 on Problem Set 10, this implies L =M.

Exclude the finite set of primes p dividing DiscO or sharing a factor with
∏
i<j(j(ai)−

j(aj)) ∈ OL.
If p ∈ Spl ′(M/Q) then p must split completely in K, write p = Np. We’ll show

p ∩ O = πO for some π: (assuming p relatively prime to the conductor) this will then
imply

p = [OK : p] = [O : p∩O] = [O : πO] = Nπ

so p ∈ Spl(L/Q).
We’ll do the last part next time.

‘
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24 April 29

24.1 Wrapping up the last step in the proof of the main theorem of
class field theory

The last thing we need for our proof is: if p ∈ Spl ′(M/Q) and p is a prime of OK above
p then p∩O = πO, with finitely many exceptions.

For our exceptions: we may assume p does not divide DiscO and that it is relatively
prime to

∏
i<j(j(ai) − j(aj)) ∈ OL.

By assumption there is a prime pM above p such that OM/pM ∼= Fp.
Now, let a ′ = (p∩O)a. We have that a ′ is a cyclic sublattice of a of index p.
Then Φm(j(a ′), j(a)) = 0. Let pL be any prime of L above pM.
Working in OL/pL we have

(j(a ′)
p
− j(a))(j(a)

p
− j(a ′)) = 0

so one of the factors equals 0. Since we know that j(a) ∈ OM/pM ∼= Fp is a fixed point
of Frobenius, either way we must have j(a) = j(a ′).

Hence we conclude that j(a) and j(a ′) are congruent modulo pL. However, by our
assumption that pL -

∏
i<j(j(ai) − j(aj)), this can only happen if j(a) = j(a ′).

So a ′ = πa for some π ∈ O. Since a ′ is an invertible ideal, it follows that πO = p∩O,
and we’re done.

(Question asked in class: what can we say about the primes that divide
∏
i<j(j(ai) −

j(aj))? I don’t know, although there very nice result of Gross and Zagier on the prime
factorization of ∏

a∈Cl(O)

∏
a ′∈Cl(O ′)

(j(a) − j(a ′))

when O and O ′ are orders in distinct quadratic fields. In particular, all of the prime
factors are small. However this doesn’t apply here.)

In fact, one can explicitly describe how Gal(L/K) ∼= Cl(O) acts on the set {j(a) | a ∈
Cl(O)}:

Theorem 24.1. For any unramified prime p of OK relatively prime to the conductor of O,

Frobp((j(a))) = j((p∩O)a).

24.2 Heegner’s Approach to the Class Number 1 Problem

Now we’re going to sketch Heegner’s proof of the Class Number 1 Problem (see Cox for
details).
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Philosophy: A Heegner point on a modular curve X = Γ\H is a point x coming from
a lattice with complex multiplication by some order O. In general these points will not
be defined over Q, but will be defined over Q̄.

In the case when X = X(1) = SL2(Z)\H, and O has class number 1, the unique
Heegner point xO with CM by O is necessarily a rational point (this is equivalent to our
previous statement about j(O) having degree 1 over Q.)

For general X, Heegner points need not be Q-points, but we still get a lot of control
over the field of definition of a Heegner point, and in some special cases we can still
prove that they are defined over a smaller field than one might naively expect. We’ll
be able to exploit this to show that Heegner points with class number 1 yield integer
solutions to a Diophantine equation of the form Y2 =quartic, which we can then classify.

24.3 The Cube Root of the j-function

Recall j = 1728g32
∆ . We can take the cube root to define a new function γ2 = 12g2

∆1/3 : note
that ∆ is never zero on the upper-half plane, so it has a unique cube root ∆1/3 with
q-expansion ∆1/3 = q1/3 + · · · .

For general γ =
(
a b
c d

)
∈ SL2(Z), γ2(τ) and γ2(γτ) differ by a cube root of unity. Can

show that γ2(γτ) = γ2(τ) iff 3 | b, c or 3 | a,d.
It follows from this that γ2(3τ) is a modular function for Γ0(9), so γ2(3τ) is a rational

function in j(τ) and j(9τ).

Theorem 24.2. Let O be an order in an imaginary quadratic field, and 3 - D = Disc(O).
Let τ0 =

√
−m if D = −4m and τ0 =

3+
√
−m
2 otherwise (importantly, gcd(τ0, 3) = 1).

Then Q(γ2(τ0)) = Q(j(τ0)).

Proof. Applying the HW (and checking that the appropriate conditions apply) we have
that γ2(τ0) ∈ Q(j(τ0/3), j(3τ0)). Can check that that both [1, 3τ0] and [1, τ03 ] are invertible
ideals of O ′ = Z[3τ], so j(τ0/3), j(3τ0) ∈ LO ′ . It follows that γ2(τ0) ∈ LO ′ .

