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Introduction: These are notes on a graduate topics course at the University of Michi-
gan in Fall 2023. Corrections are welcome and may be sent via email to Alex Wright.

Audience and scope: These notes might be useful for students who would like prepa-
ration before tackling the literature on Out(F},). We will begin without assuming any
familiarity with geometric group theory, and focus on geometric aspects of the theory.
A good deal of the course follows expository material of Bestvina; the reader may wish
to consult, for example, the course notes of Vogtmann [Vog] to see another point of
view.

Authorship: For each lecture, one course participant was designated as the author,
and another as the editor. The notes for each lecture are labelled with the initials of
the author followed by the initials of the editor. Additionally Alex Wright edited the
notes.

Citations: Only a small number of citations are provided. Often these are not original
sources, but rather the sources that the lectures were based off of.

Acknowledgements: Alex Wright would like to especially thank Mladen Bestvina and
Ric Wade, for generously explaining a great many things related to this course. Alex
Wright would additionally like to thank Matt Clay, Armando Martino, Kasra Rafi, and
Richard Webb for helpful conversations. Finally, Alex Wright is grateful to Jean Pierre
Mutanguha, Caglar Uyanik, and Sanghoon Kwak for both for giving seminar talks in
Fall 2023 which very nicely complemented the course and for interesting discussions
during their visits; and again to Sanghoon Kwak for carefully reading these notes and
pointing out a list of typos and corrections.
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1. INTRODUCTION (08/28, HT, KS)

1.1. Introduction and Cayley Graphs. This course broadly lies within the topic of
geometric group theory. As such, we’ll be interested in studying groups by understand-
ing their actions on geometric spaces. The geometric spaces will often be derived from
the groups themselves. The prototypical example of a geometric space derived from a
group is a Cayley graph.

Definition 1.1. Fix a group G and a generating set S < G that is symmetric (i.e.,
s € S if and only if s7! € S). The Cayley graph Cay(G,S) is the graph produced by
the following construction:

e The vertex set of Cay(G,S) is the set of elements of G.
e There is an edge between two vertices g, h € G if and only if there is an s € S
such that h = gs.

A Cayley graph has a few nice elementary properties stemming from the group ax-
loms:

e As is required for an undirected graph, there is an edge from g to h if and only
if there is an edge from h to g. Formally, h = g¢s if and only if ¢ = hs™!, and
seS «— sles.

e A Cayley graph is always regular (every vertex has the same degree), and its
degree is the cardinality of S. For any vertex g € GG, the set of adjacent vertices
is by definition {gs : s € S}, and gs = g’ for s,s" € S if and only if s = ¢’ by

left multiplication by g1

Notice that this definition still makes sense if S is infinite, although we’ll rarely
encounter examples where this is the case.

A key property of Cay(G,S) is that G acts on it. Since the Cayley graph itself
was defined via right multiplication, the action of G on Cay(G,S) will act by left
multiplication. Specifically, a given h € G sends each vertex g of the Cayley graph to
hg, and sends each edge between g and some gs to an edge between hg and hgs.

+h
—o 7 Ne—0

FIGURE 1

Since we're interested in geometric rather than purely topological spaces, we’ll make
Cay(G, S) a metric graph by thinking of each edge as a copy of the interval [0, 1] with
the standard Euclidean metric (the full metric space is then constructed by identifying
appropriate endpoints). Between vertices, this metric is equivalent to word distance:
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Definition 1.2. Fix a group GG and a generating set S < G. For any g # e, the word
length of G is the minimal positive integer [ such that there exist s1,...,s; € S with
s1---8 = g. The word length of the identity is 0, and the word distance between two
g, h € G is the word length of g~'h.

1.2. Quasi-Isometry. When studying geometric spaces, we’ll need a notion of spaces
being equivalent that’s a little looser than isometry. Specifically, we want both some
‘local wiggle room’ and some overall scaling distortion.

Definition 1.3. A map f : (M, d;) — (IV, d2) between metric spaces is a quasi-isometry
if there exist real numbers K > 1 and C' > 0 such that:

(1) For all z,y € M, we have

%dl(xﬂy) — O < d(f(2), [(y)) < Kdi(z,y) + C.

(2) For all z € N, there exists an z € M such that do(f(z),2) < C.

The second property on its own is called coarsely surjective. Here’s a picture of what
a quasi-isometry might ‘look like’ (although note that all finite-diameter spaces are
trivially quasi-isometric, so this picture is just meant to give a rough idea).

—>

FIGURE 2

Exercise 1. Let G be a group and let S1,S, < G be two finite generating sets. Then
Cay(G,S1) and Cay(G, Sy) are quasi-isomorphic.

1.3. Important Classes of Groups. In this course, we'll restrict our attention to
three important classes of groups.

The first and most well-understood class consists of lattices in Lie groups. Recall
that a lattice I' lying inside a Lie group G is a discrete subgroup such that the quotient
G/I" has finite measure. One basic example is Z" < R", with the quotient being the
unit-volume flat torus. A more geometrically interesting example is SL,,(Z) < GL,(Z);
the n = 2 case yields the unit tangent bundle over the modular curve as a quotient.

The second class consists of mapping class groups of finite-genus surfaces (with or
without an orientability assumption).
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Definition 1.4. Fix a finite-genus topological surface Y. Its mapping class group
MCG(Y) is the group of all homeomorphisms ¢ : S — S quotiented by the subgroup
of all homeomorphisms homotopic to the identity map.

While mapping class groups are generally difficult to understand concretely, one can
think of MCG(X) as the group of ‘symmetries’ of the surface that don’t come simply
from nudging points around via homotopy (and thus represent interesting topological
information).

The last class consists of outer automorphisms of free groups.

Definition 1.5. Fix a positive integer n, and let F}, be the free group on n generators.
Let Aut(F,) be its automorphism group, and let Inn(F},) be the subgroup consisting
of all automorphisms that can be written in the form ¢(g) = aga™' for some a € F,.
Then the outer automorphism group Out(F,,) is defined as Aut(F,)/Inn(F,).

Remark 1.6. If F,, is defined to be the free group on generators aq,...,a,, any homo-
morphism ¢ from F), to another group G is uniquely determined by images of the a;.
Moreover, for any choice of n elements by, ..., b, € G, there is a unique homomorphism
¢ : F, — G such that ¢(a;) = b;.

For any free group F,, = {ai,...,a,), recall that there is an abelianization map
a : F, — 7" defined by choosing a coordinate basis eq,...,e, for Z" and declaring
Ab(a;) = e;. Moreover, for any homomorphism ¢ : F,, — F,,, we can easily check that ¢
sends the commutator subgroup of F), into itself, and hence this commutator subgroup
is contained in the kernel of oo ¢. By standard group theory, this implies the existence
of a unique map Ab(¢) : Z" — Z" such that the following diagram commutes:

E -5 F

al la
7" m 7"

If ¢ is in fact an automorphism, then it descends to an automorphism on the commu-
tator subgroup, and Ab(¢) is also an automorphism. The automorphism group of Z"
is GL,(Z), so we obtain a homomorphism Ab : Aut(F,) — GL,(Z). Moreover, since
a o ¢ is the identity whenever ¢ € Inn(F},), Ab descends to a homomorphism

Ab : Out(F,) — GL,(Z).
Next time, we’ll prove the following:

Lemma 1.7. The map Ab defined above is surjective.

2. ANALOGIES AND BIG PICTURE (08/30, KL, ML)
To prove Lemma 1.7, we will use the following fact:

Fact 2.1. Let E;; denote the n x n square matriz with a 1 in the ijth component and 0s
elsewhere. Then GL(n,Z) is generated as a group by all matrices of the form 1d +E;;
with 1 <@ # j < n, together with all signed permutation matrices.
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(This fact is proved using Smith normal form, a relative of row reduction for integer
matrices.)

Example 2.2. In GL(3,Z), an example of a matrix of the form Id 4+ F;; and of a signed
permutation matrix are given by

1 01 00 -1
Id+E;3=({0 1 0 and 10 0],
0 01 01 0

respectively.
We will moreover make use of the following definition:

Definition 2.3. Given a fixed choice of free generating set for F;,, an automorphism of
F, is called a signed permutation automorphism if it sends each generator to another
generator or its inverse.

Example 2.4. A signed permutation automorphism of F3 = {a, b, ¢) is given by a; —
as, o +— a3, A3 —> Cll_l.

Proof of Lemma 1.7. Given Fact 2.1, it suffices to show that all signed permutation
matrices and all matrices of the form Id +£E;; with 1 < 7 # j < n are in the image
of Ab : Aut(F,) — GL(n,Z). Now, signed permutation automorphisms of F,, map to
signed permutation matrices under Ab (since Ab(p) outputs the matrix representation
of the abelianization of p). Moreover, for fixed 1 < i # j < n, the automorphism of

F, ={ay,...,a,) defined by
arp —

a;a; if £ =]

maps to Id +E;; under Ab. (To see that this is indeed an automorphism of F),, we can
write down its inverse.) O

Lemma 1.7 describes a relationship between Out(F,) and the lattice GL(n, Z). Next,
we seek to describe a relationship to mapping class groups. We will be guided by the
following observation:

Remark 2.5. The fundamental group of a surface with at least one puncture is free. For
instance, if 3/, is a surface of genus g with n > 1 punctures, then m(2,,,) = Foyin_1.

We begin with a brief review of some covering space theory.

e Given a homeomorphism f of a surface 3, there is an induced group homo-
morphism of fundamental groups fi : m (2, 29) — m (%, f(zo)). This is an
isomorphism.

e If @ is an arc from zg to f(zg) in X, then there is an isomorphism

I m (5, f(z0)) = mi (2, x0)

defined by [y] — [a"'ya]. Moreover, if a’ is another arc, then I, o I;' :
m (2, x9) — m (X, 20) is an inner automorphism of m (3, z9). See Figure 3.
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FIGURE 3

In particular, this second remark means that we can make the following definition:

Definition 2.6. Let ¥ : Homeo(X) — Out(m (2, x9)) denote the map defined by
U(f)=1lao fu

Indeed, for any two arcs a and @', we have that I, o f, and I, o f, differ by I, o [;1,
which is an inner automorphism of (X, o). Thus, I, o f, is a well-defined element of
Out(m (2, z9)) = Aut(m1 (X, x0))/ Inn(m (X, x)).

Exercise 2. If f,g € Homeo(X) are homotopic, then V(f) = V(g).
This exercise allows us to make the following definition:
Definition 2.7. Let ¥ : MCG(X) — Out(r (X)) be given by U([f]) = ¥(f).
One can check that U is a group homomorphism. We now claim the following:
Lemma 2.8. The map V is injective.

Proof Sketch. Use a result from Chapter 1 of Hatcher, which states that two maps on
K (m,1)’s whose induced maps on fundamental groups agree must be homotopic [Hat02,
Proposition 1B.9]. (Later in the course, in Lemma 11.4, we'll do a different proof of
this proposition in the case of graphs, and that proof can also be adapted to surfaces.
But in any case the proof in Hatcher is not hard.) O

Thus, what we have established so far in Lemmas 2.8 and 1.7 is that we can think
of mapping class groups as subgroups of outer automorphisms, and of GL(n,Z) as a
quotient of Out(F},).

Remark 2.9. If a surface X is closed, meaning that it has no punctures and no boundary,
and ¥ is not a sphere or the projective plane, then W is bijective. Otherwise, it is usually
very far from being bijective! See [FM12a, Chapter 8] for more details.

These relationships, while precise, are not as helpful as we may hope, as the two
maps Ab and WU typically do not capture most of Out(F,). We thus describe a deeper
analogy between our three types of groups.

Things to note about the spaces appearing in this analogy are that all the red ones
are all contractible, and all the blue ones have rich negatively curved behaviour (though
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Lattices in Lie groups I' € G | MCG(X) Out(F,)

acts on symmetric space acts on Teichmiiller space acts on outer space

K\G T(¥) = {marked hyp. surfaces} | {marked metric graphs}

quotient: K\G/I' quotient: T'(X)/MCG(%) quotient: moduli space

locally symmetric space moduli space of hyp. surfaces | of metric graphs

(no good analogy in line acts on the curve graph acts on free factor graph,

with flavor of course) free splitting graph

Jordan normal form Nielsen-Thurston classification | (partial) Nielsen-Thurston
classification

they are not always true negatively curved spaces), and all the brown ones are Gromov
hyperbolic (which means that they have some tree-like behavior).

Finally, we end class by mentioning several different perspectives we might take/things
we might ask about in studying Out(F},).

Dynamics of individual automorphisms (e.g., we might seek to describe the word
length of an automorphism raised to the nth power applied to a word)
Classical group theory (e.g. with regards to the study of presentations)
Algorithmic (e.g. given an element of a free group, we might seek to determine
whether it is part of a free basis)

Metric graphs (their fundamental groups are free)

Groups acting on trees (the universal cover of a graph is a tree, which means
that group actions on trees are ubiquitous in the study of F},; this leads us to
Bass-Serre theory)

Algebraic topology (e.g. we might ask about the group cohomology of Out(F},))
Metric (e.g. we might ask what Out(F;,) looks like up to quasi-isometry)
Probabilistic (e.g. we might ask what a typical element of Out(F,,) looks like as
sampled by a random walk)

Three manifolds (e.g. handlebodies and doubled handlebodies have free funda-
mental group, and one especially thinks about discs or spheres embedded in
these three manifolds)

3. GRAPHS AND GRAPH MORPHISMS (09/01, ML, KS)

We will follow expository lectures of Bestvina for at least the next week [Besb, Besa].

Definition 3.1 (Graph). A graph is a cell complex of dimension 1. Such a complex
can also be viewed combinatorially via its vertices and edges.

Recall that if I' is a graph, a choice of (a) a maximal tree 7" < I'; and (b) orientations
and labels to all edges not in 7" gives an identification of m (I', v) with a free group.

Example 3.2. Let I' denote the graph in Figure 5. Drawn in red is a maximal tree T,
and edges not in 7" are oriented and labeled. This gives an identification of 7 (I", v) with
the free group {a, b, ¢, d, e) as follows: for a loop in I', read the labels (with orientation)
as the loop traverses the edges of I', ignoring edges that are in 7.
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FIGURE 4. An example of a graph

FIGURE 5

For a more sophisticated approach, note that the map from I' to the wedge of five
circles collapsing T" to a point is a homotopy equivalence and therefore induces an
isomorphism of fundamental groups. See [Hat02, Proposition 1A.2] for a review.

Definition 3.3 (Graph morphism). A morphism of graphs is a continuous map f: ' —
I/ which sends vertices to vertices and edges to edges. We typically implicitly assume
parameterizations of the edges of I' and I" are given, and implicitly require that f
restrict to linear maps on edges.

We should note that morphisms of graphs don’t collapse edges; in particular, the
continuous map which collapses the red edge of graph in Figure 6 (obtaining a graph
with one vertex and two edges, which are loops) is not a graph morphism. Similarly,

FIGURE 6

morphisms of graphs don’t expand edges to paths of more than one edge; in particular,
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the continuous map which expands the above edge into two consecutive edges (obtaining
the graph in Figure 7) is not a graph morphism either.

FIGURE 7

Example 3.4. Consider the graph morphism illustrated in Figure 8, obtained by iden-
tifying the left two vertices and the two edges from the other vertex to these vertices:
This graph morphism is locally injective everywhere except at the right-most vertex.

0 - 0O

FIGURE 8

Definition 3.5 (Immersion). A morphism of graphs is called an immersion if it is
locally injective at every vertex. Note that morphisms of graphs are always locally
injective at non-vertex points.

Note that injective graph morphisms are immersions, and so are covering maps. Also,
compositions of immersions are immersions.

Lemma 3.6. If f: I' > I is an immersion of finite graphs, then it can be factored as
f = coi for some finite graph T, injective graph morphism i: I' — I'", and covering
map c: I — 1",

Moreover, if all vertices in I have the same number of preimages in I', then we can
pick i to be a bijection on vertices.

Proof Sketch. Let d be the maximal number of preimages of a vertex of of I''. We will
first construct a space I'j (not technically a graph) in which I' embeds and which maps
to IV. The space I'j consists of I' along with enough isolated vertices so that every
vertex of IV has exactly d preimages and half-edges around each vertex so that the map
to IV is a local homeomorphism at every vertex.

Glue corresponding half-edges to get I'. Why does this work? If e is an edge
of I”, then each of the half-edges comprising e has d preimages in I'j. There are
d —|f~'(e)| copies of each half-edge in T{\I", and so there is a pairing which leads to a
valid gluing. 0
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Example 3.7. Consider the graph morphism f: ' — I drawn in Figure 9. In par-
ticular, f identifies the two left-most vertices, the two right-most vertices, and the two
horizontal edges. Then I'j and I'” are drawn in Figure 10.

FIGURE 9
——
1"6 T
: ._
FIGURE 10

We end with one additional observation on immersions. Note that there is a unique
path without backtracking between any two points of a tree. Since the universal cover
of a connected graph I is a tree, every element of m(I",v) is represented by a unique
path with no backtracking. In particular, every such path is non-trivial in 7 (', v).

Lemma 3.8. If f: ' > I is an immersion of graphs, then the induced homomorphism
fo: m(L,0) = m (17, f(v)) is injective.

Proof. Immersions map non-backtracking paths to non-backtracking paths. OJ

4. FoLpInG (09/06, UP, HT)

For the lectures on folding, in addition to the notes of Bestvina we’re following, one
can consult the original short paper of Stallings, which still reads very well 40 years
after it was written [Sta83]

Definition 4.1. A fold is a graph morphism f : I' — I obtained as follows: Let e, e;
be two oriented edges with the same initial point. Let IV = I'/(e; ~ es). Lastly, let f
be the corresponding quotient map.

We classify folds into four types, depending on which of e; and ey are loops and, if
both are not loops, whether they have the same endpoint.
Specifically:



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS

7& < T

FIGURE 11. Type 1

e, £
—
€
FI1GURE 12. Type 2
e ’?
ST S
¢

FIiGURE 13. Type 3

e If both ey, ey are loops, then it’s type 4

e If exactly one of e, ey is a loop, then it’s type 2

o If neither is a loop, and:
— The other end point of ey, ey is distinct, then type 1
— The other end point is the same, then type 3

Remark 4.2. A fold is somewhat analogous to a row operation on a matrix.

Lemma 4.3. If f : T — I is type 1 or 2, then
fe i m(T) — m ()

13
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FIGURE 14. Type 4

18 an isomorphism. If f is type 3 or 4, then f. is surjective and

Rank(m (I")) = Rank(m (T)) — 1.
Proof. Strategy: Pick maximal trees and get explicit identifications with free groups so
f« becomes very simple.

Type 1: Pick T a maximal tree in I containing e; and ey. Set 7" = f(7T'). Note that
T’ is a maximal tree: T” has all vertices of the quotient graph, and that all loops in 1"
lift to loops in 7', so T” has no loops.

< b r
O O—F
e —, o’ ]
T e >y

FIGURE 15

Pick an orientation of the edges of I' — 1. This gives an orientation on the edges of
IV — T'. Now, note that 7;(T") is isomorphic to the free group on edges in I' — T, and
m1(T”) is isomorphic to the free group on edges in I'" — T”. Since f induces a bijection
from I' = T to I — T, f, sends one basis to the other. See Figure 15.

Type 2: Pick T containing e, (assuming that e; is a loop and ey isn’t). Pick 7" =
f(T — 62).

Then f induces a bijection from I' — T  to I — T" as above, and f, is an isomorphism.
For instance, in the example, f, sends a — «, b — 3, and ¢ — ~. See Figure 16.

Type 3: Pick T containing e; but not ey, and set 7" = f(T).
Then f, ‘deletes’ the generator of the fundamental group corresponding to es, but
makes no other changes. In the example, f, sends a — a,b — ,c — id. See Figure

17.
Type 4: Pick T arbitrarily, let 7" = f(T'). See Figure 18. Generators corresponding to
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C & g/
5
=0 £ o
£ <

Y
FIGURE 16
Ql:C. 'P
O = 0=
L Tr

FiGure 17. This figure has a typo: it should be ey, that is labelled c,
not ej.

FIGURE 18

e; and ey get identified, and otherwise f, is a bijection on generators. In our example,
f+ is described by a — «a,b — (8 and ¢ — £. O

Remark 4.4. We could have shortened our analysis noting that (if you add vertices), a
type 2 fold is a sequence of type 1 folds. See Figure 19.

D
!

O
=
\

l
g

l
D

FIGURE 19
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Theorem 4.5 (Stallings, 1983). Every morphism I' — I between finite graphs can be
factored as

| I T ) e

where the last map is an immersion and the rest are folds.

Proof. By induction on the number of edges in I', if I' — I is not an immersion, it is
not locally injective near some vertex v, so a pair of edges ey, e; leaving v get identified.
Fold this pair to get

I' - P/(Gl ~ 62) —>P/

and apply induction to I'/(e; ~ e3) — I, O
Remark 4.6. It is important to note that

Im(m (I') - m (') = Im(m () — w1 (1),
since folds are surjective on ;.

Remark 4.7. Given a finitely generated subgroup H = {(wy,ws, ..., wg) of the free
group F,, = {aq,as,...,a,), we naturally obtain a morphism of graphs as follows. The
codomain will be the rose with n (oriented) petals labelled ay, . .., a,. The domain is a
rose with & (oriented) petals, with the i-th petal subdivided into a number of segments
equal to the word length of w;, with those segments labelled by generators of F}, so the
petal spells out w;. This is illustrated by the following example.

Example 4.8. F, = (a,b). H = {a®b,abab, a’ba). (Convention: @ = a~'). See Figure
20. Note that each generator w; of H becomes a subdivided loop in a bouquet graph,

KRS
b. ]
p AN o —
¥ o <
8 R ,Z e _
0 ® v b
%
a. ]
FiGure 20

and the edges of this subdivided loop are labeled according to the letters in the word
Ww;.
5. FIRST APPLICATIONS (09/08, SL, SK)

Corollary 5.1. For every finitely generated subgroup H < F,,, there is an immersion
g to a rose with im(g.) = H.

Proof. We begin by making a graph morphism whose image is H. Then by the factor-
ization we get from Theorem 4.5 and applying Remark 4.6, we get such a g. 0J
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S ,
CF by TG e
b
\\ o o b/

FIGURE 21

We now return to Example 4.8 to demonstrate the explicit folds. See Figure 21. The
map f; is given by folding each of the adjacent pink edges together, and f5 is given by
folding the adjacent blue edges. The map ¢ is an immersion.

Lemma 5.2. If g : T' — I is an immersion, then [v'] € m(I",v") is in the image of g.
if and only if v has a lift, 7y, to T’ starting and ending at v, where v € g~1(v').

Remark 5.3. The lift is unique if it exists since g is locally injective.

Proof. 1f the lift exists, certainly it maps to v. Conversely, suppose [V] = g«[7].
Without loss of generality, assume ~ is non-backtracking. Since g is an immersion, g7
is non-backtracking. Thus, by uniqueness of non-backtracking representative, we have
97 =" 0

We again return to Example 4.8 to demonstrate how we can use Lemma 5.2 to
conclude properties of our subgroup. See Figure 22. Firstly, we can conclude which
group elements are in the subgroup. For example, if we consider the element a? € F},
this corresponds to a loop [v'], with base point v;. We then lift this loop to a path in
', which starts at v, but does not end at v. Thus, a® ¢ H.

We can also conclude, since g, is an isomorphism to H, that a3b and aba® form a
basis for H and the pink and purple loops are a basis of 71 (I'y). In particular, the rank

of H is 2.
o 9 { .
Gy T 0o
TIF v o

FIGURE 22

Definition 5.4. A subgroup A of a free group F, is a free factor if there exists a
subgroup W < F, such that F, = A« W. Equivalently, A is a free factor if there exists
a basis of F,. containing a basis of A.

Exercise 3. A = (aba™'b™") and A = (a*) are not free factors of Fy = {a,b).

Example 5.5. A = (a) is a free factor of Fy, with W = (b). Note that W is not
unique. For example, we could choose W = {ab).
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Theorem 5.6 (Marshall Hall). If H is a finitely generated subgroup of F,,, then there
exists a finite index subgroup H' < F,, such that H is a subgroup of H' and H is a free
factor of H'.

Before we prove this theorem, we first introduce a lemma.
Lemma 5.7. If TV is a subgraph of T, m(I") is a free factor of m(T').

Proof. Pick a maximal tree 7" of IV and extend it to a maximal tree 7" of I'. m;(I") has
a basis corresponding to the edges I' — T, and m;(I") has a basis corresponding to the
edges IV —T". O

We now prove Theorem 5.6.

Proof of Theorem 5.6. Pick an immersion g : [V — R,, where R, is the rose with n
petals and im(g,) = H. Factor g as ¢ = co i, where i : I — T' is an injection and
c¢:I' - R, is a covering map. Then, 7 (") is finite index in m(R,,) since ¢ is a finite
cover, and (') is a free factor in 7 (I") by Lemma 5.7. O

Definition 5.8. A group is residually finite if the intersection of all the finite index
subgroups is the identity. In other words, for any non trivial element, you can find a
finite index subgroup not containing it.

As a warm up, we prove the following lemma:
Lemma 5.9. F), is residually finite.

Proof. Take a non-backtracking loop v in R,. One can naturally associate to v an
immersion g from a subdivided interval to R,,, so the image of g is 7. The domain of g
can be viewed as a line segment that’s split up into multiple labelled edges so that it
reads off the word associated to ~.

Factor g as an inclusion, 4, from the subdivided interval to some IV and a cover
¢:I" — R,. Then, m(I") is finite index and [y] ¢ 1 (I"). O

6. Cores (09/11, RE, JG)

Theorem 6.1. If H < F, is finitely generated and g € F,\H, then there is a finite
index subgroup H' < F,, containing H with g ¢ H'.

Proof Sketch. Choose an immersion f: I' — R, of a graph I' to the rose R,, such that
Im(f,) = H. It follows that the word g may not be read off in T, starting and ending
at the basepoint. If necessary we may enlarge I' to a graph I'y so that we can read off
g in T’y starting at the basepoint and ending at a point that isn’t the basepoint. The
enlarged graph looks like the original graph with a new subdivided interval sticking
off the point where we originally got stuck reading g; the segments of this interval are
labelled so we can finish reading g. Assume that g is reduced so that the map I'y — R,
is still an immersion. 3 .

We may now construct a finite cover I' — R,, and an inclusion Iy < I" so that one
obtains a factorization:
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Fo%f‘
Ry,

Put H' = m;(I") and observe that H = H'. Then H' is a finite index subgroup of F,
because I is a finite cover, and g ¢ H'. O

Remark 6.2. If H is as in the above theorem, then the conclusion of the theorem is
equivalent to the statement that H is the intersection of all finite index subgroups F,
containing H.

Theorem 6.3. F, is Hopfian, meaning that every surjective group homomorphism
f: F, — F, is injective.

Proof. Suppose that F,, is freely generated by the elements aq,...,a,. Consider the
following map of graphs below where the petals of the graph on the left are subdivided
and labeled in such a way to spell out the word f(a;) as one traverses around the petal.

