
Advancing Graph-Theoretic Techniques for
Microstructure Reconstructions, Evolutions, and

Property Evaluations

by

Iman Javaheri

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in the University of Michigan
2023

Doctoral Committee:

Professor Veera Sundararaghavan, Chair
Professor Daniel J. Inman
Associate Professor Raj Rao Nadakuditi
Dr. John A. Newman, NASA Langley Research Center
Professor Anthony M. Waas



“I seem to have been only like a boy playing on the sea-shore, and

diverting myself in now and then finding a smoother pebble or a prettier

shell than ordinary, whilst the great ocean of truth lay all undiscovered

before me.” – Isaac Newton



Iman Javaheri

imanajv@umich.edu

ORCID iD: 0000-0001-6071-2817

© Iman Javaheri 2023

All Rights Reserved



To my beloved family, for paving the way

ii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support and guidance of

so many. First and foremost, heartfelt gratitude is expressed to my advisor, Professor

Veera Sundararaghavan, for his constant support, motivation, and guidance in my

journey at the University of Michigan. His invaluable advisory in both professional

and personal affairs, along with his persistent inspiration and positive attitude, have

cheered up my research experience in many ways, for which I will be forever thank-

ful. Also, a special thank you to Professors Anthony M. Waas, Daniel J. Inman,

Raj Rao Nadakuditi, and Dr. John A. Newman for serving on my committee and

providing valuable feedback on my dissertation. My co-authors deserve tremendous

gratitude for their contributions in shaping and validating the data-driven frameworks

described in this work as well. So a special appreciation is expressed to Professors

Pınar Acar (from Virginia Tech), Marc DeGraef (from Carnegie Mellon University),

Mohsen Taheri Andani (from Texas A&M), and Doctors Aaditya Lakshmanan, Sid-

dhartha Srivastava, Jiangyi Luo, Sriram Ganesan, and Arulmurugan Senthilnathan

(from Virginia Tech).

I feel very fortunate to be recruited as a part of the National Aeronautics and Space

Administration (NASA) Pathways Program at Langley Research Center in Durability,

Damage Tolerance, and Reliability (DDTR) Branch, which has immensely enhanced

my academic research experience over the last four years by providing opportunities

to attend many national/international conferences, technical workshops, leadership/-

iii



management training programs, and direct exposure to computational/experimental

efforts for certification/qualification of additively-manufactured Ti-6Al-4V alloys for

aerospace applications. Hence, special gratitude is extended to many staff members

from NASA Langley Research Center, who were indispensable in steering and shaping

many of the ideas that are the backbone of my dissertation, namely Doctors Stephen

W. Smith, Saikumar R. Yeratapally, Patrick E. Leser, Paul Leser, David Wagner,

James E. Warner, Joshua M. Fody, George R. Weber, Joshua Pribe, and Wes Tayon.

I also want to acknowledge many amazing mentors and professors from my under-

graduate studies who sparked the desire to pursue my doctoral degree, especially

Professors Ashley D. Spear, Brittany Coats, and Luther Giddings. My very special

gratitude also goes to Professors Rajesh Rao Nadakuditi, Yue Fan, Robert Krasny,

Shravan Veerapaneni, and Joaquim R.R.A. Martins from the University of Michigan

for their impeccable lectures and for broadening my perspectives to the areas of data

science, numerical algorithms, atomistic modeling, and multivariate optimizations.

After all, the presence of my colleagues and friends in the Department of Aerospace

Engineering has been a constant source of happiness throughout my graduate stud-

ies. I would like to thank Gurmeet Singh and Srihari Sundar, for numerous techni-

cal discussions during preparation for the preliminary qualification exam, for their

true friendships beyond the classroom setting, and also for introducing me to In-

dian cuisine/culture. I also would like to thank the previous Multi-Scale Structural

Simulations Laboratory (MSSL) members for their assistance and advice when I was

finalizing my decision to attend graduate school, particularly Doctors Shardul Pan-

war, Aaditya Lakshmanan, Adam Duran, Pinar Acar, Jiangyi Luo, and Siddhartha

Srivastava. A special debt of gratitude is also owed to administrative members of

the Aerospace Engineering and Scientific Computing program as well as the Rack-

ham Graduate School, especially Denise Phelps, Ruthie Freeman, Kathy S.J. Miller,

Redina Zhobro, Kristin Parrish, Julie Christofferson, Cherie Dotson, and Mariana

iv



Carrasco-Teja for their immense help throughout my graduate studies and when I

was working remotely away from Ann Arbor. I also would like to thank many of

my friends whose company I have cherished over the years and who have elevated

my experience at Michigan: Matthew G. Burns, Curtis Casados, Avin Vijay, Alexan-

dra Damley-Strnad, Ayoub Gouasmi, Corey Bowen, Ahmad Shirazi, Ramin Ansari,

Alireza Nafari, Mojtaba Arezoomand, Pedram Zhalechian, Jalal Nasser, and Michael

Pilipchuk.

The funding for this work was provided in large through several fellowship pro-

grams, including the National Science Foundation (NSF) Graduate Research Fellow-

ship (Grant No. DGE 1256260), the Rackham Merit Fellowship (RMF), the Michi-

gan Institute for Computational Discovery and Engineering (MICDE) Fellowship, J.

Robert Beyster Computational Innovation Graduate Fellowship, and François-Xavier

Bagnoud (FXB) Departmental Fellowship, as well as in part by the Air Force Of-

fice of Scientific Research (AFOSR), Materials for Extreme Environments Program

(Grant No. FA9550-18-1-0091). Additionally, the crystal plasticity computations in

this thesis were carried out as part of research supported by the U.S. Department

of Energy (DoE), Office of Basic Energy Sciences, Division of Materials Sciences

and Engineering (Grant No. DE-SC0008637), which funds the PRedictive Integrated

Structural Materials Science (PRISMS) Center at the University of Michigan. Grat-

itude is expressed to Doctor Tracy Berman and Professors John Allison and Ashwin

J. Shahani (from the Materials Science and Engineering Department) as well as Pro-

fessor Samantha Daly (from the University of California Santa Barbara) for kindly

providing experimental images, including electron backscatter diffraction (EBSD),

diffraction contrast tomography (DCT), scanning electron microscopy (SEM), and

digital image correlation (DIC).

Last but not least, I would not be writing this acknowledgment were it not for the

v



sacrifice and unconditional support of the loved ones in my life, who bestowed upon

me the discipline and confidence to pursue my dreams, provided solace in times of

need and distress, and taught me life lessons that I cannot begin to articulate here.