The next step is to show γ2(τ0) ∈ LO. First we compute the degree [LO ′ : LO].
Assuming O× = ±1 for simplicity, one can show (we skip details),

Gal(LO ′/LO) = |ker(Cl(O ′) → Cl(O))| ∼= ((O/3O)×/Z/3Z×).

In particular, the degree is either 2 or 4.
Now, we observe that [LO(γ2(τ0)) : LO] | 3 as γ2(τ0)3 = j(τ0) ∈ LO. But also

[LO(γ2(τ0)) : LO] | [LO ′ : LO] | 4. As 3 and 4 are relatively prime, conclude that
γ2(τ) ∈ LO.

Now, one can check that γ2(τ) is real, and that Q(j2(τ)) = LO ∩R. Hence Q(γ2(τ) ⊂
Q(j(τ)), and the other inclusion is clear.
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24.4 The Weber Functions

We now introduce three more modular functions: f, f1, f2 can be defined as power series
lying in Q((q1/48)). They are modular functions for Γ(48), but we won’t use that directly.
One can show that SL2(Z) fixes the set {f48, f481 , f482 }, and can describe the SL2(Z) action
on the three functions explicitly.

Important property: f8,−f81,−f82 are roots of X3 − γ2x− 16.
Useful identities: f(τ)f1(τ)f2(τ) =

√
2 and f1(2τ)f2(τ) =

√
2.

Important property:

Proposition 24.3. If m ≡ 3 (mod 8) and K = Q(
√
−m) then K(f(

√
−m)2) is the ring class

field of O = Z[
√
−m] (note that O is not the full ring of integers).

Proof. Proof is similar to the previous proposition, but messier: for τ0 =
√
−m, use that

f(8τ0)
6 is a modular form for Γ0(64).

Ultimately have to do a bit of Galois theory as well as degree counting.

Theorem 24.4. Let K be an imaginary quadratic field of discriminant dK. Then h(OK) = 1 iff

dK = −3,−4,−7,−8,−11,−19,−43,−67,−163

Proof. Easy cases: if 4 | dK then 2 ramifies in OK, and so OK must contain an ideal of
norm 2. This ideal can be principal only if dK = −4,−8.

So dK is odd. By genus theory, |Cl(K)[2]| = 2n−1 where n is the number of prime
factors of dK. Hence we must have dK = −p. May assume p 6= 3. If p ≡ 7 mod 8, then 2
splits in OK, and so again OK must contain a principal ideal of norm 2: only possible if
dK = −7.

Left with dK = −p = −3 (mod 8). We already know that dK = −3 has class number
1, so will assume that 3 - p.

Let O = OK and O ′ = Z[
√
−p]. By a similar argument to the one sketched above,

Gal(LO ′/LO) ∼= (O/2O)×/F×2 has order 3 (as 2 is inert in OK). Hence [LO ′ : LO] = 3. If
K has class number 1, then LO = K, and [K(j(

√
−p)) : K] = 3. Taking real subfields, we

get that Q(j(
√
−p)) is a degree 3 extension of Q. Hence Q(f(

√
−p)2) is a cubic extension

of Q.
Let τ0 =

3+
√
−p
2 and α = ζ−18 f2(τ0)

2.
Using the Weber function identities

√
2

f2(τ0)
= f1(2τ0) = f1(3+

√
−p) = ζ−116 f(

√
−p)

One deduces α = 2
f(
√
−p)2

, so α, and also α4, generate the cubic field Q(f(
√
−p)2).

What is the minimal polynomial of α4 over Q?
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On the one hand α4 = −f2(τ0)
8, which satisfies

x3 − γ2(τ)x− 16 = 0.

This means that γ2(τ) is an integer such that a solution to x3 − γ2(τ)x− 16 = 0. is
the fourth power of another element of the same cubic field Q(f(

√
−p)2)! This is not

something that normally happens.
To see what the specific constraint is on γ2, let x3 + ax2 + bx+ c = 0 be the minimal

polynomial of α (which is an algebraic integer because α4 is).
Then α2 has minimal polynomial x3+ ex2+ fx+ g = 0 with e = 2b−a2, f = x2− 2ac,

g = −c2 and α4 has minimal polynomial

x3 + (2f− e2)x2 + (f2 − 2eg)x− g2.

Setting the minimal polyomials equal, get 2f = e2, g2 = 16, f2 − 2eg = −γ2(τ0). Deduce
g = −4, c = ±2, wlog c = 2. Plugging in to 2f = e2, we obtain 2(b2 − 4a) = (2b− a2)2.

Oberving that a and b must be even, and setting X = −a/2 and Y = (b− a2)/2, we
get the equation 2X(X3 + 1) = Y2.

Standard methods show that this equation only has the roots

(X, Y) = (0, 0), (−1, 0), (1,±2), (2,±6).

If we then solve for j(τ0), we get exactly the j-invariants for

dK = −3,−19,−67,−11,−163,−43

respectively.
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