FIGURE 23

Folding the map above we obtain a sequence of maps
Lop—T)— T, — R,

where ', — R,, is an immersion. Since the composition is surjective on my, it follows
that the map I'), — R,, is a graph homeomorphism for otherwise there is some word in
F, that can’t be read off in I';, and this word is not in the image. One may also observe
that the folds above are necessarily of type 1 or 2 (since the rank may not decrease).
As these folds induce isomorphisms on the fundamental group we deduce that f is an
isomorphism. O

Exercise 4. Give an algorithm to decide if a homomorphism F,, — F,, is:
(1) Surjective.
(2) Injective.

Exercise 5. Suppose w is a reduced word. Show that ay,...,a,_1,w is a basis if and
only if w is of the form w = w'a'w”, with w',w" € {ay,...,a,_1). (See Hint A.1.)

Corollary 6.4. A set of n elements of F,, is a basis if and only if it generates F,,.



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 20

Proof. Say {wi,...,w,} generate F,,. The map defined by a; — w; extends to a sur-
jective group homomorphism F,, — F,. This must be an isomorphism, implying that
{wy,...,w,} form a basis of F,. O

We now turn our attention to the main topic of this section which are “cores” of
graphs.

Definition 6.5 (Unpointed Cores). Let I" be a possibly infinite graph. The (unpointed)
core Core(I") is the union of all immersed loops, i.e. non-backtracking loops of T'.

We emphasize that our loops do not have a distinguished basepoint. An immersed
loop can be see as an immersion from a subdivided circle to the graph.

Definition 6.6 (Pointed Cores). Let (I', v) be a graph with a base point v. The pointed
core Core(I', v) is the union of all immersed paths that start and end at v.

As an example, consider the graph below with labeled unpointed and pointed cores.

ol

FIGURE 24

Definition 6.7. A hanging tree of I' is a subgraph T that is a tree and only meets the
closure of its complement at a single point.

FIGURE 25. The red subgraph is a hanging tree while the blue subgraph
is not a hanging tree for it meets its complement at two vertices.

Lemma 6.8. Assume that ' is a connected graph that is not a tree.

(1) Core(I") does not share edges with any hanging tree.
(2) Core(I") is connected.
(8) Every component of T'\Core(T") is a hanging tree.
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Proof. Addressing (1), let 7" be a hanging tree that meets its complement at v. Ev-
idently by its definition, any loop entering 7" must backtrack along some edge in 7.
Consequently no immersed loop of I' shares an edge with 7T'. This establishes (1).

For (2) say that w;, and wy are vertices of the core. It suffices to show that they lie
in the same connected component of Core(I"). Select two immersed loops I'y and T'y so
that w; is a vertex lying on ~; (for i = 1,2). If 73 and 79 intersect it is immediate that
wy and ws lie in the same connected component. Otherwise, since I' is connected, there
exists a minimal length path « joining ~; to 7. The graph determined by the union of
the paths 71 + 72 + « can be realized as the image of an immersed loop (see the figure

below).

Y

[

F1GURE 26. The “dumbbell” immersed loop

Whence w; and wy lie in the same connected component of Core(I'). Thus Core(I")
is connected.

Finally, for (3) let T' be a component of I'\Core(I'). Then T is necessarily a tree. It
suffices to show that T cannot meet Core(I") at a pair of points p; and po. If it did,
then the union a minimal length path from p; to ps in Core(I') and the union of a
minimal length path from p; to ps in T (such paths exist by connectedness) determines
an immersed loop of I" not lying entirely within Core(I")—contrary to the definition of
the core. OJ

The following corollary is now immediate.
Corollary 6.9. The complement I'\Core(I") is the disjoint union of the mazimal hang-
ing trees of I
7. Cores (09/13, SZ, KS)

Lemma 7.1. If v € Core(I'), then Core(I',v) = Core(I"). If v ¢ Core(I') and « is the
unique immersed path from v to Core(I"), then Core(I',v) = Core(I') U a.

Remark 7.2. If v ¢ Core(I'), it is in a hanging tree T" that attaches to Core(I') at p. «
is the unique immersed path in T" from p to v.
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FIGURE 27. Picture for v ¢ Core(I)

Proof. First we show Core(I') < Core(I',v). Indeed if £ is an immersed loop, then a
path like shows a, f < Core(I',v). Therefore Core(I') u a < Core(T", v).

For the other inclusion, by Lemma 6.8, I'\(Core(I") U «) is a union of hanging trees
and hence is disjoint from immersed path based at v. 0

Lemma 7.3. If e is an edge of Core(I',v) then the induced map of
(e, v) = (I',v)
18 not surjective on my.

Proof. Notice that the map is an immersion and thus injective on ;. By definition, e
lives on some immersed path + that starts and ends at v. Hence [y] ¢ m(T\e,v), as
each element in 7 is uniquely represented by a immersed path based at v. O

Lemma 7.4. Let T' be a finite graph and H a subgroup of m(T',v). Let p : (T'y,vy) —
(T, v) be the cover corresponding to H. Then
(1) plcore(tsom) is an immersion with Im ((p|core(ry,om))s) = H.
(2) If (I",v") = Core(I, ") and
g: (I",v) = (I',0)
is an immersion with Im(g,) = H, then there is an isomorphism i making the
following diagram commute

Core(T'y,vy) < : (T, v")
X(F )/

The main statement here is the second part, which says that “if it looks like the core
of the H-cover, it is the core of the H-cover.”

Proof. We address the two claims one at a time:

(1) plcore(ry,vy) is an immersion since p is a cover. The induced image in 7 is H,
since by definition Im(p,) = H and cutting off trees does not change ;.
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(2) Since Im(p,) = H = image(g,), covering space theory provides a lift of ¢ to a
map i : (IV,v") — (g, vg). Since i is a lift of g, it is an immersion. Since immer-
sion maps immersed path to immersed path, and since (I, v") = Core(I”,v'),
we get i(I") < Core(I'y, vg).

Now we consider Core(I'y,vy) as the codomain. We complete the proof as
follows.

1 is injective: Factor ¢ as an inclusion followed by a covering map. The
cover must be trivial since i, is surjective. (In fact it is an isomorphism since

Im(ps) = H.)
1 is surjective: If the image misses a edge, i, cannot be surjective by Lemma
7.3. OJ

It would be nice if a graph being equal to its own pointed core was a property that
is preserved under folding. It isn’t though. So, we are going to use a property that is
stronger than the graph being equal to its own pointed core, chosen so this property is
preserved under folding. That way, at the end of the folding, we can be sure that if the
starting graph had this property then the end graph is equal to its own pointed core.

Lemma 7.5. Suppose (I',v) — (I, v') is such that

) at every vertex w # v, there is a pair of outward-oriented
*

Then the same is true after doing a fold to the map.

edges whose image in I are not the same oriented edge.

Proof. Notice that folding only effect pairs of outgoing edges with the same image. [J

Non-example

a

b
Cc
b
2:$old \, G
at W Cc
b

FI1GURE 28. Non-example

Corollary 7.6. If f : IV — T satisfies (x) and we fold to get
I'=Ty—->I— - —>I,5%T

v — oy

If Im(f,) = H, then g : Ty, = T is isomorphic to the core of the H cover of T.
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Proof. The last lemma shows 'y, — I satisfies () condition. A graph is its own pointed
core if no vertex except maybe the basepoint is a leaf. So I'y; has no leaves other than
maybe vg. So (I'y,vr) = Core(I'y, vg). g is an immersion with Im(g,) = H. By Lemma
7.4 we have the result. 0

Remark 7.7. If wq, ..., wy are reduced words in Fj,, then the usual map I' — R,, shown
in Figure 23 from a subdivided rose to a rose satisfies the () condition. In particular,
the result of folding that map does not depend on how the folding is done, since no
matter how the folds are performed one obtains the core of the subgroup generated by
the W;.

Exercise 6. Suppose H < F,, is a finitely generated subgroup. Show H is of finite index
if and only if the core of the H cover of R,, is a cover. (See Hint A.2.)

Exercise 7. Show, for any homomorphism h : F, — F,, there exists a splitting F,, =
A« B such that A < ker h and B nker h = {e}. (See Hint A.3.)

8. FINITE GENERATION (09/15, LS, QS)

The goal of this section is to prove a theorem of Nielsen which gives a very explicit
generating set of Aut(Fy,).

Definition 8.1 (Signed permutation automorphism). Let F,, = {ay,...,a,). Then
an automorphism ¢ € Aut(F},) is said to be a signed permutation automorphism (or
sometimes just “signed permutation”) if there exists a o € S, such that for all i =
1,...,n,

o(a;) = af(i)-

Theorem 8.2 (Nielsen, First Version). The automorphism group Aut(F,,) is generated
by signed permutations and the automorphism given by

aiasg, 1=1

o1 I, — B, ai'—>{

a;, 1>1
Remark 8.3. This theorem looks inherently asymmetrical, which can be fixed in the

following way: if we conjugate ¢; by a signed permutation, we get all automorphisms
which are of the following form:

W) # io, a; — a;

Qi Qg
-1
;G

iy —

aj_laio.
Note that ¢; corresponds to ig = 1. All the automorphisms obtained this way can be

thought of “elementary” matrices. In particular Theorem 8.2 is reminiscent of the fact
that GL,, is generated by elementary matrices.
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Definition 8.4 (Whitehead automorphism). An automorphism f € Aut(F,) is said
to be a Whitehead automorphism if it is either a signed permutation or there exists a
multiplier m € {a,i =1,...n} such that for all i we have
Q;
a;m
f(aZ) = -1
m ~a;
mta;m
Exercise 8. An endomorphism f € End(F,) which has a multiplier in the above sense
is an automorphism if and only if f(m) = m. (See Hint A.4.)
Example 8.5. The conjugation by any element of F}, is a product of Whitehead auto-
morphisms, in particular Inn(F,) < (Whitehead).
Example 8.6. The following is a Whitehead automorphism of F3 with multiplier as:
ap — Gy 1a1
as = QA9
as +=— asasq.
Example 8.7. The following is not a Whitehead automorphism of Fj:
ap — Qg 1&1
s +— A9
as > azly L
Remark 8.8. Every Whitehead automorphism is a product of conjugates of ¢; by signed
permutations. In particular, the group generated by signed permutations and ¢; con-

tains the group generated by all Whitehead automorphisms. So the following version
of Nielsen’s Theorem implies the first version above.

Theorem 8.9 (Nielsen, Second Version). The automorphism group Aut(F,) is gener-
ated by all Whitehead automorphisms.

The proof of this theorem will require the following definition:

Definition 8.10 (Change of maximal tree automorphism). A change of mazimal tree
automorphism of F,, = {ay,...,a,) is any automorphism of the following form:

Let I' be a graph and T,7T» two maximal trees. For ¢ € {1,2}, pick an orientation
of the edges of I'\T; and a bijection of these edeges to {ai,...,a,}. This yields an
isomorphism

¢i . 7T1(F) — Fn
Then the composition

mi(T)
(O
F, F,
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is called a change of maximal tree automorphism.

Example 8.11. Note that the definition of a change of maximal tree automorphism
did not exclude the case that 77 = T5. The change of maximal tree automorphisms
where T7 = T5, are exactly the signed permutation automorphisms.

Example 8.12. Consider the graph in Figure 29.

Qg Qg
T\ (V) O\ A+
Gy Gy
FIGURE 29
Then we have
ap — ap
Qo —> A0

as — al_lagal
a4 —> Ay
In particular, this automorphism is Whitehead with multiplier a;! This example is

not misleading, as we shall see in the next proposition that all change of maximal tree
automorphisms are products of Whitehead automorphisms.

Proposition 8.13. Let I' be a graph and denote by Ty, To maximal trees of T' with
Ty = (T) — e1) U ey. Then choose the following data:

(1) orient the edges of T'\(T1 v Ty) and label them aa, . .., ay.

(2) orient ey so that it points towards the base point in T}

(8) orient ey so that it points away from the base point in T.
When we use Ty, we label es by a1 and when we use Ty, we label e; by ay. Then the
change of maximal tree automorphism is Whitehead with multiplier a;.

Lemma 8.14. The graph Ty — ey = Ty — ey has two components which we call A, B
respectively and both e; and ey join A to B.
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Note that one of the two components could be a single vertex. (We are removing the
interior of the edges, not their vertices; or one can say that we're removing the edges
in a combinatorial sense.)

Proof. This follows from the defining feature of a tree, which is that every edge sepa-
rates. 0

Proof of Proposition 8.13. First we note that contracting a tree does not change the
fundamental group. Hence we may contract both components of 77 —e; = Ty — eo,
which we denote by A and B respectively. This gives a graph with two vertices [A], [ B].
Up to signed permutation, we may assume that the basepoint is contained in A. The
graph now looks like Figure 30, which the reader will note is very similar to Example
8.12.

FiGURE 30

We show the change of maximal tree automorphism is Whitehead by checking what
it does to generators. The generators of F), correspond to the edges not on 77, which
fall into five classes. The image of a generator a; can be read off determining the loop
that reads a; using 7T and associated data, and seeing what that loops reads when one
uses 15 and associated data. The result is as follows:

2) if a; is the label of a loop attached to [B]: a; — aj‘a;a;

3) if a; is the label of the edge es: a3 — a4

4) if a; is the label of an edge going from [A] to [B]: a; — a;a4
5) if a; is the label of an edge going from [B] to [A]: a; — a; 'a;
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FI1GURE 31. The orange loop reads a; using 7T} and its associated data,
and it reads aflaial using 75 and its associated data.

The second case is illustrated in Figure 31.
Thus we see that the change of maximal tree morphism is a Whitehead morphism. [J

9. FINITE GENERATION, Out(F,) (09/18, NL, LS)

Exercise 9. IfI' and I'" are mazimal trees in a finite graph G, then there exist mazximal
trees ' =Tg,..., Ty =1 such that I';,1 is obtained from I'; by removing one edge and
adding another. (See Hint A.5.)

Corollary 9.1. Any change of maximal tree automorphism is a product of Whitehead
automorphisms.

As a result, the previous versions of Nielsen’s theorem are equivalent to the following
version.

Theorem 9.2 (Nielsen, Third Version). Aut(F,) is generated by change of maximal
tree automorphisms.

Proof. Let f e Aut(F,). We will use the usual morphism of graphs I' — R,, associated
to f, pictured in Figure 32, from a subdivided rose I" to the rose R,,.
Factor this map as
r=Trg—--—->I'y—R,

where I'; — I';,1 is a fold and the last map ¢ : I'y — R,, is an immersion. Note that g
is an isomorphism since f is surjective and Im(f,) = Im(g.), and w € F,, is in I'm(gs)
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Flo)

#om)

FIGURE 32

implies that it lifts to I';. Also note that all the folds in this factorization are type 1 or
type 2, since type 3 and 4 folds cause the rank to go down.

Recall from the proof of Lemma 4.3 that if I'; — I';,; is a type 1 or type 2 fold, we
can pick a maximal tree in I'; and T';;; so that the map F,, — m (I';) —» m(I'i11) — F,
is the identity (where the first and last maps are obtained by collapsing the maximal
trees we have picked for I'; and I';;1) respectively. Doing this for every consecutive pair
of maps, we obtain

1 () > m (1) > mp(I9) 5 > m (L) ——
| ] ] / |
F, F, — F, F, —— F, F, — F,

where all the horizontal maps in the second row are change of maximal tree automor-
phisms and the maps F,, — m(I;) — m(I';41) — F,, are the identity. O

We now discuss Out(Fy). Let T be a torus and X be the punctured torus 7" — p so
m(X) = Fy. Recall that

MCG(S) — Out(Fy) — GL(2, 7).

This sequence exists in any rank, but we will show that in rank 2 the maps are isomor-
phisms.

Lemma 9.3. The map MCG(X) — Out(Fy) is surjective.

Proof. Let us represent X by drawing the torus as the square with edges with identified
and by removing the point corresponding to the four vertices. By Nielsen’s theorem,
it suffices to show that MCG(X) contains the signed permutation automorphisms and
the map ¢, defined by

ap — ay, a9 — A1Q49.
The signed permutations are generated by rotation by 7 and reflection. For example,

reflecting vertically yields the map a; ~— a; and ay — a; ', as indicated in Figure 33.
The map ¢; is induced by the induced action of

(1)

on ¥ = (R* — Z?%)/7Z* as indicated in Figure 34. O

1 (Rn)
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O.L A
Ay, =2 0\7/“/]

FIGURE 33

£y : ) ¢
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F1GURE 34. This figure has a typo: the bottom left entry of the matrix
should be 1.

Lemma 9.4. The composite MCG(X) — GL(2,7Z) is injective.

Proof. Take [p] € MCG(X) which maps to the identity in GL(2,Z). The map ¢ :
T —{p} — T — {p} is induced by a map p : T — T. Its action on 7((T) = Z? is the
identity. Then by [Hat02, Proposition 1B.9], ¥ is homotopic to the identity, so [¢] is
the identity. O

Corollary 9.5. Out(F,) - GL(2,Z) is an isomorphism.

Definition 9.6. Let I A,, < Out(F,) be the kernel of Out(F,,) — GL(n,Z). This group
is referred to as the “identity on abelianization” or the “Torelli” subgroup.

We have just shown [ A, = {id}. This is far from the case with I A;.

Example 9.7. The map on Fj given by a; — agalag_l, as — s, a3 — ag is not inner
and is in [As.

In fact, I Az is not finitely presented, and whether this is true for I A,,n > 4 remains
an open question.
The situation for higher genus surfaces is also quite different.

Example 9.8. Let ¥ be the punctured genus 2 surface. We can visually represent ¥
as an octagon with its edges identified missing its center.

It turns out that every element of MCG(X) sends the loop ¢ = [ay,b1][ag, bs] to
a conjugate of ¢, but there exists ¢ € Aut(m (X)) where p(c) is not conjugate to c.
Therefore MCG(X) — Out(m (X)) is not onto.
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FiGURrE 35

10. INTRODUCTION TO OUTER SPACE (09/20, SK, KL)

Today, we’'ll be introducing Outer Space (a space that Out(F},) acts on). We continue
to follow resources of Bestvina, now additionally using [Bes14].

Definition 10.1. A metric on a graph I' is a function Edges(I") — (0, ). The image
of an edge is called its length, and the sum of the lengths is called the volume.

Remark 10.2. If T has k edges, the space of metrics on I' is (0, 00)*.

metrics comprise an open simplex {(¢y,...,0;) € R*: Zle l;=1,0; > 0}.

The volume 1

The diagram below shows examples of these spaces where k = 2 or & = 3 (note that
the latter is missing its vertices and edges).

|
| |

AN
1N LN
K=2 A

k=2

FiGure 36. Examples of open simplices

Eventually, Outer Space will be put together from simplices as in the above diagram.

Definition 10.3. A marking of a graph I' is a homotopy equivalence f : R, — I'. An
inverse marking is a homotopy equivalence g : ' — R,,.

We now think about how we might get inverse markings in practice.

Lemma 10.4. Let I' be a graph such that m(I') = F,,, and let T be a mazimal tree of
I'. Orient the edges of I' — T and label them by a basis wy, ..., w, of F,. Then the map
g : ' = R, that collapses T and maps the remaining edges according to their labels is
an inverse marking.

See the example below of an inverse marking, where the colors indicate the map from
I' to RQ.
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-

A

2

R

2

FiGURE 37. Example of an inverse marking

We now prove Lemma 10.4. Recall that Whitehead’s theorem tells us, heuristically,
that if a map between reasonable spaces induces isomorphisms on homotopy groups,
then the map is a homotopy equivalence.

Proof of Lemma 10.4. Pick any basepoint v of I' (note that the choice of basepoint
doesn’t matter). Then f, : m(I',v) — m(R,, f(v)) is an isomorphism because a basis
of (', v) maps to a basis of 7, (R,,). Whitehead’s theorem tells us that f is a homotopy
equivalence. O

Exercise 10. Prove that two maps f,g: (T,v) — (I',v') between graphs are homotopic
if and only if fu = gs. (This will be proved in class next lecture.)

Example 10.5. Let wy, wy be a basis for F5. Consider 3 maximal trees, 11, Ts, T3, of
the theta graph:

- -
0w, wz W, wy, bW,

FiGure 38. Example of homotopic inverse marking

Then the maps to Ry described in the above diagram all describe homotopic inverse
markings. We can use the previous exercise to check this. Note that green [a] and
orange [(] generate m1(I"). In all three cases,

[a] = w,
[5] = Ws.

We now define outer space.
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Definition 10.6. The (Culler-Vogtmann) outer space CV,, is defined as

{(T,¢,h) : T is a finite graph with all vertices of valence > 3,
¢ is a metric on I' of volume 1, h: I' - R, is an inverse marking}/ ~,

where (I, ¢,h) ~ (I, ¢, 1) if there exists an isometry p : I' — I" such that A’ o p is
freely homotopic (i.e. no basepoint is preserved) to h:

> TV

\/

Remark 10.7. The outer space CV,, has a nice topology that we will define soon.
10.1. CV.,.
Example 10.8. There are 3 graphs with all vertices of valence > 3 and m = F5 :

o@@ O—O

Rose Domoe i\

FiGUrRE 39. Graph with all vertices of valence at least 3

Say we have a marked theta graph:

F1GURE 40. Marked theta graph

This gives an open 2-simplex in CVs:

a ~———7

FIGURE 41. Simplex of marked theta graph

We'll now give a “warm up” discussion of what might be going on at the boundary of
this open simplex. Since we haven’t even defined the topology, this will necessarily be
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a heuristic discussion, but hopefully it will help to motivate a more rigorous discussion
afterwards.

For example, as /3 — 0, the above theta graph becomes the rose on the left in the
figure below, which corresponds to the pink point in the open 2-simplex:

Q;

Note a, b
is 4 markmj

FIGURE 42. A graph that lives on this 2-simplex

In particular, each point of the open 1-simplex /3 = 0 lying on boundary of the open
2-simplex corresponds to a rose with edges of length ¢, and ¢y with ¢; + ¢5 = 1. (And
similarly for each point of the other two open 1-simplices on the boundary of the open
2-simplex.) Interior points ({1, {5, ¢3) of the 2-simplex correspond to theta graphs with
edges of lengths /1, {5, /3 > 0 respectively. Below is a diagram that shows where a few
different graphs lie on the 2-simplex.

FIGURE 43. More graphs that live on this 2-simplex

Finally, note that we do not include the vertices, since if we collapse 2 edges of the
0 graph, the resulting graph does not have fundamental group isomorphic to F5. More
formally, a sequence of triples ({1, s, ¢3) where ¢; — 0 and ¢5 — 0 cannot converge in
CVs; it goes to 0.

Example 10.9. Consider a dumbbell:
a b
Ly,
ﬁ,( ﬁ&

FIGURE 44. Dumbbell graph

Its simplex has only one open edge in its closure, as the limit as /5 — 0 exists in
CV,, but the limits as ¢; — 0 and ¢35 — 0 does not.
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T
a0

F1GURE 45. The simplex of the dumbbell graph

11. C'V,, MARKINGS (09/22, YM, UP)

In the last lecture examples of (open) simplices in CVy were given. In this lecture,
additional discussion of CVy will be given, and more tools related to markings will be
provided.

Recall that for theta graphs it is valid to collapse any one edge while keeping the
fundamental group intact, which gives a 2-simplex with 3 of its (open) edges present
in outer space. We can’t collapse more than one edge without changing 7, so the 2-
simplex has the vertices missing. For dumbbell graphs, only one edge of the 2-simplex
is present in outer space, as collapsing the loops will kill a generator and result in a
different fundamental group. Therefore for each theta graph it is connected to three
edges, but each dumbbell graph is only connected to one edge. Every edge of CV,
corresponds to a marked rose, and is attached to three 2-simplices as follows:

mutual edge

FIGURE 46. Every edge in C'V5 is adjacent to three 2-simplices
None of the vertices are in this complex. Notice that two of the edges in the purple
triangle representing the dumbbell graph are not included in the space.

Definition 11.1. The Reduced Outer Space (of rank 2) is C'V; without the dumb-
bell graphs.

Remark 11.2. Outer space is not a manifold.
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Reduced C'V; looks like a 3-regular tree of triangles. Another common representation
of C'V, is using “distorted” triangles inscribing on a circle, as follows:!

FiGuRre 47. CV,

The only intersection of these triangles with the circle are their vertices, which we
have shown are not in C'V5. Any point in the disc represents a graph with a certain
marking in reduced C'V5.

Remark 11.3. Although reduced CVj is a manifold, reduced outer space in higher rank
is not a manifold.

We now turn to an interlude on markings, first proving a special case of [Hat02,
Proposition 1B.9]:

Lemma 11.4. Let f,g: (I',x) — (I',2') be morphisms of finite graphs with f, = g..
Then f and g are homotopic through maps sending x to x'.

Proof. Let u : (I',2) — (I',x) and o' : (I, 2') — (I, 2’) be the universal covers. Then

A

fowand gowu can be lifted to maps f and g:

(I, )
(', z)

For a e m(I',x) and p e [, both f, § satisfy

:;; (T, )
— A

g

N

flap) = f(@)f(p),  d(ap) = fu(@)a(p)

IThis image is retrieved from Vogtmann’s article [Vog08].


https://www.ams.org/notices/200807/tx080700784p.pdf
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Then define a straight line homotopy from f to g,
H:T x [0,1] — T,

by H(p,t) travelling along the geodesic from f (p) to g(p) with constant speed parame-
terized by [0, 1]. Due to equivariance, we get an induced map H : I" x [0, 1] — I” with
Hy = f and H; = g, which is the desired homotopy. 0

Recall that for a given map s : [0, 1] — X, we get an isomorphism on the fundamental
group I : m (X, s(0)) — m (X, s(1)) by extending loops:

FIGURE 48. Isomorphism Characterized by Homotopy

If s(0) = s(1), then this results in a conjugation by s. Recall also that the universal
cover of (X, x) can be defined as paths starting at z modulo homotopy rel base points.
Therefore s could also give a homeomorphism between the model of the universal cover
based at s$(0) and the universal cover based at s(1).

Lemma 11.5. Let f,g : I' — I be maps of graphs. Suppose there exists a continuous
map s :[0,1] - I” s.t. s(0) = f(x),s(1) = g(z); and suppose that g, = I o fs, i.e. the
following diagram commutes. Then f and g are homotopic.

m (T, z)

12

m (I, f(z)) =

» m(IY, g(x))

Exercise 11. Prove the above lemma. (See Hint A.6.)

Lemma 11.6. Let (I',v) be a graph and (X,z) a space. Then for any p : m(I',v) —
m (X, x) there exists a f: ([ v) = (X, x) with f, = p.
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Proof. This is clear via collapsing a maximal tree T' < I', and sending each petal a to
a loop in p(a). O

Lemma 11.7 (Whitehead’s Theorem for Graphs). Let f : (I',v) — (I",v') be a graph
morphism with f, @ m(I',v) — m(I",v") an isomorphism. Then f is a homotopy
equivalence.

Proof. Pick g : (I",v") — (T, v) with g, = (f«)~'. It suffices to show that fog and go f
are homotopic to id. This follows from Lemma 11.6 as f, o g« = g« o fi = id, i.e. they
induce the identity map in 7. 0

Remark 11.8. The results above show that homotopy equivalences on pointed graphs
are in bijection to isomorphisms from 7; to F),.