I am deeply indebted to my parents, Mahnaz and Mojtaba, my siblings, Elham and

Amir, and my aunt, Mitra – thank you for all you have done for me.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xvi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of Microstructural Characterizations and Numerical
Reconstruction Techniques . . . . . . . . . . . . . . . . . . . 2

1.2 Markov Random Fields for Microstructure Synthesis . . . . . 4
1.2.1 Prior Works on Two-Dimensional Microstructural Sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Preliminaries of Three-Dimensional Microstructural

Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Generation of Large-Scale Microstructural Models in Metal

Additive Manufacturing . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Preliminaries for Part-Scale Microstructural Synthe-

sis Using LEGOMAT . . . . . . . . . . . . . . . . . 14
1.4 Physics-Based Methods for Simulation of Microstructural Evo-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Preliminaries for Simulations of Microstructural Evo-

lutions Using Cauchy-Crofton Formula . . . . . . . 18

vii



1.5 Overview of Property Evaluations for Polycrystalline Microstruc-
ture Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Image-Based Crystal Plasticity Analyses Using Peri-
dynamics . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Zero-Energy Instabilities Modes in Crystal Plasticity
Peridynamics . . . . . . . . . . . . . . . . . . . . . 24

1.5.3 Improvements to Crystal Plasticity Peridynamics Ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 26

II. Three-Dimensional Polycrystalline Microstructure Reconstruc-
tion From Orthogonal Images Using Markov Random Field
Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 3D Microstructure Reconstructions From 2D Orthogonal Images 30
2.1.1 MRF Optimization Algorithm . . . . . . . . . . . . 30
2.1.2 Histogram Matching Algorithm . . . . . . . . . . . 34
2.1.3 Computational Cost vs. Window Size . . . . . . . . 37

2.2 Unit-Cell Microstructure Reconstruction Examples . . . . . . 40
2.2.1 Example 1: Polycrystalline Micrograph With Equiaxed

Structure . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.2 Example 2: Reconstruction of EBSD Images . . . . 42
2.2.3 Example 3: Reconstruction of Polarized Light Micro-

graph . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III. Large-Scale Synthesis of Metal Additively-Manufactured Mi-
crostructures Using Lapped Textures . . . . . . . . . . . . . . . 51

3.1 Large-Scale Microstructure Reconstruction Workflow . . . . . 52
3.1.1 LEGOMAT Embedding Algorithm . . . . . . . . . . 54

3.2 Component-Scale Microstructure Reconstruction Example of
316L Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV. Physics-Based Evolution of Microstructural Features Using
Graph-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.1 Cauchy-Crofton Formulation . . . . . . . . . . . . . 83
4.1.2 Numerical Approximation to Cauchy-Crofton Relation 85
4.1.3 Implementation of Anisotropic Surface Energies . . 88
4.1.4 Simulations of Particle Evolution . . . . . . . . . . . 89
4.1.5 Grain Growth Modeling . . . . . . . . . . . . . . . . 90
4.1.6 Extension to Three-Dimensional Material Domains . 93

viii



4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 94
4.2.1 Example 1: Computation of Particles Circumference 94
4.2.2 Example 2: Implementation of Surface Energies as

Riemannian Metrics . . . . . . . . . . . . . . . . . . 96
4.2.3 Example 3: Wulff Shape Construction . . . . . . . . 98
4.2.4 Example 4: Evolution of 2D Polycrystalline Microstruc-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.5 Example 5: Segmentation of MRF 3D Reconstructions100

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

V. Image-Based Crystal Plasticity Analysis of Microstructures 106

5.1 Non-Ordinary State-Based Peridynamics . . . . . . . . . . . . 108
5.1.1 Numerical Discretization Scheme and Algorithm . . 111

5.2 Zero-Energy Modes . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Higher-Order Approximation Theory . . . . . . . . . . . . . . 116

5.3.1 Multi-Dimensional Discrete Formulation . . . . . . . 118
5.4 Boundary Treatment . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Crystal Elastoplasticity Theory . . . . . . . . . . . . . . . . . 128
5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 130

5.6.1 Example 1: 1D Cantilever Bar . . . . . . . . . . . . 131
5.6.2 Example 2: 2D Polycrystalline Microstructure . . . 132
5.6.3 Example 3: 3D Matrix with Soft Precipitate . . . . 136
5.6.4 Example 4: 3D Polycrystalline Microstructure with

Spherical Void . . . . . . . . . . . . . . . . . . . . . 141
5.6.5 Example 5: CPPD Simulations vs SEM-DIC Exper-

imental Data . . . . . . . . . . . . . . . . . . . . . . 144
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

VI. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 150

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Future Work Direction . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 3D Unit-Cell Microstructure Reconstruction . . . . 153
6.2.2 Large-Scale Microstructure Synthesis . . . . . . . . 154
6.2.3 Physics-Based Evolution of Reconstructed Microstruc-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.4 Peridynamic Modeling of Microstructure Plasticity . 157

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ix



LIST OF FIGURES

Figure

1.1 Preliminaries of virtual synthesis of a CAD geometry with microstruc-
tural information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Markov random field as an undirected graphical model . . . . . . . 8
1.3 Schematic of 2D MRF sampling approach . . . . . . . . . . . . . . . 9
1.4 An example of 2D MRF reconstruction technique . . . . . . . . . . 9
1.5 Color blot method is used to compare the distribution of intermetallic

phases in experimental and synthesized images . . . . . . . . . . . . 10
1.6 An example of 3D MRF reconstruction technique for an anisotropic

lamellar microstructure from three orthogonal slices . . . . . . . . . 12
1.7 An example of embedding a 3D microstructural representative vol-

ume element to generate component-scale geometry with microstruc-
tural information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Isolated crystalline structure and Wulff constructions . . . . . . . . 17
1.9 Computing length of a particle’s boundary . . . . . . . . . . . . . . 19
1.10 Tensile strain field in a Ti-Al intermetallic turbine blade, as experi-

mentally seen using microscale SEM-DIC, depict intense localization
bands within each grain . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 Unlike conventional CPFEM, CPPD models are shown to be capable
of predicting fine-scale localizations naturally as a consequence of the
underlying physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Schematic of 3D microstructure reconstruction from three 2D orthog-
onal images using MRF sampling algorithm . . . . . . . . . . . . . 32

2.2 Histogram matching algorithm . . . . . . . . . . . . . . . . . . . . . 36
2.3 Effect of histogram matching on synthesized 3D microstructure . . . 37
2.4 Polycrystalline microstructure reconstruction example with equiaxed

grains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Comparison of grain size statistics of 3D synthesized model against

Saltykov analytical approximations . . . . . . . . . . . . . . . . . . 42
2.6 Oblique versus orthogonal cross sections of 3D polycrystalline mi-

crostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 Comparison of grain size statistics along orthogonal and diagonal

cross sections in synthesized 3D model . . . . . . . . . . . . . . . . 44

x



2.8 Colormap used for the representation of the independent nodes within
the fundamental Rodrigues region . . . . . . . . . . . . . . . . . . . 45

2.9 Comparison of the ODFs between the input 2D experimental exem-
plars and synthesized 3D microstructure . . . . . . . . . . . . . . . 46

2.10 Comparison of the pole figure between the input 2D experimental
exemplars and synthesized 3D microstructure . . . . . . . . . . . . . 47

2.11 Sequential texture analysis for MRF reconstruction algorithm . . . . 47
2.12 Comparison of the nearest neighbor-grain correlations between syn-

thesized image and experimental exemplar . . . . . . . . . . . . . . 49
3.1 Large-scale synthesis optimization process for embedding site-specific

unit cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Manual drawing of local vector fields, representing the preferred crys-

tallographic growth orientation, based on known microstructural pat-
terns seen from the experimental characterization techniques . . . . 58

