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Thus, our analysis provides a framework that will
greatly facilitate the search for molecular univer-
sals underlying social behavior (30).
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Evolutionary Trade-Offs, Pareto
Optimality, and the Geometry
of Phenotype Space
O. Shoval,1 H. Sheftel,1 G. Shinar,1 Y. Hart,1 O. Ramote,1 A. Mayo,1 E. Dekel,1

K. Kavanagh,2 U. Alon1*

Biological systems that perform multiple tasks face a fundamental trade-off: A given phenotype
cannot be optimal at all tasks. Here we ask how trade-offs affect the range of phenotypes found
in nature. Using the Pareto front concept from economics and engineering, we find that
best–trade-off phenotypes are weighted averages of archetypes—phenotypes specialized for
single tasks. For two tasks, phenotypes fall on the line connecting the two archetypes, which
could explain linear trait correlations, allometric relationships, as well as bacterial gene-expression
patterns. For three tasks, phenotypes fall within a triangle in phenotype space, whose vertices are
the archetypes, as evident in morphological studies, including on Darwin’s finches. Tasks can be
inferred from measured phenotypes based on the behavior of organisms nearest the archetypes.

Consider a biological system whose phe-
notype is defined by a vector of traits, v.
Traits considered here are quantitative

measures such as bird beak length and not ge-
netic traits such as DNA sequences. The space of
all phenotypes is called the morphospace. Most
theories of natural selection maximize a specific
fitness function F(v), resulting in an optimal phe-
notype, usually a point in morphospace. This
approach has several limitations: First, the fit-
ness function is often unknown. Second, in many
cases, organisms need to perform multiple tasks
that all contribute to fitness (1); thus, fitness is

an increasing function of the performance at all
tasks F(Pi(v),…,Pk(v)), , where Pi(v) is the per-
formance at task i. The best phenotype for one
task is usually not the best for other tasks—
resulting in a trade-off situation. Maximizing
fitness is thus amulti-objective optimization prob-
lem (2–5).

To address this issue, we employ the Pareto
front concept (2–6), used in engineering and eco-
nomics to find the set of designs that are the best
trade-offs between different requirements. Con-
sider two phenotypes v and v′. If v′ is better at all
tasks than v, the latter will be eliminated by nat-
ural selection (Fig. 1A). Repeating this for all
possible phenotypes, one remains with the Pareto
front: the set of phenotypes that cannot be im-
proved at all tasks at once. The Pareto front de-
scribes all optima for all conceivable fitness
functions that are increasing functions of the

Fig. 4. The extent of conservation varies across
brain regions. Patterns in neurochemistry are shown
for the preoptic area (top) and striatum (bottom)
where genes (rows) are either present (orange),
absent (purple), or unknown (n/a, white) within each
vertebrate lineage (columns). All other brain regions
are shown in fig. S1.

1Department of Molecular Cell Biology, Weizmann Institute of
Science, Rehovot, Israel. 2Biology Department, University of
Massachusetts Dartmouth, Dartmouth, MA 02747, USA.
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performance in each task. Which of the pheno-
types on the front is selected depends on the
relative contributions of each task to the orga-
nism’s fitness in its natural habitat, provided that
evolution has had sufficient time and genetic
variance to reach the predicted point.

The Pareto front is typically a small region of
morphospace. Thismay explain the long-standing
observation that most of morphospace is empty
(7): Phenotypes such as animal shapes found in
nature fill only a small fraction of morphospace.

We next calculate the Pareto front in morpho-
space. This requires two assumptions (which will
be relaxed below). (i) Each performance function
is maximized by a single phenotype. The pheno-
type that is best at task i will be called the ar-
chetype for task i, denoted vi*. (ii) Performance
decreases with distance from the archetype (Fig.
1B). By distance, we mean a metric based on
an inner product norm, such as Euclidean dis-
tance [mathematically, Pi(v) = Pi(di), where di ¼
ðv − vi*ÞTMðv − vi*Þ, andM is a positive-definite
matrix; Euclidean distance di ¼ ðv − v*i Þ2 is
when M = I]. For two tasks, geometric consid-
erations show that the Pareto front is the line
segment that connects the two archetypes (Fig.
1B). This is because any point off the line seg-
ment is farther from both archetypes than its
projection on the line—thus points off the line
have lower performance at both tasks, and hence
lower fitness, and will be selected against. The
position of a phenotype on the line relates to the
relative importance of the two tasks in the habitat
in which the organism evolved: the closer to an
archetype, the more important that task (8).