12. MARKINGS, THE TOPOLOGY ON CV,, (09/25, SZ, SY)
Definition 12.1. Let f,¢g: ' — I". Fix a base point v € I". We say

ferm(D,0) = m(lY, f(v)
and
gx : m(I'v) = m (1Y, g(v))
are conjugate if there exists a path s such that
gs =150 [

Remark 12.2. If g(v) = f(v), the maps are conjugate if and only if there exists a €
7 (I, f(v)) such that g, = af.a™t.

In general, if we fix some arbitrary arc sg, fi and g, are conjugate if and only if there
exists an « such that g, = a(l,, o fi)a™ '

Lemma 12.3. f and g are homotopic if and only f. and g, are conjugate.

Proof. 1f s exists, this follows from Lemma 11.5.
Conversely, if there exists homotopy

H:Tx[0,1] >
then take s(-) = H(v,-). See Figure 49. O
Exercise 12. Finish this proof.
Corollary 12.4. The following is a bijection:
{inverse markings I — R,,}/homotopy < {isomorphisms m(I') — F,}/conjugation

The bottom line is that one can use identifications of 7y (I") with F,, up to conjugacy
instead of markings as we defined them, if desired.
Now, we go over some basics on the topology of C'V,.

Proposition 12.5. Fix a graph ' and an inverse marking h. The map from the open
simplex of metrics to C'V,, defined by

[e . BT — (0,0), Y €(e) = 1] — (T, ,h) e CV,

1S 1njective.
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r

1

FI1GURE 49. Intuitively, the red curve is homotopic to the blue curve

Proof. Say ¢ # ¢’ but (I',£,h) ~ (I', ¢/, h). There exists isometry
p: (T, 0) — (T,0)
such that h o p ~ h. Every free homotopy class in I' contains a unique immersed loop.

Since h o p ~ h, p must map each (oriented) immersed loop to itself, and the result
follows from the following exercise. 0

Exercise 13. Let I" be a finite graph with all vertices of valence = 3. Let p:T' — T be
a graph isomorphism that takes each (oriented) immersed loop to itself. Then p = id.
(See Hint A.7.)

Definition 12.6. For (', k) a graph with an inverse marking, let 3(T", h) be the set of
functions £ : ET — [0,0) such that }]¢(e) = 1, and the set of edges e with £(e) = 0 is
a forest.

Remark 12.7. (', h) is a union of open simplices of different dimensions. There is a
natural map X(I", h) — CV,,, obtained by collapsing the forest.

1
2 1
2
1 —
| %

F1Gure 50. Example of collapsing a forest: this is a homotopy equiva-
lence, so a marking of the left graph induces a marking of the right graph

)
N =

Lemma 12.8. This map (', h) — CV,, is injective.

Proof. (T", h) is a union of open simplices, each of which maps injectively to C'V},. So
it suffices to show that the images of different simplices are disjoint. This follows from
the following exercise. 0
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Exercise 14. Let Fy, F5 be distinct forests in I'. Then there exists an immersed loop «
with a N Fy and o n Fy having different number of edges. (This means, in the simplices
corresponding to collapsing Fy and to collapsing Fy, the immersed loop o has a different
number of edges. See Hint A.8 and Figure 51.)

@ S

o®

FIGURE 51. Example: Each edge (1-simplex) of the triangle corresponds
to collapsing one of the three edges in the “© graph”. In this picture, the
image of brown loop « has either one or two edges in different 1-simplices.

Definition 12.9. The topology on CV,, is defined so U < C'V,, is open if its preimage
in each (I, h) is open.

From the above, we have come very close to showing there exists a simplicial complex
X and a subcomplex X such that C'V,, is homeomorphic to X — X,. That is true, and
we will take it for granted going forward.

13. THE FAREY GRAPH (09/27, SY, SL)
For this lecture we won’t follow any particular source, but one reference is [Hat22].

a

Definition 13.1. b)

e 72 is called imprimitive if 3m > 1, m € Z, (ZO> € 72, with
0

Z =m ZO . Otherwise, it is called primitive. Equivalently, Z) € 72 is primitive
0

if and only if ged(|al, b)) = 1. (Recall: ged(n,0) =0, VneN.)
Remark 13.2. If g € GL(2,Z), then (Z) is primitive < ¢ (Z) is primitive.

a ¢

Exercise 15. (Z) 18 primitive < 3 ¢, d € 7 with (b d

) € GL(2,Z). (Hint: Euclidean
algorithm.)

Remark 13.3. Primitive elements of Z? mod negation are in bijection to Q U {00} via

a a
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Instead of primitive elements, people often speak instead about fractions in lowest
terms, with %, %, % being considered in lowest terms.

Definition 13.4. The Farey graph is the graph with one vertex for each primitive

element of Z? mod negation, and an edge from + (Z) to + (2) if det (Z cci) = *1.

Remark 13.5. Often one uses Q u {00} to label the vertices.

b d

a+c a+c
£(51e) £(510)

Suppose we have an edge from + (a) to + (C), then F' contains the following:

=(5-2)
FIGURE 52. Left: two triangles adjacent at an edge. Right: Just the top
triangle.

We can justify the inclusion of the edges in this figure by noting that

Gor)-G a6 = (Gi)-Gok )

Remark 13.6. The top triangle is more symmetric than it looks, since

()= @)+ () e ()= G20+ ()

So each vector can be written as a sum of the other two if we pick suitable signs. This
also holds for the bottom triangle.
Note also, that there are 4 sums of the form

()= )

so 2 after moding out by negation. Both of these are represented in our local picture
above.

Definition 13.7. A triangle (aka. 3-cycle) in F' is good if it is of the form of the left
triangle in Figure 53.
Remark 13.8. By definition, each edge is part of 2 good triangles.

Remark 13.9. Later we will see all triangles are good.
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FiGURE 53. Left: A good triangle. Right: a collection of adjacent good
triangles.

Big picture idea: We want to understand F' by “exploring” using triangles.

Remark 13.10. Every vertex is a part of an edge. If <Z) is primitive, then there exists

(ccl) such that
det (Z cci) =+1.

Hence, we get and edge from + (Z) to + ( ) (See Exercise 14.)

(@)

d

Lemma 13.11. For any two edges, e1,es € E(F), there exists a sequence of good
triangles Ty, Ty, - - - ,'T},, such that

e ¢1 is an edge of Ty,

e ¢y is an edge of T,, and

o T, and T;1 share an edge.

Proof sketch. Say the vertices of e; are (Zl) and (§1> and the vertices of ey are (22)
1 1 2
C2
and ds

We can find a sequence

141\ (1 0) (0 1\ (1 0
Ml’MQ"“’M’CE{(o 1)’(i1 1)’(11 0)’(0 il)}

such that
a2 C2) _ (41 C1) My M
(52 d2) (bl d1> My 2 b

This follows from the general fact that GL(n,Z) is generated by elementary matrices,
but also keep in mind that the n = 2 case of this fact used here is easier than the n > 2

case.
a a+c\ [a c 1 1
b b+d)] \b d 0 1)’

Keeping in mind that
etc, we get the result. 0
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Remark 13.12. Tf we use Q u {00} instead of primitive vectors, good triangles look like:

atc
b+d
a c
b d
FIGURE 54

Lemma 13.13. If there is an edge from + (Z) to + (ccl) and % < 2, b,d >0, then

a—+c a c a—=c a c
“(pa) =it (o)
b+d b d b—d b d
Proof. For example
a+c a
>—-<ad—bc<0
b+d b ’
a c
and ad —bc = bd (— — —) < 0. Similar estimates prove the remaining statements. (For
some estimates one needs to consider cases depending on the sign of b — d.) 0
oo
2 1 1 0 112 1323 1 547 3 857 2 9
3 72 73 1 135 2 531 1 435 2 5314 1 1

F1GURE 55. Farey graph on upper half plane

Corollary 13.14. If we draw F with vertices in Q U {0}, and edges as semicircles
i the upper half plane, then the edges do not cross and all complementary regions are

triangles.
See Figure 55.2

Proof. We know every edge e is part of 2 triangles. The last lemma says they are on

opposite sides of e.
Start with one triangle and iteratively add adjacent good triangles. Lemma 13.11

says you get all of F' in this way. O

2This image is retrieved from Dr Ian Short’s webpage.


https://www.open.ac.uk/people/is3649
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a—c __

b—d

a C

a—c a c
b—d b b+d d

e
Y
o

FIGURE 57. Adjacent triangles cannot overlap, so the pictures in this
figure never occur

If you use stereographic projection, one gets the different but equivalent picture
shown in Figure 58.3

Corollary 13.15. The following are true:

o All triangles are good.
e I is planar.
e The dual graph is the 3-reqular tree.

Remark 13.16. All vertices have o valences.

14. CVy, cvg, AND THE FAREY COMPLEX (09/29, YL, ZH)

Recall the set-up of the Farey graph. Its vertices are primitive elements Z e 72

and there is an edge between (Z) € 72 and (ccl) e Z2 if det (Z ccl) = +1. We view

the primitive elements as fractions, up to a sign, and imagine them as points on the
circle as in Figure 58.

Definition 14.1. The Farey Complex F, is F with its triangles glued in.

Thus Fa is a simplicial complex of dimension 2. The above results give the following,
where (Fa)o denotes the zero skeleton of Fa, i.e. the set of all its vertices:

Corollary 14.2. Fa — (Fa)o is homeomorphic to an open disk.

3This image is retrieved from Ian Agol’s paper.


https://doi.org/10.48550/arXiv.math/0406407
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FI1GURE 58. Farey graph and dual graph on unit disk

Definition 14.3. Reduced outer space cv,, is the subset of C'V,, where the graph
has no separating edges.

Remark 14.4. cvy = CVo\{dumbbells}.
In general, we know the following about cv,:
Lemma 14.5. cv, is a deformation retract of CV,,.

Proof. First note that the set of separating edges is a forest. The deformation retract
is just linearly contracting each edge of the forest, while rescaling the lengths of the
remaining edges to keep the volume constant. See Figure 59. 0

Our goal is to prove the following, which finally provides a rigorous justification for
the picture of C'V, presented in Figure 47.

Theorem 14.6. cvy is homeomorphic to Fa\(Fa)o-

To prove this theorem, we will use the abelianization map Ab : F, — Z2, and,
crucially, the fact that Out(Fy) — GL(2,Z) is an isomorphism. We begin by relating
bases of F} to bases of Z2.

Definition 14.7. A basis of Z? is a pair v, w € Z? such that the map Z? — Z? sending
(é) to v and <(1)> to w is an isomorphism. Equivalently, every point in Z? is a linear

combination of v, w with integer coefficients.
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O—C

FIGURE 59

a ¢

Remark 14.8. The pair (Z) , (2) forms a basis if and only if det (b d

) = +1, since

the inverse of (Z ccl) in GL(2,Q) is

1 ( d —c
a ¢ —b a ’
det (b d)

Lemma 14.9. The map Ab induces a bijection between conjugacy classes of bases of
F5 and bases of 72.

Proof. Surjectivity follows from Out(F,) — GL(2,7Z) being surjective and the fact that
there is only one GL(2,Z)-orbit of a basis of Z.

To show injectivity, suppose v, w and v', w’ are two bases of F,, with Ab(v) = Ab(v’)
and Ab(w) = Ab(w'). Define ¢ € Aut(Fy) by ¢(v) = ¢ and ¢(w) = w’. Then
Ab(¢) = Id € GL(2,Z). Since Out(Fy) = GL(2,Z), we know that ¢ is an inner
automorphism, i.e. there exists a g € Fy such that for all x € I, we have ¢(z) = grg~'.

Therefore, the two bases are g conjugates of each other. 0

Definition 14.10. A primitive element of F, is an element contained in some basis
of F,.

Remark 14.11. Primitive elements of > map to primitive elements of Z2. For example,
a? and aaza; ‘a; ' are not primitive elements.

Lemma 14.12. The map Ab induces a bijection between conjugacy classes of primitive
elements of Fy and primitive elements of 7.2.
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Proof. Surjectivity follows from the proof of the previous lemma.

To show injectivity, let v,v" € Fy be primitive, with Ab(v) = Ab(v'). First we can
find w,w’ € F» such that v,w and v/, w’ are two bases of Fy. Define ¢ € Aut(F3) such
that ¢(v) = v’ and ¢(w) = w'. Without loss of generality, assume v = a; and w = as.

Then we have Ab(v) = (1) = Ab(¢v'). In addition, we have
1 n
Ab(g) = (0 il)

0
for some n € Z since det(Ab(v'), Ab(w')) = £1.

A preimage of Ab(¢) is the map 1) € Aut(F;) sending a; to a; and ay to a3'a?. Since
Out(Fy) ~ GL(2,7Z), we have ¢ = gipg~!, for some g € F,. In addition, since ¢ (v) = v
and ¢(v) = v’, we have

v' = (v) = gy(v)g™ = gug™,
and so v and v’ are conjugate. O

We warn however that many elements of F;, are not primitive but map to primitive
elements of Z2.

Exercise 16. Show alaj is not primitive, even though its image in Z* is (2, 3), which

is primitive. (See Hint A.9.)

We have now characterized the vertices of F in terms of F,. Next, we characterize
the edges.

Lemma 14.13. Let Ci,Cy be conjugacy classes of primitive elements in F,. Then
ADb(Cy) and Ab(Cs) are connected in F if and only if there exist vi € C; and vy € Co
such that vi, vy is a basis of Fy.

Proof. Tf vy, vy is a basis of Fy, then Ab(v;) = Ab(Cy), Ab(vy) = Ab(Cs) is a basis of Z?
by Lemma 14.9. Thus they are connected in the Farey graph.

Conversely, suppose that Ab(C;) is connected to Ab(Cs) in F. Then Ab(Cy), Ab(Cz)
is a basis of Z?. By Lemma 14.9, there is a basis v1, v, of Fy such that the conjugacy
class of v; is C; for i = 1, 2. O

Remark 14.14. In summary, we can alternatively define F as the graph with a vertex
for each primitive element of F; up to conjugacy and inversion, and an edge if you can
make a basis with one element from each vertex.

To draw the connection between cv, and the Farey graph, it’s important to first
recall from Example 10.5 that if wq, ws be a basis for F3, the following markings are all
homotopic:

Key Observation: the edge labels in Figure 60 are in {wi™', wy!, (wjw,')*}. The
abelianization of these elements are the vertices of a Farey triangle:

We can label each of the three missing vertices of the simplex of metrics by one of

{wi™" Wi (wywy )V,

based on which one has length approaching 0 as you approach that missing vertex.
Now map the simplex to Fa by mapping the missing vertices to the corresponding
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wgwfl

wq

FIGURE 60

FIGURE 61

vertices of Fa and extend linearly. This gives a map cvy — Fa\(Fa)o. This map is a
homeomorphism because it is a covering map and Fa\(Fa)o is simply-connected.

15. THE AcTION ON CV, (10/02, NL, KL)

Lemma 15.1. The largest and smallest dimensional simplices in C'V,, have dimension
3n — 4 and n — 1 respectively, and they correspond to the trivalent graphs and roses
respectively.

Proof. If I" has E edges and V' vertices, then the dimension of its cell is £ — 1. We have
V—-—FE=1—-n,and 1 <V < % Then V =1and V = % correspond to the smallest
and largest dimensional simplices respectively. O

Here is another perspective we can take on this lemma. Observe that

(1) if T has an edge e that isn’t a loop, contracting e gives a graph corresponding
to a smaller simplex;

(2) if I' is not trivalent, it has a vertex of valence at least 4. It can be replaced with
an edge in multiple ways, giving a new graph with larger simplex. See Figure
62.

Remark 15.2. Thus, codimension 1 simplices are expected to be adjacent to 3 maximum
dimensional simplices. In Figure 62, if the original graph on the left is in cv,, and v is
a non-separating vertex, all 3 are in cv,,.
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FIGURE 62

Exercise 17. CV,, is locally finite (i.e., each simplex is in the boundary of only finitely
many others).

Now we turn our attention to the action of Out(F},). The results we proved on
markings imply that Out(F},) is isomorphic to the group of homotopy equivalences
of R,. With this implicit, an element ¢ € Out(F),) acts on CV,, by [(I',{,h)] —
[(T',1, o0 h)]. Alternatively, we can view a marking as an isomorphism m;(I") — F}, up
to conjugation, and the action of ¢ is by post-composition with ¢.

Lemma 15.3. Let (I',l,h) € CV,,. The map Isom(I',l) — Out(F,) defined by p —
hy o @4 0 bt is an isomorphism onto Stab(T', 1, h).

This map is just considering the action on m; of the graph, and using h to translate
that to F,.

Proof. By Exercise 13, the map is injective. To see that the image lies in Stab(I',l, h),
note that hyp.h, (T, l,h) (T, 1,%) where ¥, = hypih, hy = hyp,. But then

2 7T

| A

commutes up to homotopy because it commutes on 1. Therefore, [(I',1,h)] = [(T',,v)]
in CV,,, and so hyp.h,! € Stab(T',1, h). O

Exercise 18. Check surjectivity.
Corollary 15.4. The action of Out(F,) on CV, has finite stabilizers.

Exercise 19. Show Out(F,) ~ CV,, has no kernel if n = 3. If n = 2, then the kernel
is the subgroup {a, — a; "', ay — a5 ") = 7/27.
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Exercise 20. Show there are only finitely many orbits of simplices in CV,,.

The following result, often called the “Nielsen Realization Theorem,” is important,
but we will not prove it. See [Besb, Lecture 4] for a proof using a non-trivial result of
Stallings.

Theorem 15.5. Every finite subgroup of Out(F,) fizes a point in CV,,.

Exercise 21. The group Out(F,) has only finitely many conjugacy classes of finite
subgroups.

Proposition 15.6. The group Out(F),) is virtually torsion-free.

(Recall that a group is said to virtually have property P if the group has a subgroup
of finite index with property P.)

Proof. We will show the kernel of the composite map
Out(F,) — GL(n,Z) — GL(n,Z/37Z)

is torsion-free. Suppose that ¢ is in this kernel, and is torsion. Then (¢) is a finite
subgroup of Out(F,), and so by Theorem 15.5, it fixes a point [(I',l, )] in CV,. It
follows from Lemma 15.3 that ¢ is represented by an isometry of the graph I'. Since
¢ is in the kernel of the composite map, this isometry acts trivially on Hy(T',Z/3Z).
But the map {oriented embedded cycles} — H,(I',Z/37Z) is injective, and non-trivial
isometries cannot preserve all embedded loops by the proof of Exercise 13. U

Our next goal is to sketch a proof of the contractibility of CV,,.
Theorem 15.7. CV,, is contractible.

We will also define the spine of CV,,, a contractible subset that produces a compact
space when we quotient out by it.

16. INTRODUCTION TO GREEDY FOLDING (10/04, UP, YW)

Our goal now is to prove that C'V,, is contractible. We’ll show that C'V;, deformation
retracts to the simplex of the rose R,,. The trajectories to this simplex will be via
“oreedy folding paths”.

Definition 16.1. A continuous map ¢ : (', 1) — (I", ') between metric graphs is linear
on edge (or just linear for short) if:
(1) T and I'" have all vertices of valence > 3.
(2) ¢, is an isomorphism on 7.
(3) for each each edge of (I',1) there exists o > 0 such that the edge, parameterised
by unit speed, maps to an immersed (i.e., non-backtracking) path in (IV,!") of
speed o.

If the slope of all edges are the same we will say ¢ is constant slope.
Remark 16.2. ¢ does not have to be a graph morphism.

Remark 16.3. ¢ : (I';1) — (I',I') is constant slope of slope o if ¢ : (I',ol) — (I",1') is
constant slope of slope 1.
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Remark 16.4. ¢ is constant slope of slope 1 iff ¢ restricted to each edge is a local
isometry.

Example 16.5. Let (I",l’;2') be a pointed metric graph, and fix an isomorphism
m(IV,2") = F,. Let [ be the metric on the rose R,, so petal ¢ has the length of (the
immersed representative of) a; in I (based at the point 2’). Then there is a natural
map (R,,l) — (I",l') of slope 1 that sends petal i to the representative of a;. Figure
63 shows an example with n = 3.

R.. r
FIGURE 63

Note here that 2’ need not be a vertex.

Definition 16.6. We will say that a constant slope map ¢ is foldable if there are two
(small) segments leaving a vertex in I" with the same image in I".

Example 16.7. In the example drawn in Figure 64, the green segments of the graph
on the left represent segments with the same image under a map ¢ and thus ¢ is a
foldable map. As illustrated, we can “fold these segments together”. (Perhaps a better
name would be “zip” rather than “fold”, since the folding process is very like zipping
up a zipper, but the term “fold” is standard.)

// (
/

FIGURE 64

Proposition 16.8. Every constant slope map ¢ : I' — I is either a homeomorphism
(scale by o) or is foldable.

Remark 16.9. This is a version of the fact that “every graph morphism that is an
immersion and is surjective on 7y is a homeomorphism”, which applies whenever the
target graph is finite and doesn’t have vertices of valence 1. (That fact is discussed for
example in the proof of Theorem 6.3 and follows from Lemma 5.2.)
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We’ll see two proofs of this proposition.

First proof of Proposition 16.8. Say I" has vertex set V', and I'" has vertex set V. Define
Vi, =V uegV)cT

new

View =V uo YV )T,
Note that ¢(View) = V., and ¢~ 1(V! ) © View. Declare these to be the new vertex
sets; some vertices may have valence 2 but that is ok. With these vertex sets, ¢ is
a graph morphism. If ¢ is not foldable, this morphism is an immersion. Since ¢, is

surjective, ¢ is a homeomorphism. O
Before doing the second proof, we note an easy lemma.

Lemma 16.10. Let F' : X — Y be a map of sets that is equivariant with respect
to actions G ~ X and G ~ Y (i.e. F(gx) = gF(z)). Let F be the induced map
f:X/G—Y/G. Then f injective = [ is injective.

Proof. Say F' is injective, and suppose

[F(z)] = f([21]) = f([x2]) = [F(2)]

By definition, there exists g € G such that F(x1) = gF(z9) = F(gz2). Injectivity of F'
implies x; = gy, and thus [x1] = [z2]. O

We apply this as follows.

Second proof of Proposition 16.8. Say ¢ is not a homeomorphism. Since ¢, is surjective,
¢ is surjective. (This is because in a finite graph where every vertex has valence > 2,
deleting a vertex reduces the rank of its m1). So ¢ is not injective.

Consider a lift to universal covers ¢ : I' — I”. Then the lemma implies that ¢ is
not injective. Pick z1, x5 € T with ¢(21) = ¢(x3). Since I is a tree, the image of the
geodesic from z; to s in T’ must backtrack as shown in Figure 65. This shows the map
is foldable. OJ

% $ = Bl

Jee

=

Ly

FIGURE 65
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Given a map ¢ : (I',l) — (I",l') that is foldable, we can fold it “for time €’ by
identifying all pairs of segments of length e that leave the same vertex and have the
same image.

Before we do this carefully, we’ll draw some pictures.

Example 16.11. Figure 66 depicts a map ¢ : I' — I, and segments of the same colour
have images of the corresponding colour in I". The third (bottom) graph is obtained
after folding for some time e.

FIGURE 66

If we continue to fold at all vertices with equal speed, “events” occur where the
topology of the graph (but not 7;) may change - for example, two valence 3 vertices
may be identified and form a valence 4 vertex. After an event, we can “re-start” the
process and continue folding if desired.

Example 16.12. Figure 67 shows a map ¢ : ' — I, as well as various intermediate
graphs obtained at different stages of the folding process.

Example 16.13. Figure 68 depicts another example where folding changes the topology
of a graph I'.

17. GREEDY FOLDING PATHS (10/06, YW, HT)

Definition 17.1. Given a constant slope map (with slope 1) ® : (I',¢) — (I",¢'), the
first interval of the greedy folding is a path of metric graphs I';, ¢ € [0, ;] where

(1) Ty =T,

(2) the map ® factors through each T,

(3) ¥t < t1, and for all € small enough depending on ¢, T';,. is obtained from T
by, at every vertex, identifying all collections of segments of length € of edges
leaving that vertex when these segments have the same image in IV, and

(4) ty is either the first time the topology changes or the time where I';, = I".

Exercise 22. Check that this is well defined, in that there is a unique path with these
properties. (See Hint A.10.)
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)N

FIGURE 67

)
I

FIGURE 68

Remark 17.2. If s < t, vol(T'y) —wvol(T'y) =t — s, so t; < vol(T') —vol(T”"). In words, the
volume is decreasing at a certain rate depending on how much folding is occurring, so
in particular this process can’t go on for too long.

Definition 17.3. The greedy folding path is defined iteratively via the above definition.
Once the path is defined up to time t,, we do one more ‘interval of folding’, traveling
across some simplex until the topology changes.

An example of greedy folding can be seen in Figure 69.
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O | 5

FIGURE 69

Lemma 17.4. This iterative process terminates after finitely many steps. In particular,
we get a genuine path from T to T”, passing through finitely many simplices (so the
topology of the partially-folded graph changes only finitely many times).

A quick disclaimer: to get the path to end of IV, we might need to chop off hanging
trees as we go. This always represents a simple deformation retraction, so isn’t such a
big deal for us.

Here’s a sketch of the proof: by subdividing edges (as in last class), we can assume
® : I' - I" is a morphism. Consider the poset P of all graphs obtained by doing
Stallings (discrete) folds to this morphism. The poset structure is defined such that
performing an additional Stallings fold on a graph in P always produces a graph that
is a successor within the poset. Necessarily P is finite.

At each time ¢, we consider an arbitrary maximal element I' of the poset P, € P of
elements of P such that the morphism I' — I', factors through the morphism I — T.
We should think of this poset of containing all elements from which we can get to I';
with some additional (continuous) folding.
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In other words, we have
r — I}

%

Moreover, there does not exist a pair of edges in T with same image in Ty, since otherwise
we could fold that pair and I would not be maximal.

So I'; is T plus some ‘partial folds’. The number of homeomorphism type you can
set from partial folds is bounded via an explicit function of the rank of the graph. (See
Exercises 27 and 28.) So if the greedy folding construction goes at least k steps, we
have

k < (function of the graph rank) - (#E(I") — #E(I))

Note that #(E(I") — #E(T")) is the number of moves required to totally fold .

A precise statement on the existence of greedy folding paths can be found in [BF14a,
Proposition 2.2].

Remark 17.5. Skora gives a uniform descriptions of I';. The idea is that if you have
an open, surjective quotient map g : X — Y with discrete fibers and X,Y are path
connected, locally path connected metric spaces, you can try to interpolate between
X,Y by first defining equivalence relations ~; where x ~; 2’ if ¢(x) = ¢(2’) and there
is a path v from x to 2/ with ¢(y) < B(q(z)). If X; is X modulo ~;, then varying ¢
from 0 to some finite quantity should give a continuous folding from X to Y ‘through’
the graphs Xj;.

This can be applied to our situation after passing to universal covers, but it takes
work to see it defines a folding path. (See Exercise 26.)

This idea is shown in Figure 70.

: By t 40 =4'(x)
9 1

FI1GURE 70

We now give some exercises on folding.
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Exercise 23. Suppose ¢ : I' — I is constant slope of slope 1, and that all edges of both
I and T" have length 2, and that ¢ is a graph morphism. In both domain and range, add
a new vertex in the midpoint of each. Call the old vertices even and the new vertices
odd, and now every edge is length 1 and ¢ s still a graph morphism.