3.3 Manual parameterization of grain size scaling . . . . . . . . . . . . . 59
3.4 Legomat optimization schematic . . . . . . . . . . . . . . . . . . . . 62
3.5 Illustration of the colormap associated with discretized orientation

distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Illustration of the experimental 2D exemplars and synthesized 3D

images of AM 316L stainless steel . . . . . . . . . . . . . . . . . . . 67
3.7 Texture comparison using pole figures for orthogonal experimental

images against synthesized 3D MRF microstructure . . . . . . . . . 68
3.8 Illustration of the spatial distribution of grain boundary misorienta-

tion angles for 2D exemplars and synthesized 3D images of AM 316L
stainless steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Comparison of probability densities of high-angle grain boundary
misorientations of the 3D synthesized MRF microstructure against
experimental exemplars . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Comparison of probability densities for grain size statistics and as-
pect ratio of the 3D synthesized microstructure against experimental
dataset along TD axis . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Comparison between experimental and simulated additively-manufactured
microstructures using SPPARKS kinetic Monte Carlo simulator and
LEGOMAT geometrical approach along orthogonal planes . . . . . 76

3.12 Comparison of grain size statistics for simulated SPPARKS kinetic
Monte Carlo and LEGOMAT techniques against experimental images
across orthogonal planes . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Identification of particle’s boundary in pixellated images is generally
intractable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Illustration for Cauchy-Crofton relations and parameterization of a
line in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Examples of possible 2D neighborhood interactions in a structured
pixelated discretization with uniform spacing δ . . . . . . . . . . . . 86

4.4 Illustration of regular 2D pixelated grid with uniform spacing δ using
4 families of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



4.5 Gradient flow evolution transforms the shape of contours giving the
largest energy decrease . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Illustration of a circular particle of the radius r = 8 µm with three
varying lengthwise pixel densities . . . . . . . . . . . . . . . . . . . 95

4.7 Comparison of Cauchy-Crofton formulation against modified Moore-
neighbor tracing algorithm for accurate calculations of the perimeter
of the particle in terms of image resolution . . . . . . . . . . . . . . 96

4.8 Simulation of grain evolution for a circular-shaped grain with Rie-
mannian surface energy denoted by D11 = 4, D12 = D21 = 0, and
D22 = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Simulation of grain evolution for a noisy circular-shaped grain with
Riemannian surface energy denoted by D11 = 4, D12 = D21 = 0, and
D22 = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Simulation of grain growth in 2D polycrystalline structure using Cauchy-
Crofton formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.11 Coupling Cauchy-Crofton segmentation algorithm to augment the
MRF reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.12 Comparison of ⟨100⟩ and ⟨111⟩ pole figures for original 3D DCT sam-
ple against input exemplars and segmented 3D synthesized image . 102

4.13 Comparison of the grain size distribution of the 3D microstructures
for the original DCT dataset and two segmented MRF images . . . 103

4.14 Segmentation of 3D microstructure as a graph labeling problem in
comparison with image reconstructions without the use of Cauchy-
Crofton weights results in metrication artifacts with unusual flat grains104

5.1 Kinematics of non-ordinary state-based peridynamics model . . . . 110
5.2 Particle interactions with nearest neighbors in a 2D peridynamics

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Flowchart for the explicit non-local state-based peridynamics model

using adaptive dynamic relaxation scheme . . . . . . . . . . . . . . 114
5.4 An illustration of zero-energy modes in a 2D regular lattice . . . . . 115
5.5 Independent weight function values for a 2D quadrilateral particle

pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.6 Example of a 1D particle-discretized bar with a constant spacing h . 122
5.7 All possible 2D horizon shapes with a quadrilateral particle discretiza-

tion up to δ = 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 All possible 3D horizon shapes with a cubic particle discretization up

to δ = 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.9 Boundary treatment on a 2D polycrystalline domain . . . . . . . . . 127
5.10 Schematic of slip systems under deformation . . . . . . . . . . . . . 129
5.11 1D cantilever bar with varying Young’s modulus of elasticity . . . . 132
5.12 Effect of zero-energy modes on the displacement field of 1D bar ob-

tained from the higher-order approximation approach . . . . . . . . 133
5.13 Effect of boundary treatment on PD stress distributions with a hori-

zon size δ = 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xii



5.14 Comparison of orientation changes under a y-axis compression test
for FE and PD results with three different horizon sizes . . . . . . . 136

5.15 Illustration of the 3D matrix with soft precipitate in the middle . . 137
5.16 Contours of x-displacements through centerline along the x-direction

for two horizon interactions δ = 2h and δ = 3h at final strain . . . . 139
5.17 Comparison of (a)-(d) x-displacements and (e)-(h) z-displacements

(both in µm) along midsection z = 1.5 mm for varying stiffness ratios
as obtained from the high-order stabilized PD model with δ = 3h . 141

5.18 Variations in the displacement components at the center of the spher-
ical precipitate in terms of the stiffness ratio rc, for different horizon
sizes δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.19 Illustration of the 3D polycrystalline microstructure with a spherical
void in the middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 Limitation of MRF algorithm to reconstruct graded microstructures
in z direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Limitation of LEGOMAT algorithm resulting in noticeable seamlines
when embedding low-frequency components . . . . . . . . . . . . . 155

6.3 Generations of full-field microstructural maps from limited micro-
scopic scans of adaptively-selected regions . . . . . . . . . . . . . . . 156

A.1 Schematic pertinent to the Saltykov closed-form approximation . . . 161

xiii



LIST OF TABLES

Table

1.1 Comparison of existing numerical methods for microstructure predic-
tions in metal additive manufacturing . . . . . . . . . . . . . . . . . 14

2.1 Breakdown of computational cost associated within the highest reso-
lution level of the MRF reconstructions as a function of the sampling
window size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Various examples for the Cauchy-Crofton formula with different sur-
face energies for a given particle shape contour . . . . . . . . . . . . 97

5.1 Higher-order approximation weight functions for 1D particle discretiza-
tion with a constant spacing . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Higher-order approximation weight functions for a 2D quadrilateral
discretization pattern with a constant spacing . . . . . . . . . . . . 125

5.3 Higher-order approximation weight functions for a 3D cubic discretiza-
tion pattern with a constant spacing . . . . . . . . . . . . . . . . . . 126

5.4 Comparison of grain-averaged displacement component u . . . . . . 146
5.5 Comparison of grain-averaged displacement component v . . . . . . 146
5.6 Comparison of grain-averaged strain component ϵxx . . . . . . . . . 147
5.7 Comparison of grain-averaged strain component ϵyy . . . . . . . . . 147
5.8 Comparison of grain-averaged strain component ϵxy . . . . . . . . . 147