The case of a trade-off between two tasks
may explain the widespread occurrence of linear
relations between traits (2, 9, 10). As an example,
the area proportions of the molar teeth of 29 ro-
dent species show an approximately linear re-
lationship (11) (Fig. 1C). Species are distributed
along the line according to their diet: herbivores
at one end, carnivores at the other, and omnivores
in the middle. Thus, the archetypes correspond to
the ends of the observed line segment: a herbi-
vore archetype with equal-sized molars, and a
carnivore archetype with molars in the ratio 2:1:0.
Omnivore molars are weighted averages of these
archetypes. As in many morphological studies,
the traits here are normalized to account for or-
ganism size: Because all molar areas scale with
size, taking the ratio of molars removes the effect
of organism size variation (8). Additionally, the
present theory might explain cases of allometry,
when traits depend on total organism size (9–12).
Allometric relations often behave as power laws,
observed as lines in logarithmic plots—predicted
when the performance decays with a metric that
is a function of the log of the traits (8), as sug-
gested, for example, by scaling laws for metabolic
transport (12). Other explanations for allometric
relations include physical or developmental con-
straints (10, 11).

For more than two tasks, the Pareto front is
the full polygon or polyhedronwhose vertices are

the archetypes (8) (Fig. 2) [or, equivalently, the
convex hull of the archetypes, defined as the set of
all points that are weighted averages of the arche-
types: v ¼ ∑k

i¼1qivi
* with nonnegative weights σi

that sum to one. For particular fitness and per-
formance functions, the weights can be calculated:

qi ¼ ∂F
∂Pi

∂Pi
∂di=∑

k
j¼1

∂F
∂Pj

∂Pj

∂dj
. Weights sum to one

∑k
i¼1qi ¼ 1, and they are nonnegative, qi ≥ 0,

because fitness increases with performance
∂F=∂Pi ≥ 0 and performance decreases with
distance from its archetype ∂Pi=∂di < 0 (8)].
For three tasks, the Pareto front is the full triangle
whose vertices are the three archetypes. In this
case, because a triangle defines a plane, even high-
dimensional data on many traits are expected to
collapse onto two dimensions. The closer a point
is to one of the vertices of the triangle, the more
important the corresponding task is to fitness in
the organism’s habitat.

We find evidence for such triangular suites of
variation in several classic studies of animal mor-
phology and evolution. In these studies, there
was no theory to explain why the data resemble a

triangle. The species near the vertices of the tri-
angles have distinct behavior that suggests which
task is optimized by each archetype (Fig. 3, A
to C). A triangle is found in the study of Grant
and colleagues on Darwin’s finches (13) (Fig.
3A). Measurements of five beak and body traits
(five-dimensional morphospace) fall on a two-
dimensional plane: Two principal components—
related to body size and beak shape—account for
99% of the variation (8). On this plane, the data
fall within a triangle [P < 10−4, according to a sta-
tistical test of triangularity; Fig. 3A, inset (8, 14)].
The triangle suggests three archetypes, one at
each vertex. The species near the archetypes sug-
gest which tasks may be optimized by each arche-
type, in this case tasks connected with diet: (1)
probing for insects and nectar (long beak, cactus
finch), (2) crushing large, hard seeds (thick beak,
large ground finch), and (3) crushing small, soft
seeds (small beak, small ground finch). Interme-
diate finch species perform a combination of these
tasks (8).

We also noted a triangle-shaped suite of
variation in E. O. Wilson’s study of leaf-cutter
ants (15) [Fig. 3B, P < 10−4 (8, 14)]. The three

Fig. 1. (A) The Pareto front (best trade-offs) is what remains after eliminating (crossed-out symbol) all
feasible phenotypes v that are dominated on all tasks by other feasible phenotypes v'. (B) The two
archetypes in morphospace maximize performance in tasks 1 and 2. Phenotype v is farther from both
archetypes than v′, its projection on the line segment that connects the archetypes. Thus, v has lower
performance than v′ in both tasks, hence lower fitness. Eliminating all such points v, one remains with the
Pareto front: the line segment connecting the two archetypes [unlike (A), axes are traits, not perform-
ances]. (C) The area ratios of rodent molar areas show a linear relationship (11). Most of the morphospace
is empty. Herbivores (circles), faunivores (triangles), and omnivores (squares) are indicated.

Fig. 2. Pareto front geometry. (A) Two tasks form a line (B) Three tasks form a triangle. (C) Four tasks form
a tetrahedron. If only some relevant traits are measured and others are not, lines and triangles should still
be found, because a projection of a convex hull on a subspace is still a convex hull (8). The distribution of
phenotypes along the front depends on the second derivative of the performance and fitness functions (8).