Show that the result T'y of greedy folding by time 1 can be obtained by a collection
of Stallings folds based at even vertices. (These are full folds, as we did before talking
about C'V,,.) In Ty, we can define even vertices to be pre-images of even vertices in I,
and odd vertices to be pre-images of odd vertices of I".

Show that the result I's of greedy folding I'y — T" by time 1 can be obtained by a
collection of Stallings folds based at odd vertices.

Similarly show that, as the process continues, you alternate between folding at even
vertices and odd vertices, and at every stage the result can be described by a sequence
of Stallings folds. Hence the process must terminate after finitely many times.

Exercise 24. Suppose that : T' — I is constant slope and slope 1, and all edges have
rational lengths. Rescale, subdivide, and use the previous exercise to give a different
proof that greedy folding terminates after only finitely many intervals.

Remark 17.6. 1t is apparently possible to use the above two exercises and rational
approximation to show that greedy folding paths exist, although this proof doesn’t
immediately tell you as much about the path.

Exercise 25. Suppose ¢ : I' — IV is constant slope of slope 1, and Ty is the greedy
folding path. Consider the image in I of the vertex set of T'y; this is a collection of
points in I that move around. Show that

(1) when not colliding with each other or vertices, these points move at speed 1

(2) when a point hits a vertex, it can pass through or continue along a different edge.

(8) when two points hit each other on the middle of an edge, they either have to
bounce off each other or pass through each other.

Can you use this to give a different proof that only finitely many events can happen
along the folding path?

Exercise 26. Consider Skora’s formula and show the following:

(1) for tiny times, it coincides with our greedy folding,

(2) applying Skora’s formula for time t, and then starting again and applying it for
time ty is the same as applying it for time t; + to,

(3) so for all times it coincides with our greedy folding.

(See Hint A.11.)

Exercise 27. Consider a graph morphism m : A — B. Fix an edge e in B. WLOG
assume e has length 1. Consider the subgraph m~*(e) of A. Consider two oriented
edges of this subgraph equivalent if their tail vertices are the same, and if they map to
e with the same orientation. So equivalent edges can be folded. Let G1,...,Gy be the
equivalence classes. (Note that each unoriented edge has two orientations, and these
won’t be equivalent.)
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Fort = (ty,...,t;) € [0,1]%, define the graph A; to be the result of folding each G; for
time t;. Show that only finitely many homeomorphism types of graphs occur as A; for
some t, and that the finite bound depends only on k. (See Hint A.12.)

Exercise 28. Use this to prove the claim above that the number of homeomorphism
types of partial folds is bounded by a function of the rank. Hint: since we have subdivided
so our map 1s a graph morphism, the number of edges isn’t bounded by a function of the
rank. But the number of edges where folding can occur is linearly bounded by the rank.
And, since we only consider partial folds, the folding that happens over different edges
in the codomain are independent of each other.

The final ingredient for contractibility is:

Lemma 17.7. One can continuously pick a point on each graph in CV,,, so that on the
simplex of the rose you pick the vertex.

More formally, there is a bundle CV,, — CV, with a natural topology, and the lemma
indicates this bundle has a section. But we won’t be so formal.

Proof. Consider (T, ¢, h) € CV,,. For each vy € F, = m(T), there is a geodesic in I' called
the ‘axis’, where I is the universal cover of I. (One way to define it is the preimage of
the unique immersed loop in I'/(y). For other definitions see [Wil].)

If Axis(a;) and Axis(ag) overlap, pick the point to be the image in I of the midpoint
of the overlap as shown in Figure 71.

|79in nm T

Ay (and AL a>)

FIGURE 71

Otherwise, use midpoint of geodesic for Axis(a;) to Axis(as) as shown in Figure 72.
U

Remark 17.8. We only have the identification of 7 (I") and F,, up to conjugacy. You
might think that means our use of ai,as in the previous proof is problematic. But if
you replace (a1, as) with (ga1g™', gasg™"), the axes both move by g, and the midpoint
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A1y (and AxLiay)

FIGURE 72

m moves by g. But m and g(m) have the same image downstairs in I" since g is a Deck
transformation.

18. CONTRACTIBILITY OF C'V,,, SPINE, vCD (10/09, KS, RE)

Now we are going to give a proof sketch of Theorem 15.7. Originally it is due to
[CV86], but instead we are roughly following [Sko].

Proof sketch. We will show that C'V,, deformation retracts to the simplex of the standard
rose.

By Lemma 17.7, we can continuously pick a point in the graph on all of C'V,,. Given
(I',1,h) € CV,, as in Example 16.5 consider a metric on R, where the loop i has a
length equal to the length of the immersed representative of a; in I' based at the chosen
point (and then normalize to have volume 1). Consider the constant slope map from
that rose to I'. The greedy folding path is a path from (I',l,h) to the given rose. It
turns out that following this path defines a deformation retract. O

Remark 18.1. It is non-trivial to check continuity. For details, see [Sko] or [Cla05].

Next, we are going to introduce a general construction of spines. Let X be a sub-
complex of a simplicial complex X. Let Y be the union of all simplices of barycentric
subdivision of X disjoint from X. Then

(1) X — X deformation retracts to Y, and B
(2) dimY < dim X — (i + 1) if the i-skeleton of X is in X.

Example 18.2. In Figure 73, X is a triangle, X is the set of its vertices, and Y is the
spine. Green arrows show the deformation retraction.

Exercise 29. Give exact formulas for deformation retraction in Example 18.2.

Definition 18.3. Y is called spine of X — X.
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FIGURE 73

Following (2), the spine K, of C'V,, is a simplicial complex of dimension
Bn—4)—((n—2)+1) =2n—3.

From the contractibility of C'V,, and Whitehead’s theorem, it follows that its spine
K, is also contractible. The fact that the Out(F,,) action on CV,, has finitely many
orbits of simplices (see Exercise 20) implies that K,/ Out(F},) is compact.

If the action was free (i.e. has no fixed points) the quotient would be a finite simplicial
complex and a K (Out(F},),1) (i.e. the space with fundamental group Out(F,,) and has
a contractible universal cover). This is not quite true, but the fact that Out(F,) is
virtually torsion free (i.e. there is a finite index subgroup with no torsion) makes it
possible to conclude the following.

Corollary 18.4. Out(F,) is finitely presented (i.e. is the fundamental group of a finite
simplicial complex).

Next, we are going to give some facts about virtual cohomological dimension. (We
won’t give a definition though.) Virtual cohomological dimension is a group invariant

(1) ved : {groups} — {0,1,..., 0}
with the following properties:

e vcd(m of a finite simplicial complex) < k if the complex has dimension & and
has contractible universal cover;

o If H is a subgroup of G, ved(H) < ved(G) with equality if H is finite index in
G;

e vcd(Z™) = n.

Corollary 18.5. ved(Out(F,)) = 2n — 3.
Remark 18.6. So, Z*"~? is not a subgroup of Out(F,).
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Proof. The discussion of K, shows that ved(Out(F,,)) < 2n — 3. Automorphisms of the
form
ap — arg,
ag — GQCL}fl,

az — a?azal?,

a/n —s a€72n74ana]172n73’

where p; € Z, show that there is a Z?"~3 subgroup of Out(F},). O

Exercise 30. In general, the spine has one vertex for each open simplex in X not in
X, and a collection of vertices are contained in a simplex of the spine iff they can be
reordered so the open simplices in X they correspond have the property that each is in
the boundary of the previous one.

Exercise 31. Let P, be the simplicial complex with vertices corresponding to equivalence
classes of marked graphs (like C'V,, but with no metric), and where a collection of vertices
span a simplex iff they can be re-ordered so that each can be obtained from the last via a
forest collapse. Show P, is homeomorphic to the spine K, of outer space. (This gives
a combinatorial description of the spine outer space.)

19. THE ASYMMETRIC METRIC (10/11, SL, SZ)
For the next several lectures we’ll follow [Bes14] closely.

Definition 19.1. Given (T',¢,h), (I",¢', ') € CV,, a difference of marking map is a
Lipschitz map ¢ : I' — IV such that A’ o ¢ is homotopic to h.

FIGURE 74. Diagram for difference of marking

Definition 19.2. Let

be the Lipschitz constant of ¢.
Definition 19.3. Given (T, ¢, h), (I, ¢, h') € C'V,,, define
d(T, ¢, h), (T, 0", 1)) := il;f log o (o),

where ¢ ranges over difference of marking maps.
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Remark 19.4. By abuse of notation, we will write d(I", I").

Remark 19.5. By the Arzela-Ascoli Theorem, we have that a sequence of L-Lipschitz
functions has a subsequence that converges to a function that is L-Lipschitz. Hence,
the infimum is realized.

Recall from Definition 16.1 that a map ¢ : I' — I is linear on edges if each edge e
maps to an immersed path with constant slope (depending on e).

Remark 19.6. Every ¢ : I' — I" can be homotoped to a unique linear map with the
same values on vertices. We can do this by “tightening” the map on each edge. Before
tightening the image of the edge is some arbitrary path, and afterwards it is the unique
immersed, constant speed path joining the original endpoints. This process does not
increase the Lipschitz constant.

Definition 19.7. A difference of markings ¢ : I' — I" is called optimal if logo(¢) =
d(I',T") and it is linear.

The previous remarks show that an optimal map always exists.
We now show that d is an asymmetric metric, and is moreover Out(F,,) invariant.

Lemma 19.8. For allI';,I'5,I'3 € CV,,, we have the following:

(Z) d(Fl, Fg) < d(Fl, FQ) + d(FQ, Fg),’
(2) d(I'1,T'9) = 0 with equality if and only if T'y = T'y;
(3) [ff S OUt(Fn), d(fFl, fFQ) = d(Fl, Fg)

Proof. (1): This follows from the general fact
a(y o @) < a(i)a(e).
(2): Let ¢ : I' > I'" be optimal. If d(I',I"") < 0, this contradicts the fact that
vol(T') = vol (T")

and
vol(T") < a(¢)vol(T).

Note that ¢ must be surjective. If it’s not, ¢, can’t be surjective, and we have that ¢

is a difference of markings so ¢, must be surjective.
If d(I",I") = 0, then o(¢) = 1. Since vol(I') = vol(I"), it is constant slope. Since ¢ is
a homotopy equivalence, ¢ must be an isometry. 0

Exercise 32. Check this and prove Lemma 19.8 (3).

Definition 19.9. Given a conjugacy class of some a € F,,, let £,(I") denote the length
of the unique immersed loop in the free homotopy class associated to a.

We get a lower bound on distance via:

Lemma 19.10.

~

o(I")
la(T)

log <d(T, 1.
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Proof. This follows from
la(I") < 0(9)la(T)
for an optimal map ¢. O

Definition 19.11. If /,(I") = 0(¢){.(T"), we call a a witness.

v

Ya. r Yo q\ v |
<) 4 s
& «,, ©,

FIGURE 75

Example 19.12. Consider I and I'" in Figure 75, with A given by the identity and A’
given by collapsing the middle edge. Consider the linear map ¢ : IV — I" that collapses
the middle edge. Then,

so d(I",T") < log 3. Note that
la(l) 1
-2
la(I) 2
Hence, d(I",T) = log 2, so we have d(I",T') = log 3.
There is a unique linear map v : I' — IV that sends the vertex to m. We have,

24
[0} :é—_
W=1-3
and
() 5 4
(p(T) 1 3

Hence, d(T',T") = log .
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Remark 19.13. Note that d(IV,T') # d(I',I"). d is an “asymmetric metric”, which
means exactly that it satisfies all the axioms for a metric except symmetry. One could
“symmetrize” by considering

dyya(T,T') = d(T,T') + d(I",T).

This is a metric but is surprisingly useless.

(= 500"

FIGURE 76

Exercise 33. Consider C. in Figure 76. Show that d(C., Cy/2) goes to infinity as € goes
to zero, but d(C 2, Ce) is bounded independent of €.

We conclude that d is really not symmetric, and d is not complete in the sense that
closed balls are not compact.

Proposition 19.14. (Witnesses Exist) For all T',T" € C'V,,, there exists a such that
L) e

la(T)
Moreover, there exists o in I' homeomorphic to S*, St v S, or a dumbbell.

Corollary 19.15.

Lo (T
d(T,T") = log max ZZ((F))’

with o either ranging over all conjugacy classes of the finitely many loops of the above
form.

Remark 19.16. We can algorithmically compute this.

20. WITNESSES EXIST (10/13, YM, SY)

Recall that the asymmetric metric mentioned in the previous lecture:

0a(T)
la(I)

where if (x) is an equality then « is called a witness. It is also discussed that the infimum
is actually a minimum, and that maps which realize the minimal and are linear on edges
are called optimal maps.

The main goal of this lecture is to prove the following proposition:

N x
d(r, 1"y : ¢;IFI£F/ log o(¢) = suplog

Proposition 20.1. For any I', 1V, a witness exists.

Definition 20.2. For a point v in I" (often a vertex), T,(I") is defined to be the set of
directions at v.
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If v is a vertex, then |T,(T")| is the valence of v; otherwise |T,(I")| = 2. Note that
T,(T") is a version of a unit tangent space, but sometimes it is called just the tangent
space at v.

Example 20.3. For the following graph, |T,,(I')| = 3; and |T,,(I")| = 2.

FIGURE 77. T, of a graph with v being a vertex or on edges

Analogously, we could define “derivative maps” as follows.

Definition 20.4. Let ¢ : ' — I be a map of graphs which is linear on edges. Define
¢y : T,I' = Ty I to be the induced map from directions at v to directions at ¢(v).

Definition 20.5. A train-track structure on I' is an equivalence relation on T, for
all vertices v € I'. The equivalence classes of the train-track structure of a vertex are
referred to as gates.

Remark 20.6. We usually draw directions belonging to the same gate as tangent (or
nearly tangent). It’s helpful to imagine a railroad switch, where a train can go from a
track A into either of two tangent tracks B, C (so A splits into B and C'). But a train
cannot turn directly from B to C.

Remark 20.7. A graph morphism ¢ : I' — IV naturally induces a train-track structure,
where dl ~ d2 if ¢* (dl) = ¢*(d2)

Remark 20.8. In this train track structure, directions belong to the same gate if they
are eligible to be folded together.

Definition 20.9. An immersed path in I' is legal if at each vertex of it the entering
gate at it of the path is different from the exiting gate.

Definition 20.10. Let ¢ : I' — I'" be an optimal map. Then subgraph A = A, which
is the union of the edges where ¢ has slope o(¢) is called the tension graph of ¢.
Lemma 20.11. Let a be an immersed loop in A, that is legal (w.r.t. the train-track

Lo (T)
Lo (T)

structure induced by ¢). Then =0(¢), so a is a witness.

Proof. This is just re-formalization of the definitions: « being legal implies that ¢(«)
is immersed; and o € A implies that the length of ¢(«) is o times the length of o, i.e.
« is a witness. 0J
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Lemma 20.12. Let A be a graph with a train-track structure s.t. every verter has at
least 2 gates. Then there is a legal loop in one of the following form:

1) Embedded loop.
2) Embedded loop except 1 point.
3) Embedded loop except a segment.

SIS SR

FiGURE 78. Embedded loops in a train-track structure, with d; ~ do,
ds ~ dy

Sketch of Proof. Start with an oriented edge e;. Given oriented edge e;, we define the
oriented edge e;,1 as follows.

a) If there is an oriented edge ey, k < ¢ that is leaving the tail of e; and is in a
different gate from e;, we define e¢;,; = e, and we terminate the construction.

b) If there is an oriented edge ey, k < i that is entering the tail of e; and is in a
different gate from e;, we define e; 1 to be e, with the opposite orientation.

c¢) Otherwise we pick e;,1 to be any oriented edge that is leaving the tail of e; and
is in a different gate from e;.

By construction the path is legal. If we terminate after pick e;y; to be e, k < i, then
(€k, €rt1,---,€;) is a legal loop. Since every vertex in this graph has at least two gates
and the graph is finite, by pigeonhole there must exist a legal loop, i.e. the process
above terminates.

One can check that this loop is always described by one of the three cases. 0

Remark 20.13. A different approach to the lemma is to first show a legal loop exists
(using pigeonhole), and then show an appropriately minimal legal loop must have one
of the three allowed forms. The sense in which the loop should be minimal is first
that its length should be as small as possible, and second that the number of distinct
unoriented edges it crosses (counted without multiplicity) should be minimal.

Lemma 20.14. If A, has a vertex that only attains one gate in Ay, then ¢ can be
perturbed to ¢ s.t. Ay C Ag.

Proof. Let v be a vertex that only has one gate in A,. Now consider 1y which is defined
to be the same as ¢ outside of a small neighbourhood of v but with a perturbation
around v so that v now maps to a point e away from ¢(v) along the edge which
corresponds to the image of the one gate at v in A. In the figure the purple edges
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v_— o(v)
/I\ 2, /r
M 3(v)

FIGURE 79

are included in A, edges of the same color denote the edges in the same gate; and the
mapping is specified via correspondence of colors. Let 1) be the modification on g s.t.
it is linear. Then in % it is of slope o on edges not adjacent to v. Edges not in A,
cannot be part of the witness as € can be made small and the slopes vary continuously.
It is clear that A, C Ay as edges adjacent to v are in A, but are not in A. OJ

With these lemmas it is straightforward to show the proposition:

Proof of Proposition 20.1. Choose an optimal map s.t. the tension graph is as small as
possible. By definition of optimal map and tension graph, the tension graph cannot
be empty. Lemma 20.14 shows that all vertices have at least 2 gates. Lemma 20.12
shows that there exists a legal immersed loop a. By Lemma 20.11 « is the desired
witness. U

21. GeobEesics IN CV,, (10/18, HT, YW)

Definition 21.1. Let ® : ' — I be a graph map that is linear on edges. Then Ag is
a subgraph of I" on which ® has maximal slope.

Using the ideas from last class, we can prove the following straightforward lemma.
It is very useful for showing a map is optimal.

Lemma 21.2. If ® : I' — I is linear on edges and Ag has a legal loop, then ® is
optimal (i.e. the Lipschitz constant is minimized).

This more or less follows from Lemma 19.10, letting o be the legal loop obtained
above.

We’ll now discuss geodesics in C'V,,. Since these are geodesics in an asymmetric
metric, we begin by giving basic definitions.

Definition 21.3. A geodesic in an asymmetric metric space X is a map v : [a,b] — X
satisfying the isometry condition

d(v(s),7(t)) =t —s
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whenever a < s <t <b.

Since we require s < t, reversing a geodesic might not yield a geodesic.
We need a more useful characterization.

Lemma 21.4. Fiz v : [a,b] - X, and assume that
d(v(s), () = d(7(s),7(t)) + d(v(t),7(u))

for all s <t < w with s,t,u € [a,b]. Then 7 is a reparameterization of a geodesic in
the sense that there exists a monotone homeomorphism R : [a',b'] — [a,b] such that
v(R(t)) is a geodesic.

Proof. Set ' = 0 and ¥ = d(y(a),v(b)), and then define R7'(s) = d(v(a),(s)).
Checking that R and R~! are monotone homeomorphisms is fairly straightforward.
Now, for t; < t5, the assumption gives that

d(y(R(t1)), 7(R(t2))) = d(v(a),y(R(t2))) — d(v(a),7(R(t1))).
This is o — ¢; by definition of R71(s). O

Checking this condition on C'V,, turns out to not be so bad.

Lemma 21.5. Suppose ® : ' — I is an optimal map, and factors as

r ‘I’ s T
[0}
Dy
F//

where &1 and Py are also optimal. Assume further that some « is a witness for ®, &1,
and ®,. Then

d(I,T) = d(I,T") + d(I",T").

Proof. Since « is a witness, by definition « is legal and lies in Ag, Ag,, and Ag,.
So each map sends the immersed representative of « in its domain to the immersed
representative of « in its codomain. Additionally ® stretches a by e & stretches

a by e and @, stretches o by e®"T) Since ® = ®, o &y, necessarily
pdTT) _ pdD7) o Ld(T7,I)
and we can recover the desired equality. 0

Note that (with the setup of the previous lemma) if ®,®,, &y are linear and (the
immersed representative in the appropriate graph of) « is legal and lies in Ag, Ag,,
and Ag,, then ®, ®;, and ®, are all automatically optimal.

Exercise 34. Consider a single simplex of CV,,. Then every straight line segment
within that simplex can be reparameterized to be a geodesic. (See Hint A.13.)

We can now relate geodesics to greedy folding paths.

Corollary 21.6. If ® : I" — IV is an optimal map and Ae = T, the greedy folding path
from ® to @ is a geodesic.
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Proof. Since Ag = I', @ is necessarily constant-slope, so greedy folding makes sense.
Now, we know a witness « exists for ®, and since « remains immersed under &, it
is never folded. It therefore remains a witness throughout the folding process, and
combining the previous two lemmas yields the desired result. O]

We already know C'V,, is connected, and we can now show that it is connected via
geodesics.

Corollary 21.7. For any I',T'" € CV,,, there exists a geodesic 7y that starts at ' and
ends at T".

Proof sketch. There exists some map from I' to IV (say, deform I' to get a rose, and then
fold the rose to get I"). As a consequence, there exists an optimal map ® : I' — T".
If Ag =T, we can apply the previous corollary. Otherwise, adjust (the metric on) T
by making edges in Ag longer and making all other edges shorter. This can be done
linearly, and the linear adjustment forms a straight line in the simplex containing I'. At
some point, this adjustment will force Ag to pick up another edge. Either now Ag =T,
or we can continue this adjustment procedure, resulting in a concatenation of straight
lines. Eventually we get Ag = I'. After that point one can use a greedy folding path.
Any witness for the original optimal map stays a witness for the whole path, so this
concatenation is a geodesic. 0

Here’s an example of this process (see Figure 80). Starting with the graph in the top
left, we rescale to obtain the graph on the top right, then greedily fold to obtain the
graph on the bottom.

Remark 21.8. It turns out that finding geodesics in C'V}, is not so difficult, and one can
make do with a procedure that’s substantially simpler than the one we’ve presented
so far. One can subdivide so an optimal map becomes a graph morphism (still after
making the tension graph everything), and then fold “in any order”. (Lemma 21.5 gives
that points obtained by any folding will be on a geodesic.)

A general problem with C'V,, (or a feature, depending on one’s perspective) is that its
geodesics are very non-unique. This isn’t so weird: for instance, the taxicab metric on
a square grid also has lots of geodesics between almost every pair of points (see Figure
81).

There are a few possible perspectives on why geodesics are not unique.

(1) First, optimal maps are usually not unique (although this is really just a conse-
quence of the next two points).

(2) Second, folding is non-unique, and in fact fairly arbitrary. As mentioned earlier,
the greedy folding we’ve been using is far from the only option.

(3) For agiven ® : I' — I", the metric on C'V}, only really cares about what happens
on Ar - whatever occurs on the ‘slack’ part of the graph is irrelevant.

Exercise 35. Construct two (or more) distinct geodesics from the left graph to the right
graph shown in Figure 82.
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22. TRANSLATION LENGTH, TRAIN TRACK MAPS (10/20, KL, ZH)

Our next topic concerns how we think about classifying isometries of a metric space.
We will start with some general definitions and will then apply this to Out(F,).

Definition 22.1. Let (X, d) be an asymmetric metric space, and let ® € Isom(X). The
displacement function is the function

D = Dg: X — [0,)
z— d(z, P(x)).
The translation length is 7(®) := inf(Dg).

Exercise 36. Show that:
(1) For any x € X, the limit
1 n
exists. (Hint: use Fekete’s lemma.)

(2) The limit in (1) is independent of the choice of x € X. (Hint: Use the triangle
inequality. )

Definition 22.2. The limit in (1) is called the stable translation length and is denoted
by 7(®P).

Lemma 22.3. We have 7(®) < 7(P).

Proof. For any € > 0, there exists an x € X such that d(z,®(z)) < 7 + . For every
positive integer n, we have

d(z,®"(x Z d(® 7 (z), ®'(z)) (by the triangle inequality)
= nd(:v, O(x)) (since @ is an isometry)
< n(r +¢).
We conclude that 7 < 7 + ¢ for any € > 0 and hence that 7 < 7. O

We classify isometries as follows:

Definition 22.4. An isometry ® € Isom(X) is called
e elliptic if ¢ has a fixed point;
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e hyperbolic if 7 > 0 and it is realized;
e parabolic if 7 is not realized.

One uses this classification for matrices acting on symmetric spaces, isometries of
manifolds, and the mapping class group acting on Teichmiiller space. Our goal is to
understand it for ® € Out(F,,) acting on outer space CV,,.

We begin by describing when ® € Out(F,,) is elliptic:

Lemma 22.5. An element ® € Out(F,) is elliptic if and only if it has finite order.

Proof. 1t ® € Out(F,) is elliptic, it fixes a point. The stabilizer of a point in CV,, is the
finite group of isometries of the graph. Hence (®) is contained in a finite group, and ®
must have finite order.

For the reverse direction, if ® has finite order, then by the Nielsen Realization The-
orem (Theorem 15.5), ® fixes a point. Therefore, it is elliptic. O

Hyperbolic isometries are more difficult to describe. Our next goal will be to generate
some examples.

Definition 22.6. Let ¢ : I' — I" be optimal. If
(1) Ay =T (i.e. ¢ is constant slope),
(2) every vertex of I' has at least two gates, and
(3) ¢ maps legal paths to legal paths,

then ¢ is called a train track map. Its slope is called the dilatation. (See Remark
28.10 for a comment on which train track structure is used.)

Note that to check whether ¢ satisfies 3, it suffices to check that:

(1) the induced map on gates at every vertex is injective, and
(2) ¢ maps edges to legal paths.

This is because an illegal turn in the image of a legal path is either at the image of a
vertex on that path, or in the image of an edge on that path.

Remark 22.7. Condition 3 guarantees that the image under ¢" of a legal path is legal
for any positive integer n. In particular, the image under ¢" of an edge is always locally
injective; note that this key feature of a train track map can be formulated without
referring to train tracks.

Definition 22.8. We say that ¢ : I' — I represents ® € Out(F},) if, by using the
identification of m1(I") with F,, provided by a marking, we have ¢, = ®. (In this
situation people sometimes also write ¢ : I' — ®T".)

Proposition 22.9. Suppose that ¢ : I' — I represents ® € Out(F,) and that ¢ is
optimal. Suppose that ¢ has an invariant subgraph I'oc < Ay such that ¢ |r, is a train
track map. Then

d(l', (")) = 7(®) = log(o),

where o = o(¢) is the Lipschitz constant of ¢. In particular, ¢ is hyperbolic (if o > 1)
or elliptic (if o =1).
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Remark 22.10. The special case where I'g = A, = I' is already important: train track
maps with slope greater than 1 are hyperbolic.

Proof of Proposition 22.9. By definition, since ¢ is optimal, we have d(I", ¢(I")) = log o.
Of course, 7 < log o, and so it suffices to show that 7 > logo. Since 7 > 7, it suffices
to show that 7 > logo. By definition,
1

. "

7= lim ~d(z, 2"(z)),
so it suffices to show that

d(l',®"(I")) = nlogo
for every n € N. Note that ¢™ gives a linear map from T" to ®"(T") that is o"-Lipschitz.
By results from Lecture 19, there is a witness « for ¢ contained in I'y. Any power of
¢ maps a to an immersed loop (since any power of ¢ maps legal paths to legal paths).