xiv



LIST OF APPENDICES

Appendix

A. Saltykov Method for Quantification of 3D Grain Size Distribution . . 160

B. Adaptive Dynamic Relaxation Scheme . . . . . . . . . . . . . . . . . . 163

C. Crystal Plasticity Constitutive Update Scheme . . . . . . . . . . . . . 167

xv



LIST OF ABBREVIATIONS

1D one-dimensional

2D two-dimensional

3D three-dimensional

ADRS adaptive dynamic relaxation scheme

AM additively-manufactured

BC boundary condition

BD building direction

BVP boundary value problem

CAD computer-aided design

CDF cumulative distribution function

CFL Courant-Friedrichs-Lewy

CI confidence index

CP crystal plasticity

CPD conditional probability density

CPFEM crystal plasticity finite element method

CPPD crystal plasticity peridynamics

CT computed tomography

CW continuous wave

xvi



DCT diffraction contrast tomography

DED direct energy deposition

DFT density functional theory

DIC digital image correlation

EBSD electron backscatter diffraction

FCC face-centered cubic

FE finite element

FEM finite element method

GB grain boundary

GUI graphical user interface

HAGB high-angle grain boundary

HEDM high-energy X-ray diffraction microscopy

HOS higher-order stabilization

ICME integrated computational materials engineering

LAGB low-angle grain boundary

LEGOMAT locally-extracted globally-organized microstructural model

LENS laser engineered net shaping

LPBF laser powder-bed fusion

MRF Markov random field

NOSBPD non-ordinary state-based peridynamics

ODF orientation distribution function

PBF powder-bed fusion

PD peridynamics

PDE partial differential equation

PDF probability density function

xvii



PPM pixels per micrometer

RGB red-green-blue

RVE representative volume element

SD scanning direction

SEM scanning electron microscopy

SLM selective laser melting

TD transverse direction

VMM variational multiscale method

X-FEM extended-FEM

xviii



ABSTRACT

Complex applications in modern aerospace technology urgently call for advanced

structural materials that are high-strength, lightweight, and yet tolerant to damage

from loading conditions, extreme temperature, particle radiation, or environmental

exposure. To swiftly fulfill these emerging material requirements, a multi-scale un-

derstanding of the relationships between processing, microstructure, and properties

of metallic materials needs to be developed. Toward these goals, this dissertation

presents computational models and software for (i) building three-dimensional (3D)

microstructural maps of materials through Markovian inference from a set of three

orthogonal two-dimensional (2D) experimental measurements, (ii) insertion of mi-

crostructural information into a geometrical grid at the component-scale level with

iterative refinement using experimental measurements at locations of maximum uncer-

tainty, (iii) implementation of Cauchy-Crofton technique as a post-processing step to

minimize surface energies for the purposes of physics-based segmentation and texture

evolution of microstructural aggregates, and (iv) development of crystal plasticity

peridynamics (CPPD) technique for predicting fine-scale stress/strain localizations

at micro-scale level. These numerical efforts serve as multi-scale modeling tools for

the reconstruction of surrogate models to proactively simulate structural performance

and quantify/reduce the uncertainty in computational materials prognosis, involving

the complex nature of polycrystalline formation and texture simulation.

Traditionally, the underlying 3D microstructural information of polycrystalline struc-

xix



tures has been digitized through experimental acquisition techniques, such as to-

mography or serial sectioning. These methods, however, only provide images over

relatively small volumes of material. Furthermore, due to the stochasticity of mate-

rial formation, a single snapshot of a microstructure does not adequately capture the

property distributions in a component. In addition, currently-available numerical

methods for microstructure synthesis, such as geometry-based (e.g., Voronoi tes-

sellation), physics-based (e.g., phase-field, kinetic Monte Carlo), or feature-based

(e.g., simulated annealing) techniques, run into various difficulties when modeling

microstructural complexities including non-equilibrium grain structures, non-convex

morphologies, multi-phase features, twins, and cell structures that naturally arise

from material processing. These features, however, play an important role in the

properties and performance of modern structural materials.

Therefore, this dissertation attempts to create a suite of data-driven computational

models based on graph theoretic techniques to rapidly synthesize complex 3D poly-

crystalline microstructures with validated features that are extremely critical for mi-

crostructure quantification, property analysis, and materials design. The efficacy

of this new procedure for the 3D characterization of microstructural components is

demonstrated for a wide range of microstructures fabricated by conventional and addi-

tive manufacturing processes, along with quantitative comparisons against published

experimental/analytical/simulated data in the literature. This approach is consis-

tent with the goals of the integrated computational materials engineering (ICME)

and Materials Genome Initiative for Global Competitiveness, which aims to deploy

advanced materials more expeditiously.
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CHAPTER I

Introduction

With emerging paradigm of integrated computational materials engineering (ICME)

[1], multi-scale design optimization approaches for tailoring engineering properties

through controlled processing parameters [2, 3, 4, 5, 6, 7] are of great interest to

the design and manufacturing communities. Such simulations often involve solving

microstructure-dependent properties, which require models beyond the grain-scale

level that can accurately capture the underlying morphology and textural information

of the materials [8, 9, 10]. The two-dimensional (2D) microstructures are convention-

ally characterized through experimental instrumentations [11, 12, 13, 14]. However,

sectional information obtained from 2D empirical characterization techniques is gen-

erally insufficient for defining inherent microstructural parameters (e.g., neighbor con-

nectivity, grain size, shape, boundary networks, etc.) [15, 16, 17, 18]. Nevertheless,

these parameters are a critical aspect of the materials design and can strongly affect

the capability of the structural systems to perform in their respective loading envi-

ronments [19, 20, 21]. As a result, there has been a growing desire to develop accurate

measurements, allowing for the direct acquisition of full-field three-dimensional (3D)

microstructural information [22, 23, 24, 25, 26, 27, 28]. Hence, a comprehensive review

of the existing 3D experimental acquisition techniques and numerical reconstruction

frameworks, along with their limitations, are described next in Section 1.1. This
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follows by introducing undirected graphical models and their applications for recon-

structions of validated microstructural models, from the microscale level to part-scale

geometries, respectively, in Sections 1.2 and 1.3. Thereafter, Sections 1.4-1.5 provide

a brief background on the Cauchy-Crofton and peridynamics (PD) models that make

the backbone of computational frameworks for modeling microstructural evolution

and performance evaluations in this dissertation.

1.1 Overview of Microstructural Characterizations and Nu-

merical Reconstruction Techniques

The need to precisely characterize 3D microstructures has led to the development of

several experimental methods, which are mainly variants of two major procedures: se-

rial sectioning [24, 25, 29, 30, 31, 32] and high-energy diffraction microscopy (HEDM)

[33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Serial sectioning is a destructive ap-

proach in which layers of controlled thickness are sequentially polished away with

high accuracy. This process enables metallographic etching and captures sectional

images of a material’s microstructure. Post-processing follows to render these 2D im-

ages into a solid 3D model. Contrary to serial sectioning, HEDM is a non-destructive

technique that uses high-energy X-rays to probe a relatively bulk specimen. The

diffraction pattern in this approach determines the crystallographic orientations of

the microstructure. Acquiring 3D microstructures with the above experimental tech-

niques is generally a prodigious process and requires the aid of expensive empirical

scanning devices. Additionally, such procedures uncover microstructural information

over a relatively small volume of materials. Therefore, a large number of specimens

must be scanned and seamlessly merged to generate a component-scale computer-

aided design (CAD) model. Such limitations reduce the general applicability of the

experimental procedures, urging the development of robust computational reconstruc-
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tion strategies from cheaper and faster 2D scanning techniques [45, 46, 47, 48, 49, 50].

As a result, recent developments towards generations of numerical methods to instan-

tiate a virtual representation of solid 3D microstructures are described in detail in

the following two paragraphs.