1 JUNE 2012 VOL 336 SCIENCE www.sciencemag.org1158
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archetypes are associated with nursing/garden-
ing, foraging outside the nest, and soldiering. In-
termediate ants perform a combination of these
tasks. Additionally, Norberg and Rayner’s study
of bat wings (16) [Fig. 3C, P < 3 × 10−2 (8, 14)]
shows a triangular pattern. Archetypes seem to
be associated with eating insects in vegetation,
hawking insects in the air far above vegetation,
and eating large prey in vegetation.

The present considerations might apply be-
yond animal morphology. For example, bacteria
face a trade-off in partitioning the total amount of
proteins they can make at a given moment be-
tween the different types of proteins—that is,
how much of each gene to express. A given ex-
pression pattern cannot be optimal, at the same
time, for two different tasks such as rapid growth
(which requires ribosomes) and survival (which
requires stress response proteins) (17). Thus, the
theory predicts that gene-expression patterns fall
on low-dimensional Pareto fronts, whose vertices
are archetypal expression patterns optimal for a
single task.

We tested this hypothesis on Escherichia coli
gene expression (Fig. 3D). The activity of 1600
promoters was tracked with fluorescent reporters
as bacteria grew from exponential to station-
ary phase (18). Activity was normalized by the
summed activity of all promoters at each time
point, to represent the instantaneous allocation of
transcription resources. The top 200 temporally
varying promoters account for 96% of the total
temporal variation and control genes in two main
families (Fig. 3E) (8): growth genes (ribosomes,
transcription, and translation) and stress/survival
genes (oxidative stress, etc.). This high-dimensional
data set falls on a line [Fig. 3F, P < 10−4 (8), fig.
S10]. At one end, expression is devoted most-
ly to growth genes (exponential phase, arche-
type 1), and at the other end expression is
devoted primarily to stress/survival genes (sta-
tionary phase, archetype 2). Over time, the ex-
pression program gradually moves along the
line from archetype 1 to 2. The instantaneous
allocation at each time point is, to a good ap-
proximation, a weighted average of two arche-
typal expression programs: growth and survival.
Similar analysis may explain low-dimensional
patterns in gene-expression measurements in bac-
teria (19) and cancer cells (20).

Relaxing the assumptions (i) and (ii) above
generally preserves the topology of the Pareto
front, with mildly curved lines instead of straight
edges, but nevertheless with distinct vertices that
can be related to archetypes (Fig. 4) (8).

The present theory addresses traits that have a
trade-off. If a trade-off does not exist, trait values
can vary independently. Observed phenotypes in
this case may fill an uncorrelated cloud in mor-
phospace (8).

Variation in traits within a population in a
given species often falls on the same line as var-
iations between species—a phenomenon called
“evolution along genetic lines of least resistance”
(21). This can be explained by the present frame-

Fig. 3. Triangular suites of variation, and trade-offs in E. coli gene expression. (A) Darwin’s ground finches (13).
Axes correspond to size and beak shape. Polygons are boundaries of intraspecies variation. See (8) for species
definitions. Inset: Statistical test for triangularity. Define t ratio as the ratio of the area of theminimal-area triangle
(red) to the area of the convex hull of the data (purple). The P-value is the fraction of times that randomized data
have a larger t ratio than the real data, based on 104 randomized data sets that preserve the statistics of each trait
independently (8) (B) Leaf-cutter ant (Atta sexdens) (15): poison sac (pheromonegland thatmarks the trail) length
(normalized to pronotal width) versus head width. (C) Bat (Microchiroptera) wing aspect ratio versus body mass
(16). Archetypes and inferred tasks are listed below each figure. (D) E. coli promoter activity was measured with
fluorescent reporters (18). (E) Clustered correlation matrix of the top 200 temporally varying genes reveals two
anticorrelated clusters. (F) Percentage of total promoter activity of three genes at different time points, in four
different media conditions (8), as bacteria transit from exponential phase (1) to stationary phase (2).

Fig. 4. (A) Relaxing assumption (i): When
performance is maximized in a region rath-
er than a single point, the Pareto front is
the line that connects the closest point in
the region to the other archetypes (8). (B
and C) When all performance functions de-
cay with the same distance metric, the
Pareto front is a straight line. The front is
the set of tangent points between equi-
performance contours (8). (D) Relaxing as-
sumption (ii): When each performance
function decays with a different metric (dif-
ferent elliptical contours), the front is slight-
ly curved. Rootmean square deviation from a
straight line is 21%, averaged over ellipses
of all orientations and major/minor axis
ratios spanning a hundredfold range (8).
For three tasks, triangles with curved edges
are generally found.

www.sciencemag.org SCIENCE VOL 336 1 JUNE 2012 1159
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work: Variation within a species reflects the range
of habitats it inhabits, each with differential im-
portance of the tasks. Thus, populations should
be distributed on the same Pareto front as dif-
ferent species facing the same tasks.