So since I'y © Ay, we have « is also a witness for ¢". Therefore, ¢" is optimal and
d(I';@™(I")) = nlogo. O

Example 22.11. Let ® € Out(F3) be defined by a — b and b — ab. Let I' = Ry,
and let ¢ : I' — I' be the map representing ® that maps the vertex of I to itself. One
question we might ask is: can we choose lengths ¢(a) and ¢(b) so that ¢ is a train track
map of slope A, for some constant \?

20 L)
Ab

a B

FIGURE 83

For this to be the case, since a — b we would need ¢(b) = M(a). Likewise, since
b — ab, we would need £(a) + £(b) = M(b) = M\*((a). This latter condition implies
1 + X = A2, which yields \ = %5 We probably also want to impose the condition
((a) 4 €(b) = 1, which is satisfied only if we choose £(a) = § and £(b) = 55. With these
lengths, ¢ is constant slope in Ay =T

For the gates, we will use the descriptors a, A, b, B, pictured in blue in Figure 83.
Then

a—bb—a A— B, and B — B.
The gates are then {a}, {b}, {A, B}, and we have
¢ : {a} — {b},{b} — {a}, and {A, B} — {A, B}.
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In particular, ¢ is injective on gates. We conclude that ¢ is indeed a train track map
of slope A.

23. PARABOLIC AUTOMORPHISMS (10/23, YL, SK)

We continue with the last example from last class, and try to build hyperbolic auto-
morphisms in a more general setting:

Example 23.1. Suppose ¢ : ' — I sends vertices to vertices and each edge to an
immersed path. Let eq,...,e; be the unoriented edges of I'. The transition matrix
M is a k x k matrix with entry M,; being the number of times ¢(e;) crosses e;. (In

Example 22.11, the transition matrix is M = (1) 1 .) Assume M has a power with all
positive entries. Then by the Perron-Frobenius Theorem, 3\, ¢4, ..., £, > 0, such that
0 2
M|:|=x]:
Uy, Uy,

If we give each e; the length ¢;, then (after replacing ¢ with its linearization for this
metric) ¢ has a constant slope of A. If further every vertex has at least 2 gates and
¢ sends legal paths to legal paths, then ¢ is a train track map and in particular is
hyperbolic.

The next is an example of a parabolic automorphism.

Example 23.2. Let & € Out(F,) : a3 — ay,as — ajas. For each € > 0 small,
consider the graph morphism corresponding to ¢ described by Figure 84, such that

Ie I'e

asg a2
aq a1

FIGURE 84

l(a1) = €,1(az) = 1 —e. This is a map representing ® with Lipschitz constant o = ﬁ,
and when ¢ — 0 we have ¢ — 1. Thus, d(I';,®(I'.)) — 0 as € — 0, which implies
7e = 0. Hence, ® cannot be hyperbolic. Further, since ® has infinite order, it cannot

be elliptic. Thus it is parabolic.

Definition 23.3. ® € Out(F,) is reducible if it can be represented by a ¢ : I' — T,
such that for some subgraph I'y C T" that is not a forest, we have ¢(I'g) = I'g. Otherwise,
® is called irreducible.
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Remark 23.4. Tt is implicit above that I is a finite graph without leaves. The definition
requires that I'g have some of the topology of the graph but not all of it. The invariant
subgraph gives ® a structure analogous to a block upper triangular matrix. (If [y
isn’t connected we should actually compare to matrices with blocks that are permuted.
These ideas will be made more precise later.)

Definition 23.5. ® € Out(F},) is called fully irreducible if for every k > 1, ®* is
irreducible.

Theorem 23.6. Every parabolic element of Out(F,) is reducible.

Definition 23.7. The e-thick part C'V of C'V,, is the subset where all immersed loops
have length at least e.

The idea of the above definition is that there are no short loops, but we can have
short edges.

Exercise 37. Show that C'V,S/Out(F,,) is compact. (See Hint A.14.)

We now prove a lemma helpful in proving Theorem 23.6. Assume ® is parabolic and
ple Fk S CVn such that d(Fk, (I)(Fk)) — T®.

Lemma 23.8. Ve > 0, there are only finitely many I'y, in C'V.

Proof. Suppose there exists a fixed ¢ > 0 such that there are infinitely many I'y €
CVre. Passing to a subsequence, WLOG assume all I'y, € C'V,. By compactness of
C'V</Out(F,) we may pass to another subsequence and assume WLOG T’y converges
in CV¢/Out(F,).
Thus, for each k we can find a ¥y, € Out(F,,), and we can find a I'y, € C'V},, such that
U, Iy — I',. By the triangle inequality, as & — o0 we have the limit
d(V; 'Top, @V, 'Tp) < d(V; ' T, Ty) + d(Ty, @T1) + d(PTy, @Y, 'Ty)
= d(To, Vi Ix) + d(Ty, PTy) + d(Vi Iy, T's)
—-0+7+0=".
Thus, d(Ts, U ®¥, 'Ty) — 7.

Exercise 38. For any B > 0 and I" € CV,,, we have [{® : d(I', ®I') < B}| < o0. (See
Hint A.15.)

The exercise above implies that after passing to a subsequence, \Ilkq)\lf,;lfoo is con-
stant. Thus,
d(Lop, U BV, 'Ty) = 7 = d(VU, T, DU, T,

showing that actually 7 is realized and giving a contradiction. O
24. PARABOLICS, HYPERBOLICS (10/25, SZ, YM)
Theorem 24.1. Fvery parabolic ® € Out(F,,) is reducible.

Proof. Pick {T'x}r < CV,, such that d(I'y, ®I'y) — 7. Define I'x(d) to be the union of
essential loops of length less or equal to 0 in I'y. (A loop is called essential if it is not
homotopically trivial.) The proof is mainly in the following lemma:
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Lemma 24.2. There exists k and § such that Ty(5) is not empty and not 'y and
Core(p(I'k(9))) < T'k(9).

Proof. Pick ¢ very small such that
(6n _ 6)€(€T+1)3n+100 < 1.

(Note 6n—6 is twice the maximal number of edges. Essentially loops may enter an edge
a bit and then backtrack, so I'y(d) can contain part of an edge on one side of the edge
and part on the other side; this is why we use twice the number of edges.) By Lemma
23.8, we can fix ['y ¢ CVE. Suppose @ is represented by ¢ : [y — [y, 0(¢) < et

Since every (partial) edge of I'y(g) is contained in a loop of length at most ¢, each
(partial) edge of I'y(e) has length at most e. Hence

vol(Ty(£)) < g(6n — 6) « (e7+1)~(n+100),

Since T',(d) is the union of essential loops of length < ¢ and ¢ is e""!-Lipschitz,
¢(I'x(0)) is the union of essential loops of length < o(¢)d, and we get

d(Tx(8)) < Tr(e™™14).
In the sequence
Core(T((e"™H %)), ¢=0,1,...
there are at most 3n — 3 changes, corresponding to the maximal number of edges.
Therefore there exists ¢ < 3n + 10 such that
Core(Tx((e™)%)) = Core(Tk((e™ 1) e)).

So, for this 7, we have

Core(¢(Tx((e™)'e))) = Core(T((e™)" ) = Core(T'k((e™")'e)) = Ti((e™)'e),
proving the result for § = (e™*!)’. O

The choices of 3n + 100 or 3n + 10 are somewhat arbitrary and incorporate a healthy
safety margin.

Back to the proof of the theorem. Using a homotopy equivalence of I' that restricts to
a deformation retract of I'(6) onto Core(I'(d)), we can homotope ¢ to ¢’ with ¢/(I'(0)) <
r'(0). OJ

Recall that the dilatation A of a hyperbolic ® is defined to be e™(®).

Theorem 24.3. Let ® € Out(F,) be hyperbolic with dilatation X. Suppose ' € CV,, is
such that

d(T, ®(T")) = log .
Say ® is represented by ¢ : I' — I'. Possibly after perturbing both I and the optimal
map, we have

(1) o(A) < A,
(2) ¢ sends legal paths in A to legal paths,
(8) all vertices in A have at least 2 gates.

(i.e. P|a is a train track map.)
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In this statement and in its proof, the perturbation will always perturb the property
d(I',®(T")) = log A. For the proof we will follow [Bes11].

Remark 24.4. The “converse” is true by Proposition 22.9.

Recall that Lemma 20.14 states that if Ay has a vertex that only has one gate, then ¢
can be perturbed to ¢ such that A, C A,. (This perturbation effects only the optimal
map; the metric graph is left unchanged.)

Now let ® be hyperbolic, and let ¢ : I' — I' be optimal representing ® with o(¢) = A.
We will keep these properties when we perturb in the following lemma.

Lemma 24.5. If all vertices of Ay have at least 2 gates and ¢(A) € A, we can perturb
to @' : I" = T such that I and I'" are homeomorphic and Ay C Ay.

Proof. Suppose e is an edge of A, and ¢(e) is not contained in A,. Perturb the metric
on I' by scaling A by 1+ ¢ and the complement of A by ﬁ, with &’ chosen depending
on ¢ to keep the volume 1. Let [V be I" with this new metric and ¢’ be the linearization
of ¢ for this metric.

Since ¢,¢’ ~ 0,Ay < Ay (since the slope of an edge varies continuously in the

deformation). Also,
_ length ¢'(e)

slope(e
pe(e) length e
Comparing to before the deformation, the denominator is scaled by 1 + ¢ and the
numerator is scaled by a smaller amount. Therefore e ¢ Ay . U

25. NICE MAPS FOR HYPERBOLIC AUTOMORPHISMS (10/27, YW, JG)

Theorem 25.1. Suppose ® is a hyperbolic with dilatation A = €™, and d(I",®l') =
log A. (All perturbation in proof will keep this property.)
After perturbing, there exists ¢ : I' — I' that is optimal such that:
(1) o(A) < A,
(2) ¢(legal path in A) = legal path, and
(3) A has no 1-gate vertex.

We know from last time that if the first or the third condition does not hold, we can
perturb ¢ or the metric to make A smaller (no change to topology of T').

Lemma 25.2. Suppose ¢ : I' — I is optimal with o(¢) = X .
If there exists e an edge of A with ¢(e) not legal, we can deform to ¢' : T" — TV such
that either

(1) T’ has more edges than T or
(2) I',I" are homeomorphic and Ay C Ag.

Proof. Say ¢(e) makes an illegal turn at ¢(p),p € e, as in Figure 85.

Let IV be the result of folding a tiny bit at ¢(p) (just the two directions of the illegal
turn) as shown in Figure 86.

Note ¢ induces a map ¢f, : I — I" by the definition of illegal turn. Let ¢’ be the
linearization of ¢y,.
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We need to rescale I'” to be vol 1, but since I is both the domain and codomain, this
does not effect slopes.

If the folding changes the topology, we have 1 as shown in Figure 87.

FIGURE 86

o,

FIGURE 87

If not, we may have the example as shown in Figure 88.
Then we note e ¢ Ay . 0

We have now dealt with every possibility except for a legal turn mapping to an illegal
turn.

Lemma 25.3. Suppose ¢ : I' — I' as before, ¢ maps edges to legal paths, and ¢, maps
a legal turn to an illegal turn. Suppose A has no 1-gate vertices. Then we can perturb
to get ¢’ : 1" — 1" as before with

(1) TV has more edges than T', or
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FIGURE 88
(2) T'.T are homeomorphic, and A = A’, but the total number of gates is greater
in I than T".
Proof. If we have Figure 89, fold a bit at ¢(v) to get [, ¢’ as before as shown in

N/ N/ Y
V ,,\/ " G () 1

Y oy =00

ludou Twn l‘lle@m Tuwm
FIGURE &9
Figure 90.
NV - Y - 7
Fi1GURE 90

If topology changes, we have 1; otherwise, the topology does not change and we
would have Figure 91. But d; ~ ds3, so the number of gates has gone down. 0

\ / N

™= -

FIiGURE 91

We can now conclude as follows
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Proof of Theorem 25.1. : Pick a perturbation (which we rename I" for convenience) and
and optimal map ¢ : I' — I' according to the following priorities:

(1) T has as many edges as possible,
(2) A has as few edges as possible, and
(3) I has as few gates as possible.

The lemmas then give that ¢ has all the desired properties. O

We now turn to the question of “growth”, aiming to ask an analogous question to
“how does |A*v| grow as k — oo when A is a matrix and v is a vector and | - | is a
norm.” Instead of using a norm, we’ll make use of a metric graph.

Recall that ¢,(I") = length of the immersed representative of o in I' and

o—dID) la(T)
" 4e(T)

d(r,r’
<6(7 ),

since £o(I") < Lo(T)edTT) and £, (T') < £,(I")e®™™ 1), Note that the upper and lower
bounds do not depend on a.

Lemma 25.4. If ® is hyperbolic and 1" is arbitrary, then there exists ¢ such that
Lor)(T') < cA\*, where A = €” is the dilatation.

Proof. Find ¢ : IV — I" that is optimal and has slope A to represent ®. The lemma is
true for I, so it is true for I'. O

We will now use this lemma to give an example of a parabolic with positive translation
length.

Example 25.5. Consider ® € Out(F}) such that
ap ——> ag
Qg — a102
az —> Qg4
Qg4 — A30104

Note that, restricted to {(a;,as), this is our first example of a hyperbolic automor-

phism, studied in Example 22.11 with dilatation A = %‘F’ Restricting to {as, as)
almost gives a second copy of this automorphism, except there is an a; in the formula
for the image of ay.

Figure 92 gives a natural map which has max slope A plus something that goes to 0
as € — 0; 80 7 < A\

As in the proof of Proposition 22.9, one can use stable translation length to show
that 7 > A\. Hence 7 = \.

But lgr(as) = kM* since the same is true for the linearization as shown in Figure
93. (Note that there are no inverses in the formulas for ®, allowing an unusually good
comparison to the abelianization.)

Keeping Lemma 25.4 in mind, we conclude that ® is parabolic and has positive
translation length.
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FIGURE 92

FI1GURE 93

26. GROWTH, ALGEBRAIC DEFINITION OF REDUCIBLE (10/30, YL, YM)

Definition 26.1. If ® € Out(F,,), v € F,,,y # Id, define the growth of v under ® to
be

log {gm- (I’
7(®,7) := limsup 28remy) q;n'Y( )

m—00

where I' € C'V,, is arbitrary.

Exercise 39. Show that this definition does not depend on the choice of I'. (See Hint
A.16.)

log @™

You can compare this definition to: if ® € GL(n,R),v € R", then limsup,, ,,, ==

does not depend on the choice of | - |.
Although it is beyond the scope of this course, to give an idea for what is possible
we remark that train track technology can also be used to prove the following [Lev09]:
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Theorem 26.2. V® € Out(F,), I\, , A\x > 0 (all weak Perron) such that Vv the
growth rate T(®, ) is either 0 or one of the log \;. Moreover, T = max(0,log \;).

Example 26.3. Let ® € Out(F,) be defined by a; — ay,a; — a;_1a;,7 = 2. Then

1 1 0... 0
0 1 1.. 0
Ab(®) = | ...

0 0 .1 1
0 0 .0 1

0

is a Jordan block and |[Ab(®)™ [ : || ~ m™ ! Since the automorphism is defined
1

using positive words, this implies that fem(q,)(R;) ~ m"~ !, where R, is the standard
rose. Thus, if n > 2 ® is “polynomially growing but not linear”. This is not surprising
comparing to GL(n,Z) but this sort of behavior does not happen in mapping class
groups.

Recall that parabolics are reducible. Thus, being irreducible and having infinite order
implies being hyperbolic. Our main results on hyperbolics imply that every irreducible
is represented by a train track map.

Below we introduce the algebraic reformulation of being irreducible.

Proposition 26.4. ® € Out(F},) is reducible if and only if there exists a free product
decomposition

Fn:Al*AQ**Ak*C

with k = 1 and each A; is neither trivial nor all of F,, such that ® permutes the
conjugacy classes [A1], ..., [Ax]-

Remark 26.5. Here are some clarifications on the statement

(1) The assumption implies that either k& > 2 or C # {id}.

(2) But if & = 2, C could be {id}.

(3) Nothing is required of ®(C).

(4) Say ¢ € Aut(F,), ® = [¢], and say ¢(4;) = g;As)g; = for some g; and for
some o € S,. We do not necessarily have that ¢ preserves conjugacy classes of
Aq = -+ % Ag, since the g;’s may be different.

Lemma 26.6. Let A be a free factor of F,, (i.e. 3B such that F,, = A= B). Let C be
any finitely generated subgroup of F,, containing A. Then A is a free factor of C.

Proof. Note that there exists a graph I' and a subgraph I'y such that 7 (I") = F;, and
m(To) = A. Pick a basis xq, ..., x, of F,, such that xy,...,2; is a basis of A. Consider
the core I'c of the C-cover of I (i.e. take the C' cover of I', trim hanging trees). Since
A < C, the inclusion I'y < T lifts to the inclusion I'y — I'c. Viewing I'y as a subgraph
of I'c we note that m(I'g) = A is a free factor of m(I'¢) = C. O
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Almost the same proof also gives stronger conclusions, see for example [Asc, Propo-
sition 2.14.], and a statement called the Kurosh Subgroup Theorem gives even stronger
conclusions. For the moment, we need only the following:

Corollary 26.7. If A,C are both rank k free factors of F,, such that A < C' then
A=C.

Proof. The lemma above implies that there is a subgroup D, such that A« D = C.
Thus, rank(A) + rank(D) = rank(C) implies rank(D) = 0 and hence D = {id} and
A=C. O

27. REDUCIBILITY, PSEUDO-ANOSOVS (11/01, SY, UP)

Proposition 27.1. ® is reducible if and only if I F,, = Ay - - x A xC, (k= 1, A; #
{id}, F,,) and ® permutes the [A;]’s.

A reference for this is [BH92, Remark 1.3, Lemma 1.16], where they use a slightly
different but equivalent definition of reducible.

Proof. First, suppose ® is reducible. Pick ¢ : I' — I' with an invariant subgraph
Z C T that is not a forest and ¢, = ®. Let Z;,..., Z; be the connected components of
Z. Since ker ¢, = {id}, ¢ cannot map a non-tree component of Z to a tree component.
So, WLOG, none of the Z; are trees. Fix a maximal tree T of I' and an orientation of
the edges not in 7" and a basepoint, and let

A; ={edgesin Z; = T) ; C={edgesinl — (T v Z))

Note: A; is isomorphic to m(Z;) and F,, = Ay -+ A »C. Let 0 : {1,---  k} —
{1,--- ,k} be such that ¢(Z;) < Z,(.

Claim 0: Fix a path from the image of the basepoint to the basepoint, and use this
path to turn ¢, into an honest automorphism of 7 (I"). With this implicit, for each 4
there is a g; such that ¢,(A;) giAU(i)gi_l.

Claim 1: o is a permutation.

Otherwise, WLOG, ¢(Z) < U Z;. This intuitively gives a contradiction since the rank

of Ay x---x A has smallerl r2ank than the rank of As x --- x A;. Formally, one can
abelianize, and use that Z" cannot be a subgroup of Z° if r > s.

Claim 2: O([4;]) = [As)]-
®([A;]) has a representative in A, If they are not equal, then Rank(®(4;)) <
Rank(Ay(;)). Since a power of ¢ is the id, we get a contradiction.

Conversely, suppose ® permutes A;’s in a decomposition as in the statement. Pick
feAut(F,), [f] =@, and g; s.t. f(A;) = giAeiygi "
Consider a graph with an inverse marking as in Figure 94. Define ¢ : I' — I' s.t. the
rose of A; maps to the rose of A,(;), inducing x — gif(x)g;™! on ;. Let 7; be the path
(loop) corresponding to g;, and send e; to yieq(;). On the rose for C', map according to

f.
Exercise 40. Check that ¢. = f.
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label by basis of A; ...of A, ...of A

€1 €2 €k T = ve;

label by basis of C'

FIGURE 94

This shows @ is reducible, since I" has an invariant subgraph Z (formed by the roses
for the A;) that is not a forest. O

Corollary 27.2. If f : ¥ — X is a homeomorphism of a (punctured) surface that
preserves a strict subset of the punctures, then f, € Out(m (X)) is reducible.

Proof. Pick a basis of m1(X) including loops around punctures in S. The conjugacy
classes of these loops get permuted by f,. O

FIGURE 95

Remark 27.3. You cannot find a basis containing a loop around every puncture, since
the loops around the punctures would sum to 0 in H; = Ab(m).

Definition 27.4. [f] € MCG(X) is pseudo-Anosov (pA) if it does not preserve a
finite union of essential, non-peripheral, simple closed curves (up to isotopy). (Essential
means the curve doesn’t bound a disk. Non-peripheral means it doesn’t bound a disc
with one puncture. Simple means no self-intersections.)

Remark 27.5. Tt is known that:

e “most” mapping classes are pA, and
e [f]is pA if and only if it is hyperbolic for the action on Teich(X). (Elliptics are
the finite order elements, rest are parabolic.)
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We will now present some important examples coming from [BH92, Example 1.4].

Fact 27.6. If [f] € MCG(X) is a pA, « is a non-peripheral, essential, simple closed
curve, and C' is a proper free factor of m(X), then f™(«) is not conjugate into C for
all n large enough.

Glimpse of proof. One can take f to “vertically stretch and horizontally contract” (an
analogue of “irreducibles have train track maps”). Every vertical line is dense in X.
Hence if ¥ — ¥ is the cover corresponding to C' < 7y, vertical lines in ¥ are proper.
Since « is not peripheral, it has a “flat geodesic”. f™(«) is more and more vertical, so
it “looks like a vertical line” and cannot close up in ¢. O

Corollary 27.7. If [f] e MCG(X) is pA, all periodic conjugacy classes of free factors
are of the form: (loop around a puncture).

In other words, if A is a free factor and [ fP(A)] = [A], then A = {loop around a puncture).

Proof sketch. Any other free factor A has an « that is not peripheral. Fact 27.6 implies
fP(«) is not conjugate into the free factor A for p large enough. U

28. EXAMPLES OF INTERESTING AUTOMORPHISMS (11/03, YM, AB)
Continue on the discussion of the previous lecture, this gives a further corollary:

Corollary 28.1. If f is pseudo-Anosov, then f, is reducible if and only if f preserves
a proper nonempty subset of the punctures.

Example 28.2. Consider

oz ()}

where the action of f is specified via (2 1). Note that, working modulo Z2,

G)0-6) C)E-0) )E-0)

So f is well defined and f cyclically permutes the three punctures. Standard results
imply f is pseudo-Anosov.

Notice that f and f? are irreducible, but f? is reducible. Therefore, f is irreducible,
but not fully irreducible.

Definition 28.3. @ is atoroidal if for all p > 1, ®P does not preserve any conjugate
class in F;, except the identity.

Remark 28.4. A non-trivial result gives that ® is atoroidal if and only if F, xg Z is
Gromov hyperbolic. For this reason, some of the literature uses “hyperbolic” as a
synonym for “atoroidal”. But this is not the same as saying that ® acts hyperbolically
on CV,, as the following example shows.

Example 28.5. Consider > a surface with one puncture, and let f : 3 — 3 be pseudo-
Anosov. f, is irreducible, and hence acts hyperbolically on CV,,. But f, preserves the
conjugacy class of the loop around the puncture, so f is not atoroidal. (To rephrase:
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this gives an example of a fully irreducible map for which there is a conjugacy class
which is fixed and hence in particular does not grow under iteration.)

Example 28.6. Consider f : ¥ — ¥ which is pA, where ¥ has two punctures, and
each is preserved by f. Corollary 27.7 gives that f, has exactly two periodic conjugacy
classes of free factors. We can write

F,, = {loop around puncture 1) = {(some complement )

= (loop around puncture 2) = (some different complement)

Remark 28.7. In the example above, the two decompositions given are the only decom-
positions as in the criterion for reducibility, up to picking different complements. This
is as if there was a matrix with two different Jordan Normal Forms, so you should think
of it as quite weird. Each of the two decompositions are as good as the other; so one
can’t pick a decomposition at all canonically. (Additionally the complements cannot
be chosen canonically or preserved, but that isn’t surprising from the point of view of
linear algebra.)

Exercise 41. If d is a symmetric metric, and ® € Isom(X,d). Then 17¢ = To-1.
Additionally, ® is elliptic/hyperbolic/parabolic if and only if =1 is.

Exercise 42. Suppose ® € Out(F,), and Ab(P) has eigenvalues Ny and Ay s.t. || =
|Ao|. Then ® is parabolic if and only if \y = £1, Ay = +1 and @ is not finite order, and
® is hyperbolic if and only if |\| > 1. (As always, @ is elliptic if and only if it is finite
order. See Hint A.17.)

Exercise 43. In the situation above, show Te = log|\i|. Deduce in particular that
To = To-1. (See Hint A.18.)

Remark 28.8. Generally, in Out(F},) forn > 3, 7¢ # T¢-1. The following gives a concrete
example where 74 # T¢-1. Since translation length controls growth under iteration, this
shows that the asymmetry in our metric is a natural and intrinsic feature of Out(F,),
that would show up even if we didn’t study C'V,.

Example 28.9. Consider the map

a—b
P e Out(Fg), b—c
c— ab

If ¢ : R3 — Rj3 is the associated graph map, it is easy to check as follows that ¢ maps
legal paths to legal paths. Label the gates as in Figure 96.

This gives mapping of directions as follows:
Qs s a—> b— c—a, A—»B—(C—B

The only nontrivial gate is {A, C'}. Legal turns map to legal turns, and each edge maps
to a legal path, so this completes the verification that ¢ sends legal paths to legal paths.
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FIGURE 96

As in Example 23.1, there exists a metric that makes ¢ a train-track map with slope
the largest eigenvalue of <§ § é), which is about 1.32. Proposition 22.9 then gives
7o ~ log(1.32).

Now consider the inverse:

a— cat
1 {b—a
c—b
Let v : R3 — R3 be the associated map. This gives
Yy a—>c—b—a, C—B— A—a.

We can give this a train-track structure with gates {b, A}, {c, B},{C,a}, and we can
check that ¢ sends legal paths to legal paths. The slope is the largest eigenvalue of

((1) é g). So we have 71 ~ log(1.47) # log(1.32) ~ 7.
Remark 28.10. If ¢ : I' - I with I # I", the only train track structure we will ever
use is d; ~ dy when ¢.(dy) = ¢.(dy). If T' = I”, one can alternatively use d; ~ dy
when there exists p > 0 s.t. ¢%(dy) = ¢h(dz). This is often better, as it automatically
sends legal turns to legal turns, and all the results we proved using the first train track
structure also work using the second.

Even using the second train track structure, it needs to be checked that for each
vertex v there are at least 2 gates, and that each edge maps to a legal path.

Remark 28.11. We have given many examples of interesting ® € Out(F,). Here are
some that we have omitted:

(1) There exists ® hyperbolic, with ®~! parabolic.
(2) There exists ® reducible; but its restriction to invariant subgraphs always has
smaller translation length.

