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ABSTRACT

A primary challenge in modeling polycrystalline materials under large deformation is

capturing strong strain localizations, in the form of micro-scale sharp shear bands.

Classical numerical approaches such as finite element methods are inefficient in han-

dling discontinuities because continuum mechanics approximations become inaccu-

rate. Peridynamics, introduced as an alternative integral formulation for continuum

mechanics, has attracted significant attention in solid mechanics for its special treat-

ment in the presence of high gradients and discontinuities. In addition, peridynamic

models are powerful in predicting damage nucleation and propagation with an intrin-

sic characteristic length scale. Given this background, a peridynamic implementation

of crystal plasticity with an adaptive dynamic relaxation method is presented in this

thesis.

Specifically, a parallelized code for non-ordinary state-based peridynamics via

Newmark’s dynamic method with artificial damping is developed in this work. Elas-

ticity problems are tested first in order to understand numerical behavior of the

algorithm comprehensively. A rate-independent crystal plasticity model is then in-

troduced to conduct simulations of planar polycrystalline microstructures under plane

strain pure shear and compression. The peridynamic solver is compared with the crys-

tal plasticity finite element method for predicting the stress and strain fields, texture,

and homogenized stress-strain response. Sharper and more numerous shear bands

are observed in the peridynamic model. Emphasis is placed on the accuracy and

efficiency of the peridynamics solver via development of new higher order approxima-

xiii



tion schemes for the deformation gradient and new boundary condition treatments.

We have also proposed a new solution for achieving numerical stability based on the

stress-point method. The thesis thus presents the first three-dimensional polycrys-

tal plasticity simulations using peridynamics theory with strain fields and texture

compared against experiments and published literature.

xiv



CHAPTER I

Introduction

Developing computational models for microstructure evolution of polycrystalline

alloys in industrial applications remains an active challenge. Recent experiments

have observed micro-scale strain localizations, in the form of fine shear bands, on

the surface of polycrystals undergoing large deformation using a combination of the

scanning electron microscopy and digital image correlation [4, 5]. These micro-scale

shear bands can act as precursors for damage and failure. New theories such as

strain gradient plasticity have been proposed and attempting to attribute the non-

homogeneous strain localization to geometrically necessary dislocations as a result of

strong local strain gradients [6]. However, other factors such as grain sizes and inter-

grain strain incompatibilities due to grain boundaries are also pointed out as factors

for the initialization of shear bands [5]. Therefore, considering the complexity of

fracture problems and absence of robust theoretical basis, no satisfactory numerical

predictions have been obtained that compare well to experimental results on the

formation of micro-scale strain localizations.

In the classical solid mechanics, fundamental properties such as stress and strain

are defined as limits on an infinitesimally small area. These limit definitions work

perfectly as long as the computational field is smooth and differentiable. Neverthe-

less, as discontinuities and singularities emerge, e.g., cracks and sharp corners, the

1



(a) (b)

Figure 1.1: Tensile strain fields of a magnesium alloy microstructure for two differ-
ent heat treatments. Experiment data is obtained using the micro-scale
digital image correlation technique [4]. Fine shear bands due to strain
localizations are observed in (a).

continuum model fails and fracture mechanics is necessarily applied. Some solutions

are to introduce stress intensity factors around crack tips and then to estimate stress

at a point by functions containing these factors [7]. Though a plastic region may be

brought in around the crack tip due to stress concentration, the model out of the

crack is still based on the continuum assumption.

Element-based numerical programs, such as the finite element method (FEM),

play an important role in computational solid mechanics. One of challenges when

employing FEM to fracture models is that the element-based mesh will, with a strong

possibility, become tangled or degenerate during large deformation and cannot pro-

duce correct values. Hence, more flexible ways to eliminate the reliance on elements

naturally come into view. These are called meshfree methods [8], in which domains

are discretized as arbitrarily separate particles and original properties such as the de-

formation gradient and strain are assigned to single nodes taking upon interactions of

each particle within a prescribed horizon rather than mesh elements. Consequently,

the process of breaking bonds between particles can be regarded as an essential and

natural way to simulate cracks growing and propagating. Fig. 1.2 is a simple illus-

2



tration of meshfree methods.

1

2

δ

δ

H1

H2

Figure 1.2: Particle interactions in the meshfree model. Each particle occupies a fi-
nite volume and only interacts with other particles (connected with dotted
lines) within a horizon with radius δ. Two particles 1,2 and their corre-
sponding horizons are plotted by red and blue, respectively.

Peridynamics (PD), introduced as an alternative integral formulation for contin-

uum mechanics, is a relatively new theory that naturally lends itself to the use of

meshfree and particle-based discretizations [9, 10]. This non-local method calculates

the response of material at a particle by tracking the motion of surrounding particles.

The first version of peridynamics is bond-based, in which forces between particles are

assumed pairwise, equal but direction-reversed. However, in many cases it is over-

simplified with a fixed Poisson’s ratio as 1/3 and unable to handle plasticity due to

its sensitivity of volumetric deformation. To address the above issues, a more gen-

eralized state-based peridynamic model is afterwards proposed [10]. Forces between

particles are represented by force states, which can be computed form conventional

constitutive models. Thus, the nonlocality is conveniently introduced without the

need to alter the underlying constitutive equations. The deformation measure in this

model is computed by integrating motion of particles across a finite horizon via the

correspondence principle. State-based peridynamics has been proven to be useful and

efficient in many recent studies, which is able to give a better view of discontinuities

3



than continuum mechanics [11, 12, 13, 14, 15, 16].

Crystal plasticity (CP) theory describes dislocation motion and their interaction

through continuum laws such as flow and hardening rules. Finite element analysis of

polycrystalline aggregates using crystal plasticity theory [17, 18, 19, 20, 21, 22] has

allowed better understanding of mechanical properties of polycrystalline alloys. In

CPFE models, grains are discretized into finite-volume elements where the crystal

plasticity formulations are applied on each element to compute mechanical responses,

crystallographic slips, and reorientation of grains or texturing at both microscopic and

macroscopic scales [23, 24]. The method has been successful in predicting texture de-

velopment during deformation processing and has been used for alloy optimization

through texture control - leading to a variety of applications - including development

of high strength aluminum alloys [25, 26, 27], soft magnetic materials with low hys-

teresis [28, 29] and multifunctional alloys with high field induced strains [30, 31, 32]

. While crystal plasticity has been validated in the past against macroscopic tex-

ture measurements [33, 34, 35], modern experimental tools such as SEM-DIC [36, 4]

and high resolution EBSD [37, 38] reveal a hidden landscape of micro–scale plastic

phenomena that have not yet been predicted through crystal plasticity finite element

methods. Such features include the size dependent, non–smooth and highly local-

ized banding patterns associated with crystal plasticity (as seen in Fig. 1.3). The

localizations have now been observed in a variety of experiments including micropil-

lar compression [39], nanoindentation [40], and in-situ cyclic loading [41] known to

act as precursors for failure. These localizations happen even at small strains at

the sub–grain level and generally follow crystallographic directions, differentiating

them from macroscopic non–crystallographic shear bands that occur at large de-

formations. These small scale localizations are typically modelled using dislocation

dynamics [42, 43, 44] or molecular dynamics [45, 46] models that invoke non–local in-

teractions. However, computational complexity limits applications of such techniques
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to small volumes and high loading rates. However, localization phenomena of interest

in this proposal occur at slow loading rates and at microstructural scales. The key

issues are explained below:

1. Band localizations Slip localization naturally occurs in deforming polycrys-

talline aggregates in the form of lamellar bands of fractions of microns in thick-

ness [47]. The wavelengths of the slip bands decrease with increasing plastic

deformation while the thickness increases [48]. Early work have generally asso-

ciated localizations with degradation in material strength, in the form of strain

softening [49, 50]. Indeed, instabilities such as Lüders band are preceded by

strain softening and advance by formation of new slip bands parallel to the old

ones. However, in–situ SEM–DIC experiments under monotonic loading reveal

sub–grain slip localizations under positive work-hardening rates [4, 51]. The

analytical work of Asaro and Rice [52] showed the possibility that localization

indeed can occur with positive hardening rates due to multiple slip interactions

that arise in crystal plasticity theory. Such slip localization cannot be natu-

rally modeled in crystal plasticity finite element models. Existing works use

prescribed perturbations to trigger slip band formation. Such perturbations

consist of material imperfections, geometric inhomogeneities, mesh elements

with variable properties or perturbed boundary conditions [53, 54, 55, 56]. The

distribution of perturbation elements has a major influence on slip banding

behavior [48]. Numerical approach also plays a role in the predicted localiza-

tions. When using standard finite elements, the element size determines the

size of shear bands; producing mesh dependent models [57]. Various enhance-

ments of finite element method have been studied in the past to address this

issue. Early approaches involved development of traction-separation softening

laws whose slope was made to depend on the element size [58]. In the limit-

ing case of zero element size, the localization appears as a sharp discontinuity.
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Later approaches such as the extended finite element methods (X-FEM, [59])

or variational multiscale methods (VMM, [60]) directly represented sharp dis-

continuities on coarse elements by enriching the finite element interpolations

using fine–scale strain functions. While analytical work shows that localiza-

tions should naturally happen, none of these methods are capable of initiating

slip band localization naturally without any imperfection or initiation criterion.

2. Size effects Size effects play an important role in the plastic response [61, 62].

Such effects include Hall-Petch relationship [63, 64], strain-gradient strengthen-

ing [65], indentation size dependent pop-in stress [66] etc. Traditional crystal

plasticity models [67] were developed largely without a connection to grain size

and shape effects. Incorporation of grain size effect into constitutive models

for single slip began with Armstrong [68] who modified the Hall–Petch equa-

tion to correspond to the flow stress on a slip system (the ‘micro–Hall–Petch

relation’). The interrelationship between grain size and texture was not con-

sidered until Weng [69] employed the mean grain size in the equation for slip

system resistance through the micro–Hall–Petch relation[70, 71]. However, such

approximations are incapable of accurately modeling strain and orientation gra-

dients that dictate the size effect. Effect of free surfaces is another important

aspect of metal plasticity. Micropillar compression experiments [72, 73, 74]

reveal plastic behavior characterized by strain bursts under stress controlled

conditions. Strain bursts are associated with the strain gradient in the internal

local region, as indicated by time-resolved Laue diffraction [75]. The strain gra-

dients are strongly affected by the free surfaces, for example, just coating the

surface tends to inhibit strain bursts [76, 77]. Since no inherent length scales

are invoked in conventional crystal plasticity, they have difficulties in predicting

such size dependent behavior.

The development of slip bands and size effect in a ductile crystalline metal is a
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Figure 1.3: (left) Tensile strain field in a WE43 Magnesium alloy microstructure as
experimentally seen using micro-scale digital image correlation ([4], Prof.
S. Daly, personal communication). Strains are seen to localize into intense
localization bands within grains. (right) Crystal plasticity finite element
simulations using the PI’s open source code PRISMS-Plasticity reveals
homogeneous strain fields that do not capture these localizations.

non-local phenomenon, i.e. the crystallographic slip at a material point is influenced

by the deformation of material within a finite neighborhood. A significant body of

recent work has employed gradient theories [78, 79, 80, 81, 82] to model size effects.

These models typically consider strain gradient dependent hardening terms in crystal

plasticity that simulate the evolution of geometrically necessary dislocations (GNDs).

However, such second order gradient theories do not retain sufficient long–range in-

teractions to model width and spacing of slip bands accurately. As Asaro and Rice’s

early work [52] shows, the localization can happen even in local–theories without the

need to invoke gradient terms. Experiments reveal localizations even under low strain

homogeneous loading where GNDs are minimally active [4]. This suggests that long

range mechanisms acting at the scale of at least the nearest–neighbor grains impact

the localization process. Presumably, inclusion of higher-order strain gradients could

improve the constitutive description, but this would require significant amount of

calibration at the constitutive level – necessitating costly experiments for detailed

dislocation density characterization[37, 38].
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In this thesis, we propose an alternate route to predict strain localizations. We do

not enforce non-locality at the constitutive level. Instead, non-locality is introduced

at the level of the governing equilibrium equations via the method of peridynamics

[9, 83]. In peridynamics, the body is represented as a set of particles interacting via

an integral form of the linear momentum balance equation. A state-based theory

of peridynamics [10] will be used where the forces in the bonds between particles

are computed from stress tensors obtained from crystal plasticity. The stress tensor

at a particle, in turn, is computed using non–local strains calculated by tracking

the motion of surrounding particles over a distance horizon. Compared to gradient

plasticity theories, this approach is simpler because it can employ popular crystal

plasticity models of ‘local’ nature while avoiding the need to invoke higher order

terms at the constitutive level. Our approach has some precedent in the form of

diffusion-reaction type models of dislocation plasticity [84, 85] that have displayed the

capability to model localization patterns using gradient terms at the level of governing

equations. However, such models have not yet been applied to model slip band

localizations at the mesoscale. Another approach that might be competitive are phase

field approaches that model localization using a multi-well potential with gradient

terms [86]. However, the present peridynamics approach is a more straightforward

approach since it avoids the need for any additional constitutive model development.

Although peridynamics has been proven effective and robust in prediction of dis-

continuities and damage, there are still some intrinsic issues of its numerical imple-

mentations, among which are zero-energy modes and non-trivial treatment of bound-

ary conditions [87, 88, 89, 90]. In 1D problems, the correspondence principle relates

three displacements to one deformation gradient. This results in a null space where

some deformations do not play a role in the computed gradient. Therefore, dif-

ferent techniques have been applied. Recent papers have attempted to resolve the

hourglass-like instability using fictitious springs between particles and hourglass force
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terms [87, 91]. However, these methods have failed to completely remove the instabil-

ity and, in addition, employed coefficients or formulations are sensitive to the mesh

size and chosen on a case-by-case basis. Another branch of methods is to modify the

influence functions, either to provide an average-weighted displacement [89] or to use

higher-order approximations to solve non-local peridynamic equations[92, 93]. These

methods are effective in increasing the accuracy with enlarged horizons, nevertheless,

zero-energy modes are still in the deformation gradient due to the absence of the

center particle.

In the current work, we propose the use of stress points to mitigate the zero–energy

mode. The stress-point approach has been proposed in the past for other particle

methods such as smoothed particle hydrodynamics but for tensile instability [94, 95].

The idea is straightforward. Addition of even one more independent stress point

in 1D problems leads to two gradients and three displacements which significantly

reduces the null space. This stress-point peridynamic model is first demonstrated

in a simple 1D problem and then applied to higher-dimensional problems. Using

these numerical examples, we show that zero-energy-mode oscillations in solution are

completely damped.

In addition to zero-energy modes, the non-ordinary state-based peridynamics also

experiences the difficulty of enforcing boundary conditions [89]. Since peridynamics

utilizes an integral–form equation of motion, different from the partial differential

equations in the conventional continuum mechanics, the enforcement of kinematic

constraints at boundaries is not able to follow the standard way. Special numerical

boundary treatments have been tried in the other particle/meshfree approaches.

Another numerical issue, not for peridynamics but the crystal plasticity model, is

its demanding computation cost of calculating the Jacobian matrix, i.e., the tangent

modulus [22]. A recent study has shown the advantages of CPPD models on the

computation cost over CPFE models based on the implicit Newton-Raphson solver
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[21]. However, both models are time-consuming, though implicit methods are tradi-

tionally favored compared to explicit dynamic methods for their accuracy at larger

time steps [96, 97, 98]. Therefore, this thesis presents a fully explicit implementation

of state-based peridynamics for modeling quasi-static deformation of polycrystals.

An adaptive dynamic relaxation method for quasi-static PD simulations as proposed

by Kilic [99] is adopted, where an artificial damping ratio estimated from Rayleigh’s

quotient is selected to dampen the system leading to a steady-state solution. The

critical time step is approximated by a numerical analysis of hyperbolic partial differ-

ential equations. Accuracy and effectiveness of this new dynamic CPPD model will

be demonstrated with numerical examples.

There are seven chapters in this thesis with the introduction as Chapter I. Chap-

ter II proposes the PD model with an adaptive dynamic relaxation solver. In this

chapter, formulations of state-based peridynamics, the adaptive dynamic relaxation

method, and their numerical discretization schemes will be reviewed. Numerical tests

on 1D and 3D elastic problems are followed to prove the accuracy and stability of this

new model. The crystal plasticity constitutive model will replace the elasticity model

in Chapter III, where we conduct simulations for planar polycrystalline microstruc-

tures under plane strain pure shear and compression, respectively. The stress field

distribution, texture formation, and homogenized stress-strain response predicted by

the classical CPFE model and the new dynamic CPPD model are compared after-

wards. In addition, we perform compression tests of three polycrystals with different

orientation distributions to study the nature of localization bands identified from the

dynamic CPPD method. Comments will be made on each class of numerical exam-

ples. A higher-order approximation approach is presented in Chapter IV to stabilize

zero-energy modes in peridynamic solutions. Convergence has been observed in the

planar CPPD results across a range of different horizon sizes. We focused on ex-

tending the new dynamic CPPD model to 3D polycrystal problems with comparison
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to the experimental observations in Chapter V. Chapter VI proposes an improved

stress-point method to stabilized the numerical oscillations in peridynamic solutions.

Finally, conclusions of the this work and some future projects are discussed in the

last chapter.
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CHAPTER II

Non-Ordinary State-Based Peridynamics with an

Adaptive Dynamic Relaxation Solver (PD-ADRS)

2.1 Non-Ordinary State-Based Peridynamics

The non-ordinary state-based peridynamic model is first presented by Silling [10]

in 2007, which is a nonlocal integral reformulation of the continuum theory. Unlike

bond–based peridynamics that is restricted to a single Poisson’s ratio, the state–based

peridynamic theory can be generalized to include materials with any Poisson’s ratio.

In addition, it is possible to apply classical constitutive material models in the state-

based peridynamic framework. A review of important definitions of the state-based

theory is provided below.

2.1.1 Vector states

A vector state is a function A〈·〉 mapping vectors to vectors: ξ → A〈ξ〉. Its

concept is similar to a second order tensor. However, there are three main differences:

1) A state is not generally a linear function of ξ. 2) A state can be a discontinuous

function of ξ. 3) The real Euclidean space of states is infinite-dimensional while

second order tensors have dimension 9.

Therefore, vector states are more general than second order tensors. In other
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words, second order tensors are a special case of vector states. This idea is clearly

presented in their conversions, which are called “expansion”, from second order ten-

sors to vector states, and “reduction”, in the reverse direction.

It is very straightforward to expand a second order tensor Q into a vector state

E(Q). The definition is

E(Q)〈ξ〉 = Qξ, ∀ξ. (2.1)

However, more caution is needed in reducing a vector state into a second order

tensor. The first step is to define a tensor product of two states A and B, which is

A ∗B =

∫

H

ω(ξ)A〈ξ〉 ⊗B〈ξ〉dVξ, (2.2)

where ω(ξ) is called an influence function1, which is supposed to be nonzero only

on horizon H; symbol ⊗ represents the dyadic product of two vectors (for example,

C = a ⊗ b can be rewritten as Cij = aibj in Einstein notation); dVξ is the finite

volume of ξ in the horizon H.

Assume the reference position vector state is X〈ξ〉 = ξ, then a shape tensor K is

defined as

K = X ∗X. (2.3)

Note that the shape tensor K is symmetric and positive definite, hence K−1 exits.

With the help of the shape tensor, reducing a vector state A to a second order

tensor R(A) is then defined as

R(A) = (A ∗X)K−1. (2.4)

1ω is originally defined as a vector state function, i.e., ω〈·〉. In this thesis, it is more convenient
to use it as a simple scalar function on vector ξ. In addition, it is also called weight function or
kernel function in some other references.
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It can be demonstrated that for any second order tensor Q, R(E(Q)) = Q:

Rij(E(Q)) = Rij(Qξ)

=

(∫

H

ω(ξ)
(
Qipξp

)
ξkdVξ

)
K−1
kj

= Qip

(∫

H

ω(ξ)ξpξkdVξ

)
K−1
kj

= QipKpkK
−1
kj

= Qipδpj

= Qij. (2.5)

Nevertheless, the expansion of the reduction of a vector state is not in general the

state itself, i.e., E(R(A)) 6= A, always.

Typically, a vector state A can be also a function of position x, time t, and another

vector state B. It is called a state field denoted by

A〈ξ〉 = A[x, t](B)〈ξ〉. (2.6)

Abbreviations should be applied in many situations, though.

At the end of this section, it is necessary to introduce the dot product of two

vector states and derivatives on vector states. The dot product of two vector states

A and B is defined as

A •B =

∫

H

AiBidVξ, (2.7)

where Ai and Bi are the vector components of A and B, respectively.

Suppose Ψ is a function of vector states, i.e., Ψ = Ψ(A) and for any states A,

there exists a state-valued function ∇Ψ(A) satisfying

Ψ(A + ∆A) = Ψ(A) +∇Ψ(A) •∆A + o(||∆A||), (2.8)
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where ∆A is a small increment and o(||∆A||) is the higher-order term. Then the

state-valued function Ψ is called differentiable and ∇Ψ(A) is the Frechet derivative

of Ψ. Note that ∇Ψ(A) is always one-order higher than Ψ. For instance, if Ψ is a

second-order tensor-valued function, ∇Ψ then produces third-order tensors.

2.1.2 Basic peridynamic formulation

Consider a material point x in the reference configuration which can only interact

with its neighboring points x′ in a self-center horizon Hx with a finite radius δ. Given

a displacement field u, the current configuration is then represented by y = x + u.

Let the initial physical domain be B0 at time t = 0 while B1 is the deformed domain,

as shown in Fig. 2.1.

B0

x
x1

x2

x3
Hx

T

T1

reference configuration

F

B1

y

y1

y2

y3Hy

current configuration

Figure 2.1: Kinematics of non-ordinary state-based peridynamics. Particle x is
bonded to neighboring particles (x′, x′′, and x′′′) within a region Hx. Un-
der the deformation, particle x maps to particle y and this process can be
described by a corresponding deformation gradient F. T = T[x, t]〈x′−x〉
and T′ = T[x′, t]〈x− x′〉 are force vector states in the reference configu-
ration at particle x and x′, respectively. In the non-ordinary state-based
peridynamic theory, these two force vector states are not necessarily par-
allel and can be obtained from the classical stress tensor.