Numerical microstructure reconstruction is fast becoming an important topic of inter-

est in the fields of materials modeling, simulation, and design [51]. Voronoi diagram

(also known as Dirichlet tessellation or Thiessen tessellation) is a popular tool for

constructing polycrystalline aggregates of metallic alloys [20, 52, 53]. A historical

perspective for the development of the Voronoi diagram, including its implementa-

tions in crystallography and applications in a wide variety of scientific fields, is pro-

vided in Okabe [54]. Voronoi tessellation essentially consists of partitioning a plane

into polygons whose boundaries are defined based on a set of nodes called genera-

tor points. Given these generators, the Voronoi polygons can then be synthesized

using the algorithm described in Evans and Jones [55] to represent the underlying

polycrystalline structures in metals. However, such representations largely provide

an idealization of the microstructure and do not account for the complexities such

as non-convex grain structures [56, 57, 58]. Alternatively, modern feature-matching

reconstruction algorithms [20, 50, 59, 60, 61, 62, 63, 64, 65, 66, 67] can simulate vari-

ous microstructural snapshots based on common sets of underlying features. Some of

these features include marginal histograms [59], multi-resolution filter outputs (e.g.,

Gaussian and wavelet filters) [60, 61, 68], and point probability functions (e.g., auto-

correlation function) [48, 62, 63, 64, 65, 66, 67]. Although these methods are efficient

at modeling the global features of the microstructure, they usually fail at capturing

the localized information in the form of per-pixel data, especially when reconstructing

polycrystalline structures [61].

In addition, a popular geometry-based tool for 3D reconstructions of microstructures
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is Dream.3D [69, 70, 71]. Dream.3D extracts statistical information (e.g., grain sizes,

aspect ratios, and/or orientational features) and instantiates a full 3D representation

that captures the overall crystallographic texture. However, the super-ellipsoidal

approach associated with the Dream.3D reconstruction often tends to idealize the

crystalline morphology [72] when modeling complexities such as non-equilibrium grain

structures, non-convex shapes, twins, second phases, precipitates, and cell structures

[53, 73]. These features naturally arise from manufacturing processes, playing an

important role in the material’s mechanical properties and performance. As a result,

the particular problem of interest in this dissertation is to develop robust data-driven

numerical models based on graph theoretic techniques to instantiate representative

3D microstructural datasets directly from 2D experimental images. To that extent, a

comprehensive overview of the proposed image-based microstructural sampling and

reconstruction strategy is outlined next.

1.2 Markov Random Fields for Microstructure Synthesis

It is experimentally observed that sufficiently-large windows from 2D micrographs

or slices along a particular direction taken from a solid 3D microstructure gener-

ally ‘look’ alike [50, 51, 74, 75, 76]. Such an observation gives evidence to the no-

tion of the stationary probability distribution underlying microstructural formations

[46, 77, 78, 79, 80]. Accordingly, to reconstruct statistically-equivalent 2D microstruc-

tural images, one could start by sampling the conditional probability density (CPD)

for the state of a pixel, given the known states of its neighbors, using reference 2D

experimental images [81, 82, 83]. Here, during the sampling procedure, if only the

nearest neighbors are deployed, the reconstruction strategy amounts to an Ising-type

model [84, 85]. However, for general polycrystalline microstructures, the correlation

lengths often span several pixels, and so a larger sampling window is usually required

[86]. This approach is consistent with those proposed in the computer graphics com-
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munity based on the Markov random field (MRF) technique [87, 88, 89] and texture

reconstructions for materials modeling and design [50, 77, 78, 90, 91, 92, 93].

Furthermore, 3D microstructural information is crucial for understanding the relation-

ships between the material structure and its properties. However, the 3D reference

microstructures experimentally characterized by serial sectioning or X-ray computed

tomography are expensive for routine applications due to the time and effort in-

volved. On the contrary, the direct problem of measuring 2D surface images using

optical or micro-diffraction methods is relatively easier. Using these 2D experimen-

tal images, inverse numerical models could be developed that would allow for the

generations of full-field 3D microstructural maps of materials. Hence, the inverse

problem of synthesizing 3D polycrystalline structures from 2D sectional images taken

along orthogonal x, y, and z directions is of specific interest in this thesis. Generally,

the sectional microstructural images obtained from empirical characterization tech-

niques are in the form of pixels that contain red-green-blue (RGB) color channels,

representing either scalars (e.g., phases, chemical composition), vectors (e.g., crystal

orientations), or tensor states (e.g., stress, strain fields). The outcome of the inverse

problem is a 3D solid model made of voxels (i.e., volumetric pixels) that are colored

consistently with the 2D orthogonal experimental images, such that any arbitrary x,

y, or z slice taken from the 3D solid model is ‘similar’ to its respective 2D exemplar.

The measurement of similarities between the cross-sectional slices of the synthesized

3D microstructure and experimental 2D exemplars is based on a least-square distance

(i.e., Euclidean-norm) cost function. Works in 3D microstructure reconstruction using

MRF, as presented in Chapter II, have shown that such an approach can effectively

capture global features (e.g., grain size, texture distribution, and grain neighborhood

correlations) as well as localized information (e.g., precipitates and grain boundary

networks) that closely consistent with the experimental images [91, 92, 93].
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Moreover, it is possible to extend the data-driven reconstruction methodology in order

to generate real-time descriptions of microstructural distributions at the part-scale

geometry. Fundamental steps, as illustrated in Figure 1.1, include: (i) experimental

acquisition of orthogonal scans of 2D microstructures, (ii) MRF for 3D reconstruction

of the microstructural unit cell, and (iii) embedding the realized 3D microstructure

into a virtual CAD geometry (i.e., a digital twin). This approach facilitates the rapid

visualization of 3D maps of microstructural models at the component-scale level, en-

abling various user-defined processing modalities for customizable materials model-

ing and design. Next, an overview of prior microstructure reconstruction frameworks

based on the MRF technique is discussed.

(c) Virtual specimen at component-scale level

(b) 3D MRF reconstruction (0.6x0.6x0.6 
mm )Characterization

Synthesis

Multi-scale 
representation

(a) Experimental image (polarized 
light microscopy, AA3002 alloy, 
0.6x0.6 mm )

Figure 1.1: Preliminaries of virtual synthesis of a CAD geometry with microstruc-
tural information: (a) experimental acquisition 2D microstructure, (b) MRF for 3D
reconstruction of the microstructural unit cell, and (c) embedding the realized 3D mi-
crostructure into a virtual CAD geometry.

1.2.1 Prior Works on Two-Dimensional Microstructural Simulations

Recent works on MRFs [77, 78, 90, 91, 92, 93] are generally based on Claude Shan-

non’s generalized Markov chain [94]. In a one-dimensional (1D) problem, a set of
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consecutive pixels/nodes is sequentially arranged to form a template to determine

the probability density function (PDF) of the next pixel [95]. An example of the

1D Markov chain is illustrated in Figure 1.2(a). Likewise, a 2D microstructure can

be represented, as depicted in Figure 1.2(b), where each particle within the N × N

lattice taking values Xi with i ∈ [1, 2, ..., N2]. In an Ising-tipe representation, Xi is

composed of a binary variable, taking values of +1 or −1 (e.g., magnetic moment

[84]). However, in crystallography, the values Xi may contain any of G color levels

within the range {0, 1, ..., G− 1} [96, 87].