29. PAUSE FOR REVIEW AND BIG PICTURE (11/06, RE, AB)

In this section we will review the various topics and results that we have studied and
compiled in the course thus far. In Lecture 4, we proved an important result (Theorem
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4.5) due to Stallings which stated that any morphism of graphs I' — I" admits a
factorization

(2) F:F0—>F1—>—>Fk—>F/

where each I'; — T';4q (for i = 0,...,k — 1) is a fold (cf. Definition 4.1) and the map
[y, — IV is an immersion of graphs. Our intuition behind interpreting this result is that
it should be thought of as being analogous to the procedure of row reduction from linear
algebra. It should be noted that the factorization above is not unique, although it is
unique in the sense that I'y is isomorphic to the core of the cover of I corresponding
to the image of m1(I") in m(I") (see Corollary 7.6 for further details).

The factorization in (2) was an ingredient in the proof of Nielsen’s Theorem (Theorem
9). There were three versions of this theorem—although most plainly Nielsen’s theorem
asserts that Aut(F,) (for n > 1) is generated by the collection of signed permutations
together with the automorphism f defined on generators a; by

f(a) _ {alag 1= 1,

An important consequence of Nielsen’s result was stated in Corollary 9.5 which estab-
lishes an isomorphism Out(Fy) = GLy(Z).

In Lecture 10 and in successive lectures we investigated the structure of outer space,
CV,,, which was the space of marked metric graphs. We also defined in (14.3) reduced
outer space cv, and proved that it was a particular deformation retraction of CV,,.
There was a particularly nice topology that we imposed on CV,, which made it locally
finite; moreover it could be realized as the complement X\ X in a simplicial complex
X of a subcomplex X (see the discussion following Definition 12.9).

We also developed a fairly good understanding of CV,, when n = 2. In this case CV,
was described in terms of the Farey graph wherein we established a homeomorphism

cvy = FA\(Fa)o,

where Fa was the Farey complex and (Fa)g was its O-skeleton (i.e. set of vertices).
Another direction we pursued was understanding the structure of Out(F,,) by studying
its action on CV,,. Indeed, in Lecture 15 we defined and studied an action of Out(F},)
on CV,, and proved that the stabilizer of a point in CV,, was finite (cf. Corollary 15.4).
Furthermore, in Lemma 15.3, we gave an explicit description of these stabilizers.

Lectures 16, 17, and 18 were devoted to proving that CV,, was contractible (Theorem
15.7). The strategy of the proof was to exhibit a deformation retraction of CV,, onto
the simplex of the rose R,, afforded by greedy folding paths. In the course of Lecture
18 we further defined the so-called “spine” K, of CV,—it is a particular simplicial
complex of dimension 2n — 3. Like CV,,, K, is a contractible space. The spine has the
advantage that the space Out(F;,)-orbits of K,, was shown to be compact. We used this
fact to show that Out(F;,) was finitely presented in Corollary 18.4.

Starting in Lecture 19, we defined an “asymmetric” metric d on CV,, which was
defined as

(3) d(T,T") = i%f log o ()
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where ¢ ranged over all difference of marking maps ¢: I' — I and o(¢) denoted the
Lipschitz constant of ¢. Via the notion of an optimal difference of marking map we
observed that the infimum of (3) was realized. And in Corollary 19.15 we further
characterized d by

/

(4) d(I',T") = log H[loE{i]X .0)’
where [«r] was the conjugacy class of an element « € F,, and £, (I") was the length of the
unique immersed loop in the free homotopy class associated to a. The characterization
above was useful as there was an algorithm that allowed us to compute the quantities
on the right hand side of (4). The asymmetric metric established further rich geometric
properties of CV,,. For example, using the metric we could define geodesics in CV,,
which were particular paths obeying a certain isometry condition (Definition 21.3).
Perhaps more markedly, we used the metric to qualitatively understand the behavior
of the group action of Out(F;,) on CV,, through a program initiated in Lecture 22.

The abstract setup was that if (X, d) was an asymmetric metric space, ® € Isom(X),
then we could define the translation length 7(®) = inf{d(x, ®(z)): € X}. Using the
translation length, we could classify isometries into as one of three categories:

e (Elliptic) Isometries with fixed points;

e (Hyperbolic) Isometries for which the translation length 7 was positive and is
realized;

e (Parabolic) Isometries for which the translation length 7 was not realized.

We spent a considerable amount of effort to understand and classify the elements of
Out(F),,) when viewed as elements of Isom(CV,,). Our primary results are tabulated
below. Fix ® € Out(F,).

e O is elliptic if and only if it has finite order (Lemma 22.5).

e If & is parabolic then it is reducible (Theorem 24.1). The converse however is
false.

e If ® is hyperbolic then there is a map ¢: I' — I representing ® that is a train
track map on its tension graph (Theorem 24.3).

e If ® is irreducible then it is hyperbolic.

e & is reducible if and only if F;, admits a decomposition

(5) F,=A1%---+A,«C

where the A;’s are nontrivial and ® permutes the conjugacy classes [A;] (Propo-
sition 27.1).

We also observed some “pathologies” as well. For example, we exhibited ® € Out(F},)
such that 7¢ F 7p-1 which in truth was not terribly surprising since we are working in
an asymmetric space. Another example was an irreducible element ® with the property
that ®3 was reducible. Moreover, we also saw examples of reducible elements whose
associated decomposition of F,, as in (5) was non-canonical.

Overall, we have made strides in understanding free groups, Out(F,,) as a group, and
individual elements of Out(F,). In terms of the big picture, our results have ratified
the analogies to mapping class groups and lattices in Lie groups, and we have build up
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methods that more broadly are useful for importing ideas and results to Out(F},) via
these analogies. Furthermore we are implementing the main insight of geometric group
theory, which is that often groups can be studied via the metric spaces they act on.
Future lectures will give other spaces (different from outer space) that Out(F},) acts on,
allowing an even richer application of ideas from geometric group theory. Free factors
will play a major role in this, so next we will spend some time investigating when a
subgroup A < F, is a free factor.

30. DECIDING IF A SUBGROUP IS A FREE FACTOR (11/08, AB, RE)

Our goal here is to find an algorithm to determine whether a given finitely generated
subgroup A < F,, is a free factor. We partially follow [HW19, Asc]|.

Recall that A is a free factor if there exists another subgroup B < F,, such that
F, = A« B. Free factors are vastly better behaved than arbitrary finitely generated
subgroups, and in the comparison to linear algebra they provide a reasonable analogue
of a vector subspace. It may help to keep in mind that vector subspaces always have
complements.

We say that a single element g € F), is primitive if it generates a free factor, or
equivalently if it is part of a basis for F,,. We begin by (re)introducing a few notions
that will help us.

Definition 30.1. Let A < F,, be a finitely generated subgroup. The wvolume of A is
the number of edges in the core of the (unpointed) A-cover of R,,.

Exercise 44. For g € F,,, we have that vol({g)) is the length of the cyclic reduction of
the word corresponding to g. (Recall that the cyclic reduction is obtained from a word
by removing subwords of the form a;a;* and a;‘a; for each i, and also by replacing
words of the form a;wa; ' or a;'wa; by w, i.e. it is a shortest word corresponding to
an element in the conjugacy class of g. Up to cyclic permutation, it depends only on
the conjugacy class.)

Definition 30.2. An automorphism ¢ of F,, is Whitehead of the second kind if there

o(a;) € {a;, m 'a;, a;m, m " a;m}
for each 1.

Next, we state the key theorem that will allow us to produce the algorithm.

Theorem 30.3. If A < F,,, with A # F,,, and A is a free factor, but A is not conjugate
to a subgroup of {ay,..., G, ...,a,) for any i (here this denotes the subgroup of F,

generated by the a; for j # i), then there exists a Whitehead automorphism of the
second kind ¢ such that vol(p(A)) < vol(A).

Assuming this theorem, we can describe the algorithm. We begin with generators
g1, ..., for A, which we do not assume form a basis:

(1) Fold the map from the graph in Figure 97 to R,, to compute the core I' of the A
cover of R,. If ' = R,,, then A = F},, so A is trivially a free factor. If ' -> R,



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 91

FIGURE 97

is not surjective, then A is conjugate into <{ay,...,a;,...,a,) for some i. Recall
that by Lemma 26.6, if A < C' < F},, and C is a free factor, then A is a free
factor of F), if and only if it is a free factor of C'. Therefore, we may repeat the
algorithm with F,, replaced by {ay,...,a;,...,a,) = F,_1, and A replaced by
its conjugate lying in {ay,...,a;,...,a,), and we are done by induction on n. If
I' - R, is surjective but not an isomorphism, move onto step 2.

(2) For each of the finitely many Whitehead automorphisms of the second kind ¢,
compute vol(¢(A)). If vol(p(A)) = vol(A) for all ¢, then A is not a free factor
by Theorem 30.3. Otherwise, pick ¢ such that vol(pA) < vol(A). Since A is a
free factor if and only if p(A) is, we may replace A by ¢(A), and return to step
1. Since the volume has decreased, we are making progress, and this algorithm
will terminate in finite time.

Remark 30.4. The above is a conceptual proof that an algorithm exists. When imple-
menting the algorithm, one does not however actually search over all ¢ as suggested
above. Instead one uses the results of of Exercise 48 to quickly determine which ¢, if
any, will reduce the volume.

Now, we turn to the proof of Theorem 30.3. First, we introduce a helpful definition.

Definition 30.5. An almost rose is a directed graph I' whose edges are labelled by
symbols {a;} such that:

(1) There is a unique index ¢ € {1,...,n} such that there are exactly two edges
labelled by a;, and for j # ¢, there is exactly one edge labelled by a;.

(2) T has exactly two vertices, which we call u and v.

(3) One of the two edges labelled a; is a loop with vertex u, and the other connects
u and v.

(4) T has no hanging tree, that is, there is a j # i such that the edge labelled by a;
either connects u to v, or is a loop with vertex v.

Up to signed permutation, every almost rose looks like the graph in Figure 98 for
some 1 < k <0 <n, with k£ <n.

Lemma 30.6. If A is a free factor, and I is the core of the A-cover of R,,, there exists
a label preserving map of I' to an almost rose.
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FIGURE 98. (The left vertex is meant to be labelled w)

Proof. Write F,, = A = B, and pick a basis z,...,z, for B. Let [ be a graph obtained

by adjoining ¢ subdivided loops to I' such that there is an induced morphism I' > R,
of graphs, where the morphism is defined on each of the ¢ subdivided loops by the
words corresponding to the z;’s. See Figure 99 for an example. Then, we fold the map

I' - R,, to obtain a factorization:

A

=0[y—- >, > R,.

Note that the last map is an isomorphism by Exercise 45 below. Since the rank never
goes down, each of these folds are either type I or type II. Therefore, [y_iisa single
rank preserving fold away from being a rose, so it has two vertices, and D, — I, is
a type II fold (note that type I folds can only exist when the graph has at least three
vertices). Finally, note that [';_1 has no hanging tree, since [ has no hanging trees, and
type I and II folds cannot introduce new hanging trees. Therefore, [, ; is an almost
rose, and I' — - fs_l is our desired map. O

F1GURE 99. The graph r

This proof used the exercise:
Exercise 45. The map I - R, is an isomorphism on .

We also will need the following fact:
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Exercise 46. Let f be the map of T' to an almost rose as in Lemma 30.6. Then, f(T')
has two vertices and no hanging tree. (See Hint A.19.)

Now, we begin the proof of Theorem 30.3.

Proof of Theorem 30.3. Let f be the map of I' to an almost rose as in Lemma 30.6. By
applying a signed permutation if necessary, we may assume the almost rose is labelled
as in Figure 98. Let eg be an edge of f(I') connecting w, v, such that eq is labelled by
a; whenever the unique edge labelled a; connecting u, v is in f(I'), and if this edge is
not in f(I'), we can pick an arbitrary such eq. In either case, let a; be the label of e.

M\ I’\ |

e
“ 0«:) J Ay
[ ~ - a
/ o
" & VS Ay
—>—9 —_—
'1" A, X

F1GURE 100. The labels of the vertices indicate whether the vertex maps
to u or v in the almost rose. For each half edge entering or leaving a vertex
labelled v, we are adding an edge labeled a; pointing towards that vertex;
the one exception is if the edge is already labelled a;. So in a sense we're
changing the graph “near the preimage of v” only.

Now, we produce a graph I from I' by applying the following replacement rules to
each edge e of I
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) If f(e) = eg, then e is unchanged in T".
) If f(e) is a loop with vertex u, then e is unchanged in I'".
) It f(e)

This situation is summarized in Figure 100. The labels on I give rise to a map f’ :
[ — R,. The rest of the proof will be explained next time. 0

We will need the following easy exercise:

Exercise 47. There is a Whitehead automorphism of the second kind ¢ such that
im(f;) = ¢(A).

Our general strategy will be to fold f’, and show that vol(p(A)) < vol(A).

31. FREE FACTOR ALGORITHM, FREE FACTOR COMPLEX (11/10, AB, JG)

Let’s return to the proof of Theorem 30.3.

Proof of Theorem 30.3 (continued). By our choice of j (namely, requiring that a; = a;
if the edge labelled a; connecting u,v in the almost rose is in the image of f) we
have im(f]) = ¢(A). (If that edge was in the image but we used a j # 1, then the
replacement rule above would effect the edges labelled a; that map to the edge from
to v, but not the edges labelled a; that map to a loop at u, and so we wouldn’t have a
well-defined ¢ with im(f.) = ¢(A).)

Now, fold the morphism f’: I" — R,, and chop off hanging trees to get an immersion
f": " - R, with im(f/) = ¢(A). By Lemma 7.4, the map I — R,, is the core of
the ¢(A)-cover of R,. To conclude, it suffices to show that [ has fewer edges than I'
(since ¢ is a Whitehead automorphism).

Let’s think about the preimages of v in I'. If 9, is such a vertex, note that 0y can
have an incoming a; edge but no outgoing a; edge. Let © denote the vertex of I
corresponding to 9y € I'. Note that by construction, every edge adjacent to v € ' is an
incoming a; edge. Since we may fold edges and remove hanging trees in any order we
like, let’s consider the graph G obtained from I by only performing the following two
operations:

(1) For each vertex v of I corresponding to a vertex of I' mapping to v, fold all the
edges bordering ¢ (which are incoming a; edges) to produce a graph Gj.

(2) Chop off the (hanging) edge of Gy corresponding to each of the 0, and call this
graph G.

The situation is summarized in Figure 101. The graph I'” is obtained from G by
performing further folds and removing hanging trees, so it has fewer edges than G.
Therefore, it suffices to show that G has fewer edges than T'.

Let’s count precisely how many edges have been added and removed to produce G.
The edges added to I' are in bijection with pairs (v, €), where © is a vertex of I mapping
to v, and e is an (oriented) edge of I" based at © which is not labelled by a;. Let o be
the number of these vertices. Let 8 be the number of edges labelled a; which do not



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 95

FiGure 101

map to loops at v under f, and let v be the number of edges added in the passage from
I’ to I'V. In summary

o = number of ¥
B = number of a; edges mapping to an edge from u to v
v = number of (7, e)

= number of edges added to I" to get I".

So, to start we add v edges to I' to get I”. In step 1, we remove § + v — a edges via
the folding. In step 2, we remove « edges. Therefore, § is the difference between the
number of edges of G' and the number of edges of I'. Since we chose a; to label an edge
in the image of f, § > 0, and so we are done. O

Remark 31.1. Here is come context on Theorem 30.3:

(1) This theorem is very closely related to Whitehead’s “Cut Vertex Lemma.” See
Exercise 48.

(2) It is even more standard to prove this result using spheres in three manifolds.
There is also a third approach using the boundary of the free group [Mar95,
Appendix BJ.

(3) The algorithm based on this theorem is often called the “easy Whitehead algo-
rithm.” This also goes under the name “peak reduction”.

(4) There is also a “hard Whitehead algorithm,” which allows one to compute
whether any given w,w’ € F), lie in the same orbit of Aut(F},).

(5) There are also many other variations of these Whitehead algorithms. The moral
is that “greedy” algorithms using Whitehead automorphisms are shockingly
effective.

Exercise 48. Let A be a finitely generated subgroup of F,,, and let I" be the core of the
A cover of the standard rose R,,. Define the Whitehead graph of A as follows:
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o There are 2n vertices, labelled by {ai,a;’, ..., an,a;'}.

e There is an edge from vertex v to vertex w if there a vertexr of I' with an outgoing
edge labelled v and an outgoing edge labelled w. (There can also be more outgoing
edges. The edges of I' aren’t really oriented, so what we really mean by “outgoing
edge labelled v” s that there is an adjacent edge, such that when you oriented it
away from v it maps to the rose according to its label v € {ay,a;", ..., an,a;'}.
If an edge is a loop based at v there are two ways to orient it away from v.)

e By definition of I', since I' — R, is an immersion, the Whitehead graph does
not contain any loops based on a single vertex. We do not add multiple edges,
so it is a graph in the strictest sense.

Note that I — R,, is onto if and only if A is not conjugate into a subgroup defined by
at most n — 1 of the basis elements.
(1) Show that ' — R, is not onto if and only if there is some i such that both a;
and a; ' are isolated vertices.
(2) Suppose that T' — TV is a label preserving morphism of graphs. Show that the
Whitehead graph of T is a subgraph of the Whitehead graph of T".
(8) Show that the Whitehead graph of the almost rose illustrated in Figure 98 is as
llustrated in Figure 102. Note in particular that if we remove the vertex labelled

FIGURE 102. A schematic of the Whitehead graph of the almost rose
illustrated in Figure 98. Two vertices should be joined by an edge if and
only if they are either in the same bubble or their bubbles are joined by
an edge in this schematic. Thus, in the schematic, each bubble represents
a complete subgraph, and each edge represents a join. The Whitehead
graph is, in this case, two complete subgraphs which overlap at a;*. The
vertex al_l Is a cut vertex.

a;' from Whitehead graph of the almost rose, the Whitehead graph becomes
disconnected. That is, a]' is a cut vertex.

(4) Deduce that if I' maps to an almost rose, then its Whitehead graph has a cut
vertex.

(5) Conversely, show that if the Whitehead graph of I has a cut vertex, then I" has
a map to an almost rose.

In summary, I' has a map to an almost rose if and only if its Whitehead graph has a
cut vertex.

Exercise 49. Suppose that A is a finitely generated subgroup of F,, that is contained
in some free factor. Show that the conclusion of Theorem 30.3 holds for A. (See Hint
A.20.)
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Our next goal is to introduce a geometric space parameterizing all conjugacy classes
of free factors.

Definition 31.2. A free factor is proper if it is neither trivial nor all of F,.

Definition 31.3. Given two conjugacy classes of free factors [A], [B], say [A] < [B]
if a representative of [A] is contained in a representative of [B]. (Equivalently, if there
exists g with gAg™! < B.)

Now we are ready to define the free factor complex.

Definition 31.4. If n > 2, the complex of free factors F'F,, is the simplicial complex
whose vertices are parameterized by all conjugacy classes of proper free factors of F,,
and ([A1],...,[Ax]) span a (k — 1)-simplex if, up to reordering, we have:

When n = 2, we define F'F;, to be a graph whose vertices are conjugacy classes of free
factors of rank 1, and [A], [B] span an edge if I, = A+ B for certain representatives of
these conjugacy classes.

In general, we define the free factor graph FFY to be the 1-skeleton of F F,.

Remark 31.5. We already proved that F'F; is the Farey graph; see Remark 14.14.

Exercise 50. Describe the subset of F'F,, given by all free factors generated by a subset
of the standard basis. (See Hint A.21.)

Exercise 51. Let P, be the graph which has as a verter for each conjugacy class of
pair {z,x'} with x primitive, and an edge from [{x,x='}] to [{y,y~*}] if there is a
basis for F,, which contains x and a conjugate of y. Show P, is quasi-isometric to F'F),.
(See Hint A.22.)

We define a metric on FF.Y by declaring each edge to have length 1.

Remark 31.6. Out(F},) acts simplicially on F'F,,, hence it acts on FEY.

Let & be the set of finite sets of vertices of F'F,,. There is a map 7 : C'V,, —» S given

by
7(T) = {m(Ty) : To = T a connected subgraph with 7 (T'g) proper}.

Let oo, D, © denote the figure-eight, dumbbell, and theta graphs, respectively. These
represent the only homeomorphism classes of connected graphs whose fundamental
groups have rank 2 and no hanging trees. For X € {00, D, ©}, and a, b a basis of Fy, let
X be a copy of X, with a marking given by labelling two oriented edges by a and b.
Then, we can see the following:

o m(Oap) = {[{®)], [B)], [ab™ D]}

o 7(Dap) = m(%ap) = {[{a)]; [{BY]}-
This is most of the proof of the following:
Exercise 52. If ' e C'V,, ©(T") is either:

e two vertices joined by an edge
o three vertices, where each pair are joined by an edge.

In particular, diam(7(T")) = 1.
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32. BOUNDING DISTANCE IN F'F, (11/13, KS, SL)
Lemma 32.1. diam(7 (")) <4 for allT' € CV,.

Proof. Assume n > 3. Say I'4,T'p are subgraphs of T with 7m1(T'4) = A, m(I'z) = B.
Pick non-separating edges a,b with a ¢ I'4,b ¢ I'g. Since n > 3, I' — (a U b) is not a
forest. Let I'c be a non-tree component of I' — (a U b) and let C' = m;(T¢).

Since I'y < ' — a, we have [A] < [m(I" — a)], so there is an edge in the complex of
free factors, hence d(A, 7 (I' — a)) < 1. (This distance is 0 if 'y =T" — a.) So

d(A,B) < d(A,m(I —a))+d(m((I —a),C)+d(C,m(I' = b)) + d(m (I" = b), B))
< 1+1+1+1=4

as desired. 0
Definition 32.2. x € F}, is simple if it is contained in a proper free factor.

Example 32.3. alagaflagl € F; is not simple.

Remark 32.4. Primitive implies simple.

Example 32.5. ala3 € Fy is simple but not primitive.

Exercise 53. Show every simple element of F,, can be written as a product of two
primitive elements. (See Hint A.23.)

Exercise 54. Show that if w € F,, is cyclically reduced and has all possible 2n(2n — 1)
possible subwords of length 2, then w is not simple. (See Hint A.24.)

Remark 32.6. A slight variation on Lemma 26.6 shows that the intersection of free
factors is a free factor. See the discussion after that lemma for a reference.

Definition 32.7. If x is simple, let © € F F% be the conjugacy class of the intersection
of free factors containing x.

Remark 32.8. In general & # (o). For example, a = aja3 € F3 but & = {ajas).

Definition 32.9. If z € F,,, I' € CV,, let z|I" be the (unbased) immersed loop in T’
with conjugacy class x.

The following is an improved version of [BF14a, Lemma 3.2] with a new proof.

Proposition 32.10. Take I' € CV,,, e an edge of ', and let o € F,, be simple such that
a|l’ crosses e at most k times. Then there exists A € w(I") with

d(A, &) < max (2|logy k| +5,1).

Remark 32.11. The proposition is already interesting and useful if « is primitive, in
which case & = {«). See Remark 32.12 for how the proof can be made slightly simpler
in this case.

Proof. If k =0, take A = m(I' — e). In this case d(A, &) < 1, since a € m(I" — e).
If £ > 1 we will use the following statement.
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Exercise 55. There exists a marked graph I and a morphism f : TV — T' that is an
isomorphism on 1, such that o|I” is contained in a proper subgraph and intersects
f~(e) at most k times. (See Hint A.25.)

Let I') be a proper subgraph of I containing a|I”. If «v is not embedded, we view (the
image of) its immersed representative oI as a subgraph of [, and let 5 be embedded
loop in a|I" = I, as in Figure 103. So 8 € F}, is primitive and

A((BY, &) < d(d@, m(Th)) + d(m(Th),(B) < 1+1 = 2.

FiGure 103

Note that B|T" intersects f~!(e) at most k times, since 3|T” < a|I" and «o|T” intersects
f~(e) at most k times.

Remark 32.12. If a was primitive, we could slightly simplify the above, for example by
taking I to be a subdivided rose labelled by a basis containing «, and taking S = «.

Let us fold to get
I'=ry—->I—> - —>I,=T,
and let f; : IV — I' be the induced maps.

Let ig = 0 and i; be the first time when 3 stops being embedded (that is, the smallest
i such that S3|I'; is not embedded). The only situation when that occurs is when S|I';,
is figure eight loop, since S|I'; _; is embedded and a fold identifies just one pair of
vertices. Let 1 be one of the two embedded subloops of 3|I'j, whichever has at most
k/2 preimages of e (3|}, has at most k preimages).

Continue folding until 3, stops being embedded and repeat. Stop at t; with g; disjoint
from f; '(e), so | < |logy k| + 1. Note that d({5;),{Bj+1)) < 2, since in I, both 5;
and (3,41 are contained in the figure eight subgraph defined by 3;. Let A be the free
factor defined by the component of I' — e containing 5,|I", so d(A,{B¢)) < 1. Overall,

d(A;a) < d(&(B))
+d((B), (B)) + -+ + d({Bi-1), (B)
+d((Bp, A)
< 24 2(|logy k| +1)+1
< 2|logy k| + 5.
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33. CV,, — FF,, GROMOV HYPERBOLICITY (11/15, UP, NL)

Remark 33.1. For any a € F,, and I" € CV,,, if a|I" crosses each edge of I' at least k
times, then
lo(T) = k-vol(T') = k
Hence some edge is crossed at most [, (I") times.
Corollary 33.2. IfT',T" € OV, d(T,T") < log o, then diam(x(I") u 7(I"))< log 0.

The < sign indicates less than or equal up to additive and multiplicative error. (We
could easily be precise but choose not to bother.)

Proof. Pick f : I' — I" optimal so f has slope < 0. Let a be a witness of the form
of an embedded loop, a figure 8, or a dumbbell (See Figure 104). So « is simple and

(O oo o0

F1GURE 104. A witness can always be chosen to be take of these forms

(') < 2 and so [,(I") < 20. There is an edge €’ of I such that «|I" crosses ¢’ at most
20 times, so Proposition 32.10 gives a A € w(I") with

d(A, &)< log(20).
O

One often defines a “distance” between subsets of a metric space by d(P,Q) =
diam(P u ). This definition of distance is symmetric and satisfies the triangle in-
equality, but the distance from a point to itself may be greater than 0. Thus the
corollary says that

d(n(T),n(I")) < kd(T',I") + k
for some k. We say 7 is “coarsely Lipschitz”.

Definition 33.3. A metric space is geodesic if there is at least one geodesic between
every pair of points.

Definition 33.4. Let 6 > 0. A geodesic metric space is d-hyperbolic if for any triple of
points z,y, z and a triple of geodesics 7z, Vyz, V22 joining them, we have

Yoy & N5(’7yz Y ’sz)-

Here, Ns(S) = {p : 3¢ € S,d(p,q) < ¢}. Figure 105 shows a picture of what this
condition looks like. We say triangles are “j-thin”.

Definition 33.5. A space is Gromov hyperbolic if it is d-hyperbolic for some 4.
Example 33.6. R? is not Gromov-hyperbolic.
Example 33.7. Trees are 0-hyperbolic. Figure 106 shows a 0-thin triangle in a tree.
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FiGure 105

FiGure 106

Morally speaking, “Gromov-hyperbolic = coarsely tree-like in many ways.”