The deformation vector state Y = Y[x, t]〈x′−x〉 = y′−y is introduced to describe

the local deformation of bond ξ = x′ − x. T[x, t]〈x′ − x〉 is the force vector state
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that particle x′ exerts on particle x. More precisely, the force state is a state field,

defined in (2.6), which operates on the bond ξ at particle x and time t. A general

state-based peridynamic constitutive model can be written as

T〈ξ〉 = T(Y)〈ξ〉 = ∇W (Y), (2.9)

where W is the strain energy density function and ∇W is its Frechet derivative.

Suppose a body B is subjected to a body force density b, the energy balance at

time t can be expressed as

t∫

0

∫

B

b · u̇dV dt =
1

2

∫

B

ρu̇ · u̇dV +

∫

B

WdV (2.10)

where the left-hand side represents total external work, right-hand side are total

kinetic energy and strain energy, respectively; u̇ is velocity and ρ is mass density.

Differentiating (2.10) by time t results in

∫

B

b · u̇dV =

∫

B

ρü · u̇dV +

∫

B

ẆdV (2.11)

Focus on the total strain energy term and use (2.7), (2.8), (2.9):

∫

B

ẆdV =

∫

B

∇W (Y) • ẎdV =

∫

B

T • ẎdV. (2.12)

The goal is to adjust (2.12) to be an equation containing T only. The following

abbreviations will be used:

T = T[x, t], T′ = T[x′, t], u = u(x, t), u′ = u(x′, t). (2.13)
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Equation (2.12) then becomes

∫

B

T • ẎdV =

∫

B

∫

B

T〈ξ〉 · Ẏ〈ξ〉dVξdV

=

∫

B

∫

B

T〈x′ − x〉 · (u̇′ − u̇)dVx′dVx

=

∫

B

∫

B

T〈x′ − x〉 · u̇′dVx′dVx −
∫

B

∫

B

T〈x′ − x〉 · u̇dVx′dVx

=

∫

B

∫

B

T′〈x− x′〉 · u̇dVx′dVx −
∫

B

∫

B

T〈x′ − x〉 · u̇dVx′dVx

=

∫

B

∫

B

{T′〈x− x′〉 −T〈x′ − x〉} · u̇dVx′dVx. (2.14)

A switch of variables x and x′ is applied in the fourth step above considering both

integrations are over the whole body B. Return to (2.11) and reorganize the terms

in the integration:

∫

B

(
ρü− b +

∫

B

{T′〈x− x′〉 −T〈x′ − x〉}dVx′

)
· u̇dVx = 0. (2.15)

The result holds for any velocity u̇ and body B, hence,

ρü− b +

∫

B

{T′〈x− x′〉 −T〈x′ − x〉}dVx′ = 0. (2.16)

In peridynamics, particles are assumed to be only interact with other particles in

a small distance, which is described by a horizon H. Let Hx be the influence region of

particle x and T[x]〈x′ − x〉 = 0 for any particle x′ outside the horizon, i.e., x′ 6∈ Hx.
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In a nutshell, the equation of motion for state-based peridynamics becomes

ρü(x, t) = L(x, t) + b(x, t),

L(x, t) =

∫

Hx

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dVx′ , (2.17)

where L(x, t) is a summation of the force per unit reference volume due to interaction

with other particles. Compared with the classical equation of motion, no spatial

derivatives appear in (2.17).

It is evident that the deformation vector state Y represents a more general way

of describing local body deformation compared to the classical deformation gradient

tensor F. Suppose there is a strain energy density function in the classical theory U

such that

Y〈ξ〉 = Fξ and W (Y) = U(F), (2.18)

the peridynamic constitutive model is then called correspondence to the classical

constitutive model at F.

A corresponding deformation gradient tenor, F̄ is derived using reduction defined

in (2.4):

F̄ = R(Y) =

(∫

Hx

ω(Y ⊗ ξ)dVx′

)
K−1, (2.19)

where ω is the influence function defined at particle x in Hx, weighting the impact

of each neighbor x′ on the particle x. It is selected as a spherical function based on

the initial bond length, i.e., ω = ω(|ξ|). K is the symmetric shape tensor at particle

x, defined in (2.3):

K =

∫

Hx

ω(ξ ⊗ ξ)dVx′ . (2.20)

In order to have an explicit formula of the force vector state T, it is more conve-
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nient to define a peridynamic material model:

W (Y) = U(F̄(Y)), (2.21)

so that

∇W (Y) = ∇U(F̄(Y)) =
∂U

∂F̄ij
∇F̄(Y) = Pij∇F̄(Y), (2.22)

where Pij is the component of the first Piola-Kirchhoff (PKI) stress P, which is

obtained from the approximate deformation gradient in (2.19) based on a classical

constitutive model.

To find out the Frechet derivative F̄(Y), consider an incremental change in defor-

mation vector state Y:

F̄ij(Y + ∆Y) =
( ∫

Hx

ω(Y i + ∆Y i)ξkdVx′
)
K−1
kj

= F̄ij(Y) +

∫

Hx

ω∆Y iξkK
−1
kj dVx′

= F̄ij(Y) +

∫

Hx

ωδil∆Y lξkK
−1
kj dVx′

= F̄ij(Y) + (ωδilξkK
−1
kj ) •∆Y l. (2.23)

Therefore, based on the definition of Frechet derivatives in (2.8), the third-order

tensor ∇F̄(Y) can be expressed as

∇F̄ijl(Y) = ωδilξkK
−1
kj . (2.24)
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Substitute (2.24) into (2.22):

∇Wl(Y) = PijωδilξkK
−1
kj

= ωPljK
−1
kj ξk

= ωPljK
−1
jk ξk. (2.25)

The third step above considers that the shape tensor K is symmetric. Recalling the

definition of expansion (2.1) and the peridynamic constitutive model (2.9), the vector

state force T is supposed to be

T〈ξ〉 = ωE(PK−1) = ωPK−1ξ (2.26)

2.1.3 Conservation laws

The linear momentum balance is always satisfied for an arbitrary T field due to

Newton’s third law. It can be demonstrated by integrating (2.17) over the body B:

∫

B

(ρü− b)dVx =

∫

B

∫

Hx

{T〈x′ − x〉 −T′〈x− x′〉}dVx′dVx

=

∫

B

∫

B

{T〈x′ − x〉 −T′〈x− x′〉}dVx′dVx

= 0. (2.27)

This is because T〈x′ − x〉 = 0 for particle x′ 6∈ Hx, and variables x and x′ can be

switched considering both integrations are over the whole body.

However, the balance of angular momentum may not be satisfied for a particular

T. More precisely, if the force state T〈ξ〉 shares the same direction of ξ, the material

then automatically obeys the angular momentum balance and is called ordinary;

otherwise, a restriction on T is needed. Examples are shown in Fig. 2.2 to illustrate
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the difference between peridynamic models.

ξfb

´fb

x

x1

bond-based

ξTrxsxξy

Trx1sx´ξy

x

x1

ordinary state-based

ξTrxsxξy

Trx1sx´ξy

x

x1

non-ordinary state-based

Figure 2.2: Schematics of bond-based, ordinary state-based, and non-ordinary state-
based material response. fb is a vector-valued function assumed interact-
ing between each pair of particles in the bond-based peridynamic theory.
All three responses satisfy the linear momentum balance due to Newton’s
third law; however, only the first two satisfy the angular momentum bal-
ance. A restriction on non-ordinary T is needed to ensure the balance of
angular momentum.

Since (2.26) exhibits a non-ordinary force state field, it is necessary to demon-

strate that the material body obeys the balance of angular momentum. Consider any

deformation of body B, the balance of angular momentum requires

∫

B

y(x, t)×
(
ρü(x, t)− b(x, t)

)
dVξ = 0 ∀t ≥ 0. (2.28)

where y(x, t) = x + u(x, t) is the deformed bond, as shown in Fig. 2.1.
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Substitute the peridynamic equation of motion (2.17) into (2.28):

∫

B

y × (ρü− b)dVξ =

∫

B

(x + u)×
∫

Hx

{T〈x′ − x〉 −T′〈x− x′〉}dVx′dVx

=

∫

B

∫

B

(x + u)× (T〈x′ − x〉 −T′〈x− x′〉)dVx′dVx

=

∫

B

∫

B

(x + u)×T〈x′ − x〉dVx′dVx

−
∫

B

∫

B

(x + u)×T′〈x− x′〉dVx′dVx

=

∫

B

∫

B

(x + u)×T〈x′ − x〉dVx′dVx

−
∫

B

∫

B

(x′ + u′)×T〈x′ − x〉dVx′dVx

= −
∫

B

∫

B

(x′ + u′ − x− u)×T〈x′ − x〉dVx′dVx

= −
∫

B

∫

B

Y〈x′ − x〉 ×T〈x′ − x〉dVx′dVx

= −
∫

B

∫

Hx

Y〈ξ〉 ×T〈ξ〉dVξdVx. (2.29)

Variables x and x′ are switched in the fourth step above. Hence, the equivalent form

of the angular momentum balance in the state-based peridynamics is

∫

Hx

Y〈ξ〉 ×T〈ξ〉dVξ = 0 ∀Y. (2.30)
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Substitute the non-ordinary force state vector T in (2.26) into (2.30):

(∫

Hx

Y〈ξ〉 ×T〈ξ〉dVξ
)

i

= εijk

∫

Hx

y
j
〈ξ〉
(
ωPklK

−1
lm ξm

)
dVξ

= εijkPklK
−1
lm

∫

Hx

ωy
j
〈ξ〉ξmdVξ

= εijkPklK
−1
lmFjnKnm

= εijkPklFjnδnl

= εijkPklFjl, (2.31)

where εijk denotes the alternator tensor components. Recall the relation between PKI

stress P and Cauchy stress tensor σ:

PFT = det(F)σ. (2.32)

Equation (2.31) then becomes:

(∫

Hx

Y〈ξ〉 ×T〈ξ〉dVξ
)

i

= det(F)εijkσkj = 0, (2.33)

due to the symmetry of σ. Thus, the non-ordinary force state T obtained from (2.26)

obeys the angular momentum balance.

Above is a short review of non-ordinary state-based peridynamics. More details

can be seen in Silling’s paper [10]. All peridynamic models used in the later chapters,

shortened as PD models, are based on the non-ordinary state-based peridynamic

theory elaborated in this chapter, if no specific comment is made.
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2.2 Adaptive Dynamic Relaxation Solver (ADRS)

Since there is no large-matrix operation in the explicit method (e.g., computing

the tangent modulus ∂P/∂F), less computation cost compared to implicit solvers

(described later) is foreseeable. In this paper, an explicit dynamic relaxation method

with the quasi-static assumption is adopted, in which every time steps are selected

carefully.

In dynamic methods, a nonlinear problem can be solved through artificial damping

leading to a stable solution after a large number of iterations. With the body force

ignored, the equation of motion (2.17) can be rewritten in a vector form as

ü(x, t) + cu̇(x, t) = f(u,x, t), (2.34)

where c is the damping ratio coefficient and the force vector f on the right side is

defined as f(u,x, t) = Λ−1L(x, t), in which Λ is the fictitious diagonal density matrix.

Based on the adaptive dynamic relaxation method, the most desired diagonal density

matrix and damping coefficient can be determined by Greschgorin’s theorem and

Rayleigh’s quotient, respectively [99].

Let un, u̇n, ün, and fn denote the displacement, velocity, acceleration, and force

vector field at t = n, respectively, and ∆t be the time step size assumed constant.

In the central difference scheme, the velocity and acceleration vectors are approxi-

mated as

u̇n ≈ 1

2∆t
(un+1 − un−1), (2.35)

ün ≈ 1

∆t2
(un+1 − 2un + un−1). (2.36)
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Then, substitute (2.35) and (2.36) into (2.34), and rearrange terms for un+1:

un+1 =
[
2∆t2fn + 4un + (c∆t− 2)un−1

]
/(2 + c∆t) (2.37)

which is the update scheme for the displacement field. Equation (2.38) is employed

to approximate u−1 to initialize the displacement iteration:

u−1 = u0 −∆tu̇0 +
∆t2

2
ü0, (2.38)

where u0, u̇0, and ü0 are the initial displacement, velocity, and acceleration vector,

respectively. The velocity and acceleration vectors can be updated afterwards by

(2.35) and (2.36), though not necessary.

With the assumption of a unit diagonal matrix Λ, the time step size needs to be

selected based on Greschgorin’s theorem [99], which can be written as

∆t ≤
√

4Λii/
∑

j
|Kij|, (2.39)

where Λii is the diagonal coefficients of the density matrix and Kij is the stiffness

matrix of the equation system. Since this stiffness matrixKij is not explicitly obtained

in computing the force vector f (see (2.17) and (2.34)), another approximation scheme

is applied for the time step size.

An appropriate time step ∆t for the 1D peridynamic model is based on the wave

speed cs using the Courant–Friedrichs–Lewy (CFL) condition [100]:

∆t ≤ 2∆x/cs, (2.40)

where ∆x is the minimal grid size, or the minimal bond length in peridynamics. A

detailed derivation of the time step size from a 1D elastic problem is described in
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Appendix B.

In higher-dimensional cases, the CFL condition is more stringent. Assuming that

we are dealing with n–dimensional problems using a uniform grid and the wave speeds

along different directions are the same, the critical time step size becomes

∆t ≤ 2

n
∆x ·

√
ρ/Emax, (2.41)

in which ρ is the density and Emax is the maximum component of the elastic stiffness

matrix is used to approximate the maximum possible wave speed. Note that the CFL

limit condition in (2.41) could be quite conservative since the derivation is based on

just the closest neighbors [101].

The damping ratio c is then selected carefully by the lowest frequency of the

system using Rayleigh’s quotient [99]:

cn = 2

√
(un)Tknun

(un)Tun
, (2.42)

where kn is the diagonal local stiffness matrix, which is given as

knii = −(fni /Λii − fn−1
i /Λii)/(u

n
i − un−1

i ), (2.43)

where fni is the ith component of the force vector f at time t = n and Λii is set to

be 1. Since the local stiffness matrix calculation involves division by the difference

between current and old displacement components, it is highly possible to encounter

a zero-component in the displacement field where the criteria fails [99]. Therefore,

the local stiffness knii is set to be zero when the difference between displacement fields

vanishes. Finally, an initial guess of damping ratio c0 is given to start computation.
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2.3 Numerical Discretization and Algorithm

Assume there are N neighbor particles of material point x, then (2.17) can be

discretized as (neglecting the body force b and only considering properties at current

time t):

L(x) =
N∑

i=1

{T[x]〈x′i − x〉 −T[x′i]〈x− x′i〉}Vx′
i

= 0, (2.44)

where x′i is the ith particle in x’s horizon and its corresponding volume is Vx′
i
.

Next, the deformation gradient F(x) and shape tensor K(x) at particle x are

discretized as the following:

F(x) =
[ N∑

i=1

ω(y′i − y)⊗ (x′i − x)Vx′
i

]
K(x)−1,

K(x) =
N∑

i=1

ω(x′i − x)⊗ (x′i − x)Vx′
i
, (2.45)

where y′ and y are the images of x′ and x, respectively. Given the constitutive

model, represented by an operator F , the force state T[x]〈x′i − x〉 at particle x can

be obtained from

T[x]〈x′i − x〉 = ωF
(
F(x)

)
K(x)−1(x′i − x). (2.46)

As for the rest half terms in (2.44), T[x′i]〈x − x′i〉 can be found in a similar way,

which is

T[x′i]〈x− x′i〉 = ωF
(
F(x′i)

)
K(x′i)

−1
(x− x′i). (2.47)

However, in order to acquire F(x′i) and K(x′i) at particle x′i, information about

the ith particle’s horizon needs to be known. Fig. 2.3 is an illustration of interactions

of one particle with its nearest neighbors.

With all force vector states obtained, the adaptive dynamic relaxation method,

elaborated in Section 2.2, is applied to solve the equation L(x) = 0. For a 2D

27



12

3

4

5

6

7

8

9

10

11

12

13

Figure 2.3: Particle interactions with closest neighbors in the PD model. Particles i =
2, 3, 4, 5 are nearest neighbors of the particle 1 (denoted as x); particles
i = 1, 9, 10, 11 are nearest neighbors of the particle 4 (denoted as x′i).
In this case, all 13 particles shown above should be included in order to
obtain L(x) at particle x in (2.44).

problem, the global equation of motion can be organized as a vector system with

a size of 2 × Ntotal, where Ntotal is the total number of particles in the simulation.

Since L(x) is completely dependent on the current field, the system can be explicitly

started with initial guesses of displacement, velocity, and acceleration fields.

During dynamic iterations in one loading step, two absolute errors ε1 and ε2 are

calculated at each iteration step with the definitions as

ε1 =
‖L(x)‖2

N
and ε2 =

‖δu‖2

N
, (2.48)

where l2-norm is employed and N is the total number of particles. The first error

ε1 describes the degree to which the vector system approaches to zero while the

second one ε2 denotes the magnitude of displacement increments between two adjacent

iteration steps. In order to normalize the error from initial guesses, two corresponding

relative errors e1 and e2 are then computed and monitored, which are

e1 =
ε1

ε0
1

and e2 =
ε2

ε0
2

, (2.49)
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where ε0 is the initial absolute error in each loading step. Iterations stop only when

both criteria, e1,2 < el, are satisfied, where el = 10−6. All quantities are then updated

into the next loading step.

To improve the computation performance, parallel libraries, OpenMP and Open

MPI, are adopted in the codes. Given that kinematic properties, such as the dis-

placement u and deformation gradient F, are known before hand due to the explicit

method, the constitutive model can be applied on different particles in parallel. In

other words, the computation involved in acquiring P(x) = F
(
P(x)

)
at particle x

and P(x′) = F
(
P(x′)

)
at particle x′ are completely independent. The computation

domain is therefore partitioned into several groups with each group calculating its

own stress tensor. Finally, all information is gathered in the assembly of the vector

system L(x).

Start

Loop over particles with neighbors

K(x) =
∑N

i=1 ω(x′i − x) ⊗ (x′i − x)Vx′
i

F(x) =
[∑N

i=1 ω(y′i−y)⊗(x′i−x)Vx′
i

]
K(x)

−1

Constitutive model P(x) = F
(
F(x)

)

T[x]〈x′i − x〉 = ωP(x)K(x)
−1

(x′i − x)

ADRS: ∆t, c

Update ue1,2 < 10−6

Next loading step

∑N
i=1{T[x]〈x′i − x〉 −T[x′i]〈x − x′i〉}Vx′

i
= 0

Yes

No

Figure 2.4: PD-ADRS flowchart.

Important computational steps of the PD-ADRS algorithm are summarized in the

flowchart shown in Fig.2.4. Compared to implicit solvers, there is no matrix-inversion

operation in explicit methods. Besides, this new adaptive dynamic relaxation method

allows flexibility in applying different constitutive models and extending to 3D cases.
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Next section will briefly explain the quasi-static implicit iterative scheme by Sun and

Sundararaghavan [21].

2.4 Implicit Algorithm

The Newton Raphson iterative scheme is employed to solve the equation of motion

(2.17). Take the derivative of the particle displacement vector u:

∂L

∂u
δu = −L(x), (2.50)

where δu is the increment of the particle displacement. With the same numerical

discretization in Section 2.3, the Jacobian matrix ∂L
∂u

can be then expressed as

∂L

∂u
=

N∑

i=1

(∂T[x]〈x′i − x〉
∂u

− ∂T[x′i]〈x− x′i〉
∂u

)
Vx′

i
= 0, (2.51)

where x′i is the ith particle in x’s horizon and its corresponding volume is Vx′
i
. With

the tangent modulus ∂P
∂F

obtained from the constitutive model (e.g., crystal plasticity),

the derivative of the force state T[x]〈x′i − x〉 can be written using (2.26) as:

∂T[x]〈x′i − x〉
∂u

=
∂T[x]〈x′i − x〉

∂F

∂F

∂u
= ω

∂P

∂F

∂F

∂u
K−1(x′i − x). (2.52)

As the discrete deformation gradient F is given by (2.45), the final expression of the

Jacobian matrix becomes

∂L

∂u
=

N∑

i=1

ωi
∂P

∂F

(
−

N∑

j=1

ωjI⊗ (x′j − x)K−1Vx′
j

)
K−1(x′i − x)Vx′

j

−
N∑

i=1

ω′i
∂P′

∂F′

(
ω′iI⊗ (x− x′i)K

′−1Vx

)
K′−1(x− x′i)Vx′

i
. (2.53)

The following notation is used in the above equation:
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1. x′i is the ith neighbor particle of x

2. ωi is the influence function value at x for the bond (x′i−x) while ω′i is at x′i for

the bond (x− x′i)

3. N ,K, and ∂P
∂F

are the number of neighboring particles, shape tensor, and tan-

gent moduli of the particle x, respectively; N ′,K′,∂P
′

∂F′ are the corresponding

quantities of the particle x′i

The system of equations above can be solved iteratively until ||δu|| < εi, where εi

is the residual error limit. The sparseness of the Jacobian matrix in (2.53) depends

on the radius of influence δ, and varies from sparsely populated for a small horizon

size that only includes nearest neighbor interactions to a fully populated matrix for a

large horizon size (a highly non–local system). The advantage of the implicit method

explained here is that larger time steps can be used compared to the explicit method,

however, each time step involves iterations based on solution of large systems of

equations and it is necessary to compute the tangent modulus ∂P
∂F

at the constitutive

level for building such a system. Therefore, the explicit method explained previously

avoids the need to build systems of equations and simplifies the constitutive model

implementation.

2.5 Numerical Tests with Nearest-Neighbor Discretizations

Two numerical examples are presented in this section. The first 1D example is

solved by hand to show some important properties in peridynamics, while the second

3D example verifies the PD-ADRS model. Both examples are based on meshless

discretizations in which the PD horizon only consists of nearest neighbors. For one

thing, smaller horizon size means less particle neighbors. When we solve the 1D

example by hand, only the nearest left and right particles should be considered in

the calculation. For another, larger horizons will bring a serious numerical stability
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issue, i.e., zero-energy modes, and irregular or ill-posed defect horizons at boundary.

Typically, the peridynamic family with nearest neighbors are the most stable and

accurate compared to larger horizon sizes [87, 93]. It is one type of convergence

defined in peridynamics that results are converging as the horizon size decreases on

a fixed discretization [98].