Furthermore, contrary to the classical Ising model [84, 96], where each particle is

bonded to only its nearest neighbors, as depicted in Figure 1.2(b), in an MRF repre-

sentation, pixels can interact with multiple particles beyond their immediate neigh-

bors [78, 97, 98]. Figure 1.2(c) demonstrates a 6×6 lattice structure with each pixel/n-

ode interacting with several neighbors. Accordingly, using such graph representation,

an MRF can be defined as the joint probability density P (X) on the set of all possi-

ble colorings X, subject to a local Markovian property. The local Markov property

states that the probability of value Xi, given the states of all neighbors, is condi-

tionally independent of the entire dataset and can be sufficiently conditioned based

on its limited number of surrounding particles, i.e., P (Xi|all particles except i) ≈

P (Xi|neighbors of particle i). The process for reconstruction of 2D microstructure

based on an experimental exemplar is described next.

In the 2D MRF reconstruction framework, the synthesized microstructure, denoted as

S, is grown pixel-by-pixel, starting from a small patch that is randomly drawn from

an experimental exemplar, denoted as E. The algorithm first finds all windows in E

that are similar (based on Euclidean-norm sense) to an unknown pixel’s neighborhood

from S. One of these matching windows is chosen at random, and its center particle is

taken to be the newly-synthesized pixel’s value in the reconstructed model [78, 90]. A
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(a) 1D Markov chain

 𝑋ଵ  𝑋ଶ  𝑋ଷ  𝑋ସ  𝑋ହ

 𝑋଺  𝑋଻  𝑋଼  𝑋ଽ  𝑋ଵ଴

 𝑋ଵଵ  𝑋ଵଶ  𝑋ଵଷ  𝑋ଵସ  𝑋ଵହ

 𝑋ଶଵ  𝑋ଶଶ  𝑋ଶଷ  𝑋ଶସ  𝑋ଶହ

 𝑋ଵ଺  𝑋ଵ଻  𝑋ଵ଼  𝑋ଵଽ  𝑋ଶ଴

𝑋଴ 𝑋ଵ 𝑋ଶ 𝑋ଷ 𝑋ସ

𝑃 𝑋௡ 𝑋௜, 𝑖 < 𝑛 ≈ 𝑃(𝑋௡|𝑋௡ିଵ)

(b) 2D Ising model

 𝑋ଵ  𝑋ଶ  𝑋ଷ  𝑋ସ  𝑋ହ

 𝑋଺  𝑋଻  𝑋଼  𝑋ଽ  𝑋ଵ଴

 𝑋ଵଵ  𝑋ଵଶ  𝑋ଵଷ  𝑋ଵସ  𝑋ଵହ

 𝑋ଶଵ  𝑋ଶଶ  𝑋ଶଷ  𝑋ଶସ  𝑋ଶହ

 𝑋ଵ଺  𝑋ଵ଻  𝑋ଵ଼  𝑋ଵଽ  𝑋ଶ଴

𝑋଴ 𝑋ଵ 𝑋ଶ 𝑋ଷ 𝑋ସ

𝑃 𝑋௡ 𝑋௜, 𝑖 < 𝑛 ≈ 𝑃(𝑋௡|𝑋௡ିଵ)

(c) 2D undirected graph

Figure 1.2: The MRF as an undirected graphical model. Here, circles represent pixels
in an image, and bonds are used to connect the neighboring particles: (a) a 1D Markov
chain with first-order interactions; (b) a 2D Ising inference representation with the
unknown pixel X13 conditioned on known nearest neighbors (first-order interactions);
and (c) a 2D MRF of size 6× 6 with higher-order interactions.

schematic of the 2D reconstruction process is illustrated in Figure 1.3. Here, given the

experimental exemplar, E, a synthetic image, S, that is statistically representative

of E is to be generated. Accordingly, the MRF algorithm starts with a small seed

image of size 2 × 2 that is randomly extracted from E and successively fills in the

surrounding unknown pixels based on their known neighbors. For instance, for the

unknown center pixel depicted at the center of 3 × 3 sampling window size on the

right, the algorithm refers to E and finds the best-matching window that closely

represents the spatial neighborhood of the unknown pixel in S. It then takes the

center pixel’s RGB value from the window and fills the unknown pixel with the same

coloring. The filling process continues until convergence, i.e., until all colors remain

unchanged.

An example of the 2D reconstruction [78] of an aluminum alloy microstructure, char-

acterized via polarised light microscopy [99], is shown in Figure 1.4. The microstruc-

ture is colored in terms of near-cubic (purple) or non-cubic (yellow/red) orientations

based on the contrast effects as the specimen rotates relative to the polarised light

directions. Using MRF reconstruction, a new microstructure is synthesized from a
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Experimental Exemplar (𝑬)

sampling window size 
𝟑 × 𝟑

Initial Synthesized Image (𝑺) Progress During 1st Iteration

Figure 1.3: The schematic of 2D MRF sampling approach: the synthesized image
(denoted as S) is grown from a 2× 2 seed image (shown in center). As the algorithm
progresses, the unknown pixel (shown in blue) is estimated by searching for a window
exhibiting a similar spatial neighborhood in the input experimental exemplar (denoted
as E).

150× 170 pixelated input exemplar shown in Figure 1.4(a) using an interaction win-

dow size of 7× 7 pixels. The MRF reconstruction is shown in Figure 1.4(b). Only a

small part of the larger experimental image, depicted in Figure 1.4(c), is used for the

reconstruction.

Moreover, the fraction of cube versus non-cube orientations between the 2D MRF

reconstruction and original experimental image in Figure 1.4 is studied using color

clouds. The color cloud representation of the orientations is an attempt at showing

(a) Input exemplar (b) Reconstruction with MRF (c) Original experimental image

Figure 1.4: An example of 2D MRF reconstruction technique: (a) input micrograph
AA3002 aluminum alloy, (b) MRF reconstruction, and (c) larger microstructure from
which the input image is extracted, also shown for comparison.
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the pixels in the color space rather than the Euclidean space, i.e., the microstructure.

Hence, color densities are converted into random scattered dots around the spatial

position assigned to the color, with the extent of the spatial position being determined

by the frequency of which the RGB triplet appears in the image. The results depicted

in Figure 1.5 demonstrate a consistent correlation between the color clouds of the

reconstructed image and the experimental input image. The texture components

(i.e., cube versus non-cube orientations) are well reproduced in the larger synthesized

image. Next, in Section 1.2.2, the extension of the 2D sampling strategy is presented

for 3D microstructure reconstruction.

(a) Original experimental image (b) Reconstruction with MRF

Figure 1.5: Color blot method is used to compare the distribution of cube/near-cube
regions, and intermetallic phases in the experimental and synthesized images.