Example 33.8. H?, and in general the universal cover of a compact, negatively curved
manifold, is Gromov hyperbolic.

Exercise 56. F'F, (which is also the Farey graph) is 1-hyperbolic.

The general case is vastly harder and we’ll only mention the result without giving
the proof [BF14al. See [Vogl5, Section 8] for a nice and short introduction, and see
also the discussion after Theorem 36.9.

Theorem 33.9 (Bestvina, Feighn). F FY is Gromov hyperbolic.
Let us now try to very briefly indicate one way such a result can be used.

Remark 33.10. In the world of coarse geometry, the definitions of elliptic, parabolic,
and hyperbolic for an isometry ® € Isom(X) get changed:
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e Elliptic <= there is a bounded orbit
e Parabolic <= not elliptic and 7 = 0
e Hyperbolic < 74 > 0.

This is not consistent with the old definition. To mitigate this, we’ll use “loxodromic”
to say 7 > 0.

Just like random walks on trees drift, one can get the following result [MT18]:

Theorem 33.11 (Maher-Tiozzo). Let X be a Gromov hyperbolic (separable) metric
space. Let p be a probability measure on Isom(X) with countable support that generates
a non-elementary subgroup. Let w,, € Isom(X) be sampled after n steps. Then L such
that
P(7y, < Ln) — 0 asn — ©
In particular,
P(w, is lozodromic ) — 1

Corollary 33.12. Fiz a finite generating set for Out(F,). Let w, be the result of
composing n randomly chosen generators. Then

P(w, is fully irreducible) — 1
as n — .

Proof sketch ignoring “non-elementary”. If w, is not fully irreducible, then dp such that
wP is reducible. So there exist [A1],...,[Ax] € FF” permuted by wP. So T(wk) = 0,
so T(wy,) = 0. O

We haven’t defined what non-elementary means, but let us at least mention that to
have a non-elementary subgroup of isometries the space must have infinite diameter.
We haven’t shown that F'F,, has infinite diameter if n > 2.

Exercise 57. A map f: X — Y between metric spaces is coarsely Lipschitz if there is
a C'> 0 such that

d(f(x), f(z')) < Cd(z,2") + C
forall z,2'. A map g: Y — X is a coarse inverse to f if there is a C' > 0 such that
d(z,g(f(z))) < C for all x and d(y, f(g9(y))) < C for all y.

Show that if f and g are coarsely Lipschitz and are coarse inverses to each other,
then both are quasi-isometries.

Exercise 58. Let X be a (possibly asymmetric) metric space and let T' be a graph.
Suppose there is a map 7 from X to finite subsets of vertices of I', such that m(x)
always has diameter at most C' for some C' > 0. (Optional: Start off with the special
case when m(x) is always a singleton.) For v a vertex of T, define m(v) to be the set
of x with v € m(x).

Let E be defined by starting with X, and for each vertex v of I, adding a “cone point”
¢y. For each point x € 71 (v) also add a unit length segment joining x to c,. (The space
E is sometimes called an “electrification” of X. It has the feature that it contains X,
and each 71 (v) now has diameter at most 2.)
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Suppose that, for all pairs of adjacent vertices v, w, the intersection of 7~ (v) and
7 (w) is non-empty. Show that the induced map E — T is a quasi-isometry. (If you
don’t like that m(x) is a finite set, define a & by setting 7w(x) to be an arbitrarily chosen
element of m(x), and show that T is a quasi-isometry.)

Apply this to X = CV,, and I' = F'F,, to conclude that the free factor graph is quasi-
isometric to an electrification of CV,. (See Hint A.26.)

34. GROUPS ACTING ON TREES (11/17, SY, JG)

Definition 34.1. A group action on a tree is called minimal if there is no proper
invariant subtree.
The action has no edge inversions if whenever g(e) = e, g fixes both vertices of e.

Remark 34.2. If G ~ T is arbitrary, and 7" is the result of subdividing all edges, then
G ~ T' has no edge inversions. So if you have edge inversions, it is trivial to get rid of
them by adding vertices.

NS
N

FiGure  108. No
F1GURE 107. An edge inversion edge inversions after
subdividing

Convention: Unless otherwise specified, all our actions will be without inversions.
(This implies " — T'/G is a graph morphism.)
Lemma 34.3. G ~ T is minimal if and only if core(T/G) = T/G.

Proof. If core(T/G) # T/G, its preimage is an invariant subtree 7".
Conversely, If 7" has an invariant subtree 7",

T/GCT/G m(T)G) =G =m(T/G),

So core(T/G) # T/G by Lemma 7.3. O

The picture of general action G ~ T is as follows:
e preimage of core(T/G) # T'/G, where action is minimal;
e extra hanging trees that are permuted. (See Figure 109.)

Definition 34.4. A free splitting is a minimal action of Fj, on a tree with trivial
edge stabilizers.
(It is a k-edges free splitting if there are k orbits of edge.)
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FIGURE 109. An example of T"and T'/G when G = Z. The generator of
Z translates to the right.

Definition 34.5. Two splittings are conjugate if there is an equivariant homeomor-
phism between them. (We think of them as “the same”.)

Definition 34.6. A free splitting 7 collapses to a free splitting 75 if there is an
invariant collection of edges of 77, s.t. collapsing them gives (something conjugate to)

/\ﬁge
~_ 7

4 - —

FiGure 110. Collapsings of free splittings

Remark 34.7. Collapsing a proper invariant subset of edges always gives a new free
splitting (still minimal, edge stabilizer still trivial).

Example 34.8. Let X be a surface with one boundary circle. Consider a collection of
k disjoint arcs that go from the boundary to itself. We assume they are not isotopic to
each other and cannot be isotoped rel boundary into 0%.
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Lift to (Z/—\&/Z) =D, get an associated k-edge splitting of 7 (X) = F,,, with a vertex
for each component of D — preimage of | arcs.

B~ & N

» "D
LA Jor

FIGURE 111. ¥ with 0¥ a circle and universal cover of ¥ — 3. (The
lifted purple loops should not actually touch at infinity.)

We’ll now take a slight digression, to address the question: What algebraic informa-
tion is encoded in a free splitting? The answer, given by Bass-Serre Theory, is that
it produces a collection of presentations of the group. We'll only be able to give one
result from this theory, but you can read more in sources such as [Ser03, SW79]. We’ll
roughly follow part of [DD89], because its presentation isolates and gives a short proof
of one of the main results.

Definition 34.9. If v € V(T), let G, = {g € G|gv = v}, similarly for e € E(T).

Let S be the lift to T" of a maximal tree of T'/G.

Let B be the subtree of T" defined by S union, for each edge e of G/T — (image of S),
a lift of e adjacent to S. See Figure 112.

Remark 34.10. The letters “S” and “B” are chosen to indicate that these are small
and big “almost” fundamental domains. For example, S contains exactly one vertex
from each orbit of vertices, and B contains exactly one edge from each orbit of edges.
(Often when one talks about fundamental domains one ask that the group element that
moves a point into the fundamental domain be typically unique. This won’t hold in
our situation because the vertex and edges stabilizers can be non-trivial.)

Remark 34.11. Note that the construction of either domain is not canonical, as we have
made many choices. We are trying to find a group presentation, and group presentations
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e a lift of e

B-S

maximal subtree

part of T'/G part of T

FiGURE 112. Small and big fundamental domain

are typically very non-unique and non-canonical, so it’s expected that we have to make
a lot of choices.

Theorem 34.12 (Part of Bass-Serre Theory). Say G ~ T as above. For eache € B—S,
pick s. € G that takes the other vertex of e into S. Ife € S, set s. = id.
Then if P is the group

<UGU Lee B )}

veV(S)

all relations from each G;

Vee E(B), ge G, tegte " = scg5. " te =1 if eeE(S)>

the natural map P — G s an isomorphism.

The unions describing the generating set are formal disjoint unions; it is somewhat of
an abuse of notation to say that the generators come from G, and it would be better to
instead say we are taking one new, formal symbol for each element of each G,. If some
element of G lies in two different G,, v € V(.9), it formally gives two distinct generators
of P. These two distinct generators end up being equal in P, so the abuse of notation
is only very mild.

35. PRESENTATIONS FOR GROUPS ACTING ON TREES (11/20, YL, ZH)
We begin with some remarks on Theorem 34.12.
Remark 35.1. Suppose e € E(9) is a directed edge from v to w. If g € G, then we get
two generators from g: (g € G,) and (g € G,). The relation in this case is
t(ge Gt = s.(g e Gy)s,
but since t, = id, s, = id, we have (g € G,) = (g € G,) in P.
Exercise 59. Use the previous remark to fully justify the claim from the end of last

lecture: If g € G is contained in G, and in G,, with v,w in V(S), then the two
generators (g € G,) and (g € G,,) are equal in P. (See Hint A.27.)

Remark 35.2. If e € E(B) — E(S) is an edge from v € V(S) to w € V(B) — V(5), the

relation
tegte_l = Segse_1
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of P requires some interpretation. Namely, here g denotes the generator that might be
more formally denoted (g € G,). The element s, by definition takes w to some vertex
u € V(S). Note that s.gs. ! fixes u. In the relation, s.gs. ! denotes the generator that
might be more formally denoted (s.gs.™! € G,,).

Remark 35.3. The map P — G is defined by sending (g € G,,) to g and % to s..

Remark 35.4. Fix a presentation for each G,. The theorem is equivalent to G having
a presentation consisting of the union of the generating sets of each G,,v € V(95),
together with the indicated new generators t., and all the relations from each of the
presentations of each G, together with the indicated new relations involving the t.. So
the theorem says what new generators and relations are needed when passing from the
collection of G, to the whole group G.

Example 35.5. If T/G is an edge with two vertices, we have that S = B consists of a
single edge e with two vertices v and w, and the theorem tells us P = G, #¢, G-

Example 35.6. If T/G is a self loop at one vertex, we have S is just one vertex v
and B is an edge e with two vertices v and w. In this situation, we can drop some
subscripts, and use t, s instead of t., s.. Define

Qﬁ:(GeCGv)_’Gv
h — shs™L.

Then G = {(G,,t|Vh € G, tht~' = ¢(h)). This description of G is exactly the definition
of the HNN extension G, *g.

Example 35.7. If all edge stabilizers are trivial, then

veV(B) eeE(B\S)

In particular, note each G, is a free factor of G.

Remark 35.8. What is the difference between the HNN extension [, = F,_;*4, where
¢ : {id} — {id} is the identity, and the free product F,, = F,_; ={(t)? In a sense nothing,
but in practice usually if you get F},_y *(t), then (t) is canonical, and if you get F),_1%4,
then the last generator comes from a non-canonical choice.

Example 35.9. If « is an arc on a surface with one boundary component, we get an
associated free splitting of m; = F},, which has quotient in the two cases below:

quotient is D when « is non-separating
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s

quotient is / when « is separating

Outline of Proof for Theorem 34.12. We proceed in the case where edge stabi-
lizers are trivial, since this is sufficient for our purposes and simplifies the presentation.
(We only use this extra assumption in the last lemma.)

Lemma 35.10. We have T'= | JgB (and P acts on T via the map P — G).

geP

Proof. We will show that | J gB has all edges adjacent to B. The result will then follow
geP

by connectivity, since | J gB has every adjacent edge to itself.
geP

Let f be an edge adjacent to Bj; it has one vertex p in V(B), and the other vertex
g not in V(B). Our goal is to show f is in | J¢gB. By definition of B, there is some

geP
h € G such that hf € B.
First assume p € V(S) and proceed as follows.

o If hp € V(5), then hp = p, by definition of S. In that case h € G, so the fact
that f € h™'B proves the result, keeping in mind that G, = P.
o If hp¢ V(S), then hf € E(B) — E(S), and s,rh(p) = p. So

= (sngh) s (hf),
which proves the result since hf € E(B),tn; € P, and (spsh)™' € G, < P.

Next assume that p ¢ V(.S). In that case, p is an endpoint of an edge e € E(B) — E(S)

and we have s.(p) € V(S). Since s.(f) is in | gB by the previous case, applying ¢_*
geP

to se(f) gives the result. O
Lemma 35.11. The map P — G 1is surjective.

Proof. We will denote this map by [ and write a bit more formally than usual. Pick
g € G; our goal is to show ¢ is in the image of [.

Pick v € V(S). By Lemma 35.10, there exists a p € P such that gv € I(p)B, and so
(I(p)~'g)-veV(B).
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If (I(p)~'g)-w e V(S), then by definition of S, I(p)~*gv = v. Thus, I(p) ‘g€ G, c P,

and

g=1(p-1(p)""9)
is in the image as desired, since p maps to I(p) via I and I(p)~'g viewed as a generator
of P maps to I(p)~'g in G.

If I(p)~'gv € V(B)\V(9), let e be the edge in B, with I(p)~'gv as an endpoint.
Thus s.(I(p)"tgv) € V(S), and hence the definition of S gives s.I(p) 'gv = v. Hence
seI(p)'ge G, c P, and

g=1I(p-t;" sd(p)'g)

is in the image as desired. 0
Lemma 35.12. Let G be a group, g1,...,9, € G and let

Gn =191 9n-1)9n(91 - gu1) "
Then Gngn—1---91 = G192 Gn-

Remark 35.13. If B is a fundamental domain for a group action, then the translates
gB tile the space. If g; B is adjacent to B, we can think of g; as a “local move” at B,
in that it moves B to an adjacent “copy of B” in the tiling. See Figure 113.

D
N7

g.

FIiGURE 113

If g, is a local move at B, then g, is a local move at g;...g,_1B; see Figure 114.
The conclusion of this observation and Lemma 35.12, as illustrated in Figure 115, is
that if all the g; are local moves at B, then by “adding hats and reversing the order of
multiplication” we can get ¢, - - - g, B via a chain of local loves starting at B.

Lemma 35.14. P — G s injective.

Proof. Recall that we are assuming that all edge stabilizers are trivial. This implies
that for each edge in T there is a unique group element moving it into B. In particular,
we have that if g € G has g(B) = B, then g is the identity.

Assume in order to find a contradiction that the lemma is false. Let ¢g;---g, be a
minimal length word in P that is non-trivial in P but trivial in G. Here all the g; are
generators of P, and minimality in particular implies that

e none of the g; are the identity element of any G,,v € V(5),
e 10 consecutive pair g;, g;+1 lies in the same G,,v € S, and
e none of the g; are t=, e € E(S).
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g1---n-1

(gl'-'gn—l)il

FIGURE 114

Gn

FiGURE 115

Using the action on 7', one can check that all non-trivial generators of P are non-trivial
in GG, so we have n > 2.

Since T' is a tree, B = ¢; - -+ g, B, the path of translates of B in Figure 115, must
backtrack. Thus, there exists an ¢ such that

g gimaB=g1- g B.

Thus, ¢g;9;.1B = B. Hence, by the first paragraph of this proof, g;g;11 is the identity.
Since we chose our word to be as small as possible, this implies n = 2.
We now make the following observations:

e Since edge stabilizers are trivial, a non-identity element of GG either has fixed
point set which is either a single vertex or is empty.
e Thus if ¢, € Gy, g2 € G, with v, w distinct elements of V(.5), then

g1g2(w) = gi(w) # w.

In particular, g;gs is not the identity.
o If e € F(B) — E(S), then s.(9) is disjoint from S. Similarly s;!(S) is disjoint
from S. See Figure 116.
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FIGURE 116

e Hence if g € G,,v € V(S), and e € E(B) — E(S), then s*'g sends v outside of
V(S). (Keep in mind that s*'g(v) = s*!(v), and apply the previous point.) So
s¥1g is not the identity in G. The same of course applies for the inverse.

e A similar argument shows that if e, f € E(B) — E(S) are distinct, then non-
trivial words of length two in s, and sy are not the identity.

It follows that n = 2 is not possible, giving a contradiction. 0

Since we have shown P — ( is surjective and injective, it must be an isomorphism.
We never used the relation

Vee E(B), ge G., tegt.™ " = scgs.” "

because this relation does not appear under our simplifying assumption that all G, are
trivial.

36. THE FREE SPLITTING COMPLEX (11/27, SK, NL)
The following is a corollary of the theorem proved in the last class:

Corollary 36.1. {[G,] : ve V(T)} is a set of vertices of bounded diameter in F'F,.

Definition 36.2. The free splitting complex F'S, is the simplicial complex with
a vertex for each (conjugacy class of) free splitting and a k-simplex for each tuple of
splittings

F,oTy, B, Ty, ..., F, Ty,

where T;,1 collapses to T;.

Remark 36.3. Each point I' € CV,, with k-edges determines 1 k-edge free splitting,
namely F, = m(I') ~ T, and (]:) i-edge free splitting for 1 < ¢ < k (collapse all but i
orbits of edges in I'). See Figure 117.

Exercise 60. These are all non-conjugate. (See Hint A.28.)
Example 36.4. Figure 117 is an example for k = 3.
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o whoke -H«ma_ 5 N

a Simplex

- M | r@dgg SEUFWES

FIGURE 117. Aq, with how many k-edge splittings it has.

Thus I' determines a subset of C'V,, equal to the barycentric subdivision of a (k —1)-
simplex Ay whose vertices can be labeled by edges of " (collapse all but the preimage
of that edge).

Thus A is parametrized by {(¢c)ecepmr) : D5l = 1,£. = 0}. Mapping I' to (length(e))eer(r)
gives an inclusion CV,, — F'S,,. C'V,, is a union of open simplices of F'S,,.

Exercise 61. Show that C'V,, is dense in F'S,,. (See Hint A.29.)

Remark 36.5. To get F'S,,, barycentrically subdivide C'V,, and add in any missing faces.
Actually, we have presented a slightly non-standard variant of the free splitting complex;
usually one defines it so that barycentric subdivision is not required, as we later discuss
in Definition 38.7. The hard part here is to understand the standard version of F'S,;:
One needs to first show that for every k-tuple of 1-edge free splittings, any two of
which are collapses of a 2-edge free splitting, there is a unique k-edge free splitting that
collapses to all of them. This additionally shows that the standard version of F'S,, is
a flag complex. One approach to that is via 3-manifolds; another is sketched in [Besc,
Hint to Exercise 4].

Corollary 36.6. F'S, is connected.

Remark 36.7. On F'S,,, we use the simplicial metric, i.e. where each edge has size 1 (or
use graph metric on F S,(ll)). This is very different from the asymmetric metric on C'V;,.

Exercise 62. Show that the map from cvy to the Farey complex extends to an isomor-
phism from the closure of cvy in FSy to the Farey complex. Show that this closure is
dense, and that the Farey complez is quasi-isometric to F'Sy. (This shows F'So — FFy
is a quasi-isometry. This is not true in higher rank. See Hint A.30.)

It is combinatorially easier to use
p:CV, - FS,, I'—>F,~T,

so we will use this. This map p is not continuous, but d(T", p(I')) < 1 in the simplicial
matrix; see Figure 118.
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N
e(r)

FIGURE 118. In this case, p(I') is the barycentric center.

Proposition 36.8. p is coarsely Lipschitz.

Proof. Consider I', I € C'V,,. There is an optimal map
¢: T -1

of slope 0 = e )= As in Corollary 21.7, we can change edge lengths so the tension
graph A becomes all of T. This doesn’t change p(I") and moves along the start of a
geodesic from I' to I, so without loss of generality we assume A =T,

Scale I by o, so vol(I') = ¢ and I' — I" is a local isometry on edges (slope 1).
Subdivide so I' — I"” is a morphism. Continuously fold (1 edge at a time, unit speed,
arbitrary order) to get a path I'y, s € [0, ] with

(1) Ty =11y, =1,
(2) vol(T's) = wvol(I') — s =0 — s,
(3) t() =o0—1.

We claim that for s < /2, there exists a point Iy on the interior of an edge with
only one preimage on 'y = I". We now prove this claim. Subdivide so that ['y — 'y is
a morphism. If each edge had > 2 preimages, we would have vol(T'y) < UOI(QFO), which
proves the claim. See the diagram below to see this exemplified.

I’

oot not

/ Jéo\d"“ﬂhue'

mavbe lots /

of ,Falc\.mka

[, —

FIGURE 119. An example of a map from I'y — T’

Note that {p(I's) : 0 < s < § — €} has diameter < 2 since it all collapses to a 1 edge

free splitting given by a segment of I'y with one preimage in T'y.
d(r,r’) 0
log2 -

Iterating gives a linear bound in log, o =
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Note that the map CV, — 9FFL” can be extended to FS, — 9FFL yia F,A"T —
{all vertex stabilizers of all collapses}. This is a finite set.
Exercise 63. This agrees with the definition for C'V,, (using C'V, < FS,).

Exercise 64. The image of each point is a bounded diameter subset of F'F,, and F'S,, —
FF, is coarsely Lipschitz. (See Hint A.31.)

The main result on F'S,, is:
Theorem 36.9. [Handel-Mosher] F'S,, is Gromouv hyperbolic.

This was proven in [HM13], but a simplification is available in [BF14b]. It is known
that hyperbolicity of F'S, implies hyperbolicity of F'F,, [KR14].

Exercise 65. This exercise builds on Ezercises 58 and 61. For any I1-edge free split-
ting, consider the subset of C'V,, where the universal cover collapses to this 1-edge free
splitting. (On this subset, there is a well defined edge that doesn’t disappear, and in
the universal cover collapsing onto this edge gives the 1-edge free splitting.) Show that
F'S,, is quasi-isometric to the electrification of C'V,, along the collection of these subsets
corresponding to all possible 1-edge free splittings. (See Hint A.32.)

37. DOUBLED HANDLEBODIES, DEHN TwISTS (11/29, KS, LS)
One reference for some of the material in this section and the next is [BBP23].

Definition 37.1. The handlebody H, is the 3-manifold with boundary obtained as the
inside of the standard embedding of genus n surface 3, — R3.

H,

F1GURE 120. handlebody Hj.

Definition 37.2. The doubled handlebody M, is two copies of H,, glued by the identity
map on their boundary.

Example 37.3. M; = S! x S? (see Figure 121).

Exercise 66. M, is homeomorphic to a connected sum of n copies of S* x S2.

An explicit bijection 7y (M, ) — F, arises as follows: Label n spheres S? by ay, ..., a,
as in Figure 123 and choose a positive direction at each. For each loop v in m(M,)
we determine its image in F), just by reading of which spheres it intersects, taking
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2" com,
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FIGURE 121. Doubled handlebody M;.
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FIGURE 123

an inverse if the sphere is crossed in the negative direction. For example, for the ~
illustrated, we get v = aya; 'as.

If we cut a handlebody along n discs as shown in the top of Figure 124, what we
get is homeomorphic to the 3-ball. There are 2n discs on the boundary of this three
ball, which arise from the n discs of the handlebody. If we glue two 3-balls along their
boundary we get S3. When we glue along just the part of the boundary not contained
in the 2n discs, what we get is S® minus 2n 3-balls.
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Remark 37.4. Thus we can draw M, as S® — 2n 3-dimensional balls with boundary
spheres S? identified in pairs (see Figure 124). Note that the complement of the n
spheres is simply connected.

1

4 %
C

’ v 2y
4
1® /\@I/-\@ =
2 X~

asept

FIGURE 124

Example 37.5. The green region A corresponds to a component of the complement of 3
spheres (see Figure 125). We can set the middle red sphere centered at infinity, so A will
be identified with interior of the middle sphere cutting out blue and orange spheres.
Note that connected sum of blue and orange spheres along the tube is topologically
equal to the red sphere.

Definition 37.6. MCG(M,,) = Diffeo™ (M,,)/Diffeoj (M,,), where + means orientation
preserving and 0 means diffeomorphisms isotopic to identity.

Remark 37.7. The map Diffeo™ (M,,)/Diffeo] (M,,) — Homeo* (M,,)/Homeo (M,,) is an
isomorphism [Sta].

In the following, we always assume that a sphere S does not bound a ball.

Definition 37.8. Let S be a sphere in M,, with a regular neighborhood S x [0,1]. Fix
an identification

S = {(z1, 79, x3) € R® : 2 + 23 + 23 = 1}.
Let g;,t € [0, 1] be a loop generating m; (SO(3)) = Z/2Z. To be specific, g, is a rotation
by 27t about z-axis. Let Tg : M,, — M, be the diffeomorphism that is the identity off
S x [0,1] and on S x [0,1] is defined by (p,t) — (gip,t). This diffeomorphism Ty is
called Dehn twist.
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:

FIGURE 125

Exercise 67. [Ts]? = id in MCG(M,,).
Fact 37.9. [Ts] € MCG(M,,) depends only on the homotopy class of S.

Fact 37.10. If i1,i5 : S — M, are embedded spheres and i1 is homotopic to iy, then
they are (ambient) isotopic.

Example 37.11. Imagine a manifold (e.g. sphere) N intersects S in a circle (see
Figure 126). In the picture, the inside sphere of the regular neighborhood is S x {0},

and the outside outside sphere is S x {1}. Note that N is homotopic to Ts(N). In fact,
Ts acts trivially on the homotopy (isotopy) class of all embedded 1 and 2-manifolds.

T4
l
2
‘-/
FiGUuRrE 126

Remark 37.12. Tt is not easy to show that [Ts] # id.

Remark 37.13. [T [Ts][Ts] = [Ty, (s)] = [Ts], since T (S) is homotopic to S.
Definition 37.14. Let DT be the subgroup of MCG(M,,) generated by all [Ts].
Corollary 37.15. DT is abelian.



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 118

38. LAUDENBACH’S THEOREM, SPHERE SYSTEMS (12/01, LS, UP)
Theorem 38.1 (Laudenbach). The morphism

MCG(M,) — Out(F,)

18 surjective with kernel DT, which s the subgroup generated by all Dehn-twists. Fur-
thermore

DT =~ (Z/2)"

and 1s generated by the twists in n disjoint “standard” spheres.

Remark 38.2. If M,, happened to be a K (m, 1), then every homotopy equivalence would
be determined by its action on m;. Therefore it makes philosophical sense that the
kernel above is related to 2-spheres in M,,, as these are the obstructions to M,, being a
K(m,1).

In fact there is a recent result that improves Laudenbach’s Theorem.
Theorem 38.3 (Brendle-Broaddus-Putman). The short exact sequence
1—- DT - MCG(M,) — Out(F,) > 1
splits.

The upshot of these theorems is that M CG(M,,) is “really close” to Out(F,): Out(F},)
is both a subgroup and a quotient of MCG(M,,), and the “difference” between these
two groups is a tiny group DT that acts trivially on just about everything.

The goal of today’s lecture is to explain the proof of the surjectivity of MCG(M,,) —
Out(F,).

Proposition 38.4. The morphism MCG(M,) — Out(F,) is surjective.

The proof follows a standard strategy: we prove that a generating set of Out(F},)
is contained in the image. We choose to show that all signed permutations are in
the image and so is one Whitehead morphism, at which point we can invoke Nielsen’s
Theorem (Theorem 8.2).

Lemma 38.5. All signed permutations are contained in the image of MCG(M,) —
Out(F,).