2.5.1 A simple 1D elastic bar

1 2 3 4

u � 1A,L A,L A,L

Figure 2.5: A 1D elastic bar with a constant cross-sectional area A and a total length
3L is discretized into 4 particles. The Young’s modulus is a constant E
through the bar. Displacement boundary condition u = 1 is applied on
particle 4 while particle 1 is fixed on the wall.

Consider an elastic bar is fixed to its left and stretched by a displacement boundary

condition u = 1 to its right, as shown in Fig. 2.5. The bar is then discretized into 4

particles and each particle owns a constant volume V = AL.

Let ui, Fi, σi, and Ki be the 1D displacement, deformation gradient, stress, and

shape tensor of particle i, respectively, where i is from 1 to 4. As the bar is assumed

in elastic, the analytical solution for the displacement field should be linear, i.e.,

ui = (i− 1)/3. Furthermore, both strain and stress fields are constant.

Assume the horizon radius is L, i.e., particles only interact with nearest ones, and

the influence factor ω = 1, then substitute (2.46) and (2.47) into (2.44), we get the
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governing equation at particle 2:

(−σ1K
−1
1 L− σ2K

−1
2 L)V + (σ2K

−1
2 L+ σ3K

−1
3 L)V = 0

=⇒ σ3K
−1
3 − σ1K

−1
1 = 0

=⇒ K1 = K3, (2.54)

where σ1 = σ3 due to a constant stress field. Equation (2.54) shows that the shape

tensor K is supposed to be constant in the material model with a fixed horizon size.

Generally, a constant shape tensor is preferred in PD simulations due to its simplicity

and precise physical meaning.

Similar to other meshfree numerical methods, the enforcement of kinematic con-

straints cannot follow the standard way as in the continuum mechanics. This is

because the equation of motion (2.17) and deformation gradient (2.19) are expressed

in integral forms. Hence, special numerical techniques are needed to deal with this

issue, such as introducing shadow particles [99] or modifying the influence function

at boundary [89].

For the nearest neighbor interactions, one can decide to calculate the shape ten-

sor and deformation gradient at boundary with defective horizons, while holding a

constant shape tensor based on an intact horizon for calculating force state vectors

in (2.26).

The 1D elastic bar example is reconsidered to illustrate our boundary treatment.

It is apparent that horizons of boundary particles 1 and 4 are defective or half-missing

compared to horizons of inner particles 2 and 3 which are intact and complete. The

shape tensors of particle 1 and 4 are computed with defective horizons as K1 = K4 =

AL3, while K2 = K3 = 2AL3 for particle 2 and 3 based on intact horizons. Similar
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to the treatment on shape tensors, the deformation gradients are then calculated as

F1 = [(u2 − u1) + L]AL2/K1 = (u2 − u1)/L+ 1,

F2 = [−(u1 − u2 − L) + (u3 − u2 + L)]AL2/K2 = (u3 − u1)/2L+ 1,

F3 = [−(u2 − u3 − L) + (u4 − u3 + L)]AL2/K3 = (u4 − u2)/2L+ 1,

F4 = [−(u3 − u4) + L]AL2/K4 = (u4 − u3)/L+ 1, (2.55)

where F1 and F4 are approximated by the displacements of two particles inside the

boundary, F2 and F3 are by displacements of particles on the two sides. Take a

linearly-distributed displacement field as a quick check, constant deformation gra-

dients will be obtained by (2.55): F1 = F2 = F3 = F4, which is correct. This

demonstrates that the boundary treatment is effective.

With regard to force vector states in the equation of motion (2.44), a constant

shape tensor is used instead based on (2.54). We arbitrarily choose a shape tensor

computed at inner particles with an intact horizon.

Same boundary treatment will be applied on the next 3D example to verify the

PD-ADRS model.

2.5.2 Mesh convergence tests on a 3D elastic brick

A 3D elastic brick numerical example is considered in this section. The length-

width-height ratio of the brick is 2L : 2L : L, where L is set to be 1 for convenience.

Displacements at its four sides are restricted, as shown in Fig. 2.6(a), while the top and

bottom faces are left traction-free. The material is assumed isotropic with Young’s

modulus E = 1000, Poisson’s ratio ν = 0.3, and mass density ρ = 1.

The PD-ADRS model is applied on a simple 18-particles mesh in Fig. 2.6(b) to

begin with. During iterations, the z-displacement wc of the bottom center (particle 2

in Fig. 2.6(b) and two relative errors e1,2, defined in (2.49), are monitored and plotted
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ux = δ
uy = 0

ux = −δ
uy = 0
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ux = 0

uz = 0
all four sides
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X
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1
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(b)

Figure 2.6: A 3D elastic brick example. (a) is an illustration of boundary conditions
from the view of z direction. Displacement boundary conditions are applied
on four sides while the top and bottom are left traction-free. δ = 0.01 is a
small increment. (b) is a simple mesh with 18 PD particles, where particle
1 is at the top center and 2 at the bottom center.

in Fig. 2.7.

Based on the PD theory, the exact numerical solutions for particles 1 and 2 in

Fig. 2.6(b) are

u1 = u2 = 0, v1 = v2 = 0, w1 = −w2 = −0.02ν

3− ν , (2.56)

where u, v, and w are displacement components in x, y, and z direction, respectively,

and ν is the Poisson’s ratio.

Simulation results are shown in Fig. 2.7. Numerical solution wc is exponentially

converging to the exact w = 1/300 given that ν = 0.3; in the meantime, two relative

errors decrease linearly in the log-plot, though, with oscillations due to the explicit

center-difference scheme. Note that both criteria e1 < 10−6 and e2 < 10−6 are

satisfied.

Subsequently, a mesh convergence test is conducted on the 3D elastic brick with

critical parameters listed in Table. 2.1. Take the case with a mesh size 8:8:4 for

example: three numbers 8, 8, and 4 represent the number of particles in the x, y,
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Figure 2.7: Convergence plots of a 3D elastic brick with 18 particles. The z-
displacement wc of the bottom center (particle 2) is monitored in (a) and
two relative errors are in (b).

and z direction, respectively; wc is the numerical convergent z-displacement of the

bottom center of PD results; error is the relative error between wc and w∗, which

is |(wc − w∗)/w∗|, where w∗ is the z-displacement of the bottom center of ANSYS

simulations with a mesh size of 32:32:16; ∆tc is the critical time step computed by

(2.41); ∆t is the time step employed in the PD-ADRS model; finally, c0 is the initial

damping ratio to start the iteration.

Table 2.1: Mesh convergence parameters: mesh size, numerical convergent z-
displacement at the bottom center of PD results, relative error between
wc and w∗, critical time step, time step selected in PD simulations, and
initial damping ratio.

Mesh size wc × 103 error1 ∆tc ∆t c0

2:2:1 3.333 19.0% 0.0316 0.02 100
4:4:2 2.636 36.0% 0.0158 0.01 100
8:8:4 3.666 10.9% 0.0079 0.005 100
16:16:8 4.009 2.6% 0.0040 0.003 100
32:32:16 4.076 1.0% 0.0020 0.001 200

1error = |(wc − w∗)/w∗|, where w∗ = 4.116× 10−3

We applied a standard quasi-static FEM formulation with 8 noded hexahedral
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elemetns in the 3D problem. The column of error indicates that PD results are

approaching to ANSYS results as mesh is refined. In PD simulations with a mesh

size of 32:32:16, the damping ratio and two relative errors are monitored and shown

in Fig. 2.8(a) and 2.8(b), respectively. A comparative test with a constant damping

ratio c = 200 is carried out. The adaptive dynamic method is proven to be stable

and converging faster.

Iteration step

da
m

pi
ng

 c

50 100 150 200

102

103
adaptive
c = 200

(a)

Iteration step

er
ro

r
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100
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e1, adaptive
e1, c = 200
e2, adaptive
e2, c = 200

(b)

Figure 2.8: Convergence plots of the PD-ADRS model with a mesh size of 32:32:16.
The damping ratio and two relative errors are monitored in (a) and (b),
respectively. A comparative test with a constant damping ratio c = 200
is plotted in dashed lines while the adaptive relaxation method is in solid
lines.

Eventually, results are compared between the PD-ADRS model and ANSYS with

a mesh size of 32:32:16, in which peridynamic particles are located at element nodes.

Contours of z-displacement on the bottom face based on these two methods are plot-

ted in Fig. 2.9. The overall contours are similar while disagreements exist. For

example, there is no peak value at four corners in the PD model. This is mainly

because peridynamics is based on a non-local integral formulation where singularities

and discontinuities can be captured with appropriate approximations. In continuum

mechanics, the singularity at conner point is a consequence of the failure of Cauchy
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Figure 2.9: Contours of z-displacement on the bottom face obtained from (a) the dy-
namic PD model and (b) ANSYS.

(stress-traction) relation due to lack of definition of the normal vector at corner.

To have a closer look at what happens around corners, different cross sections are

selected at x = 1/16, x = 1/2, and x = 1, shown in Fig. 2.10(a), and z-displacements

on the bottom face are plotted in Figs. 2.10(b), (c), and (d) for each section. The

singularities of ANSYS at corners are obvious with abrupt jumps in Fig. 2.10(b). As

traveling from side to middle, the differences between two models become smaller.

Few disagreements can be found in Fig. 2.10(d).

However, oscillations in PD results are conspicuous. Compared to smooth results

in ANSYS, PD simulations are serrated, which is attributed to zero-energy modes,

or essentially, weak connections between PD particles. This intrinsic stability is-

sue of peridynamics has been discussed by other researchers [99] and theoretically

demonstrated in Silling’s paper [102]. Nevertheless, no satisfactory solution has been

achieved.
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Figure 2.10: The geometry of the 3D brick from the view of z direction is shown in
(a) and z-displacement contours on the bottom of three cross sections
obtained from the PD model (blue lines) and ANSYS (green lines) are
plotted in (b) at x = 1/16, (c) at x = 1/2, and (d) at x = 1.

2.6 Conclusions

A new PD-ADRS model is proposed and demonstrated stable and efficient in

elastic problems consisting of nearest-neighboring peridynamic family. In the next

chapter, this numerical model will be implemented with crystal plasticity in planar

polycrystals.
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CHAPTER III

2D PD-ADRS Implementation with Crystal

Plasticity

As discussed in the Introduction, it becomes difficult for CPFE models to properly

predict mechanical properties in regions with discontinuities or strong strain gradients

such as plastic strain localization zones. Furthermore, the size of shear bands and

magnitude of quantities computed by the standard FEM are highly determined by

the element size [21, 103]. Therefore, improvements have been continuously made on

CPFE models to address the issue of mesh dependency. For instance, the extended

finite element method enriches the solution space with discontinuous functions to al-

leviate the cost of remeshing around cracks [104]. With an intrinsic characteristic

length scale, determined by the horizon radius, the CPPD model is used in this chap-

ter to study the origin and evolution of shear bands [105]. A rate-independent crystal

elasto-plasticity model, proposed by Anand [103], is applied to simulate the mechan-

ical response and evolution of individual grains in a polycrystal. In this constitutive

model, each grain is assumed to be anisotropic with a certain orientation and plastic

flow is attributed to glides of slip systems. With the Schmid factor analysis, activated

slip planes are determined and the corresponding shear increment will be calculated.

Activities of all single crystal are afterwards collected to simulate the developments

and textures of a polycrystal. With respect to the PD stability issues, simulations in
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this chapter will mostly adopt the smallest horizon radius to better compare with a

continuum local CPFE formulation. First section is a brief review of crystal plasticity.

3.1 Crystal Plasticity Constitutive Model

The rate-independent crystal plasticity theory in [103] is applied to model the

deformation response of particles within each crystal. In the crystal lattice coordinate

frame, the deformation gradient F can be expressed into a multiplication of the elastic

Fe part and plastic Fp part, which can be written as F = FeFp with det(Fp) = 1.

A simple schematic of the slip system under deformation is shown in Fig 3.1. More

comprehesive schematics of various configurations can be referred to [7, 106, 1, 107].

m

n

m

n

m

n

θ

γ

F

Fp

Fe

Figure 3.1: Schematic of slip systems under deformation gradient F = FeFp. mα

and nα are the slip direction and normal vector, respectively. γ is the
shear strain due to plastic deformation gradient Fp while θ is the angle of
rotation under elastic deformation gradient Fe.

In the crystal plasticity theory, the plastic flow is attributed to dislocation gliding

on prescribed slip systems. Assume there are N slip systems and the Schmid tensor

of the αth slip system is Sα0 = mα
0 ⊗ nα0 , where mα

0 and nα0 are the slip direction and

normal vector at time t = 0, respectively. Then the plastic flow can be expressed as
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a summation of efficient glides on all slip systems, which is

Ḟp(Fp)−1 =
∑

α

γ̇αSα0 sign(τα), (3.1)

where γ̇α and τα are the plastic shearing rate and resolved stress on the αth slip

system, respectively.

The conjugate stress defined as T̄ = det Fe(Fe)−1σ(Fe)−T, in terms of the Cauchy

stress σ, is used to compute the resolved stress τα = T̄·Sα0 on the αth slip plane. Based

on the constitutive relation, this conjugate stress can be obtained by T̄ = Le[Ēe], in

which Le is the fourth-order anisotropic elasticity tensor and Ēe is the Green elastic

strain, defined as Ēe = 1
2
(FeTFe − I).

To solve this elasto-plasticity crystal model, firstly, assume the slip system re-

sistance on the αth slip system is sα which works as a threshold of the resolved

shear stress on the system. Only active slip systems, or those slip systems whose

resolved shear stress exceeds the resistance (τα > sα), have positive shearing rates

(γ̇β(t) > 0); otherwise, there is no plastic shearing rate (γ̇β(t) = 0). Secondly, the

slip system resistance is evolves as:

ṡα(t) =
∑

β

hαβγ̇β(t), with sα(0) = τα0 , (3.2)

where hαβ is the hardening-coefficient matrix, γ̇β(t) > 0 is the plastic shearing rate

on the βth slip system, and τα0 is the initial slip system resistance on the αth slip

system.

Consequently, the plastic shear increment ∆γβ can be solved from a matrix form

(See Appendix). The plastic part of deformation gradient Fp is afterwards up-

dated using (3.1) while the elastic part computed from Fe = F(Fp)−1. In order

to convert the conjugate stress T̄ into the first Piola-Kirchhoff stress P, the relation

P = (det F)σF−T, or P = FeT̄(Fp)−T should be employed with the conjugate stress
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computed from T̄ = Le[Ēe]. Finally, the slip resistances are updated at the end of

each loading step using (3.2).

Since the equation of motion is solved by an explicit dynamic algorithm, the

tangent modulus ∂P/∂F is not needed, which is, however, a necessary process in

implicit methods, such as the Newton-Raphson method [21].

3.2 2D Numerical Examples

In planar polycrystals, each grain can be characterized by a 2D rotation tensor R

which relates the local crystal lattice frame to the reference sample frame. Given an

orientation θ, or the angle between crystal and sample axes, the associated rotation

matrix supports parametrization as R = cos(θ)I− sin(θ)E, where E is the 2D alter-

nator (E11 = E22 = 0, E12 = −E21 = 1) and I is the 2D identity tensor. Due to planar

symmetry, crystal orientations can be identified by parameters from a fundamental

region [−π/2, π/2), in which crystals with orientation θ = π/2 are identical to those

with θ = −π/2.

The rotation tensor R = Re is evaluated through a polar decomposition of the

elastic deformation gradient as Fe = ReUe, the spin tensor Ω is then defined as Ω =

ṘeReT = −θ̇E, where θ̇ = ∂θ
∂t

is the crystal reorientation velocity. In the component

form, the crystal reorientation velocity can be expressed as θ̇ = (Ω21−Ω12)/2. Using

the reorientation velocity, the crystal texturing is tracked by ∆θ = θ̇∆t at each time

step.

A 1× 1 mm2 polycrystalline microstructure with 21 grains, computationally gen-

erated by Voronoi construction, is considered here. The discretized computational

domain is based on a pixel mesh (four-node square elements) and PD particles are

located at the center of these elements. Each particle occupies a constant volume

in the reference configuration equal to the area of the corresponding enclosed finite

element. Twelve different orientations within the interval [−π/2, π/2) are distributed
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Figure 3.2: Particle grids with three different mesh sizes. Orientation θ is the an-
gle between the crystal and x axis. Particles are located at the center of
elements in pixel-based grids.

with a constant step size π/12 among grains. Three particle grids based on different

mesh sizes are generated and shown in Fig. 3.2. Two slip systems at orientations

−π/6 and +π/6 are considered.

The particular hardening law in (3.2) is chosen as follows [103]:

hαβ = hβ0 (q + (1− q)δαβ)(1− sβ(t)

sβs
)a (no sum on β), (3.3)

where hβ0 , sβ(t), and sβs are the hardening coefficient, the current resistance, and

the saturation resistance of slip system β, respectively; δαβ is the Kronecker delta
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function; a and q are constant terms. These hardening parameters are taken to be

identical for both slip systems and are listed below:

h0 = 10MPa, s(0) = 10MPa, ss = 200MPa, a = 2, q = 1.4, (3.4)

where s(0) is the initial value of slip system resistance.

A displacement boundary condition is enforced on boundary particles, which is

u =
(

exp (Lvgt) − I
)
x, where Lvg = ḞF−1 is a macroscopic velocity gradient, t is

time, and I is the 2D identity tensor. In the following examples, two different velocity

gradients with the plane strain assumption are applied on microstructure boundaries

to simulate the process of X-axis shear and Y-axis compression, respectively. They

are

L = η




0 1

1 0


 (shear) and L = η




1 0

0 −1


 (compression), (3.5)

where η = 0.0020 is a constant strain rate. Each simulation are performed over 30

steps with the corresponding velocity gradient leading to a final strain around 0.06.

The 2D elastic stiffness matrix is taken as D11 = 2 GPa, D12 = 1 GPa, and D33 = 2

GPa.

3.2.1 Convergence tests under pure shear

The first test is to demonstrate the accuracy and mesh convergence of the new

dynamic CPPD model. In order to compare with the CPFE model, the horizon radius

in the PD model is kept minimum merely including the nearest neighbor particles and

the influential function ω is set to be constant 1. With a constant influcence function,

the deformation gradient definition is identical to that proposed by Zimmerman et

at in 2009 [108] for modeling atomistic deformtation. Although not considered in

this work, one may note that the influence function play much the same role as the
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nonlocal kernel in Eringen-type theories [109]. For instance, the dispersion curves of

the material can be modulated using different forms of ω, going form a linear disper-

sion in continuum limit to nonlinear dispersion curves when using different influence

parameters as shown in [110]. Secondly, by limiting to the nearest neighbor interac-

tions, our formulation ensures both compatibility and traction continuity similar to

the finite element problem.

Particles in the PD model are located at the center of elements in CPFE with

the number of particles same as the number of elements. Linear basis functions and

traditional implicit solver are employed in the CPFE model. Though different solvers

are applied in CPPD and CPFE models, the same constraint on errors is set to be

el = 10−6. Particles in the PD simulation are colored with field values to compare

with finite element contours obtained from the CPFE model. In Fig. 3.3, the shear

stress σxy obtained from CPPD and CPFE models are compared at the final strain of

0.06 in 225, 625, and 2500 elements, respectively. The overall stress distribution and

locations of maximum and minimum stresses are similar between these two models

at the same degree of mesh refinement. Features of the stress response, such as the

regions of stress concentration, are improved in the CPPD results as the mesh is

refined.

In the case of CPPD with 2500 elements, two relative errors, e1,2, and artificial

damping ratios are monitored. Fig. 3.4 is the convergence plot of the CPPD-ADRS

model at different loading steps. Both criteria e1 < 10−6 and e2 < 10−6 are satisfied.

The damping ratio oscillates dramatically in a range from 100 to 104 at the start and

becomes stable towards the end. A comparative test with a constant damping ratio

c = 500 is carried out and the adaptive dynamic relaxation method is demonstrated

as converging faster and stably with the CPPD model during different loading steps

in both elastic and plastic regions.

Finally, a comparison is conducted between the explicit CPPD model and implicit
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CPPD model from [21]. Three different mesh sizes are tested and both explicit and

implicit simulations were run in the same single-core workstation without paralleliza-

tion. The absolute error ε1 in (2.48) and relative error e1 in (2.49) are monitored

in both models considering that these two errors indicate the extent to which con-

vergence is achieved. ε1 < 10−6 and e1 < 10−6 are employed to be the convergence

criteria. The computation time is divided into two parts, where the first includes the

first 7 loading steps when material is mainly in the elastic region and the second one

contains the last 23 loading steps in the plastic region. The computational time for

both models are illustrated in Fig. 3.5 in log-scale.

For implicit methods, computation cost is mainly spent in computing the tangent

modulus and inverting the global stiffness matrix [21]. In contrast, the explicit method

is matrix-free and the speed primarily depends on the number of constitutive function

calls. This explains why the implicit model is faster in the elastic region where tangent

computation is avoided and it can converge in one iteration. Explicit methods are

more stable and efficient in the plastic region where most of the simulation is carried

out. As the particle number increases, the implicit model becomes more expensive

because of repeated matrix inversion needed during convergence. In the plastic region,

the explicit CPPD model’s computational speed surpasses the implicit model.

3.2.2 Reorientation of grains and mircrostructural study of shear bands

in a Y-axis compression test

Following is a Y-axis compression test based on the same microstructure in the

previous pure shear test. Reorientation of grains predicted by CPPD and CPFE

models are compared in Fig. 3.6 at strain of 0.06. Significant reorientation is seen

whithin shear bands in both models. The overall contours are similar. Although the

locations and orientations of shear bands are identical, the localization bands seen

from CPFE simulations are comparatively more diffuse due to lack of an internal
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length scale. Along the direction of arrows in Fig. 3.6, the width of a shear band

obtained by CPPD simulations is smaller and its boundary is more conspicuous,

which are qualitatively closer to those seen in experiments [4, 5]. In this example, the

CPPD-ADRS model is shown capable of capturing sharp shear bands with an explicit

length scale in the form of an interaction radius bridging two nearest particles. Some

additional banding can be seen in CPPD results besides the one marked with an

arrow. Same simulation results were found in [21], however, with an implicit Newton-

Raphson method.