Finally, Pareto optimality need not be the only
or generic explanation for low dimensionality
and lines/triangles in biological data. It may work
for some examples and not others, especially if
biological constraints other than natural selection
are important. The following experimental tests
can refute the theory in a specific example: (i) A
point in the middle of the front has higher per-
formance in one of the tasks than a point close to
the relevant vertex (this might also imply that
different tasks are at play). (ii) A mutant can be
found that has higher performance at all tasks
than existing phenotypes. Both of these tests re-
quire measuring performance (1, 7, 13)— but
not the more difficult task of measuring fitness.
(iii) Laboratory evolution experiments can follow
a mutant that is off the Pareto front (has lower
performance in all tasks than the wild type),
under conditions in which all tasks are required.
Provided with sufficient genetic variation, the

mutant is predicted to evolve phenotypes closer
to the front.
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Chitin-Induced Dimerization Activates
a Plant Immune Receptor
Tingting Liu,1,2,3,4* Zixu Liu,4,5* Chuanjun Song,6 Yunfei Hu,7,8 Zhifu Han,2,3 Ji She,8

Fangfang Fan,6 Jiawei Wang,3 Changwen Jin,7,8 Junbiao Chang,6† Jian-Min Zhou,4,9† Jijie Chai2,3†

Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the
conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor
receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif
(LysM)–containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal
structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their
interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent
ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin
oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of
nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated
signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1
dimerization is critical for its activation.

In plants, pathogen-associated molecular pat-
tern (PAMP)–induced immunity is mediated
by the typically membrane-anchored pro-

teins (1–3) pattern recognition receptors (PRRs),
most of which are receptor-like kinases (RLKs)
(4). Several PRRs (5–9) have been identified,
including those critical for chitin-induced im-
mune responses. Chitin, a polymer ofN-acetyl-D-
glucosamine (NAG), is a well-known PAMP that
elicits plant immunity (10). The first chitin re-
ceptor identified in rice (Oryza sativa), OsCEBiP
(9), carries an extracellular lysine motif (LysM)
domain that is widely distributed for NAG re-
cognition (11). In Arabidopsis, a CEBiP homo-
log, AtCERK1 (5) or LysMRLK1 (6), is required
for chitin-triggered immunity. LysM-containing
receptors appear to have a conserved role in

chitin perception, as they also contributed to
chitin-induced plant defenses in other species
(12, 13). AtCERK1 is also involved in detecting
the bacteria-derived peptidoglycans (PGNs) to
mediate Arabidopsis immunity (14, 15). Besides
plant defenses, LysM-containing proteins rec-
ognize the chitin-related molecules, Nod factors,
to initiate root nodulation (16).

AtCERK1 has been established as a chitin re-
ceptor (5, 6, 17, 18), and the AtCERK1-ECD con-
taining three tandem LysMs (LysM1-3) directly
recognizes chitin to signal plants for immunity
(17, 18). Chitin binding induces phosphorylation
of the intracellular kinase domain of AtCERK1 (17)
and activates disease resistance (5, 6, 10, 19, 20).
Here we present biochemical, molecular, and
structural data (table S1) supporting a model in

which chitin-induced oligomerization is impor-
tant for AtCERK1 activation, providing a tem-
plate for understanding PAMP-induced PRR
activation.

The three LysMs pack tightly against each
other, resulting in a globular structure. Each LysM
contains a baab structure in which the two b
strands form an antiparallel b sheet (Fig. 1). The
three LysMs share a conserved architecture (fig.
S1A) that is similar to those of other LysM-
containing proteins (fig. S2). The comparatively
conserved residues among the three LysMs are
limited to the baab regions (fig. S1B). Though
making few contacts with each other, LysM2 and
LysM3 pack tightly against LysM1. b1 in LysM1
and its counterpart b5 in LysM3 form a parallel b
sheet, relating the two LysMs in a quasi two-
symmetry axis (Fig. 1, left). LysM1 and LysM2
are also related by a quasi two-symmetry axis but
through packing of different structural elements
(Fig. 1, right). The tight packing of the three
LysMs suggests that deletion of one LysM could
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