1.2.2 Preliminaries of Three-Dimensional Microstructural Synthesis

Similar to the 2D sampling approach, the MRF technique can be extended to generate

3D microstructures if 3D reference images are made available. However, acquiring 3D

microstructures from serial sectioning or tomography, as outlined in Section 1.1, is

a time-consuming and laborious process. Alternatively, the 3D MRF reconstruction

technique, as proposed in Chapter II, can be adapted to generate 3D microstruc-

tures from limited numbers of experimentally-acquired 2D exemplars imaged along
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orthogonal x, y, and z directions. The 3D MRF reconstruction process is based on

an expectation-maximization algorithm [77, 80, 88, 89], carried out in a two-step pro-

cess. In the first step, similar to the 2D sampling approach, the most likely color

of a 3D voxel is estimated by the center pixel of the best-matching windows in all

experimentally-obtained 2D exemplars. Note that only a limited (usually, a single)

2D experimental sample(s) are given along each cross-section, which means that the

best match may not be an exact match. Thus, for each voxel, a set of three best-

matching neighborhoods from all three orthogonal directions, are obtained, possibly

with different colors that correspond to the center pixel. Subsequently, in the next

step, a unique value of the color is found by weighting colors of best-matching win-

dows through an expression obtained by setting the derivative of the energy function

with respect to voxel color to zero [77]. Since the colors of all voxels change after

each step, the set of closest input neighborhoods will also change. Hence, these two

steps are iterated until convergence, i.e., until all voxels remain unchanged. Here, as

an initial condition, a random RGB coloring from the input 2D images is assigned to

each voxel. Thereafter, the above two-step optimization process is carried out itera-

tively in a multi-resolution (or multi-grid) fashion [89]: starting with a coarse voxel

mesh while interpolating the results to a finer mesh once the coarser reconstructed

image converges to a local minimum. Thereafter, a color histogram matching scheme

follows after each iteration to enhance the global textural sampling procedure in the

reconstruction framework. More details on the 3D unit cell reconstruction of mi-

crostructure using the MRF technique can be found in Chapter II.

In the following, the 3D MRF reconstruction approach is illustrated for an anisotropic

lamellar microstructure, as illustrated in Figure 1.6(a), with solid circles in the z sec-

tion, and interconnected lamellar structures shown in the x and y planes. Throughout

every iteration in the MRF reconstruction algorithm, orthogonal cross-sections of all

voxels are matched with the best-matching neighborhoods in the input experimen-
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tal images. The resulting anisotropic 3D microstructure, depicted in Figure 1.6(b),

captures the complex structure that arises from these 2D sectional images. The in-

ternal structure of the darker phase, as shown in Figures 1.6(c)-1.6(d), reveals an

intricate internal structure that includes merging of interior lamellae while still main-

taining statistical similarity to the experimental micrographs. Once a validated 3D

microstructural unit cell from 2D experimental images is synthesized, one can embed

the information in a larger-scale CAD model. The embedding process, along with a

comprehensive literature survey of existing large-scale microstructural syntheses are

discussed next.
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Figure 1.6: An example of 3D MRF reconstruction technique for an anisotropic lamel-
lar microstructure from three orthogonal slices: (a) orthogonal experimental 2D im-
ages closely resemble the cross-sections of the 3D reconstructed model, (b)-(c) MRF
reconstruction depicting each phase, and (d) slice showing the internal structure of
the lamellae.

1.3 Generation of Large-Scale Microstructural Models in Metal

Additive Manufacturing

Current numerical methods for the prediction of microstructural distributions in metal

additive manufacturing are mainly physics-based techniques that require extensive

computational efforts [7]. Amongst phase-field [100, 101, 102], kinetic Monte Carlo

[103, 104, 105], and cellular automata [106, 107, 108] simulations, the phase-field

modeling techniques are often considered the most accurate approaches that for in-

stance can adequately capture the solute concentration, precipitates, and dendrite
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shapes [109] in powder-bed fusion (PBF) [110, 111, 112] or direct energy deposi-

tion (DED) [113, 114, 115] processes. However, the advantage of using phase-field

techniques is obscured by the required computational power, limiting the predictions

to atomistic and continuum-length scales. Less costly than phase-field, cellular au-

tomata enables scalability for larger domain sizes. Yet, the accuracy can diminish

considerably with increasing the cell size [116]. Additionally, the kinetic Monte Carlo

simulations (e.g., SPPARKS) [104, 117] allow large-scale predictions but have diffi-

culties simulating the texture distributions and reconstructing complex components,

such as non-equilibrium grain structures.

Additionally, modern data-driven microstructure reconstruction methods based on

the MRF technique [77, 78, 90, 91, 92, 93] can employ snapshots of conventional

2D prototypes to rapidly generate diverse groups of microstructures for new process-

ing modalities in additive manufacturing, e.g., hatch spacing, layer thickness, scan

velocity, and effective laser energy density. To that extent, in Chapter III, an image-

based framework based on the MRF reconstruction technique [92] is employed for

the real-time description of part-scale microstructure distribution of powder-based

additively-manufactured (AM) materials by combining material flow fields that cap-

ture microstructural variations in grain growth orientation, anisotropy, and size scal-

ing. Since the software builds global models based on locally-extracted images, it is

termed LEGOMAT: Locally-Extracted Globally-Organized Microstructural Model.

The first version of LEGOMAT, as presented in Chapter III, is able to embed a

single 3D microstructure following the material flow path while allowing the user

to specify parameters such as hatch spacing, layer thickness, and scan directions.

Here, the algorithm reconstructs digital AM components, consisting of a dozen laser

passes and deposition layers, encompassing microstructural information, by mapping

every tetrahedral element within the CAD model to a microstructural domain. The

algorithm utilizes an iterative patch-based convergence criterion, minimizing the dif-
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ference between the tensor fields associated with embedding microstructures to the

specified local parameters in the CAD geometry. Such an approach can be used for

a rapid reconstruction of 3D maps of microstructures with billions of grains at the

component-scale level with user-defined processing modalities. Table 1.1 provides

a brief comparison of the LEGOMAT reconstruction approach against existing AM

microstructure simulation techniques.

Table 1.1: Comparison of computational methods for microstructure predictions in
metal additive manufacturing against LEGOMAT.

Method Computational

Cost

Benefit Challenge

Phase-field Extremely high Simulates both solidifica-

tions and solid-state phase

transformations

Is not suitable for large-

scale predictions

Cellular

automata

High/intermediate

(depending on the

spatial domain

being constructed)

Simulates solid-state trans-

formations, and enables

crystallographic texture

predictions

Accuracy of microstructure

simulations depending on

cell size

Kinetic

Monte Carlo

Intermediate Allows for large-scale do-

mains (dozens of layers and

passes)

Unable to predict crystal-

lographic texture, and ne-

glects the effect of temper-

ature accumulation on melt

pool geometry

LEGOMAT Low Allows for large-scale do-

mains (dozens of layers

and passes) and crystallo-

graphic texture predictions

Requires microstructural li-

braries and knowledge of

grain growth directions

1.3.1 Preliminaries for Part-Scale Microstructural Synthesis Using LEGO-

MAT

The 3D reconstruction methodology described in Section 1.2.2 can be extended to gen-

erate any part-scale geometry with underlying microstructural information. In princi-

ple, one could use sampling and optimization methodologies to embed microstructures

over an engineering CAD model. To demonstrate this, the 3D unit cell microstruc-

ture of an aluminum alloy, as obtained directly from serial sectioning and diffraction
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technique [118], is embedded into a CAD geometry shown in Figure 1.7. Here in this

example, the 3D microstructural unit cell is in the form of voxels colored by grain IDs.

The 3D microstructure is then sampled onto the CAD geometry using a patch-based

extension of the sampling method described in Section 1.2.1. Additional features such

as affine transformations (e.g., scaling and rotation) of the microstructural patches can

also be implemented, enabling the user to generate location-specific textural orienta-

tion and grain sizes. Further details pertinent to part-scale microstructure generation

can be found in Chapter III.