3.2.3 Study of the dependence of shear bands on initial orientation dis-

tributions

The CPPD-ADRS model is used to study the origin and evolution of shear bands

on three different microstructures. The first microstructure applied is identical to that

of the pure test while the other two are shown in Fig. 3.7. The structures and positions

of grains in these three microstructures stay the same, however, the orientations of

grains are assigned differently. The Y-axis compression boundary condition in (3.5)

is applied.

First off, potential active slip systems are identified using a rudimentary Schmid

factor analysis. Let lc and ls be the loading axis in the current crystal frame and

sample reference frame, respectively, and ls = [1, 0]T (or ls = [0,−1]T, since their

Schmid factors are the same). Then the loading axis in the current frame can be

represented as lc = RTls where R is the rotation tensor in one crystal. Next, the

Schmid factor for αth slip system is obtained by Sα = |(mα
0 · lc)(nα0 · lc)|. Finally,

the maximum Schmid factor is marked as the active system. Figs. 3.8(a), 3.9(a),

and 3.10(a) are plots of the maximum Schmid factor in each grain for three different

microstructures. Each grain is marked with the slip system number (α = 1, 2) that

gives the maximum Schmid factor. If the Schmid factor for both slip systems are
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equal, both systems are marked in one grain. In that case, to distinguish the slip

system numbers, travel clockwise. Since the angle between two slip directions is

always an acute angle of π/3, the first slip line encountered before the acute angle is

the 2nd slip system.

Evolutions of the equivalent plastic strain increment 1 are shown as a function of

the effective strain in Figs. 3.8, 3.9, and 3.10 for three microstructures. At low strain

or strain of 0.02, deformation processes primarily occur in grains with high Schmid

factors while little plasticity, if any, is seen in grains with the lowest Schmid factor.

As the loading is increased, strain localization emerges in the form of a laminated

pattern. Consequently, a new lamellar structure is generated with plentiful fine shear

bands, as shown in Figs. 3.8(d), 3.9(d), and 3.10(d).

During this process, shear bands are transmitted from grains with higher Schmid

factors to those with lower Schmid factors and merge into larger ones. This is a

possible deformation mechanism in grains not favorably oriented for slip activity

[21]. Red arrows show the track of transmission in Figs. 3.8(c), 3.9(c), and 3.10(c).

One particular case of slip transmission can be found in Fig. 3.9(c). Grain 2 in

microstructure 2 and the grain to its left are grains with slip system 2 active. At

higher strain, shear bands travel through grain 2 and merge into the grains to its left.

Intensified plastic strain arises across grain boundaries that separate low and high

Schmid factor grains. This is due to the inability of high-Schmid-factor grains to

transmit slip activity across to those grains with low Schmid factor. One example

can be found at the grain boundary of Grain 3 in Fig. 3.9(b, c). Grain 3 is a grain

with a high Schmid factor between two low-Schmid-factor grains. Another example

is Grain 4 in Fig. 3.10(b, c, d), which is a low-Schmid-factor grain surrounded with

high-Schmid-factor grains. Strong plastic strain is generated at the boundaries of

these two grains, however, Grain 4 has localized strain around it rather than inside

1The equivalent plastic strain increment is defined as ([57]) dεp =
∑

α τ
α∆γα

σeff
, where σeff is the

von Mises stress.
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it. These grain boundaries may trigger cracks.

In order to identify the active slip systems within shear bands, maps of plastic

shearing increments (∆γ1 and ∆γ2) on slip systems 1 and 2 for Grain 1 in microstruc-

ture 1 at final strain of 0.06 are plotted in Fig. 3.11. Low strain is found in slip system

1 while shear bands are formed in slip system 2 as expected from the Schmid factor

analysis. Particle alignments around the shear band are drawn with green lines in

Fig. 3.11(b). The direction of alignment is the slip direction of slip system 2 in Grain

1 in Fig. 3.8(a), which is nearly perpendicular to the direction of the shear band.

This is because dislocations are grouped along slip directions.

3.2.4 Stress-strain response

The homogenized stress-strain response of CPPD and CPFE models are compared

in Fig. 3.12 for microstructures 1 and 2. The elastic responses for both models are

very close, however, divergence occurs in the elasto-plastic region. The CPPD model

shows an overall softer response in plastic regions, i.e., at the same strain level, the

averaged stresses are lower. This is mainly due to sharper stress localizations or

smaller regions with high stress in the CPPD model compared to the CPFE model.

3.3 Conclusions

A CPPD model with APDR is presented in this study. CPPD results are compared

with the CPFE analysis on plane strain problems under pure shear and compression.

The mechanical properties, texturing, and stress-strain response predicted by two

models are found to be largely similar. One highlight of the CPPD-ADRS model is

its simplicity and numerical efficiency compared to implicit methods in the plastic

regime.

In the numerical results, shear bands show inhomogeneity in the plastic defor-

mation and reorientation. Shear bands can merge and spread into grains, which are
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originally unfavorable to slip at small effective strain. Next chapter will introduce a

more sophisticated control method of instabiltiy in state-based peridynamics. Larger

horizons will be employed.
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Figure 3.3: Comparison of σxy from CPPD and CPFE models in the pure shear test
with a 225 particles/elements mesh in (a,b), a 625 particles/elements
mesh in (c,d), and a 2500 particles/elements mesh in (e,f) at total strain
of 0.06.
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Figure 3.4: The convergence plot of the dynamic CPPD model in the pure shear test
with 2500 elements. Two relative errors, e1,2, and artificial damping ratios
are monitored during iterations in (a), (b), and (c), respectively, during
iterations at t = 10, t = 20, and t = 30 (or at strain of 0.02, 0.04, and
0.06). A comparative test with a constant damping rate c = 500 is plotted
in dashed lines.
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Figure 3.5: Comparison of numerical efficiency between explicit and implicit CPPD
models. The computation time is plotted in a log scale and normalized
with the case of implicit model with 225 particles.
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Figure 3.6: Orientation changes for 2500 particles under a Y-axis compression test
from (a) CPPD (b) CPFE results at strain of 0.06. Along the direction
of arrows, sharper and more number of shear bands can be seen in CPPD
results.
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Figure 3.7: Microstructures 2 and 3 represented by 21 planar grains for CPPD simu-
lations. Initial orientations are represented by a group of two arrows. The
microstructure in the pure test in Fig. 3.2 is employed as microstructure 1.

Figure 3.8: Microstructure 1. (a) is the plot of the maximum Schmid factor in each
grain with Grain 1 labeled. The equivalent plastic strain increment is
shown in (b) at strain of 0.02, (c) at strain of 0.04, and (d) at strain of
0.06. The red arrow in (c) indicates a track of shear bands transmission
across grains.
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Figure 3.9: Microstructure 2. (a) is the plot of the maximum Schmid factor in each
grain with Grain 2 and 3 labeled. The equivalent plastic strain increment
is shown in (b) at strain of 0.02, (c) at strain of 0.04, and (d) at strain of
0.06. The red arrow in (c) indicates a track of shear bands transmission
across grains.
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Figure 3.10: Microstructure 3. (a) is the plot of the maximum Schmid factor in each
grain with Grain 4 labeled. The equivalent plastic strain increment is
shown in (b) at strain of 0.02, (c) at strain of 0.04, and (d) at strain of
0.06. The red arrow in (c) indicates a track of shear bands transmission
across grains.
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Figure 3.11: Plastic shear increments in grain 1 of microstructure 1 at strain of 0.06
for (a) slip system 1 and (b) slip system 2. Blue lines denote slip di-
rections; red lines indicate shear bands; the green line shows the particle
alignment across the shear band. The direction of the particle alignment
is parallel to the slip direction of slip system 2 while nearly perpendicular
to the shear band.

ε

σ(
M

P
a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

40

45

50

FEM1
FEM2
PD1
PD2

Figure 3.12: Homogenized stress-strain responses from CPPD and CPFE models for
microstructures 1 and 2 under Y-axis compression. CPPD stress is al-
ways lower than CPFE stress due to finer shear bands in CPPD results
during plastic loadings.
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CHAPTER IV

Higher-Order Approximation to Suppress

Zero-Energy Modes in PD-ADRS with Larger

Horizons

Previous chapters have investigated the ability of CPPD models in handling strong

strain gradients. Those results are restricted to the nearest-neighbor PD family.

However, larger horizons are generally more preferable in the PD convergence test and

damage analysis. Therefore, this chapter will investigate stable numerical solutions

with PD-ADRS in the larger horizon families.

The most troublesome stability issue of the NOSB peridynamics is the zero-energy

mode [111], which will be elaborated in the next section. In general, larger horizons

exhibit stronger zero-energy modes compared to those of smaller horizons. Those

accumulated zero-energy modes, shown as numerical oscillations, can eventually ruin

the results. Fig. 4.1 provides an example of disordered results when we simply increase

the horizon size in the CPPD model presented in the previous chapter with no control

method applied. Though we can still observe a general outline in Fig 4.1(b) with

δ =
√

2h, zero-energy-mode noise has dominated and destroyed the results in Fig 4.1.

In this example, the influence function ω is set to be 1 for all neighbor particles.
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Figure 4.1: The effect of zero-energy modes in 2D CPPD results with different horizon
sizes. h is the distance between nearest particles and δ is the horizon size.
The influence function is set to be a constant among all neighbor particles
in one horizon.

4.1 Zero-Energy Modes

If a stress tensor is used as an intermediate step in determining the bond forces,

it is called correspondence material model. Thus, the PD model in this thesis is a

peridynamic correspondence material model based on (2.26), where the PKI stress P

is used in determining the force state. Zero-energy modes have been demonstrated

to be a material instability rather than a numerical instability in correspondence

materials [102]. Weak couplings between particles is one of the inherent reasons

[87, 88, 89, 93]. A simple example is discussed below to help understanding its origin.

Consider a 2D regular quadrilateral lattice shown in Fig. 4.2. The original defor-

mation gradient is Fold. A small displacement disturbance ud is then applied on the
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x x� udud
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Fold Fnew

Figure 4.2: An illustration of zero-energy modes in a 2D regular quadrilateral lattice.
Although a small displacement disturbance ud is applied on the center
particle x, there is no impact on calculating the deformation gradient.

center particle x. Based on (2.19), the new deformation gradient Fnew turns into

Fnew =
(∫

Hx

ω(Ynew ⊗ ξ)dVx′

)
K−1

=
(∫

Hx

ω
[
(Yold − ud)⊗ ξ

]
dVx′

)
K−1

= Fold − ud ⊗
(∫

Hx

ωξdVx′

)
K−1. (4.1)

Due to the assumption of a uniform lattice discretization and a spherically symmetric

influence function ω, the integration term on the right hand side becomes zero. This is

a case of admissible displacement fields producing the same deformation gradient and

potential energy, which is reasonably called zero-energy modes, or hourglass modes.

The missing role of the center particle is one of the causes of zero-energy modes, which

is a common stability issue when using correspondence material models in mesh-free

methods, FEM, and numerical schemes with central difference discretization [7, 16,

100, 112].

Though there are several numerical methods to handle this practical difficulty,

the higher-order approximation approach seems to be the best choice considering

its feasibility and efficiency in problems with regular discretization patterns. We

have made a thorough discussion on its accuracy and stability in the 1D elastic bar
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tension test in Chapter VI compared with other numerical control methods. In this

chapter, we review the derivation and formulation of the higher-order approximation

approach in different dimensions, and then focus on applying this method in the 2D

CPPD model.

4.2 Higher-Order Approximation Theory

The higher-order approximation method is firstly proposed in Ref. [93]. The basic

idea is to adjust the weight or influence function values based on the Taylor series

expansions to better approximate the deformation gradient. This approach is demon-

strated highly effective in suppressing zero-energy modes, though, not completely

eliminating it. We describe another method that completely eliminates it albeit at a

higher computational cost in Chapter VI. More importantly, higher order approxima-

tions are easily implementable within the state-based peridynamics framework where

larger horizons can be used. A brief introduction is given below.

B0

x
x1

x2

x3Hx

reference configuration

F

B1

y

y1

y2

y3Hy

current configuration

Figure 4.3: Kinematics of non-ordinary state-based peridynamics. Particle x is
bonded to neighboring particles (x′, x′′, and x′′′) within a region Hx. Un-
der the deformation, particle x maps to particle y and this process can be
described by a corresponding deformation gradient F.

In the continuum mechanics, the difference between the deformed bond y′−y and
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the reference bond x′ − x, as shown in Fig. 4.3, can be expressed using the Taylor

series expansion as

y′ − y =
∂y

∂x
(x′ − x) +O[(x′ − x)2], (4.2)

where the notation O denotes the order of the leading error term; ∂y
∂x

= F, which is

the classical definition of the deformation gradient tensor.

In order to compare with the state-based peridynamic deformation gradient, we

consider performing the tensor product on the reference bond x′ − x and then inte-

grating both sides on the horizon:

∫

Hx

ω[(y′−y)⊗ (x′−x)]dVx′ =

∫

Hx

∂y

∂x
ω[(x′−x)⊗ (x′−x)]dVx′ +O[(x′−x)]3, (4.3)

where ω is the weight or influence function.

Therefore, the deformation gradient tensor can be approximated by

F(x) =
∂y

∂x
=

(∫

Hx

ω[(y′ − y)⊗ (x′ − x)]dVx′

)
K−1 +O(x′ − x), (4.4)

where K =
∫
Hx
ω[(x′ − x)⊗ (x′ − x)]dVx′ . If we ignore the error term, the first term

on the left is the same as (2.19) and K is defined as the shape tensor in the state-

based peridynamics. Note that the leading error term in (4.4) is the first order of the

distance between particles x′ and x. In order to achieve more accurate deformation

gradient, we can choose appropriate ω in the horizon to artificially increase the leading

error order.
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ω3 ω2 ω1 ω1 ω2 ω3

xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

δ = 2h

Figure 4.4: 1D particle-discretized bar with a constant spacing h. ω is a symmetric
weight function on neighboring particles. Dashed box δ = 2h, where δ is
the horizon radius, illustrates the horizon of center particle xi including
only the nearest four particles.

4.3 Discrete Formulation

4.3.1 1D discretization

Consider a 1D particle-discretized bar with a constant particle spacing h = xi+1−

xi. As illustrated in Fig. 4.4, there are 5 particles xi+j as j = 0,±1,±2 within the

horizon δ = 2h, where δ is the horizon radius. The weight function is selected to

be symmetric, i.e., ωj = ω(|xi+j − xi|) = ω(|xi−j − xi|).The state-based peridynamic

deformation gradient, defined in (2.19), can then be expressed as

F (xi) =
2hω2(yi+2 − yi−2) + hω1(yi+1 − yi−1)

2h2(4ω2 + ω1)
. (4.5)

The 1D Taylor series expansion of the deformed bond yi+j − yi is

yi+j − yi = jh
∂y

∂x

∣∣∣∣
xi

+
(jh)2

2!

∂2y

∂x2

∣∣∣∣
xi

+
(jh)3

3!

∂3y

∂x3

∣∣∣∣
xi

+O(h4). (4.6)

Substitute (4.6) into (4.5), the deformation gradient turns into

F (xi) =
∂y

∂x

∣∣∣∣
xi

+
h2

6

(16ω2 + ω1)

(4ω2 + ω1)

∂2y

∂x2

∣∣∣∣
xi

+O(h4). (4.7)

Notice that the second term on the right hand side could vanish if 16ω2 +ω1 = 0,

and the leading error will become the fourth order of h. In other words, ω1 = 1

and ω2 = −1/16 will produce a leading error O(h4) for the horizon size δ = 2h.
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Same procedures can be followed to find appropriate ω values for different horizon

sizes, which is shown in Table 4.1. In general, the order of leading error increases as

the horizon grows, which makes the approximation of the deformation gradient more

accurate.

Table 4.1: Higher-order approximation weight functions for 1D particle discretization
with a constant spacing h.

Horizon size Weight function values Leading error
ω1 ω2 ω3

δ = h 1 0 0 O(h2)

δ = 2h 1 -1/16 0 O(h4)

δ = 3h 1 1/135 -1/10 O(h6)

4.3.2 Higher-dimensional discretization

Higher-dimensional Taylor series expansion is applied on deriving weight functions

in 2D and 3D discretization patterns. This study only considers uniform particle dis-

cretizations, i.e., quadrilateral patterns in 2D and cubic patterns in 3D, with constant

spacing h and particle volume ∆V . The influence function ω is always assumed to

be spherically symmetric, i.e., ω = ω(|ξ|). For sake of simplicity, the Einstein tensor

notation is adopted in this section.

As shown in Fig. 4.3, the deformed and reference bonds can be redefined as

δy = y′ − y, and δx = x′ − x, (4.8)

respectively. The shape tensor K in (2.20) and deformation gradient tensor F in
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(2.19) can be expressed in Einstein notation:

Kij =

∫

Hx

ωδxiδxjdVx′ , (4.9)

Fpq = (

∫

Hx

ωδypδxjdVx′)(K−1)jq. (4.10)

Because of the symmetry of the discretization, the shape tensor in (4.9) becomes

Kij =
N∑

a=1

ωa(δxiδxj)a∆V = Ω(ω1, ω2, ω3, ...)h
2∆V δij, (4.11)

where N is the total number of neighbor particles in the horizon Hx; Ω is a function

of all independent omegas in the horizon; δij is the Kronecker delta function.

A 2D example with a horizon size h = 2δ is shown in Fig. 4.5. While there are

totally 12 neighboring particles, only three independent weight function values are

labeled in the horizon, i.e., ω1 = ω(h), ω2 = ω(
√

2h), and ω3 = ω(2h) due to the

symmetry of ω.

ω1

ω2

ω3

center

ω1 � ωphq
ω2 � ωp?2hq
ω3 � ωp2hq

h

h

Figure 4.5: Independent weight function values on a 2D quadrilateral particle pattern.
ω is a spherically symmetric weight function on neighboring particles. The
horizon radius is δ = 2h, where h is the distance between nearest particles.
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Substitute (4.11) into (4.10), the deformation gradient can be simplified as

Fpq = (

∫

Hx

ωδypδxjdVx′)δjq/h
2Ω∆V =

1

h2Ω

N∑

a=1

ωa(δypδxq)a. (4.12)

Multidimensional Taylor series expansion of the deformed bond δy on the reference

bond δx is needed. The first three terms are claimed here without proof:

δyp = Fpiδxi +
1

2!
Gpijδxiδxj +

1

3!
Hpijkδxiδxjδxk +O(h4), (4.13)

where Fpi = ∂δyp/∂δxi is the deformation gradient; Gpij = ∂2δyp/∂δxiδxj and Hpijk =

∂3δyp/∂δxiδxjδxk are the second-order and third-order derivative, respectively.

Substitute (4.13) into (4.12), the deformation gradient then turns into

Fpq = Fpq +
1

2!h2Ω
Gpij

N∑

a=1

ωa(δxiδxjδxq)a

+
1

3!h2Ω
Hpijk

N∑

a=1

ωa(δxiδxjδxkδxq)a +O(h3). (4.14)

It is possible to achieve higher-order approximation by selecting explicit weight

functions in (4.14). Note that for a symmetric and intact horizon, a bond (δx)m always

companies with another bond (δx)n symmetry about the origin, i.e., (δx)m = −(δx)n.

Therefore,

N∑

a=1

ωa(δxiδxj . . . δxm)a = 0, if there are odd δx-products. (4.15)

As odd δx-product summation vanishes, symmetric particle patterns with intact hori-

zons will always lead to accuracy order equal or greater than O(h2). One additional
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equation need to be satisfied to achieve O(h4):

Aijkl =
N∑

a=1

ωa(δxiδxjδxkδxl)a = 0. (4.16)

Furthermore, the following two equations will lead to accuracy order of O(h6):





Aijkl =
∑N

a=1 ωa(δxiδxjδxkδxl)a = 0

Bijklrs =
∑N

a=1 ωa(δxiδxjδxkδxlδxrδxs)a = 0

. (4.17)

Criteria (4.16) and (4.17) hold true for all dimensions. It is evident that larger

horizons, which have more independent weight function values, can bring higher order

of leading error. Nevertheless, it is unaware of the total number of equations in

(4.16) and (4.17). In addition, the final selected weight function values should satisfy

Ω(ω1, ω2, ω3, ...) 6= 0 to ensure the shape tensor K in (4.11) is invertible. The following

is a brief discussion on the number of non-trivial components in the fourth tensor Aijkl.

First of all, subscript indices can be swapped:

Aijkl = Ajikl = Aijlk. (4.18)

Assume we have a 2D quadrilateral particle pattern where subscript indices take

on values 1 and 2. Due to (4.18) only six components are independent, which are

A1111, A2111, A2211, A2221, and A2222.

Secondly, the coordinate index 1 and 2 can be swapped as well. This is because

of the axis symmetry of the horizon and particle pattern. For example,

A1111 = A2222, and A2111 = A1112. (4.19)

Thirdly, assume that there is a bond (x, y) with a weight function ω1 in the horizon.
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Owing to the symmetry of coordinate axes, three other bonds (−x, y), (−x,−y), and

(x,−y) are supposed to be in the horizon as well. Hence, based on the definition in

(4.16),

A2221 = ω1y
2(xy − xy + xy − xy) = 0. (4.20)

Eventually, only two components of the fourth-order tensor Aijkl are non-zero,

which are A1111 and A2211.

For the sake of simplicity and unity, the weight function value which is located

closest to the center particle is set to be 1, i.e., ω1 = 1. In order to achieve O(h4), we

need two more independent weight function values, ω2 and ω3. Therefore, the horizon

with radius δ = 2h in Fig 4.6 is the smallest one that can achieve O(h4) in the 2D

quadrilateral pattern.

In terms of horizons with excess independent weight functions but not enough

to achieve higher order of errors, the weight function values are not unique. These

horizon selections could possibly bring noise or numerical oscillations in the ultimate

solutions. Typically, weight function values decrease from the closest particles to

distant particles and the value on the farthest particle should not be zero.

For 2D quadrilateral patterns, our study is limited to horizon size δ ≤ 3h. Fig. 4.6

illustrates all possible distributions of neighboring particles with different horizon

sizes. Only a quarter of horizon is plotted due to the symmetry of ω. Table 4.2 shows

the weight function values to achieve corresponding higher accuracy.