Proof. We starting by indicating a diffeomorphism whose mapping class maps to the
signed permutation that inverts a single element. As in Figures 127 and 128, we define
this diffeomorphism by twisting a single handle (and identically twisting its mirror
copy). This diffeomorphism induces an automorphism of 7, which sends a; — aj*.
Next we need to give a diffeomorphism which swaps a;, a;,1, up to inverses. We can
apply a similar idea, this time rotating the handles corresponding to a; and a;,1, so

they get swapped, as indicated in Figure 129. O

It is now enough to show that one specific additional automorphism is in the image.
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FIGURE 128. Rotation inducing a; — a; '

R

FI1GURE 129. Rotation swapping a;, a;;1
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Lemma 38.6. The outer automorphism

ap = a109
Az — Qg !
a; >  Q, 1> 2
1s 1n the image.

Proof. To construct this automorphism, we can focus on two handles of M,,, see Figure
130. Then we can cut along the pink sphere and the blue sphere labeled “1”, which
yields two pairs of pants. These pants fit together as in Figure 131. We can then

FIiGURE 130. One of the boundaries on the middle part of the figure
should be orange.

FIGURE 131

rotate by 180 degrees in the middle of this drawing, staying fixed on the boundary
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(interpolating near the boundary to make this a diffeomorphism). By tracing the arrows
and seeing which spheres we intersect, one can check that this induces the desired
Whitehead automorphism. In Figure 131, the loop corresponding to a;, and its image
under this map are denoted by purple, and the loop as in green. O]

Going back to Proposition 38.4, the statement now follows using Nielsen’s Theo-
rem (Theorem 8.2), since Out(F,) is generated by elements contained in the image by
Lemma 38.5 and Lemma 38.6 respectively.

We now give a slightly different description of the free splitting complex.

Definition 38.7. FS5! is the delta-complex with a k-simplex with a k-face for every
(k 4+ 1)edge free splitting, with glueing given by collapse maps.

Remark 38.8. F'S, as we first defined it is the barycentric subdivision of FS5. As
discussed briefly in Remark 36.5, it turns out that F.S5' is a flag simplicial complex.

Definition 38.9. The sphere complex S,, is a simplicial complex with vertices for
each isotopy class of spheres (not bordering a ball) in M,, where [Sp], ..., [Sk] span a
k-simplex if they can be realized disjointly.

Actually a priori this is a delta complex, but it turns out to be a simplicial complex.
There exists a morphism
S, — FSstd
which is induced by sending {[So],...,[S.]} to the m(M,) = F, action on the dual
tree of the preimage of the spheres in the universal cover of M,,.

Proposition 38.10. This is an isomorphism.

A proof sketch can be found in [AS11, Lemma 2|; note that the arxiv version has
more discussion, but the published version has precise references that more clearly add
up to a complete proof.

Remark 38.11. A few remarks:

(1) Sphere systems were the original perspective on the Whitehead algorithm.
(2) Sphere systems can be used to show that F'S, and CV,, are contractible.
(3) They give a useful perspective to show that F'S,, is Gromov hyperbolic [HH17].

Remark 38.12. We end with a remark on why we used doubled handlebodies, instead of
the handlebodies themselves. The mapping class group of a handlebody is sometimes
called a handlebody group, and is a topic of study it its own right [Hen20]. It can
be viewed as a subgroup of the mapping class group of its boundary. It does have
a surjection to Out(F,), but unlike the case for doubled handlebodies, its kernel is
huge and complicated. The kernel is even infinitely generated! Infinite generation
isn’t obvious, but it is obvious it has infinite kernel: The handlebody group, viewed
as a subgroup of the mapping class group of its boundary, contains the Dehn twist
about any simple closed curve in the boundary that is the boundary of a disc in the
handlebody. These are all infinite order elements of the kernel of the map to Out(F,).
The benefit of doubling the handlebody is now clear, since as soon as you double these
all become order at most 2!
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39. SURVEY OF ADDITIONAL RESULTS (12/04, HT, SZ)

39.1. Individual Automorphisms.

e Each ® € Out(F,) is either exponentially growing (EG) or polynomially growing
(PG). In either case, there is a “relative train track map” ¢ : I' — I realizing ®.
A relative train track map means that there is a filtration of invariant subgraphs

ro-...cr® —r

such that the failure of ¢ on I'® to be a train track map is entirely contained
in T0=Y. The closure of I+ — '@ is called a stratum, and each stratum can
be either exponentially or polynomially growing.

e There is a theory of currents/laminations of F,,, which are useful for understand-
ing the iterative dynamics of individual automorphisms.

o If & € Aut(F,), consider the subgroup Fix(®) of F}, containing all elements fixed
by ®. This subgroup is always finitely generated, and in fact always has rank
at most n. This is called the Scott conjecture, and the proof used relative train
track maps [BH92].

e ¢ acts on F'F, loxodromically if and only if @ is fully irreducible. A classification
is known about when the action of ® on F'S, is loxodromic; the answer is in
terms of laminations [HM19].

e Much subsequent work relies on finding better and better relative train track
maps.

39.2. Mapping Torus.

o If & € Aut(F,), one can consider the ‘mapping torus’ group F,, XgZ. This group
is Gromov hyperbolic if and only if ® is atoroidal [Bri00].
e One can ask when

Fn N@Z% Fn/ X 2.

Remarkably, this isomorphism can hold when n # n'.
e There are many open problems on mapping tori [Aim|. One can also ask when
F,, xg G is hyperbolic for some group G.

39.3. General Properties.

e A group is linear if it has a finite-dimensional faithful representation over some
field. Aut(F,) is not linear for n > 3 [FP92], and since Aut(F;,_;) is a subgroup
of Out(F},), Out(F},) is also not linear for n > 4.

Exercise 68. Show Aut(F,_1) is a subgroup of Out(F),,), by showing that the
natural map Aut(F,_1) — Aut(F,) obtained by fizing the n-th generator stays
injective after composing with Aut(F,) — Out(F),).

Clearly Out(Fy) = GLy(Z) is linear. Whether Out(F5) and Aut(F}) are linear
is unknown.

e Since there is a homomorphism from a finite-index subgroup of Out(F3) to
GLy(Z), Out(F3) does not have property (7T).
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Remark 39.1. This homomorphism to GLy(Z) can be constructed as follows.
Let R3 be the rose, and consider a degree 2 cover I' — R3. We can write

H\(I') = Hy () @ Hy ()

as the sum of 1 and —1 eigenspaces for the involution whose quotient is Rj.
There is a finite index subgroup G of Out(F3) that lifts to homotopy equivalences
of I'. The desired homomorphism can be obtained by considering the action of
G on H; .

However, Out(F},) and Aut(F),) have property (T) for n > 4 [KKN21, Nit].
Note that since Out(F},) is a quotient of Aut(F,), it inherits (T) from Aut(F},)
(a quotient of a group with (T) has (T)).

39.4. Subgroups.

Out(F},) satisfies the Tits alternative: every subgroup H of Out(F,) either
contains a sub-subgroup isomorphic to F; or is virtually abelian [BFHO0O].
Every subgroup H of Out(F,,) either has a fully irreducible element, or virtually
fixes some free factor [Hor16].

39.5. Rigidity.

39.6.

All automorphisms of Aut(F},) and Out(F;,) are inner automorphisms for n > 3.
In particular, Out(Aut(F;,)) and Out(Out(F,,)) are both trivial for n > 3 [BV00].
Aut(FF,) = Out(F),) [BB].

Recalling that K, is the spine of C'V,, and considering its simplicial automor-
phisms, Aut(K,) = Out(F,) [BVO01].

The isometry group of C'V,, is Out(F,) [FM12b].

These are all instances of a metaconjecture that any sufficiently rich structure
associated to Out(F;,) will have its group of automorphisms equal to Out(F},).
This is also studied in the context of mapping class groups, where it is called
Ivanov’s metaconjecture.

Algebraic Topology.

F'F,, is homotopic to a wedge of spheres [HV].

F'S,, is contractible [HV].

Out(F},) is 2n — 5-connected at oo and is a virtual duality group of dimension
2n — 5 [BF00).

The rational Euler characteristic of Out(F},) is negative, and grows super-
exponentially in n [BV23].

There is a linear function [(7) so that

Hi(Aut(F,)) = H;(Out(F,))

for n > I(7). For this and the next results an expository reference is [Vog02].
There is another linear function /(i) so that

Hi(Aut(F,)) = Hi(Aut(F,41))

for n > U'(3).
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e These facts allow us to consider the stable homology of Aut(F,). This stable
homology is the same as for the symmetric group S,, and in particular is all
torsion.

39.7. Boundaries.

e Let C be the set of conj. classes of non-identity elements of F),. Then there is
a map CV, — (0,20)¢ sending each T' to the map (o — [,(I')). This map is
injective, and is in fact injective to the projectivization P(0, o0)C.

Exercise 69. Show the map CV,, — P(0,0)¢ is injective. (See Hint A.33.)

Moreover, the closure of the image of C'V,, is compact; see [Besc, Section 1.7]
for a sketch of this. It can be described explicitely as follows. A R-tree is a
0-hyperbolic metric space, or equivalently a geodesic metric space where there
is a unique embedded path between any two points. If T is a R-tree with F),
acting on T, one can define a variant of the stable translation length function
g — 7,4 that only depends on the conjugacy class of g. C'V,, can then be described
explicitly in terms of length functions of very small actions on R-trees [Besd].
e C'V, has a ‘Borel-Serre’ bordification, and the boundary of F'F;, can be computed
as a quotient of a subset of the boundary of C'V,, [BSV18, BR15].

39.8. RAAGsS.
e If ' is a graph with vertex set 1,...,n, the right angled Artin group for I is

AF = <CI,1, vy Gy LG50 = QA5 if (Z,]) € E(F)}

For example, if I' has no edges, Ar = F,,, and if I" is complete, Ar = Z".
Therefore, RAAGs allow interpolation between Z" and F,,.

e RAAGs Ar and the corresponding Out(Ar) are closely connected to CAT(0)
cube complexes. One can also define a contractible ‘outer space’ for Ar with an
Out(Ar) action [BCV23]. For Ar = Z", the corresponding outer space is the
symmetric space for SL,(Z).

e There are many other open problems in this area. See [Cha07] for a survey.

40. OPEN PROBLEMS (12/06, AW, YL, GUEST LECTURE BY BESTVINA)

We won’t focus on famous open problems (like the conjugacy problem, which in any
case may be approaching a solution) but rather on problems which are less studied
despite their importance.

The most important question is: How similar is Out(F},) to mapping class groups?
One wants the Out(F},) theory to catch up with the mapping class group theory.

40.1. Actions on hyperbolic spaces. The following is an example of a statement
known for mapping class groups but not Out(F;,). By “hyperbolic” we mean “Gromov
hyperbolic”.

Theorem 40.1. Let G = MCG(X), and let g € G have infinite order. Then there
exists a finite index subgroup H of G and an action of H on a hyperbolic space such
that there 1s an n > 0 with g" € H and such that g" acts lozodromically.



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 125
This is already not known for G = Out(F3) and g described by
a—b, b—ab, c—c.

It is known for G = Out(F;,) and g of exponential growth, but it is not known for any
g of polynomial growth.

Let I' be graph endowed with a total order on its edges. For example, [' = R3 with
edges labeled by a, b, c with order a < b < ¢. Continuing with this example, consider
the automorphisms of the form

a — a
b — a'b
¢ — w(a,b)cv(a,b)

with ¢ € Z and w(a,b),v(a,b) € {a,b)y. The set K of all these automorphisms is an
example of a Kolchin subgroup of Out(F3). Kolchin subgroups are defined similarly for
arbitrary I' [BFHO05].

There is a homomorphism K — Z which in our example send the automorphism
above to 7, and in fact in our example there is a short exact sequence

1> xFh—>K-—>7Z-—>1.

In general one can understand Kolchin subgroups inductively via such short exact
sequences; they are not mysterious groups.

Problem 40.2. If K is a Kolchin subgroup of Out(F},), g € K, g # 1, is there an action
of a finite index subgroup of K on a hyperbolic space such that a power of g acts
loxodromically?

The expectation is that the answer will in general be no, although it may be yes for
the specific K above. Note that the K above can be expressed as

KZ(FQXFQ)NZ

via the automorphism a — a,b — ab. Although there are many actions of F» x Fy on
hyperbolic spaces, one has to worry about extending them to K. A related group is

K =FxZ

using the same automorphism, which is the fundamental group of a 3-manifold obtained
as the mapping torus of a Dehn twist map on a punctured torus; see Figure 132. The
question is not known even for K’; it is related to hierarchical hyperbolicity. (Note that
this K’ is famous for not being LERF.)

Remark 40.3. The Kolchin subgroup of the I" illustrated in Figure 133 is not contained
in the Kolchin subgroup of a rose.

The answer to the problem above is not expected to depend much on the graph or
the ordering of its edges.
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Den doted 1n

FIGURE 132

FI1GURE 133

40.2. The geometry of AF,. The simplicial complex AF;, is similar to F'F,, but has
an Aut(F),) action rather than an Out(F},) action.

e Vertices are proper free factors of F,,. (Unlike in F'F},, these are actual free
factors, not conjugacy classes of free factors.)
e Simplices come from nested collections.

We often use the 1-skeleton, which is a graph. In the n = 3 case, it contains many
hexagons as in Figure 134, which are reminiscent of apartments in a building.

Les?

Lo LY
a Cale?
lay
FIGURE 134

For a while it was open if AF), is hyperbolic. But it is not hyperbolic [BBW23].
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There is a short exact sequence
1 — F, — Aut(F,) — Out(F,) — 1
which is analogous to the Birman exact sequence
1 - m(Eg0) = MCG(E,1) > MCG(X,0) — 1.

So Aut(F,) is analogous to the mapping class group of a punctured surface. Since curve
graphs are hyperbolic even when there are punctures, one would have expected AF,, to
be hyperbolic via this analogy.

So, why isn’t AF}, hyperbolic? Consider a surface ¥ with one boundary component
and a basepoint on the boundary component. As in Figure 135, let g denote a Dehn
twist about a peripheral curve. Let f be a pseudo-Anosov that fixes the basepoint.

{f\ng‘)M A
'\/\ )\\/\F\g CUMTV{/

FiGURE 135

Note that fg = gf. One can see that f acts loxodromically on AF,, because it
acts loxodromically on F'F), and there is a map AF,, — F'F,,. There isn’t any obvious
free factor fixed by ¢, and although it isn’t obvious, it can be seen that g also acts
loxodromically.

It turns out that {f, g) gives rise to a 2 dimensional quasi-flat in AF,,. (A 2 dimen-
sional quasi-flat is a quasi-isometric embedding of R? or equivalently of Z2.) For every
element of F,, which arises as a boundary curve of a surface as above with fundamental
group isomorphic to F, one actually gets a “book” of quasi-flats, as in Figure 136.
Different books are basically disjoint, and each book can be thought of as a product
region.

Problem 40.4. Does AF,, become hyperbolic if all these books are electrified? Is it
relatively hyperbolic with respect to books?

(Recall that the electrification of a space along a collection of subspaces is obtained
by adding a cone point corresponding to each subspace, and a adding a segment of
length 1 from each point in the subspace to the corresponding cone point.)

Right now we don’t even know the answer to:

Problem 40.5. Does AF,, have 3-dimensional quasi-flats?

The guess is no; there is no known obstruction to hyperbolicity in AF,, other than
books.

One can modify AF,, by adding an edge between each pair A, B of vertices if there
exists a surface 3 as above with a marked point on its boundary and with 71 (X) = F,



OUTER AUTOMORPHISM GROUPS OF FREE GROUPS 128
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FI1GURE 136

such that both A and B can be represented as subsurfaces with an embedded arc to the
basepoint, as in Figure 137. (This is related to a construction of Dowdall and Taylor.)

FiGURE 137

Problem 40.6. Is this modification of AF,, hyperbolic?

The modification kills all books since the pseudo-Anosov f is now elliptic, since it
permutes the free factors arising as subsurfaces on the surface f is defined on. The Dehn
twist g similarly becomes elliptic in the modification. It is possible the modification
kills more than just the books, but the guess is that it doesn’t.

40.3. Asymptotic dimension. Mapping class groups have finite asymptotic dimen-
sion.

Problem 40.7. Does Out(F},) have finite asymptotic dimension?
The conjecture is “yes”. The following definition is due to Gromov.

Definition 40.8. Let X be a metric space. We say asdim X < n if and only if for all
R > 0 (think of this as large) there is a covering U of X (by sets that don’t necessarily
have to be open) such that
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e supy g, diam(U) < oo, and
e cvery R-ball in X intersects at most n + 1 elements of .

A covering of R? by large bricks, as in Figure 138, shows asdim R? < 2, and in fact
asdim R"” = n. Quasi-isometric spaces have the same asymptotic dimension.

FIGURE 138

Theorem 40.9 (Bell-Fujiwara). asdimC(X) < .
This result on curve graphs, with work, implies asdim MCG(X) < co.
Problem 40.10. Do any of F'F,, F'Z,, F'S, have asdim < o0?

Here F'Z, is the Z-splitting complex, which is similar to F'S,, except the F;, actions
on trees can have edge stabilizers which are Z.
The theorem of Bell-Fujiwara is modelled on:

Theorem 40.11 (Gromov). Every hyperbolic group has asdim < co.

Gromov shows that asdim is bounded in terms of the number of vertices in a ball
of radius approximately 26 in the Cayley graph. In curve graphs, balls have infinitely
many vertices. The solution to this problem is to use Masur-Minsky’s results on tight
geodesics.

F1GURE 139. On the left are curves on a surface, and on the right is the
corresponding piece of the curve graph
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In CX there can be infinitely many geodesics joining two vertices. For example, the
red and blue curves in Figure 139 are at distance 2, and there are infinitely many curves
adjacent to both in the curve graph. Thus there are infinitely many geodesics between
the red curve and the blue curve. There is however one preferred one, which passes
through the green curve, and we call that one preferred geodesic tight. The green curve
is preferred because it is homotopic to the boundary of a regular neighborhood of the
union of the red and blue curves. In other examples, such a neighbourhood might have
finitely many boundary curves, and one uses curves with multiple components.

A tight geodesic is defined as a geodesic in which, for any three consecutive curves,
the middle is the boundary of a regular neighbourhood of the union of the other two.
Masur-Minsky show that any two points in the curve graph are joined by at least one
and at most finitely many tight geodesics.

Problem 40.12. Is there an analogous theory of tight geodesics in (a space quasi-
isometric to) F'F,, FZ, or F'S,?

The need to slightly modify the spaces and instead consider a quasi-isometric space
can be clearly seen already in F'F3. There [(a)] and [(b)] are at distance 2. The
geodesics between them pass through a point [(a, gbg~')]. This gives infinitely many
geodesics, with no reason to prefer one over another. The solution to this particular

problem should be to add an edge from [{a)] to [{(b)].
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APPENDIX A. HINTS FOR SOME EXERCISES

Hint A.1 (Exercise 5). If w has that form, it is easy to see ai,...,a,_1,w s a basis.
So assume w is not of that form. Consider the map from the subdivided rose labelled
by ai,...,a,_1,w to the standard rose. We can fold this “from the ends of w” until
we reach a rose labelled by ay,...,a,_1,v, where v is a reduced word which begins and
ends with a power of a,. If the powers on a, and the beginning and ending are the
same, show that no more folding is possible. If the powers are opposite, show that after
some initial folding then no more folding is possible. (The initial folding turns the petal
labelled v into a “petal on a stem”.)

Hint A.2 (Exercise 6). Consider a mazimal tree in the cover. The edges not in this
tree form a basis, so the fact that H is finitely generated implies there are only finitely
many edges not in this tree.

Hint A.3 (Exercise 7). Say F,, = {ay,...,a,). Consider the map ¢ from a subdivided n-
rose to the m-rose R,,, where the loops of the domain rose read the words h(a;). We will
partially fold ¢, by doing as many folds as possible that don’t change the fundamental
group of the graph. That is, we only let ourselves do type 1 and type 2 folds, and
we don’t stop until no more type 1 or type 2 folds are possible. This produces a map
Y I — R, which may not be an tmmersion since we haven't allowed ourselves to do
type 3 and type 4 folds. Show that as we fold v, we only make type 3 and type 4 folds,
and note that these types of folds do not change the vertex set. Keep in mind that by
construction m (I') = F,.

Hint A.4 (Exercise 8). The definition gives that f(m) is m or the identity or m?.
The Abelianization of the automorphism doesn’t have determinant +1 if f(m) = e or
f(m) =m?. Converse, if f(m)=m, one can explicitly write down an inverse.

Hint A.5 (Exercise 9). The key is to prove what is called the “basis exchange property”
in the theory of matroids: If A and B are distinct maximal trees, then there is an edge
a of A— B and an edge b of B — A such that (A — a) U b is a maximal tree.

Hint A.6 (Exercise 11). Using the identification between models of the universal cover,
fs(@) and g.(a) have actions that are same up to conjugation by this identification.
Then do the same proof as above.

Hint A.7 (Exercise 13). This is false for graphs like

due to possible rotation, but this is not a counterexample since the valence at each vertex
s at most 2. But this is true for graphs such as
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since p needs to preserve each immersed loop. Fvery relevant I' has one of these three
graphs as a subgraph.

Hint A.8 (Exercise 14). Pick an edge e that is in exactly one of Fi, Fy, and say the
vertices of e are v and w. Let 5 be an immersed loop in I' — e passing through v, and
let v be an immersed loop in I' — e passing through w. Let o be the “dumbbell” shaped
loop that traverses B starting and ending at v, crosses e, traverses vy, and crosses e to
return to its starting point. Show that one of a, B,y has the desired property.

Hint A.9 (Exercise 16). First note that g = ajasasaiay is primitive. One way to see
this is via the automorphism f : Fy — Fy defined by f(a1) = ajag, f(az) = asaias,
computing that f*(a;) = g.

Next note that g is not conjugate to aia3, because both are cyclically reducded words
and they are not cyclic permutations of each other.

Finally, recall that Lemma 14.12 says there is only one conjugacy class of primitive
element that maps to (2,3).

Hint A.10 (Exercise 22). It is obvious though how to start defining the path, since the
definition indicates how to get I'c from I'y. One approach is to show the start of this
path is linear in the simplex, and to continue that path until the first time ty that it
leaves the simplex.

Hint A.11 (Exercise 26). For this exercise, especially part (2) which might seem to be
more general, it’s very important that the spaces considered are trees. Trees have the
property that between every pair of points there is a unique embedded (injective) path,
and that every path between that pair of points must contain that unique embedded path
as a subset. (You can think of that as a version of the intermediate value theorem.)
Spaces with these properties are called “real trees” or “R-trees”, and everything works
for those spaces too.

Hint A.12 (Exercise 27). It should be enough to divide up [0,1]* according to the
relative sizes of the t; and the 1 —t;.

Hint A.13 (Exercise 34). Show lengths of all loops vary linearly along the line.

Hint A.14 (Exercise 37). Since there are finitely many orbits of simplices, it suffices
to show that thick part intersect the closure of any simplex is compact.

Hint A.15 (Exercise 38). Arzela-Ascoli implies that the set of ¢ : T' — T that are e?
Lipschitz s compact. Nearby I' — I' are homotopic.

Hint A.16 (Exercise 39). Use the discussion immediately before Lemma 25.4.
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Hint A.17 (Exercise 42). First show that every matriz in GL(2,Z) is either finite
order, or conjugate to a matrix of the form

+1 n
0 +1)°

where the diagonal entries have the same sign and n # 0, or has |\| > 1. Then show
that if ® 1s reducible the homology of the reducing graph is a loop which is multiplied by
+1 in homology, and hence Ab(®) has the form

+1 n
0 =+1)°

Finally, show that the automorphisms corresponding to

+1 n
0 +1

are reducible, as in Fxercise 23.2. Having done all this you will have “if and only if”
criteria for being elliptic and for being parabolic, and so an “if and only if” criteria
for being hyperbolic follows immediately since every automorphism is one of the three

types.

Hint A.18 (Exercise 43). Use that ¢ is the largest growth rate. (That is true in
general; here it can be verified by using the previous exercise to reduce to the case where
O is irreducible and hence represented by a train track map.)

To show To = |\1| consider the action on the Abelianization Z2.

To show T < |\1| consider the linear action f of Ab(®) on R?/Z* minus the origin.
Note that f, = ®. By deforming this map, show that there is a map g from R?/Z?
minus an € ball around the origin to itself, which is (|A\1| + 0)-Lipschitz (with § — 0 as
e — 0), and with g, = ®.

Use that the torus minus the € ball around the origin has a C(€)-Lipschitz map to the
standard rose.

Hint A.19 (Exercise 46). Actually much more is true: The assumption that A can’t be
conjugated into the subgroup generated by any n — 1 of the standard generators implies
there is at least one edge of each label in the image.

Hint A.20 (Exercise 49). Let X be a proper free factor with o € X. Start with the
core of the X cover of I' and add loops corresponding to a basis of a complement to X.

Hint A.21 (Exercise 50). It is the barycentric subdivision of the boundary of an n-
simplex, and hence is homeomorphic to a sphere. See Figures 140, 141.

Hint A.22 (Exercise 51). There is a bijection between the vertices of P,, and the vertices
of F'F, that come from rank 1 free factors, given by [{z,z~'}] — [{x)].

Hint A.23 (Exercise 53). If w € {ay,...,an_1), then w = (way,)(a,;").
Hint A.24 (Exercise 54). It is helpful to first do Exercises 48 and 49. The Whitehead

graph of (w) will be the complete graph, so cannot have a cut vertex.
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Hint A.25 (Exercise 55). Let X be a proper free factor with o € X. Start with the
core of the X cover of I' and add loops corresponding to a basis of a complement to X.
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Hint A.26 (Exercise 58). Define a coarse inverse map by v — c,. Make some non-
canonical definition on edges; the map does not have to be continuous. Apply Ezxercise
57, keeping in mind that to show that a map f is coarsely Lipschitz it suffices to give
a uniform bound on d(f(x), f(y)) when d(x,y) < 1. For the application to outer space,
Lemma 26.6 may be helpful.

Hint A.27 (Exercise 59). Show that the fized point set in T of g is a subtree.
Hint A.28 (Exercise 60). Compare to Ezxercise 14 and keep in mind Ezercise 35.7.

Hint A.29 (Exercise 61). Consider a minimal action of F,, on a tree T. If the action is
free (i.e., has trivial point stabilizers), then T /F, defines a point in outer space. If the
action is not free, we still have a natural map F,, — 7 (T/F,). By Bass-Serre Theory
(Example 35.7), the kernel of this action is a free factor A. Modify T/F, by wedging
on a tiny rose with fundamental group A.

Hint A.30 (Exercise 62). The picture of CVy is a version of the Farey complex minus
vertices with fins added on. So F'Sy has a similar picture with missing faces and vertices

added in.
Hint A.31 (Exercise 64). You will need Example 35.7.

Hint A.32 (Exercise 65). First show F'S,, is quasi-isometric to the graph whose vertices
correspond to 1-edge free splitting, and where you join two vertices by an edge if there
exists a 2-edge free splitting which collapses to both of them. Then apply the criterion
in Ezercise 58.

Hint A.33 (Exercise 69). To see that distinct points T'1, Ty € CV,, have distinct images,
use that d(T'1,T's) and d(T's,T'1) are both positive.
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