For 3D cubic patterns, the horizon size is limited to δ ≤ 2h, where h is the

spacing between nearest particles. Fig. 4.7 illustrates all possible distributions of

neighboring particles with different horizon spheres. Similar to 2D patterns, only a

quarter of sphere is plotted due to the symmetry of ω. Table 4.3 shows the weight

function values to achieve corresponding higher accuracy. Note that the selected

weight function values of the horizon size δ =
√

2h lead a zero shape tensor K, thus

not recommended in 3D computation.
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Figure 4.6: All possible 2D horizon shapes with a quadrilateral particle discretization
under δ ≤ 3h. Because the weight function ω is spherically symmetric,
only a quarter of circle is plotted for each horizon shape.

Table 4.2: Higher-order approximation weight functions 2D particle discretization
with a constant spacing h. For horizons δ∗, weight function values are
not unique.

Horizon size Weight function values Error
ω1 ω2 ω3 ω4 ω5 ω6

δ = h 1 0 0 0 0 0 O(h2)

δ∗ =
√

2h 1 1 0 0 0 0 O(h2)

δ = 2h 1 0 -1/16 0 0 0 O(h4)

δ∗ =
√

5h 1 -8/46 -4/46 1/46 0 0 O(h4)

δ = 2
√

2h 1 -2/3 -1/4 1/6 -1/24 0 O(h6)

δ∗ = 3h 1 4/9 0 -1/9 1/36 1/81 O(h6)

4.4 Boundary Treatment

Conventional constraint conditions, such as Dirichlet and Neumann boundary

conditions, are supposed to be imposed in a different form, as the PD governing
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h
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center particle
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Figure 4.7: All possible 3D horizon shapes with a cubic particle discretization under
δ ≤ 2h. Because the weight function ω is spherically symmetric, only one
eighth of the sphere is plotted for each horizon shape.

Table 4.3: Higher-order approximation weight functions 3D particle discretization
with a constant spacing h. For horizons δ∗, weight function values are
not unique. Note that weight functions of horizon δ =

√
3h results in a

zero shape tensor.

Horizon size Weight function values Error
ω1 ω2 ω3 ω4 ω5 ω6

δ = h 1 0 0 0 0 0 O(h2)

δ∗ =
√

2h 1 1 0 0 0 0 O(h2)

δ =
√

3h 1 -1/2 1/4 0 0 0 O(h4)

δ∗ = 2h 1 -1/3 1/6 -1/48 0 0 O(h4)

δ∗ =
√

5h 1 -47/136 43/272 -1/32 1/272 0 O(h4)

δ =
√

6h 1 -11/20 3/10 -1/10 1/20 -1/40 O(h6)
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equations are written in nonlocal formulation. In the previous chapter, no special

boundary treatment is conducted because we only consider the nearest-particle fam-

ily. Defect horizons with the smallest horizon can still correctly approximate the

deformation gradient at boundary. However, as the horizon size increases, irregular

defect horizons ultimately lead to disordered and unstable solutions around boundary

particles. Since higher-order approximations are derived from internal particles with

a fully symmetric horizon and spherically-symmetric influence function ω, another

raised concern is that defect horizons at boundary would bring errors in approximat-

ing the deformation gradient.

δ

h

h

inner particle

boundary particle

shadow particle

computation domain

Figure 4.8: Boundary region with shadow particles. The thickness of the shadow-
particle layer is equal to the horizon size δ. A horizon of δ = h is illus-
trated in this plot, where h is the particle spacing.

One possible solution, suggested by Macek and Silling [113, 15], is to apply a

”fictitious material layer” along the boundary. The thickness or depth of the fictitious

boundary layer should be equal to the horizon size δ to ascertain that prescribed

constraints are sufficiently forced on the real material region. Same discretization is

supposed to be applied in both the fictitious boundary layer and real material domain.

Shadow particles are therefore introduced in the fictitious layer, as shown in Fig. 4.8.
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4.4.1 Displacement constraints

Displacement constraints are commonly used in our numerical examples. Con-

sidering no information is provided outside the real material region, Madenci [15]

suggested that the prescribed displacement vector should be the same as that of the

closest material particle at boundary. However, this operation results in zero strain

and stress in the fictitious boundary layer.

When it comes to polycrystal simulations, we apply a constant deformation gra-

dient at boundary, as illustrated in Chapter 3.2. Hence, we are able to prescribe dis-

placements on shadow particles based on this constant deformation gradient. More-

over, stress at shadow particles can be calculated by the correspondence constitutive

σ(F). These stress terms are then utilized in the equation of motion at boundary

particles. Note that boundary particles are given only displacement information.

In a summary, we assume all information on shadow particles are known, i.e., both

displacement and stress, in contrast with boundary particles, where only displacement

is given. Our results have shown that this special boundary enforcement is particularly

effective in large-horizon PD families.

4.4.2 Forces and traction

External loading conditions can be treated as an equivalent body force density

in the peridynamic governing equation (2.17). Different from the displacement con-

straints, the thickness of the fictitious boundary layer for external loadings is supposed

to be greater. Details can be found in [15].

4.5 1D Numerical Example

A 1D elastic bar test is conducted, as shown in Fig. 6.4. The bar has a total

length Ltot and a constant cross-sectional area A. Displacement constraints, u1 = 0
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(a) 1D elastic bar

x/Ltot0 0.5 1

E(x)

E0

(b) Young’s Mudulus along x

Figure 4.9: A 1D elastic bar under tension with a Young’s modulus varied along the
x axis.

and un = uend, are applied on the two sides of the bar. A variable Young’s modulus

is adopted as

E(x) =





E0 0 ≤ x ≤ Ltot/2

E0

(
1 + β

2α
1√

x/Ltot−1/2

)−1

Ltot/2 < x ≤ Ltot

, (4.21)

and the analytical displacement u(x) is

u(x) =





αx 0 ≤ x ≤ Ltot/2

αx+ βLtot

√
x/Ltot − 1/2 Ltot/2 < x ≤ Ltot

, (4.22)

where parameters are selected as Ltot = 1, E0 = 1, uend = 0.005, α = 0.001, and

β = 0.004
√

2.

A comparison between the higher-order approximation solutions and those with no

control method is shown in Fig. 6.7. Since higher-order approximation approach only

takes effect in large-horizon families, we provide tow horizon selections, i.e., δ = 2h
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(b) δ = 3h

Figure 4.10: Effect of zero-energy modes on the displacement field of 1D bar obtained
from the higher-order approximation approach with two different horizon
sizes. Results are based on a mesh with 500 particles.

and δ = 3h. As the horizon size increases, the oscillations grow dramatically if no

control method is applied. Higher-order approximation method effectively suppress

the oscillations in both cases, though not completely remove the zero-energy modes.

4.6 2D Numerical Example

Reconsider the plane polycrystal in Chapter III Section 3.2. A compression ve-

locity gradient is applied on microstructure boundaries. Our boundary treatment is

shown in Fig 4.11.

An inward fictitious boundary layer is selected because we are not aware of the

crystal information outside the original boundary. As the fictitious layer becomes

thicker, the computation domain shrinks. Fig. 4.12 provides an example showing

the effect of this boundary treatment. Low-valued stress is observed around bound-

ary without the fictitious boundary layer. This is mainly because of the erroneous

deformation gradient approximated by defect horizons. In contrast, the stress field

obtained from the boundary enforcement is normal with no spurious values along the
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Figure 4.11: Boundary treatment on plane polycrystals. The fictitious boundary layer
is inward possessing thickness equal to the horizon radius δ .
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(b) boundary enforcement

Figure 4.12: The effect of boundary treatment on CPPD stress distributions with a
horizon size δ = 3h.

four sides.

Following is a Y-axis compression test based on the same microstructure in Chap-

ter III Section 3.2.2. Fig 4.13 provides a comparison of crystal orientation changes

with three different horizon selections. We choose three smallest horizon sizes in

Table 4.2 that leads to high order of error.

It is clear from the figure above that zero-energy modes are effectively suppressed

in all three horizon selections. This is the same as what we found in the 1D elastic bar

tension test seen previously, where we have compared the higher-order approach with

the problem with no control. Moreover, larger horizons usually bring more accurate
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Figure 4.13: Orientation changes for 2500 particles under a y-axis compression test
with three different horizon sizes. δ is the horizon radius and h is the
distance between nearest particles. The margin around the boundary is
due to the boundary treatment.

solutions, as the shear bands become sharper and more concentrated.

However, if two horizon selections have the same order of accuracy, the larger

horizon will bring more zero-energy-mode oscillations instead. Fig. 4.14 shows a set

of local amplifications of orientation changes in six selected horizon sizes. We choose

a small window to capture the center crystal and the shear band in red in Fig. 4.13.

We can observe that results on the right group have more oscillations of particles,

whereas they have the same order of accuracy with those on the left. In other words,
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by including more neighbor particles will not lead to more stable results if they are

not able to achieve higher order of accuracy. The solution highly depends on the

weight function values, whereas their values are not unique. This is different from

the 1D bar test, in which larger horizons will definitely reduce zero-energy modes.

4.7 Conclusions

A higher-order approximation to the nonlocal deformation gradient is proposed

to suppress zero-energy modes. CPPD Solutions are not effected by the horizon size

in the same accuracy order. In addition, no additional computation cost is needed

because only the influence functions is adjusted in the computation. Next chapter

will extend the CPPD-ADRS model in 3D polycrystal simulations.

78



x

y

0.4 0.6

0.4

0.5

0.6

0.7

dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(a) δ = h, O(h2)

x

y

0.4 0.6

0.4

0.5

0.6

0.7
dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(b) δ =
√

2h, O(h2)

x

y

0.4 0.6

0.4

0.5

0.6

0.7

dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(c) δ = 2h, O(h4)

x

y

0.4 0.6

0.4

0.5

0.6

0.7

dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(d) δ =
√

5h, O(h4)

x

y

0.4 0.6

0.4

0.5

0.6

0.7

dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(e) δ = 2
√

2h, O(h6)

x

y

0.4 0.6

0.4

0.5

0.6

0.7

dθ(rad)

0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

0.05
0.1
0.15
0.2
0.25

(f) δ = 3h, O(h6)

Figure 4.14: Local view of orientation changes with six different horizon sizes. δ is
the horizon radius and h is the distance between nearest particles.
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CHAPTER V

3D PD-ADRS Implementation with Crystal

Plasticity

We propose the extension of peridynamics theory for modeling 3D polycrystals

with both slip and twin activities. A 3D parallel CPPD formulation is developed in

this chapter. Rate-independent crystal plasticity from previous chapter was imple-

mented for 3D slip systems. The next section provides the validation of the code

via measured crystal orientation evolution and final textures. This section presents

comparisons with published data [114] under plane stress and z-rotation, respectively.

5.1 Crystal Orientations and Textures

The orientation of a crystal is the rotation needed to align a set of axes fixed to its

lattice in a reference frame. We utilize the Rodrigues space to represent the crystal

orientation [115, 116, 117, 118? ], in which a rotation can be defined by its axis, n,

and angle of rotation about that axis, φ. The general form of the four-dimensional

quaternion parameterization is

r = r(φ,n) = tan(φ/2)n, (5.1)
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where r is a vector in the Rodrigues orientation space. The orientation can be alter-

natively expressed as a rotation matrix R:

R(φn) = n⊗ n + cosφ(I− n⊗ n) + sinφ(I× n), (5.2)

where I is the identity matrix.

Due to crystal symmetries, there exist a smallest subset that uniquely specify all

possible orientations, which is called the fundamental region R. Provided with values

of φi and ni associated with the symmetry operation i, a bounding plane for the

fundamental region can be obtained by

± r · ni ≤ tan(φi/4). (5.3)

(a) FCC (b) HCP

Figure 5.1: Fundamental regions for FCC and HCP crystals using Rodrigues param-
eterization.

The fundamental regions for FCC and HCP crystals are depicted in Fig. 5.1

[119, 120]. Within the fundamental region, crystal textures can be described by the

orientation distribution function (ODF), A(r), which describes the volume density

of the crystal orientation r. The ODF is normalized to unity over the fundamental
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region as ∫

R

A(r)dv =

Nelem∑

n=1

Nint∑

m=1

A(rm)ωm|Jn|
1

(1 + rm · rm)2
= 1, (5.4)

where A(rm) is the ODF value at the mth integration point of the nth element with

the orientation coordinate rm; |Jn| is the Jacobian determinant of the nth element;

ωm is the integration weight associated with the mth integration point. As shown in

Fig. 5.2, the fundamental region is discretized into N independent nodes with Nelem

tetrahedron finite elements and Nint integration points per element.

Figure 5.2: The Fundamental regions for FCC and HCP crystals are discretized into
finite elements. Only nodes in the blue color on boundaries are inde-
pendent nodes of the ODF considering the crystal symmetry using the
Rodrigues parameterization.

X
Y

Z

Independent nodes 

Figure 5.3: ODF representation in the Rodrigues fundamental region for hexagonal
crystal symmetry showing the location of the k=388 independent nodes of
the ODF in blue color.

Only one integration point per element at the local coordinate of (0.25, 0.25, 0.25)
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is applied in calculating the integration in (5.4). The integration weight function is

thus ω = 1/6. Equation (5.4) is then simplified as

qT ·A = 1 (5.5)

where qi = 1
6
|Ji| 1

(1+ri·ri)2 and Ai = A(ri) with i = 1, . . . , Nelem. Crystallographic

symmetry is enforced by considering the set of independent nodal points instead of

the integration points [121, 122]. Independent nodal points are in a reduced set

of nodes accounting for symmetry conditions at the boundaries of the fundamental

region (see Fig. 5.2). Let matrix H be the conversion matrix between the independent

nodal values and the integration point values, which can be expressed as

Aint = HAnode, (5.6)

where Aint and Anode refer to the ODF values at the integration points and element

nodes, respectively. Regarding to tetrahedron elements, (5.6) can be simplified as

Aint
e =

1

4

4∑

i=1

Ai
e, (5.7)

where i is the node number from 1 to 4 for a tetrahedron element e. As a result, (5.5)

turns into

qT · (HAnode) = (HTq)T ·Anode = 1, (5.8)

so that normalization can be represented as the scalar product with the ODF values

at the independent nodal points.

The orientations from the peridynamics data are binned point-by-point to the

element containing the orientation, specifically to the integration point in the element.

After binning is complete, the ODF value (Ainti ) at the integration point in an element

i contains the total number of points in the peridynamics image that have orientations
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lying within the element. The data is then normalized by qint
T
Aint. We use matrix

T to convert the integration point values Aint to the independent nodal values Anode,

ie., Anode = TAint. Using one integration point, this matrix is defined as Tij = δij/f

where δij is one if node i (or its symmetric equivalent) is a vertex of element j and

zero otherwise. The factor f is the number of elements with node i (or symmetric

equivalent) as one of its vertices. This matrix is always positive and thus, Anode ≥ 0.

5.2 Polycrystal Texture under Two Deformation Modes

The microstructure considered in this section is a 3D polycrystal cube with a

dimension of 3× 3× 3 mm3. The cube is discretized into particles owning a constant

particle distance h. We start the test with 24 particles in each direction, therefore,

totally 13824 particles in the computation domain. Every particle is assigned with a

unique orientation vector, which makes the initial texture fully random. The initial

textures that we choose for FCC and HCP crystals are shown in Fig. 5.4.
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(a) FCC
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(b) HCP

Figure 5.4: Initial textures of the 3D (a) FCC and (b) HCP polycrystal cubes plotted
in the fundamental region.

We test the PD-ADRS code in two deformation modes, which are plane strain

compression and uniaxial compression. Both deformation modes allow large strain

considering small stability limits and suppressed failure mechanisms [114]. Similar to
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the 2D numerical polycrystal examples in Chapter 3.2, velocity gradients are applied

on the boundary. For the plane strain compression deformation mode, the velocity

gradient Lp is given by

Lp = L0




1.0 0.0 0.0

0.0 0.0

sym. −1.0




s−1, (5.9)

where L0 = 0.001 is a constant strain rate. Likewise, the uniaxial compression velocity

gradient is

Lu = L0




0.5 0.0 0.0

0.5 0.0

sym. −1.0




s−1. (5.10)

The material we choose for the FCC crystal is copper [123]. The elastic constants

and hardening coefficients for the crystal plasticity model are given in Tables 5.1 and

5.2. Its twelve slip systems are listed in Table 5.3. All slip systems share the same

slip constants.

Table 5.1: Elastic constants (Unit: GPa) of single-crystal FCC copper [1].

C11 C12 C44

170.0 124.0 75.0

Table 5.2: Slip resistance and hardening coefficients used in FCC copper [1].

s0 (MPa) h0 (MPa) ss (MPa) a

16.0 180.0 148.0 2.25

Considering next sections will be focused on HCP magnesium alloys, we only

conduct the plane strain compression test on the FCC copper crystal. Similar texture

have been captured in the FCC crystal with the PD-ADRS compared with the results

obtained from FEM, as shown in Fig. 5.5.
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Table 5.3: FCC copper slip systems [1].

ID Direction Normal ID Direction Normal

1 [1 1 0] (1 1 1) 7 [-1 0 1] (1 -1 1)
2 [-1 0 1] (1 1 1) 8 [0 -1 -1] (1 -1 1)
3 [0 1 -1] (1 1 1) 9 [1 1 0] (1 -1 1)
4 [1 0 1] (-1 1 1) 10 [-1 1 0] (-1 -1 1)
5 [-1 -1 0] (-1 1 1) 11 [1 0 1] (-1 -1 1)
6 [0 1 -1] (-1 1 1) 12 [0 -1 -1] (-1 -1 1)

X
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Z

ODF

4
3.5
3
2.5
2
1.5
1

(a) PD (b) FEM

Figure 5.5: Plane strain compression texture of the 3D FCC polycrystal cube based on
(a) PD-ADRS and (b) FEM from [124].

Following tests and examples are all for HCP crystals. A magnesium alloy is se-

lected to be the HCP crystal sample, as its elastic constants given in Table 5.4. We em-

ploy 18 slip systems in plastic deformation of magnesium, which include basal< a >,

prismatic< a >, pyramidal< a >, and pyramidal< c+a > slip systems. No twinning

system is considered in this texture test. The particular crystal hardening law is the

same with the power law in the 2D polysrystal test, see Section 3.2 Chapter III. The

following Tables 5.5 and 5.6 state the slip systems and hardening coefficients used in

the HCP texture test, respectively.

Simulation is then performed over 200 loading steps with a constant strain rate

L0 = 0.001, which results in a final strain around 0.2. Two modes of deformation,
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Table 5.4: Elastic constants (Unit: GPa) of single-crystal HCP Magnesium alloys [2].

C11 C12 C13 C33 C44

59.3 25.7 21.4 61.5 16.4

Table 5.5: HCP magnesium slip systems [3].

Slip System ID Direction Normal

Basal< a >
1 [1 1 -2 0] (0 0 0 1)
2 [-2 1 1 0] (0 0 0 1)
3 [1 -2 1 0] (0 0 0 1)

Prism< a >
4 [1 -2 1 0] (1 0 -1 0)
5 [2 -1 -1 0] (0 1 -1 0)
6 [1 1 -2 0] (-1 1 0 0)

Pyram< a >

7 [1 -2 1 0] (1 0 -1 1)
8 [-2 1 1 0] (0 1 -1 1)
9 [-1 -1 2 0] (-1 1 0 1)
10 [-1 2 -1 0] (-1 0 1 1)
11 [2 -1 -1 0] (0 -1 1 1)
12 [1 1 -2 0] (1 -1 0 1)

Pyram< c+ a >

13 [-1 -1 2 3] (1 1 -2 2)
14 [1 -2 1 3] (-1 2 -1 2)
15 [2 -1 -1 3] (-2 1 1 2)
16 [1 1 -2 3] (-1 -1 2 2)
17 [-1 2 -1 3] (1 -2 1 2)
18 [-2 1 1 3] (2 -1 -1 2)

Twin< c+ a >

19 [-1 0 1 1] (1 0 -1 2)
20 [1 0 -1 1] (-1 0 1 2)
21 [-1 1 0 1] (1 -1 0 2)
22 [1 -1 0 1] (-1 1 0 2)
23 [0 -1 1 1 1] (0 1 -1 2)
24 [0 1 -1 1] (0 -1 1 2)

plane strain compression and uniaxial compression, are applied separately with the

velocity gradients Lp and Lu on the boundary, respectively. In order to compare

with the texture computed by FEM from [114], we first present the 3D views of the

textures in Fig. 5.6, and then apply the cutting planes to check the interior part of

the fundamental region. Same cutting planes on the fundamental region are selected
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Table 5.6: Slip constants used in HCP magnesium alloys [1].

Slip System s0 (MPa) h0 (MPa) ss (MPa) a

Basal< a > 76.0 225.6 248.7 1.0
Prism< a > 163.2 124.9 356.3 1.0
Pyram< a > 160.3 120.2 347.8 1.0
Pyram< c+ a > 187.4 237.9 350.4 1.0
Twin< c+ a > 116.4 105.6 238.3 1.0

X
Y

Z

ODF

4
3.5
3
2.5
2
1.5
1

(a) Plane strain compression
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(b) Uniaxial compression

Figure 5.6: 3D view of the texture of the 3D HCP polycrystal cube under (a) plane
strain compression and (b) uniaxial compression.

Figure 5.7: Plane strain compression texture of the 3D HCP polycrystal cube based
on (a) PD and (b) FEM [114]. The number to the right corner of
each plane indicates the relative position compared to the maximum z-
coordinate value in the fundamental region.
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Figure 5.8: Uniaxial compression texture of the 3D HCP polycrystal cube based on (a)
PD and (b) FEM [114]. The number to the right corner of each plane in-
dicates the relative position compared to the maximum z-coordinate value
in the fundamental region.

(a) Polycrystal with 78 grains (b) Cutting plane at z = 1.3 mm

Figure 5.9: 3D polycrystal cube with 78 grains. The cube is discretized into particles
with a constant particle distance h. The example here has 24 particles
along all three directions. Crystals owning the same orientation ID share
the same orientation vector. (b) provides the interior information on the
cutting plane at z = 1.3 mm. The black lines illustrate grain boundaries.

with FEM and results are shown in Figs. 5.7 and 5.8. Note that all PD results in the

texture test is based on a horizon size only included the nearest particles. Smallest-

horizon PD family can produce local results to better compare with the FEM.

FEM textures exhibit more smooth and symmetric texture, while PD results show
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more numerical oscillations due to the explicit dynamic solver. The overall textures

are similar under both deformation modes, which indicate the 3D PD-ADRS codes

work for capturing the texture of both FCC and HCP crystals.

(a) u, δ = h (b) εxx, δ = h

Figure 5.10: 3D distributions of the displacement component u and strain component
εxx under plane strain compression with the smallest horizon size. The
cutting plane is at z = 1.3 mm.

(a) u, δ = h (b) εxx, δ = h

Figure 5.11: 3D distributions of the displacement component u and strain component
εxx under uniaxial compression with the smallest horizon size. The cut-
ting plane is at z = 1.3 mm.

Next, we select a 3D polycrystal cube with 78 grains, shown in Fig. 5.9, to in-

vestigate the displacement and strain maps. The dimension of the cube is the same

with that in the texture test, which is 3×3×3 mm3. HCP magnesium is applied and
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two different horizon sizes are used, i.e., δ = h and δ = 2h, where δ is the horizon ra-

dius and h is the distance between nearest particles. The higher-order approximation

method, elaborated in the previous chapter, is employed to stabilized the zero-energy

modes.

The plane strain compression velocity gradient Lp in (5.9) and uniaxial compres-

sion velocity gradient Lu in (5.10) are applied on the boundary, respectively, with a

constant strain rate l0 = 0.001. The displacement and strain map is captured at the

loading step 200, as provided in Fig. 5.10.
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(d) εxx, δ = 2h

Figure 5.12: Displacement component u and strain componenet εxx distributions on
the cutting plane z = 1.3 mm under plan strain compression. Two dif-
ferent horizon sizes are used. Gray interior lines are grain boundaries.

The cutting plane z = 1.3 mm is used to better compare the contours with dif-
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Figure 5.13: Displacement component u and strain component εxx distributions on the
cutting plane z = 1.3 mm under uniaxial compression. Two different
horizon sizes are used. Gray interior lines are grain boundaries.

ferent horizon sizes. Figs. 5.12 and 5.13 give the contours of the displacement and

strain with two different horizon sizes under plane strain compression and uniaxial

compression, respectively. We mask the shadow particles around the boundary lead-

ing to margins along the 4 sides. The shadow particle layer typically becomes thicker

as the horizon size increases.

Results obtained form larger horizons exhibit more smooth results. Thanks to

the higher-order approximation method, zero-energy-mode oscillations are effectively

suppressed. Next step is to increase the mesh density and investigate the convergence

with larger horizons.
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In the end of this section, we plot the stress-strain curves based on the two de-

formation modes with two different horizon sizes. Fig. 5.14 shows that strain and

stress behaves in a similar way with different horizon sizes, though larger horizons

produce higher curves compared to smaller ones. We attribute this phenomenon to

the different shadow particle layers.
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Figure 5.14: Homogenized stress-strain responses from plane strain compression and
uniaxial compression with two different horizon sizes.

5.3 Preliminary Comparisons between PD Simulations and

SEM–DIC Experiment Data

The model will be validated using state-of-the-art in-situ Scanning Electron Microscope–

Digital Image Correlation (SEM–DIC) data of WE43 Magnesium alloy [125]. Mag-

nesium is the lightest structural metal and is attractive to automotive and aerospace

light-weighting applications. However, magnesium alloys have traditionally exhibited

low formability at room temperature. Development of WE alloys (Mg-rare earth

alloys) has now allowed relatively high yield and tensile strength properties by pre-

cipitate hardening [126, 127]. However, fracture and fatigue properties are sensitive

to localization patterns that develop during deformation [128]. Due to a limited num-

ber of slip and twin systems, these localizations strongly depend on multiaxial stress
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states and the specimen texture.

5.3.1 SEM–DIC experiment data for HCP magnesium

SEM–DIC is a useful in-situ and non-destructive technique for characterizing mi-

croscopic surface strains. It tracks the deformation of a speckle pattern placed on

the microstructure during thermo-mechanical loading. The details of the SEM-DIC

experiments that were performed for the WE43 alloys are described in [1]. The pri-

mary material used for the experiments was a hot rolled and annealed WE43 plate of

thickness 31 mm. This material is referred to as T5 temper. The samples were solu-

tion treated in an open-air furnace at 800K for 8 hours, followed by a water quench.

Subsequently, it was subjected to aging treatment in a silicone oil bath at 523K for

a peak aging time of 16 hours followed by water quench. This heat treated material

is referred to as T6 temper. Samples from both (T5 and T6) tempers were deformed

within a SEM load cell and the surface displacement distribution was measured.

EBSD scans of the surface prior to loading is also available. One of the objectives of

this work is to validate the PD model by comparing with microstructural response of

magnesium alloy WE43. For this purpose:

• We will incorporate a 3D elastoplastic crystal plasticity framework with de-

formation twinning into the peridynamic framework. The parameters of the

model have already been calibrated against both macroscopic stress strain re-

sponse and the texture in [1] using crystal plasticity finite element method. The

slip system and material properties such as elastic modulus and slip parameters

used in this thesis are given in Tables 5.4, 5.6, and 5.5.

• Preliminary comparisons will be made between the SEM–DIC experiments and

PD simulations for the displacement and strain fields. More detailed tests on

the effect of basal Schmid factor, grain size, and boundary conditions on strain

localization will be studied in the future.
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• Tensile loading: The T5 condition has a basal texture and no twinning is seen

under tensile loading. Strain localizations, both intra-grain and along grain

boundaries, are seen under tensile loading. The tensile loading case will be

used to benchmark the slip activity and grain boundary localizations predicted

in the absence of twinning.

RD 

TD 

Max: 2.33 

(0001) 

RD 

TD 

Max: 5.41 

Tension Compression 
0 

1 

2 

3 

4 

5 

6 (0001) 

T rue Stra in

T
ru

e
S

tr
e

s
s

(M
P

a
)

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

250

300

350

400

T en. Expt.
T en. S im .
C om p. Expt.
C om p. S im .

Figure 5.15: (left) Stress–strain response calibrated using crystal plasticity finite ele-
ment model for WE43-T5 Magnesium alloy under tension and compres-
sion. (right) Predicted pole figures under tension and compression.

The comparison with SEM-DIC experiments will be performed by setting up a

boundary value problem (BVP) using the EBSD image of the microstructure within

the DIC window. The displacement fields along the boundary of the microstructure

are obtained from experiment. The measurements are made on the surface of the

sample, which is traction-free, and therefore a plane-stress assumption will be made

while setting up the simulation. The slip and twin systems are three-dimensional and

the algorithm to solve for the shear strains and stresses in the slip systems proceeds

from a 3-D deformation gradient. The problem is set-up in 3-D with a plate of small

thickness. An example of the CPFE results based on these boundary conditions

were previously shown in Fig. 5.15(b). As seen from this results, the average strain

intensities are captured but the localizations (including banding, grain boundary, and

size effects) are not captured by CPFE.
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Fig. 5.16 provides an example of the PD computational domain. The thickness

of the plate is always set to be equal to the distance between nearest particles. We

have selected two different particle distances. Smallest horizons that only include the

closest particles are employed considering there are only two layers of particles. The

four sides of the plate are constraint based on DIC experiment data. Each loading

step, we apply a small radio, e.g., 1/500 of the total displacements. In addition, the

bottom surface is constraint only on the w displacement.

Figure 5.16: 3D PD DIC thin layer computational domain. The dimension unit is
micrometer. There are 50 particles in the x and y direction in this ex-
amples. Only two layer particles are employed. The thickness of the
plate is the same with the distance between nearest particles.

In HCP alloys, the predominant slip systems are the basal, prismatic, pyramidal

< a > and pyramidal < c + a > systems [129]. The parameters for these systems,

such as the initial slip system resistance and hardening constants, have been developed

using a crystal plasticity finite element model previously [1] and will be used in the

PD approach. It is to be noted that the < c + a > slip system is the only one

capable of accommodating strains along the crystal < c > direction. This system is

difficult to activate at room temperature due to the high initial slip resistance [130].
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Twinning provides an additional deformation mode along the < c > direction, but

its unidirectional nature results in a strong asymmetry in mechanical properties. In

Mg alloys, the extension twinning system (which leads to a tensile strain parallel to

the c-axis) is activated during in-plane compression. Under compression, low yield

strength and hardening rate, followed by an increase in hardening at higher strains

(due to twin exhaustion), is observed. The tensile twins significantly affect the texture

by reorientation of the grains by an angle of about 86 degrees. Under cyclic loading,

detwinning can also occur.

For modeling purposes, twin systems will be considered as pseudo-slip systems

and are sheared until they are reoriented [131]. The total twin volume fraction,

which is the total accumulated pseudo-slip divided by the characteristic shear of the

twin system, will be computed in each particle. In Magnesium, extension twins are

active in compression (as known from DIC trace analysis) with a characteristic shear

of 12.9%. The approach for twinning is similar to the PTR scheme [131]. The main

difference from the PTR scheme is that only the particle will be reoriented here

instead of reorienting an entire grain.

5.4 3D Thin Layer Simulations

Similar contours of the displacement fields can be observed between DIC experi-

ment data and CPPD results, as shown in Fig. 5.17. Two different meshes are used:

one has 50 particles in the x-direction and the other has 100 particles. Strain com-

ponents εxx, εyy, and εxy are plotted in Fig. 5.18.

5.5 Conclusions

This chapter presents the first 3D implementation of crystal plasticity using peri-

dynamics theory. We certified the CPPD model in computing the texture of FCC
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Figure 5.17: Displacement fields oabtained from DIC data and two different particle
meshes.

and HCP 3D polycrystals under two different compression deformation modes. Two

horizon sizes are employed to investigate the displacement and strain fields of the 3D

polycrystal cube. The PD solutions are compared with a recent DIC experiment of

uniaxial tension in Magnesium WE43 alloy. Finer localization bands are found in the

PD results compared with FEM. Two samples of the input files to create a 3D cube

domain or a thin layer are provided in Appendix E.
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Figure 5.18: Strain component εxx, εyy, and εxy fields (from top to bottom) (left) from
DIC data (right) with 50 particles in the x direction.

99



CHAPTER VI

Stress-Point Model for Stabilizing Zero-Energy

Modes in PD-ADRS

In the current work, we propose a stress-point approach, as a numerical means

to mitigate zero-energy modes with particle discretizations. The use of stress points

has been proposed in the past for other integral methods such as smoothed particle

hydrodynamics to address tensile instability issues [94, 95]. The idea is straightfor-

ward. Addition of even one more independent stress point in 1D problems leads

to two gradients and three displacements which significantly reduces the null space.

This stress-point peridynamic model is first demonstrated in a simple 1D problem

and then applied to higher-dimensional problems. Using these numerical examples,

we show that zero-energy-mode oscillations in all solutions are completely damped.

6.1 1D Stress-Point Peridynamic Scheme

Based on the stress-point approach addressing tension instability in smoothed

particle hydrodynamics (SPH) methods [94], and its relevance to particle-based model

of peridynamics [132], a new stress-point scheme is proposed and explained below.

In order to enhance particle connections, a few quantities related to stress are

calculated twice in the horizon of particles. Take the 1D bar in Fig. 6.1 as an example.
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Figure 6.1: An illustration of the stress-point peridynamic scheme on a 1D elastic bar.
The bar is fixed at left with a displacement loading at right and discretized
into four peridynamic particles. The total length and cross-sectional area
are 3L and A, respectively. Assume particles only interact with nearest
neighbors.

Two stresses, σl and σr, are calculated at left and right of each particle by splitting

the neighborhood and using the corresponding bond, respectively. For instance, σ2,l

and σ2,r are calculated on the two sides of particle 2 while only σ1,r is calculated at

the right side of particle 1. Overall, the shape tensor, deformation gradient, strain,

and stress are computed at stress points located at the middle of adjacent particles,

in contrast with field variables such as displacement and material properties which

are calculated at particles.

Note that, even at the same location, σ1,r is not always equal to σ2,l. They are

distributed in the horizons of particle 1 and 2, respectively. Quantities are visible

only in a shared horizon to protect the completeness and closure of horizons.

Take particle 2 for example and assume particles only interact with nearest neigh-

bors. Deformation gradients F2,l and F2,r only consider the corresponding bond on

the left and right of particle 2, respectively (using Eq. 2.19, and ω = 1):

F2,l = [−(u1 − u2 − L)]AL2/K2,l =
u2 − u1

L
+ 1,

F2,r = (u3 − u2 + L)AL2/K2,r =
u3 − u2

L
+ 1, (6.1)
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where the shape tensors K2,l and K2,r are calculated as

K2,l = (−L)(−L)AL = AL3,

K2,r = L · L · AL = AL3. (6.2)

As for the equation of motion at particle 2, it turns into

(−σ1,rK
−1
1,rL− σ2,lK

−1
2,l L)V + (σ2,rK

−1
2,rL+ σ3,lK

−1
3,l L)V = 0

=⇒ −σ1,r − σ2,l + σ2,r + σ3,l = 0. (6.3)

If we make a further step to assume the material is elastic with a constant Young’s

modulus E and under small deformation (see Appendix B), equation (6.3) then be-

comes

u1 − 2u2 + u3 = 0. (6.4)

Compared to the original peridynamic scheme, the difference is that all particle

displacements are involved in (6.4). This treatment will prevent the zero-energy mode

occurring from the source.

In terms of larger-horizon peridynamic discretizations, the scheme with only two

stress points is still applied in one horizon. Same process can be followed as (6.1) and

(6.2) in calculating shape tensors and deformation gradients, while the force states

in (6.3) is supposed to be computed based on stresses sharing the common bond. In

other words, the stress term in (2.26) are calculated at the stress point owing the same

bond ξ. This criterion will be obeyed in higher-dimensional stress-point schemes.

6.2 Higher-Dimensional Stress-Point Peridynamic Schemes

Two guidelines are used when we extend the stress-point approach to higher di-

mensions. The first is to enhance connections between particles by using all particle
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displacements in the deformation measures. The second is to keep the completeness

and closure of horizons, by modeling stress interactions similar to the 1D scheme.

ˆ SP1

ˆ SP2 ˆ SP1

ˆ SP2

x

Hx

x

Hx

Figure 6.2: A 2D stress-point scheme with two stress points. Blue and red stress points
only take charge of bonds with the same color at the same side. There are
two choices based on the location of stress points.

x

y

z

(a) (b)

(c) (d)

Figure 6.3: A 3D stress-point scheme with two stress points. Blue and red stress points
only take charge of bonds with the same color at the same side. There are
four choices (a)–(d) based on the location of stress points.

Assume particles can only interact with nearest neighbors. Starting from 2D

problems, a scheme with two stress points is adopted. More stress points can be

employed to increase the accuracy, however, higher computation cost is expected. As

illustrated in Fig. 6.2, the two stress points are located at two sides of the center

particle and each one only takes charge of the two bonds on the same side. For
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example, blue stress points (SP2) only consider blue bonds and the same with red

stress points (SP1). Hence there are two cases in 2D problems.

Similar to the 2D scheme above, only two stress points are employed in our 3D

model. However, there are totally four cases in 3D problems, as shown in Fig. 6.3,

and each stress point owns three bonds in the horizon. To avoid directional bias, we

randomly select the location of stress-points at each particle in the following 2D and

3D examples, using a random number generator to choose one case from Figs 6.2 and

6.3 when assigning stress points to each particle.

When it comes to the equation of motion, we compute the force states based on

stresses sharing the common bond, as we mentioned in the 1D stress-point model

with larger horizons. During postprocessing, the stress is recalculated as the average

of stress-point values in one horizon once we find the displacement fields. Another

case to consider are the boundary particles because their horizons are defective. In

nearest-neighbor discretizations, we allocate only one stress point to include all the

bonds in the boundary particle to solve this problem. In terms of larger-neighbor

discretizations, the boundary treatment introducing the fictitious boundary layer (see

Chapter IV Section 4.4) will be employed.

6.3 Zero-Energy-Mode Control Methods with Supplemen-

tary Particle Forces

In order to demonstrate the effect of stress-point approach, a control method

with supplementary particle forces to suppress zero-energy modes is introduced. This

method has been analyzed with respect to its effect on material stability in Silling’s

paper [102].

In this method, an artificial force state is introduced, Ta[x]〈x′ − x〉, at particle x
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on the bond x′ − x, which is

T[x, t]〈x′ − x〉 = ωPK−1ξ + Ta[x]〈x′ − x〉. (6.5)

This artificial force can be generated by either interconnected springs or average

displacement states [87]. Linear springs are introduced between particles in the first

method:

Ta[x]〈x′ − x〉 = C1ω[u(x′)− u(x)], (6.6)

where C1 is a spring constant. The second method computes the added force based

on an average of all displacement states over one horizon, which is

Ta[x]〈x′ − x〉 = C2

∫

Hx

ω[u(x′)− u(x)]dVx′ . (6.7)

Another penalty approach, which is the third control method in [87, 93], is not

discussed in this thesis, since it is conceptually similar to the method of applying

supplemental forces along each bond.

These supplementary forces have a suppression effect on zero-energy modes. How-

ever, this effect highly depends on the mesh size and the problem itself. In addition,

to determine the optimum values of the artificial coefficients, i.e., C1 and C2, calcu-

lations need to be performed beforehand[87, 93]. None of these methods completely

suppresses zero energy modes.

6.4 Results and Discussions

We assume materials are elastic under small deformation in the following numeri-

cal examples. Strain tensor is computed as ε = 1/2(FT+F)−I, where I is the identity

tensor. Cauchy stress σ = D : ε, is used in lieu of P (assuming small deformations)

in (2.26) and D is an isotropic elastic modulus tensor. The horizon radius δ is kept
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minimum merely including the nearest neighbor particles and the influential function

ω is set to be constant 1 for simplicity.

6.4.1 1D bar test

Ltot

1 2 n− 1 n

uend

x

A,L A,L A,L

(a) 1D elastic bar

x/Ltot0 0.5 1

E(x)

E0

(b) Young’s Mudulus along x

Figure 6.4: A 1D elastic bar under tension with a Young’s modulus varied along the
x axis.

In order to compare with the analytical solution and control methods with adding

supplementary particles forces, a similar 1D elastic bar test in [87, 93] is conducted,

as shown in Fig. 6.4. The bar with a total length Ltot is discretized as n peridynamic

particles. Displacement constraints, u1 = 0 and un = uend, are applied on the two

sides of the bar. A variable Young’s modulus is adopted as

E(x) =





E0 0 ≤ x ≤ Ltot/2

E0

(
1 + β

2α
1√

x/Ltot−1/2

)−1

Ltot/2 < x ≤ Ltot

, (6.8)
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and the analytical displacement u(x) and strain ε(x) solutions are

u(x) =





αx 0 ≤ x ≤ Ltot/2

αx+ βLtot

√
x/Ltot − 1/2 Ltot/2 < x ≤ Ltot

, (6.9)

ε(x) =





α 0 ≤ x ≤ Ltot/2

α + β
(

2
√
x/Ltot − 1/2

)−1

Ltot/2 < x ≤ Ltot

, (6.10)

where parameters are selected as Ltot = 1, E0 = 1, uend = 0.005, α = 0.001, and

β = 0.004
√

2. Note that the expression of Young’s modulus is slightly different from

the references [87, 93]. This is because parameters α and β adopted in this paper are

dimensionless.

We define two local amplitudes of oscillation, au,i and ae,i, at particle i to quan-

titatively measure the effect of zero-energy modes in displacement and strain fields,

respectively:

au,i = |u
num
i − uexact

i

uexact
i

|, and ae,i = |ε
num
i − εexact

i

εexact
i

| (6.11)

where εnum
i and εexact

i the numerical and analytical strain at particle i, respectively.

The L2 norm and amplitude is set to be zero if the analytical solution is zero.

Table 6.1: Optimum values of C1 and C2 in (6.6) and (6.7) for adding artificial
springs and average displacement states. Only the nearest-neighbor par-
ticle discretizations are considered. n is the number of particles.

n 100 200 500 1000

C1* 0.8 1.28 2 3
C2* 60 150 500 1750

* C1 and C2 are not dimensionless.

The old peridynamic scheme without any control of zero-energy modes (No con-

trol), two control methods adding artificial force states by linear springs (Springs) and

average displacement force states (ADS), and the new stress-point approach (Stress-
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point) are applied to solve the 1D numerical problem, respectively. Four different

mesh sizes are employed and first off, only the nearest-nerighbor particle discretiza-

tions are considered. Optimum values of C1 and C2 are obtained by multiple attempts

beforehand, as elaborated in [87, 93]. These values change with the mesh size and

are listed in Table 6.1.
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Figure 6.5: Effect of zero-energy modes on displacement and strain fields of 1D bar
based on four control methods. (a) and (c) are the displacement and
strain distribution, respectively, while (b) and (d) are corresponding local
amplitudes. Local zoomed-in views are provided to distinguish symbols.
All Results are based on a mesh with 500 particles.

Numerical results of the displacement and strain distribution, as well as their
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relative amplitudes of oscillation are plotted in Fig. 6.5. All results are based on a

mesh size with 500 peridynamic particles. Even though all numerical results are close

to the analytical results, as shown in Fig. 6.5(a) and (c), zero-energy modes are not

alleviated in any method other than stress-point approach. In the amplitude plots,

only stress-point approach has a smooth single line. Two or more separate lines are

observed in other control methods and this is because the numerical solutions are

oscillating between a range, the oscillations are not shown to improve plot clarity.

We find that adding force states can indeed suppress oscillations in the nonlinear

region, i.e., Ltot/2 < x ≤ Ltot, however, it fails in the linear region, Ltot/2 < x ≤ Ltot.

Another disadvantage of adding artificial force states, as we mentioned previously, is

that their constants, C1 and C2, are supposed to be carefully selected before satisfac-

tory results are obtained. Even worse, their optimum values are changing with mesh

sizes, as shown in Table 6.1. Hence, in higher-dimensional examples we will be only be

focused on comparisons between the stress-point model and the peridynamic model

with no control of zero-energy modes. The stress-point method is demonstrated to be

effective on suppressing zero-energy modes in the 1D bar example. Note that higher

jumps are observed in Fig. 6.5(b) and (d) compared to analytical solution. This is

because we average the stress based on stress-point values on the two sides at the

point of discontinuity.

Next, results based on the stress-point approach with different horizon sizes are

plotted in Fig. 6.6. It shows that smallest horizon size produces the most accurate

approximations. As the horizon size decreases, the approximation is closer to the

analytical solution. In addition, all solutions are smooth with no zero-energy modes

observed.

Finally, a comparison between the stress-point approach and the higher-order ap-

proximation (see Chapter IV) is conducted and results are shown in Fig. 6.7. We saw

that using ω = 1 for higher-order neighbors gives strong zero energy mode oscillations
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Figure 6.6: Comparison of the displacement fields obtained from the stress-point ap-
proach based on three different horizon sizes. δ is the horizon size and h
is the distance between nearest particles.

and as the horizon size increases, the oscillations grow dramatically. Compared to the

higher-order approximation method, the stress-point model removes the oscillations

in all cases, though the former method is more accurate as it is closer to the analytical

solution.

x/Ltot

u
(x

)/
(α

 L
to

t)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Exact
No control, δ = 2h
Stresspoint, δ = 2h
Higherorder, δ = 2h

0.6 0.7

2.6

2.7

(a) δ = 2h

x/Ltot

u
(x

)/
(α

 L
to

t)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Exact
No control, δ = 3h
Stresspoint, δ = 3h
Higherorder, δ = 3h

0.6 0.7

2.6

2.7

(b) δ = 3h

Figure 6.7: Effect of zero-energy modes on displacement fields of 1D bar based on three
control methods with two different horizon sizes. All Results are based on
a mesh with 500 particles.
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6.4.2 2D plate test

10mm 90mm

10mm

90mm

Axis–1, v = 0

v = 0.1mm

u = 0 u = 0.1mm

Figure 6.8: A quarter of 2D elastic plate with a squared opening under uniform
stretch. Symmetric displacement boundary conditions are applied at the
border.

An example of 2D elastic plate with a square hole at center under uniform stretch

is modelled. We only consider a quarter of the plate due to symmetry with dimensions

shown in Fig. 6.8. Displacement loading is applied at the four borders. The material

is assumed to be isotropic elastic with Young’s modulus E = 1000MPa and Poisson’s

ratio ν = 0.3. As seen here, compared to the variable Young’s modulus E(x) in the

previous 1D example, a constant E can still bring in zero-energy modes in higher-

dimensional problems.

Fig. 6.9 is a comparison of u-displacement contours based on the peridynamic

model without any control of zero-energy modes (No control) and the stress-point

approach (Stress-point, see Section 6.2). The particle spacing is h = 2mm. Conspic-

uous oscillations can be observed around the squared opening in the results with no

control of zero-energy modes, in contrast with smooth results using the stress-point

method.

Next, we defined two local amplitudes of oscillation, au,i and aσ,i, at particle i to

quantitatively measure the effect of zero-energy modes in the displacement and stress
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Figure 6.9: Contours of the u-displacement obtained from the peridynamic model with
no control of zero-energy modes and the new stress-point approach.

fields, respectively:

au,i = |u
PD
i − uFEM

i

uFEM
i

|, and aσ,i = |(σxx)
PD
i − (σxx)

FEM
i

(σxx)FEM
i

| (6.12)

where superscripts PD and FEM denote the peridynamic and finite-element analysis

results, respectively. We applied a quasi-static FEM formulation using four noded

quadrilateral elements in the 2D problem and eight noded hexahedral elements in 3D.

Finite-element nodes are assigned right at the place of peridynamic particles in order
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Figure 6.10: Distributions of u-displacement, stress σxx, and their relative amplitudes
along the axis-1 obtained from the peridynamic model with no control of
zero-energy modes (No control), the new stress-point approach (Stress-
point), and finite-element method (FEM).

to quantitatively compare with peridynamic solutions with a vanishing horizon. Note

that finite-element solutions (which are of local nature) are utilized as a reference

rather than benchmark when we compare peridynamic results between the stress-

point and no-control approaches.

The u-displacement, horizontal stress σxx, and their amplitudes of oscillations

along the horizontal axis–1 (y = 0mm, see Fig. 6.8) are plotted in Fig. 6.10. The

disagreement between PD and FEM solutions mainly lies near the squared opening
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on the left. This is because PD is based on a non-local integral formulation wherein

stress singularity at the sharp corner is avoided [7]. If we pay closer attention to the

region away from the left corner, i.e., x > 20mm, the stress-point approach produces

very smooth results, in both displacement and stress field, compared to oscillations

in the old PD model without control of zero-energy modes.

6.4.3 2D polycrystal plane
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Figure 6.11: Reorientation of grains obtained from the peridynamic model with no
control of zero-energy modes and the stress-point approach.

6.4.4 3D brick test

A 3D elastic brick example is considered in this section. The length-width-height

ratio of the brick is 2d : 2d : d, where d = 40mm. Displacement loadings are applied

on its four sides, as shown in Fig. 6.12, while the top and bottom faces are left traction-

free. The material is assumed isotropic with Young’s modulus E = 1000 MPa and

Poisson’s ratio ν = 0.3. The particle spacing is selected as h = d/16 = 2.5mm.

A comparison of z-displacement contours, computed by the old peridynamic model

without any control of zero-energy modes (No control) and the stress-point approach
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Figure 6.12: A 3D elastic brick example with dimension d = 40mm. Displacement
boundary conditions are applied on four sides while the top and bottom
are left traction-free. The small displacement increment is ∆ = 0.4mm.

Figure 6.13: Contours of z-displacement obtained from the peridynamic model with
no control of zero-energy modes and the new stress-point approach. (a)
and (b) are 3D contours while (c) and (d) are 2D contours of the bottom
surface.

(Stress-point), are plotted in Fig. 6.13. The overall contours are similar while dis-

agreements exist. Serrated contours are observed if no control method is applied.

Moreover, zero-energy modes are eliminated not only on the surface but also inside

the brick, as shown in Fig. 6.13(b).

Next, we recomputed the 3D brick problem with the finite-element method and

assigned element nodes right at the location of the peridynamic particles. The z-
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Figure 6.14: Contours of z-displacement on a selected line located at x = 40mm and
z = 0mm varied along y-direction. The peridynamic model with no
control of zero-energy modes, the new stress-point approach, and finite–
element method (FEM) are applied, respectively.

displacement and its relative amplitudes aw, defined similar to (6.12) but based on

z-displacement, on a selected line located at x = 40mm and z = 0mm varied along

y-direction are shown in Fig. 6.14. The overall contours of the three methods are

similar. Disagreements between peridynamics and finite–element method solutions

come up near the boundaries due to the non-local integral formulation. As we move

away from the boundary, zero-energy modes are more evident if no control method

is applied. By contrast, the stress-point approach has a strong suppression effect on

the oscillations.

6.4.5 Numerical efficiency test

Finally, a computation efficiency test on the new stress-point peridynamic model

is conducted. We performed computational speed tests on three numerical examples

including the 1D bar in Section 6.4.1, the 2D plate in Section 6.4.2, and the 3D

brick in Section 6.4.4. Parallel computation was disabled and examples are run in

serial on a single processor. Three different number of particles are employed in each

example and the convergence criteria are the same with (2.49) as el = 10−6. Results
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(a) 1D bar (b) 2D plate

(c) 3D brick

Figure 6.15: Performance tests between the peridynamic model with no control of zero-
energy modes and the stress-point approach. The computation time is
normalized by the stress-point case with least particle numbers in each
test.

are shown in Fig. 6.15. Theoretically, the stress-point approach will take double the

time compared to the old scheme because a smaller (halved) time step needed to

strictly satisfy the stability condition (see Section 6.1). Furthermore, the stress-point

peridynamic model has to compute more stress terms in one horizon based on the

number of stress points. However, this higher computation cost is balanced by the

ability to fully control zero-energy modes.
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6.5 Conclusions

A stress-point approach is proposed for the non–ordinary state–based peridynamic

correspondence model to fully control zero-energy modes in a nearest neightbor model.

We show that by computing two deformation gradients for each particle via split-

ting its neighborhood, zero-energy-mode oscillations in solutions can be completely

damped. The method is first demonstrated in a simple 1D problem and then applied

to 2D and 3D examples. In the 1D example, the stress-point approach is compared

with analytical solutions and with finite element approach in higher dimensions. The

method is demonstrated to be superior to other control methods with introduced

supplementary force states. Future work will include extension of this approach to

larger horizon sizes and non-linear problems involving plasticity.
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CHAPTER VII

Conclusions and Future Work

7.1 Summary

The primary purpose of this dissertation is to propose a 3D peridynamic crystal

plasticity model with an adaptive dynamic relaxation solver:

• Chapter II introduces the framework of non-ordinary state-based peridynamics

and explicit adaptive relaxation method. This PD-ADRS is first verified in

1D and 3D elastic examples. The flow chart of the algorithm is provided in

Section 2.3 and the C++ peridynamic code is attached in Appendix C.

• Chapter III concentrates on 2D planar polycrystal simulations. We examined

the use of PD-ADRS algorithm with a rate-independent crystal plasticity model

for predicting localizations in crystals. The strain fields and stress-strain re-

sponse computed by the PD model is compared with those obtained from FEM.

Sharper and more numerous strain localizations have been observed in the PD

results. In addition, PD-ADRS distinguishes from the implicit solver, which is

explained in Section 2.4, for its faster computation speed and feasibility for eas-

ier addition of more constitutive models due to the lack of need for computing

tangent moduli. The performance of the crystal plasticity is enhanced in our

C++ code, which can be seen in Appendix D.
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• Chapter IV recognizes the need for dealing with zero energy modes that arises

from the use of the correspondence principle for computing deformation gra-

dients. We studied higher-order numerical approximations to deal with the

zero-energy modes. As seen in the 1D example, the zero energy mode ampli-

tudes are significantly decreased when using higher order approximations. We

also explained the boundary treatment to apply conventional boundary condi-

tions in the PD model by introducing shadow particle layers whose thicknesses

are equal to the horizon radius. By using this approach, we showed that con-

sistent and stabilized PD results can be achieved in crystal plasticity within a

range of different horizon sizes.

• Chapter V is subdivided into two parts and provides the first 3D implementation

of crystal plasticity using peridynamics theory. Part 1 certifies the CPPD model

in computing the texture of FCC and HCP 3D polycrystals under two different

compression deformation modes. Two horizon sizes are employed to investigate

the displacement and strain field of the 3D polycrystal cube. Part 2 investigates

the PD solutions with a recent DIC experiment of uniaxial tension in Magnesium

WE43 alloy. Finer localization bands are found in the PD results compared with

FEM. Two samples of the input files to create a 3D cube domain or a thin layer

are provided in Appendix E.

• Chapter VI proposes a stress-point method to fully suppress zero-energy modes

in a nearest-neighbor PD family. The stress-point approach is compared with

analytical solutions in the 1D example and verifies with the finite element

method in higher dimensions. This stress-point PD method is demonstrated

superior to other control methods with introduced supplementary force states

and we show that it can be used to completely damp the zero energy modes

albeit with a larger computational cost than the higher order approximation
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explained in the previous chapters.

The C++ source code will be integrated in the PRISMS crystal plasticity fam-

ily [133] to enable more comprehensive crystal plasticity simulations of localization

phenomena. The approach can also be used to validate the mechanical responses of

synthetically reconstructed microstructures [115, 134, 135, 136, 137] using the image

pixels or voxels as the particle grid.The future work envisaged for this effort is listed

below.

7.2 Damage and Contact Models

Since peridynamics theory was originally developed to deal with phenomena such

as damage and fracture, attempts for incorporating classical continuum damage mod-

els into peridynamics have been made in recent studies [138, 91]. The basic idea in

continuum damage mechanics is to represent the damage state by means of a damage

variable and then to formulate an equation describing the development and mechan-

ical behavior of the damaged material using this damage variable [139, 140].

The simplest way is to define a positive scalar ωD as

ωD = SD/S, (7.1)

where SD represents the defect area in the considered plane while S is the total area.

Instead of the standard uniaxial stress σ = F/S, the effective stress becomes

σ̃ =
F

S − SD

=
σ

1− ω . (7.2)

However, a direct implementation of damage models within the state-based peri-

dynamics will lead to instabilities associated with unphysical diffusion of the damage

zone [138]. Another issue brought in is the inapplicability of the inverse of shape
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tensors as a result of breaking bonds in a defect horizon. Hence, a peridynamic bond

degradation criterion based on the accumulated material damage is introduced in

[138]. A brief introduction is given below.

Consider an effective influence function of the form

ω̃ = ω × ωD(D), (7.3)

where ω is the conventional influence function, ωD(D) is a non-increasing function

between 0 and 1, and D is an accumulated damage parameter. When ωD = 1,

materials are in a continuum state; when ωD = 0, the bonds between particles are set

to be broken and discontinuities arise.

A specific form of ωD is

ωD =





0 D > Dc

1 otherwise

, (7.4)

and the key becomes to find the most appropriate function incorporating the parame-

ter D. Different damage models such as Johnson-Cook damage model [138] have been

tried, which includes the effect of the plastic shearing rate and Von Mises equivalent

stress.

���

damage contact

Intact horizon One bond is broken Repulsive forces

Figure 7.1: Illustration of a contact model. One bond is broken due to accumulated
damage. Contact forces, or repulsive forces, are added when two non-
interacting particles become too close.
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In the peridynamic model we discussed so far, particles interact only through their

bond forces. If the bond between two particles is broken due to accumulated damage,

these two particles may become closer and, finally, interpenetration of material occurs

[141]. As illustrated in Fig. 7.1, it is necessary to introduce contact forces when non-

interacting particles become too close. We can add an extra bond force in (2.44) as

the following:

fS(yp,yq) = min
{

0, Spq
(
‖yp − yq‖ − dpq

)} yp − yq
‖yp − yq‖

, (7.5)

where yp and yq represent the locations of particle p and q in the current configuration,

respectively, dpq is a short-range interaction distance between particles p and q, and

Spq is a selected constant [142]. For the short-range interaction distance, we can

choose

dpq = min
{

0.9‖xp − xq‖, γ
}
, (7.6)

where xp and xq represent the locations of particle p and q in the reference con-

figuration, respectively, γ is a constant related to the lattice size [142]. Note that

the short-range force is always repulsive and appears only when particles are under

compression.

In the future work, damage and contact models can be added in the new CPPD

model. Past efforts have relied on various crack initiation criteria and crack path

search algorithms for performing crack prediction in polycrystalline materials [143,

144] while peridynamics is expected to evolve the cracks naturally. The primary chal-

lenge here is the need for higher order discretization to ensure that the deformation

gradients can be computed even with weakened horizons where some bonds have been

broken. A procedure to reestimate the influence functions for various damage scenar-

ios may prove useful. Multiscale extension of the work where peridynamics is used to

model localized regions where damage occurs and continuum plasticity is used in the
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far field [145] is also of future interest.

7.3 Microstructural Factors Affecting Deformation

Stress development in Mg alloy microstructures are sensitive to the polar nature of

twin deformation, texture, and loading. Simulations for different sample orientations

and initial texture for gaining improved understanding of localization patterns should

be performed. A detailed study of the effect of influence function and the degree of

non-locality of particles on the localization patterns should be carried out.

A 

B 
D 

C 

E 

(a)     (b) 

Figure 7.2: Localization features seen in SEM–DIC of WE43–T5 alloy tension test:
Grain boundaries act as barriers to slip transmission in places marked A
and B. Grain C is a low Schmid factor grain and shows no localizations.
Grain D is a smaller grain and has developed intense strains. Case E
shows easy slip transmission across a grain boundary.

Effects such as non-uniform lattice rotations along localization and the effect of

latent hardening parameters on non-Schmid localization behavior should be the focus

of future computational studies. Both symmetric and non-symmetric loading should

be considered and formation of various kinds of localization including slip bands, kink

bands, and non-crystallographic bands should be studied.

Grain boundaries play an important role in polycrystal plasticity, for example, by

acting as obstacles to dislocation motion, as sources to new dislocations and as sinks

for dislocation annihilation [146, 147, 148]. Grain boundaries are subject to high local
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stresses and pile ups that can initiate cracks. Grain boundaries are not explicitly mod-

eled in conventional crystal plasticity, and the interaction between crystal plasticity

and grain boundaries is complex and an ongoing topic of research [149, 150]. Since,

peridynamics is a non-local model, some basic GB functionalities such as size effect

can be simulated by considering the non-local interactions [151, 152, 153] across the

grain boundary. DIC data for tensile loading in Magnesium shows several interesting

grain boundary–slip band interactions (Fig. 7.2).

The data indicates that the ease of slip transmission across grain boundaries de-

pend upon the 3D geometry incoming slip plane and the grain boundary. The trans-

mission also depends on the critical stresses on incoming and outgoing slip planes

across adjacent grains. Some of these effects are shown in Fig. 7.2. Cases of easy

transmission and grain boundary blocking are shown. During easy transmission, slip

bands glide through the grain boundary under low resolved shear stresses. In the case

of a high and low Schmid factor grain boundary, dislocations can only pass through

under very high stresses generally arising from dislocation piling up. In addition,

small grains favorably oriented for slip develop high stresses compared to the larger

grains. One of the goals should be to understand the grain boundary behavior in the

context of changing non-local horizon and influence functions at a grain boundary.

In DIC data, strain localization progresses in the form of a laminated pattern.

The lamellae bear a relationship with slip direction, and the traces drawn along the

lamellae can be correlated to the slip systems in play during loading. Fig. 7.2(a)

depicts the experimentally characterized slip traces from DIC data using a geometric

analysis. The active slip systems will be identified in peridynamics model using rela-

tive activity of each system (e.g. Fig. 7.2(b) for basal system). This plot contains the

local changes in activity for each slip/twin system within the grains. The geometric

relationship of the localization patterns observed in peridynamics will be compared

against the predicted slip/twin activity. All components of the strain tensor (y-strain
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and xy-shear) predicted by peridynamics will be compared against the DIC data.

These strains may display localization in regions that are different from those seen in

the x-strain contours. DIC slip bands of all three basal systems are coincident and

hard to distinguish. Similarly, several of the prismatic and pyramidal traces can be

nearly parallel to each other. Using peridynamics, we plan to computationally (rather

than geometrically) differentiate between these traces. Classification of these local-

ization patterns will be performed into twin bands, slip bands, shear bands and kink

bands. Slip bands are the most common and appear along the glide direction at low

to moderate strains. Kink bands that are perpendicular to the glide direction have

also been reported in literature [154]. Kink banding is associated with strong lattice

rotation whereas slip banding generally has a smaller effect depending on boundary

constraints. If multiple slip occurs inside a localization band, the more general term

shear band will be used. 3D localization analysis should be performed in order to see

reorientations and activation of multiple slip systems within a band.

There are grains where multiple slip systems can be active, that is, the grain

is partitioned into sections where basal system is either highly active and inactive.

These grains have multi-slip interactions, are sensitive to latent hardening parameters

and are interesting case–studies for intragranular misorientation development [155].

Recent experiments [156] also indicate that misorientations initiate in the form of

lamellae of localized strain that eventually merge to form larger localized structures.

To test this aspect, time evolution of misorientations within bands may be studied

as a function of strain to identify relationships, if any, between grain, grain boundary

features and the slip/twin geometry.
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APPENDIX A

Crystal Plasticity Constitutive Update Scheme

All quantities below are described in the local crystal frame. Quantities at the

current time step are denoted by subscript (n+1). The deformation gradient Fn+1 at

the current time step is known before hand. The update procedure below is applied

on numerically computing the PK-I stress P = F(Fn+1), where the operator function

F is the constitutive model.

An Euler-backward time integration scheme for (3.1) leads to the following ap-

proximation with the assumption that ∆γ is small:

Fp = exp
(

∆t
∑

α

γ̇αSα0 sign(τα)
)
Fp
n ≈

(
I +

∑

α

∆γαSα0 sign(τα)
)
Fp
n. (A.1)

Substitute (A.1) into the multiplicative decomposition F = FeFp and reform the

equation:

Fe = Fe
trial

(
I−

∑

α

∆γαSα0 sign(τα)
)
, (A.2)

where Fe
trial = Fn+1(Fp

n)−1is the trial elastic deformation gradient. At the first time

step, Fp
0 is initialized as the identity tensor I. The Green elastic strain measure is
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computed using (A.2) as

Ēe =
1

2

(
FeTFe − I

)
= Ēe

trial −
1

2

∑

α

∆γαBαsign(τα), (A.3)

where Ēe
trial and Bα are defined as

Ēe
trial =

1

2

(
(Fe

trial)
TFe

trial − I
)
, (A.4)

Bα = (Sα0 )T(Fe
trial)

TFe
trial + (Fe

trial)
TFe

trialS
α
0 . (A.5)

Using (A.3) in the constitutive relation for conjugate stress T̄ = Le[Ēe] leads to the

following:

T̄ = T̄trial −
1

2

∑

α

∆γαLe[Bα]sign(ταtrial), (A.6)

where T̄trial = Le[Ēe
trial].

A trial resolved shear stress ταtrial = T̄trial : Sα0 is then computed. A potentially

active set PA of slip systems can be identified based on the trial resolved stress as

the systems with |ταtrial| − sα > 0.

During plastic flow, the active systems are assumed to follow the consistency

condition: |τα| = sα. Increment in shearing rates ∆γβ at each time step is obtained

by solving the following equation obtained by resolving (A.6) along slip directions:

|τα| = sα = |ταtrial| −
1

2
sign(ταtrial)

(∑

β

∆γβLe[Bβ]sign(τβtrial)
)

: Sα0 , (A.7)

where α, β ∈ PA.

A system of equations is obtained of the following form:

∑

β∈PA

Aαβ∆γβ = bα, (A.8)
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where

Aαβ = hαβ +
1

2
sign(ταtrial)sign(τβtrial)Le[Bβ] : Sα0 ,

bα = |ταtrial| − sα. (A.9)

If for any system ∆γβ ≤ 0, then this system is removed from the set of potentially

active systems. The system is repeatedly solved until for all systems ∆γβ > 0.
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APPENDIX B

Stress-Point Approach Stability Analysis

The impact of zero-energy modes, manifesting as numerical oscillations and ser-

rated contours, is conspicuous in Figs. 2.9 and 2.10. This inherent stability issue

is a result of the weak couplings between particles. In order to better understand

the essential characteristics such as accuracy and convergence of the PD numerical

discretization scheme, a concise stability analysis on a 1D problem is conducted below.

Typically, wave motions in solid mechanics are modeled by hyperbolic partial

differential equations [7, 100]. Assume a 1D bar is elastic under small deformation,

and ignore the body force and damping ratio, the equation of motion can be expressed

by displacement u as

∂2u

∂t2
=

1

ρ

∂σ

∂x
= c2

s

∂2u

∂x2
(B.1)

where cs =
√
E/ρ is the speed of sound; E and ρ are the Young’s modulus and

density, respectively.

In a discrete system with totally N particles, let unj indicate the displacement

component of particle j at time t = n∆t, where ∆t is the time step assumed constant,

and un = [un1 , u
n
2 , . . . , u

n
N ] be the displacement vector at t = n∆t. With a central

difference discretization at time and a peridynamic discrete operator A at space,
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(B.1) turns into

un+1 − 2un + un−1

(∆t)2
= A(un). (B.2)

No-Control Scheme

Follow on the discretization scheme (2.44) in Chapter 2.3, the peridynamic oper-

ator can be rewritten as an explicit matrix form, i.e., A(un) = A1u
n, with

A1 =
c2

s

4(∆x)2




. . . . . . . . .

. . . 1 0 −2 0 1 . . .

. . . 1 0 −2 0 1 . . .

. . . 1 0 −2 0 1 . . .

. . . . . . . . .




. (B.3)

Consequently, it becomes a standard initial value problem for hyperbolic systems.

Modified equations analysis is an illuminating approach to reveal stability behaviors

of the numerical solution [100]. The main idea of modified equations analysis is to

find another partial differential equation which is approximated better by current

discretization scheme. By doing Taylor series expansions, the modified equation of

(B.2) is calculated as

∂2u

∂t2
− c2

s

∂2u

∂x2
= − 1

12
c2

s (∆x)2
[
µ2

c − 4
]∂4u

∂x4
+ · · · (B.4)

where µc = cs
∆t
∆x

is the Courant or CFL number. Thus, (B.4) is the partial differ-

ential equation better approximated by (B.2). Based on the right side of (B.4), this

numerical scheme is a second order accurate approximation to the true solution of

(B.1). In addition, the leading term leads to a diffusion behavior.
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The stability condition to avoid ill-posed problem, necessary but not sufficient, is

µ2
c − 4 ≤ 0 =⇒ ∆t ≤ 2∆x/cs. (B.5)

Therefore, the critical time step is ∆tc = 2∆x/cs. Yet, when extended to higher

dimensions, the critical time step should change correspondingly and, basically, it is

more constrained in higher dimensions. For example, in 2D problems, the critical

time step is reduced to ∆tc = ∆x/cs, which is the same as (2.41) in Chapter 2.2.

The main reason for instability is the weak coupling of particle displacements to

strains. A new scheme described next solves the issue.

Stress-Point Scheme

Motivated by the stress-point approach for tension instability in smoothed Particle

Hydrodynamics methods [94], and its similarity to PD [132], a new scheme is proposed

and explained below.

Based on (6.3) and (B.5), the peridynamic space operator in (B.2) can be expressed

as a new explicit matrix production, i.e., A(un) = A2u
n, with

A2 =
c2

s

(∆x)2




. . . . . . . . .

. . . 1 −2 1 . . .

. . . 1 −2 1 . . .

. . . 1 −2 1 . . .

. . . . . . . . .




, (B.6)

which is more compact than A1 in (B.3). The modified equation for the new scheme

becomes

∂2u

∂t2
− c2

s

∂2u

∂x2
= − 1

12
c2

s (∆x)2
[
µ2

c − 1
]∂4u

∂x4
+ · · · (B.7)
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with the stability condition

µ2
c − 1 ≤ 0 =⇒ ∆t ≤ ∆x/cs. (B.8)

Theoretically, this new scheme enhances the connections between particles and

preserves the second order of accuracy at the same time. However, the critical time

step is reduced to a half of the old scheme. Moreover, the computation cost is doubled

since the stress at each particle is supposed to be calculated twice.

It is notable that Von Neumann analysis, another powerful stability analysis

method [100, 157], produces the exactly same stability condition as (B.5) and (B.8).

If necessary, a phase analysis on dispersion can be conducted in the future research.
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APPENDIX C

Peridynamics Core Function

/* --------------------------------------------------------------

Peridynamics: solve the equation of motion dotdot{u} + Ku = 0

----------------------------------------------------------------*/

void MyEquation :: peridynamics ()

{

double vf = vperatom; // particle volume

int i, j, ii , nodeID , i_proc; //c++ loop index

//MPI: pass the new position vector

// boundary condition is forced inside the function

newpos_comm_MPIfunc ();

// compute the deformation gradient

defgradient ();

// deformation gradient values at shadow points

for (i = 0; i < siz_SP; i++) {

nodeID = particleID_SP[i];

F[nodeID] = F_sp;

}

// compute PKI stress P_i by the constitutive model

ArrayXd P_i;

double *s_alpha_t_i = new double [siz_slips ]();

for (i_proc = 0; i_proc < np_proc; i_proc ++) {

// i_box_proc stores the particle ID in the current processor

i = i_box_proc[i_proc + myid * np_proc ];

// parameter initialization

for (j = 0; j < siz_slips; j++) {
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ii = i* siz_slips + j;

s_alpha_t_i[j] = s_alpha_t[ii];

}

// constitutive model function , output is an Eigen array

P_i = constitutive(F[i], Fp_t[i], Fe_t[i],

s_alpha_t_i , Rotmat[i], Schmid_Tensor ,

h_alpha_beta_t , Dmat , siz_slips , siz_twins , 0);

// outputs collect/gather

int matrix_siz = dim * dim;

for (j = 0; j < matrix_siz; j++) {

//P, column -major order

ii = j + i * matrix_siz;

P_temp[ii] = P_i(j);

}

}

delete [] s_alpha_t_i;

//MPI: pass the PKI stress matrix

P_comm_MPIfunc ();

Vector3d xi, ke;

Matrix3d Ki, Kj; //shape tensor Ki and Kj

int s, list; //c++ loop index

double ome = 0.; //omega , influence function

for (i_proc = 0; i_proc < np_proc; i_proc ++) {

i = i_box_proc[i_proc + myid * np_proc ];

ke.setZero ();

//Ki = Kinv[i] or a constant

Ki = Kconst;

for (s = 0; s < neighbors[i]; s++) {

list = neighborlist[i*Nb + s];

for (j = 0; j < dim; j++) {

xi(j) = initpos[list*dim + j]

- initpos[i*dim + j];

}

ome = omega(xi.data());

//Kj = Kinv[list], or a constant

Kj = Ki;

ke.noalias () += ome * vf * (PKI[list] * Kj

+ PKI[i] * Ki) * xi;

}
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for (j = 0; j < dim; j++) {

ii = i*dim + j;

Ku[ii] = ke(j);

}

}

// Adaptive Dynamic Relaxation Solver (ADRS)

double k_local = 0., U_square = 0.;

double k_local_sum = 0., U_square_sum = 0.;

if (t_dynamics >= dt) {

// start at the second virtual time step

for (i_proc = 0; i_proc < np_proc; i_proc ++) {

i = i_box_proc[i_proc + myid * np_proc ];

for (j = 0; j < dim; j++) {

ii = i * dim + j;

// velocity field should not be zero

if (abs(currentdisp[ii] - olddisp[ii]) >= 1e-10) {

// diagonal "local" stiffness matrix

k_local += (Ku_prev[ii] - Ku[ii]) /

(currentdisp[ii] - olddisp[ii])

* currentdisp[ii] * currentdisp[ii];

}

U_square += currentdisp[ii] * currentdisp[ii];

}

}

MPI_Allreduce (&k_local , &k_local_sum , 1, MPI_DOUBLE ,

MPI_SUM , MPI_COMM_WORLD);

MPI_Allreduce (&U_square , &U_square_sum , 1, MPI_DOUBLE ,

MPI_SUM , MPI_COMM_WORLD);

//new damping ratio , U_square is always >= 0.

damp = -2.*sqrt(abs(k_local_sum) / U_square_sum);

}

// Dynamics: central difference scheme

double d_t = dt;

double Damp = damp / d_t , Mass = mass / d_t / d_t;

double *new_disp = new double[np*dim];

for (i_proc = 0; i_proc < np_proc; i_proc ++) {

i = i_box_proc[i_proc + myid * np_proc ];

for (j = 0; j < dim; j++) {

ii = i * dim + j;

acceleration[ii] = Ku[ii] / mass;

// Initialize the first step
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if (t_dynamics == 0.) {

velocity[ii] = 0.;

olddisp[ii] = currentdisp[ii] - velocity[ii] * d_t +

acceleration[ii] * d_t*d_t / 2.;

}

new_disp[ii] = (Ku[ii] + 2.* Mass*currentdisp[ii]

- (Damp / 2. + Mass)*olddisp[ii])

/ (-Damp / 2. + Mass);

velocity[ii] = (new_disp[ii] - olddisp[ii]) / 2. / d_t;

olddisp[ii] = currentdisp[ii];

currentdisp[ii] = new_disp[ii];

// update error_Ku

Ku_prev[ii] = Ku[ii];

}

}

// force the boundary condition

for (i = 0; i < siz_BC * dim; i++) {

currentdisp[essBC1[i]] = essBC2[i];

}

// update the virtual dynamic time step

t_dynamics += dt;

delete [] new_disp;

}
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APPENDIX D

Crystal Plasticity Constitutive Model Code for

PD-ADRS

/* --------------------------------------------------------------

Enhanced crystal plasticity constitutive model

Inputs: F (3 x 3), deformation gradient;

Fp_t (3 x 3), deformation gradient plastic part;

Fe_t (3 x 3), deformation gradient elastic part;

s_alpha_t (siz_slips x 1), slip resistance;

rotmat (3 x 3), rotation matrix;

Schmid_Tensor (3 x 3, siz_slips), Schmid factor;

h_alpha_beta_t (siz_slips x siz_slips), initial hardening

coefficients;

Dmat (1 x 6), stiffness in vector format;

siz_slips , number of slip systems;

siz_twins , number of twin systems;

short/long outputs O = 0/1

Return: Eigen array outputs (size depends on O)

----------------------------------------------------------------*/

ArrayXd constitutive(const Matrix3d &F, const Matrix3d &Fp_t ,

const Matrix3d &Fe_t , const double s_alpha_t [],

const Matrix3d &rotmat , const Matrix3d *Schmid_Tensor ,

const double h_alpha_beta_t [], const double Dmat[],

const int siz_slips , const int siz_twins , const int O)

{

int i, j, ii; //c++ loop indices

int dim = 3; // dimension = 3

Matrix3d eye = Matrix3d :: Identity (); // identity matrix , I
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Matrix3d F_tau , temp , rot_inv;

rot_inv = rotmat.transpose ();

F_tau.noalias () = rot_inv * F * rotmat;

//.noalias () is used for speed -up (Eigen library function)

/* ----------- Step 1 -----------*/

Matrix3d Fe_tau_trial , Ce_tau_trial , Ee_tau_trial;

Fe_tau_trial.noalias () = F_tau * Fp_t.inverse ();

temp = Fe_tau_trial.transpose ();

Ce_tau_trial = temp * Fe_tau_trial;

Ee_tau_trial = 0.5*( Ce_tau_trial - eye);

/* ----------- Step 2 -----------*/

Matrix3d T_star_tau_trial;

//.data() is the address of the Eigen variable

T_star_tau_trial = Dmatmul_pointer(Dmat , Ee_tau_trial.data());

/* ----------- Step 3 -----------*/

int *PA = new int [siz_slips ](); // active slip systems

int nPA = 0; // number of active slip systems

double *b = new double[siz_slips ]();

double *resolved_shear_tau = new double [siz_slips ]();

double *resolved_shear_tau_trial = new double [siz_slips ]();

for (i = 0; i < siz_slips; i++)

{

resolved_shear_tau_trial[i] =

Energy_product_pointer(T_star_tau_trial.data(),

Schmid_Tensor[i].data());

/* ----------- Step 4 -----------*/

b[i] = abs(resolved_shear_tau_trial[i]) - s_alpha_t[i];

if (i < siz_slips - siz_twins) { // normal slip systems

if (b[i] >= 0.) {

nPA ++;

PA[nPA - 1] = i; // potentially active slip systems

}

}

else // twinning systems

{

if (b[i] >= 0. && resolved_shear_tau_trial[i] > 0) {

nPA ++;

PA[nPA - 1] = i; // potentially active slip systems

}
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}

resolved_shear_tau[i] = abs(resolved_shear_tau_trial[i]);

}

/* ----------- Step 5 -----------*/

double *A = new double [siz_slips * siz_slips ]();

//Most expensive loop for the explicit solver

Matrix3d symm , symm1 , symm2;

double L1 , L2;

for (j = 0; j < siz_slips; j++) {

symm1.noalias () = Ce_tau_trial * Schmid_Tensor[j];

temp = symm1.transpose ();

temp += symm1;

symm2 = 0.5* temp;

symm = Dmatmul_pointer(Dmat , symm2.data());

for (i = 0; i < siz_slips; i++) {

L1 = Energy_product_pointer(Schmid_Tensor[i].data(),

symm.data());

L2 = resolved_shear_tau_trial[i]

* resolved_shear_tau_trial[j];

ii = i * siz_slips + j;

if (L2 > 0.)

A[ii] = h_alpha_beta_t[ii] + L1;

else

A[ii] = h_alpha_beta_t[ii] - L1;

}

}

// update data information

Matrix3d Fp_tau = Fp_t;

double *s_alpha_tau = new double [siz_slips ]();

for (i = 0; i < siz_slips; i++) {

s_alpha_tau[i] = s_alpha_t[i];

}

Matrix3d Fe_tau , T_tau , PK1;

Fe_tau.noalias () = F_tau * Fp_tau.inverse ();

temp = Fe_tau.transpose ();

T_tau.noalias () = Fe_tau * T_star_tau_trial * temp

/ Fe_tau.determinant ();

temp = F_tau.transpose ();

PK1.noalias () = F_tau.determinant () * T_tau * temp.inverse ();

double *x_beta = new double [siz_slips ]();

if (nPA > 0) {
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// remove inactive slip systems

INACTIVE_SLIP_REMOVAL(A, b, PA, nPA , siz_slips , x_beta);

/* ----------- Step 6 -----------*/

for (i = 0; i < siz_slips; i++) {

L1 = x_beta[i] * sign(resolved_shear_tau_trial[i]);

Fp_tau.noalias () += L1 * Schmid_Tensor[i] * Fp_t;

}

/* ----------- Step 7 -----------*/

//L1 = pow(Fp_tau.determinant (), 1. / 3.);

// Fp_tau /= L1;

/* ----------- Step 8 -----------*/

Fe_tau.noalias () = F_tau*Fp_tau.inverse ();

Matrix3d T_star_tau; T_star_tau.setZero ();

for (i = 0; i < siz_slips; i++) {

temp = Schmid_Tensor[i];

symm1 = Ce_tau_trial * temp;

temp = symm1.transpose ();

temp += symm1;

symm2 = 0.5* temp;

symm = Dmatmul_pointer(Dmat , symm2.data());

L1 = x_beta[i] * sign(resolved_shear_tau_trial[i]);

T_star_tau -= L1 * symm;

}

T_star_tau += T_star_tau_trial;

/* ----------- Step 9 -----------*/

temp = Fe_tau.transpose ();

T_tau.noalias () = Fe_tau * T_star_tau * temp

/ Fe_tau.determinant ();

temp = F_tau.transpose ();

PK1.noalias () = F_tau.determinant () * T_tau * temp.inverse ()

;

// update the resistance

for (i = 0; i < siz_slips; i++) {

L1 = 0.;

for (j = 0; j < siz_slips; j++) {

ii = i * siz_slips + j;

L1 += h_alpha_beta_t[ii] * x_beta[j];

}

s_alpha_tau[i] = s_alpha_t[i] + L1;
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}

} //loop end of removal of inactive slip systems

Matrix3d P;

P.noalias () = rotmat * PK1 * rot_inv;

// output

int siz_o = dim * dim;

ArrayXd Output(siz_o);

//only output PKI stress for dynamic iterations

if (O == 0) {

ii = 0;

//P, column -major order , PKI stress

for (j = 0; j < dim; j++) {

for (i = 0; i < dim; i++) {

Output(ii) = P(i, j);

ii++;

}

}

}

// output for updatadata function after convergence

else {

int siz_o = dim*dim*3 + siz_slips *2 + 1 + dim;

Output.resize(siz_o);

ii = 0;

//P, column -major order , PKI stress

for (j = 0; j < dim; j++) {

for (i = 0; i < dim; i++) {

Output(ii) = P(i, j);

ii++;

}

}

//Fp_tau , column -major order

for (j = 0; j < dim; j++) {

for (i = 0; i < dim; i++) {

Output(ii) = Fp_tau(i, j);

ii++;

}

}

//Fe_tau , column -major order

for (j = 0; j < dim; j++) {

for (i = 0; i < dim; i++) {

Output(ii) = Fe_tau(i, j);
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ii++;

}

}

// s_alpha_tau , resistance

for (i = 0; i < siz_slips; i++) {

Output(ii) = s_alpha_tau[i];

ii++;

}

//d_gamma , x_beta

for (i = 0; i < siz_slips; i++) {

Output(ii) = x_beta[i];

ii++;

}

//de_p

double slip_energy = 0.;

for (i = 0; i < siz_slips; i++) {

for (j = 0; j < siz_slips; j++) {

symm1.noalias () = Ce_tau_trial * Schmid_Tensor[j];

symm2 = 0.5*( symm1 + symm1.transpose ());

symm = Dmatmul_pointer(Dmat , symm2.data());

L1 = Energy_product_pointer(Schmid_Tensor[i].data(),

symm.data());

L2 = resolved_shear_tau_trial[i]

* resolved_shear_tau_trial[j];

resolved_shear_tau[i] -= sign(L2) * L1 * x_beta[j];

}

//sum of tau^alpha * d_gamma^alpha

slip_energy += x_beta[i] * resolved_shear_tau[i];

}

Matrix3d T_p;

// T_tau is Cauchy stress

T_p = T_tau - eye * T_tau.trace() / 2.;

double S_eff = sqrt (1.5 * Energy_product_pointer(T_p.data(),

T_p.data())); //VM stress

Output[ii] = slip_energy / S_eff; //de_p

if (S_eff == 0.) Output(ii) = 0.0;

ii++;

//dr , reorientation

Vector3d dr;

dr = Reorient(rotmat , Fe_tau , Fe_t);

for (i = 0; i < dim; i++) {

Output(ii) = dr(i);
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ii++;

}

}

delete [] A; delete [] PA; delete [] b; delete [] x_beta;

delete [] s_alpha_tau; delete [] resolved_shear_tau;

delete [] resolved_shear_tau_trial;

return Output; // Eigen array

}
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APPENDIX E

Input File Examples

Initialization.input for a 3D cube domain.

/--------------- Mesh Parameters -------------/

//xmin , xmax , number of particles between

0.0 3.0 24

/--------------- Dynamics ----------------/

//time step [dx/sqrt(E_max/ro)], initial damping

4e-4 1.0

//max iterations , record frequency , tolerate error

1000 150 1e-5

/-------------- PD Horizon Size --------------/

//if \delta = sqrt (5)*h, then put 5 below

1

/-------------- Boundary Condition --------------/

// strain rate , total loading steps , record frequency

0.001 200 40

// velocity gradient L(3x3)

1 0 0

0 0 0

0 0 -1

/-------------- Output Variables --------------/

//How many variables do you want to output?
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9

// Which ones? please write down their IDs

1 2 3 4 5 7 16 17 18

//Note: u, v, w, e_xx , e_yy , e_xy , reort1x3

/*------------- Available Variables Table ----------------

// displacement:

u, v, w (3)

// strain:

e_xx , e_yy , e_zz , e_xy , e_xz , e_yz (6)

// stress:

S_xx , S_yy , S_zz , S_xy , S_xz , S_yz (6)

// reorientation:

reort1 , reort2 , reort3 (3)

// equivalent plastic strain increment:

de_p (1)

//slip increment:

n1 -> n_(siz_slips)

---------------------------------------------------------*/
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Initialization.input for a DIC thin layer.

/--------------- Mesh Parameters -------------/

// number of particles in the x-direction

50

/--------------- Dynamics ----------------/

//time step [dx/sqrt(E_max/ro)], initial damping

0.06 0.5

//max iterations , record frequency , tolerate error

2000 400 1e-5

/-------------- Boundary Condition --------------/

// loading factor (u/500), record frequency , stop loading

500 50 500

/-------------- Output Variables --------------/

//How many variables do you want to output?

9

// Which ones? please write down their IDs

1 2 3 4 5 7 16 17 18

//Note: u, v, w, e_xx , e_yy , e_xy , reort1x3

/*------------- Available Variables Table ----------------

// displacement:

u, v, w (3)

// strain:

e_xx , e_yy , e_zz , e_xy , e_xz , e_yz (6)

// stress:

S_xx , S_yy , S_zz , S_xy , S_xz , S_yz (6)

// reorientation:

reort1 , reort2 , reort3 (3)

// equivalent plastic strain increment:

de_p (1)

//slip increment:

n1 -> n_(siz_slips)

---------------------------------------------------------*/
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SlipConstant.input for HCP with 6 twin slip systems

// number of slip systems , twinning systems , threshold FT

24 6 0.25

// Magnesium T5(2), C matrix [C11 , C12 , C13 , C33 , C44 , C66]

59.3e3 25.7e3 21.4e3 61.5e3 16.4e3 16.8e3

//s0 , a_cp , h0_cp , s_s_cp ,

//basal , prismatic , pyramidal_a , pyramidal_c+a, twinning

76.0 76.0 76.0 163.2 163.2 163.2

160.3 160.3 160.3 160.3 160.3 160.3

187.4 187.4 187.4 187.4 187.4 187.4

116.4 116.4 116.4 116.4 116.4 116.4

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

225.6 225.6 225.6 124.9 124.9 124.9

120.2 120.2 120.2 120.2 120.2 120.2

237.9 237.9 237.9 237.9 237.9 237.9

105.6 105.6 105.6 105.6 105.6 105.6

248.7 248.7 248.7 356.3 356.3 356.3

347.8 347.8 347.8 347.8 347.8 347.8

350.4 350.4 350.4 350.4 350.4 350.4

238.3 238.3 238.3 238.3 238.3 238.3
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