For the above image reconstruction strategies within materials science, where mea-

sured features contain physical considerations (e.g., phases, crystal orientations, chem-

ical composition), it is crucial to incorporate the corresponding physics into the re-

construction technique. The MRF technique, as elaborated thus far, employs the

full spectrum of RGB color domain for the representation of crystallographic orienta-

tions, leading to startlingly robust grain size and textural statistics when compared

against experimental exemplars [78, 90, 91, 92, 93]. Such an approach, however, only

Figure 1.7: An example of embedding a 3D microstructural representative volume
element (left), obtained from serial sectioning, to generate component-scale geometry
with microstructural information (right).
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samples local statistics over relatively-small windows and does not enforce any par-

ticular physics-based constraints on grain boundary (GB) structures. Nevertheless,

in the materials science of GBs, certain facets are preferred, and GB junctions that

form during solid-state sintering often follow certain geometric (angular) constraints

[119, 120]. Hence, the development of a post-processing step for purposes of segmen-

tation and grain size evolution of reconstructed models is presented next.

1.4 Physics-Based Methods for Simulation of Microstruc-

tural Evolution

Since the MRF approach [91, 92, 93] only samples local statistics in the form of

per-pixel information and does not enforce any particular physics-based constraints

on GB formation [119, 120], it is desirable to implement corresponding physics back

into the reconstruction strategy. Accordingly, the need to understand and properly

simulate particle shape evolution has led to several mathematical formulations, with

the foremost being the Wulff construction [121, 122, 123, 124]. Theoretically, the

equilibrium shape of a single crystalline structure can be instantiated by the gamma

plot (also known as the Wulff plot), i.e., a plot of the orientation-dependent surface-

free energy (hereon simply referred to as surface energy). Figure 1.8(a) represents

the Wulff construction, where the shape (depicted by the orange line) minimizes the

surface energy (represented by the blue line). Surface energies can often be obtained

numerically from first principles calculations, such as density functional theory (DFT)

[123]. However, these are not transferable to sintering processes as the shapes of

interest pertain to higher temperature states (e.g., above 1000 ◦C). Figure 1.8(b)

depicts the measured shape of a pore in alumina at 1600 ◦C, the simulated shape

of which is illustrated in Figure 1.8(c) as obtained from data in the literature [125].

Generally, the surface energies can be obtained by inverting the crystalline shape
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data (commonly referred to as inverse Wulff construction) [126, 127]. The inverse

Wulff construction essentially follows the Wulff construction wherein surface energies

are estimated by measuring distances between external surfaces and the center of the

particle because, by Wulff construction, the ratios of these distances are equal to the

ratios of the surface energies of facets at different orientations [128].
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Figure 1.8: Isolated crystalline structure and Wulff constructions: (a) Wulff shapes
of particles (depicted in orange) minimizing surface energy integral (represented by
blue line), (b) SEM depicting shape of a pore in alumina after 480h at 1600 ◦C (from
Reference [125]), and (c) the simulated Wulff shape.

As a result, in Chapter IV, a physics-based algorithm based on graph theoretic tech-

niques is presented for the segmentation and simulations of the microstructural evolu-

tion of polycrystalline aggregates. The functional form of the proposed segmentation

algorithm is based on a Cauchy-Crofton formulation that embodies the underlying

energetic mechanisms of GB formation. Chapter IV accordingly demonstrates a path-

way toward implementation of microstructural evolutions as a post-processing step in

order to enhance the image-based reconstructions presented in Chapters II-III. The

benefits of implementing such physics-based constraints in microstructure reconstruc-

tions are three-fold: (i) the polycrystals are segmented from the color space output

of the MRF model, (ii) it provides the option to force desired grain shapes (e.g.,

equiaxed vs. columnar grains) during segmentation, and (iii) the GB angles/facets

can be adjusted based on global energetics.
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1.4.1 Preliminaries for Simulations of Microstructural Evolutions Using

Cauchy-Crofton Formula

The principal driving force for simulating particle shapes, coarsening, and grain

growth is the reduction of surface energies. A particularly-challenging aspect for

computations of surface energies is the estimation of curve lengths and surface areas

when utilizing pixel and voxel-based discretizations in the microstructural domains.

Accordingly, a mathematical model based on a novel graph representation of pixellat-

ed/voxelated images is developed that adopts systematic edge weight functions such

that the cost of cutting a crystalline facet is close to the integral of the surface energy

over the respective crystalline structure. In this approach, a known result in integral

geometry based on Cauchy-Crofton formula is employed to identify globally minimum

surface facets in both in 2D and 3D for a given set of constraint parameters.

Identification of the geometry of a particle’s boundary (i.e., length in 2D or area in

3D domains) is ambiguous when using pixellated/voxelated images. Consider the

case in Figure 1.9(a), where each pixel has a color depending on whether it is lo-

cated inside or outside the GB. As indicated in Figure 1.9(b), the contour length of

the interface is mostly equivocal in the pixelated representation. For instance, if one

simply considers the length of the interfacial contours (i.e., lengths of the horizon-

tal/vertical steps that are separating the two colors), they would overestimate the GB

interfacial length. This problem is accordingly termed metrication error [129, 130].

To overcome the metrication error, researchers in the material science community

tend to employ highly-dense unstructured grids that properly align with the GB’s

interface, as shown in Figure 1.9(c) [131, 132, 133, 134]. However, this approach

leads to mesh dependency when computing the contour length. As a result, a novel

mathematical model from the field of integral geometry for the prediction of the GB

based on the Cauchy-Crofton relation is presented in Chapter IV, where the inherent
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dependency on mesh discretization is removed. The main idea in such an approach

is that given a contour, the total length of the curve is closely proportional to the

number of intersections that it makes at various angles. In terms of pixel/voxel dis-

cretizations, Crofton’s formula uses interaction weight functions such as those shown

in Figure 1.9(d) that remove the effect of metrication while still retaining the ben-

efits of directly using microscopic measurements, as obtained from aforementioned

microscopy or reconstruction procedures.
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Figure 1.9: Computing length of a particle’s boundary: (a) the length of a particle
boundary is ambiguous when using pixellated images, (b) a depiction of possible lengths
of the particle boundary, which in return affects the crystalline shape, (c) use of
unstructured meshes to capture grain boundaries leads to mesh dependence, and (d)
the length of the boundary can be found using Crofton formula based on intersection
count.

Consequently, the problem of particle segmentation is formulated as a graph labeling

problem, where each voxel in the microstructural image is treated as a vertex of a

simple undirected graph with an energy cost function formulated to a Potts form.

Generally, the Potts function consists of two terms; the first term, often referred to

as the data term, penalizes deviations from the image data, whereas the second term,

referred to as the smoothening term, describes the interface properties between ver-

tices with different labels. Hence, minimizing the energy would allow a preferential

selection of facets with minimal energies while retaining the bulk phases measured

in the original image. The details of the Cauchy-Crofton formulation are provided

in Chapter IV. There, the methodology based on integral Riemannian geometry is
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presented for the estimation of the expected surface areas based on the graph label-

ing problem on pixellated/voxelated discretizations. This framework is generalized to

incorporate arbitrary surface energies (e.g., equiaxed or elongated grain structures)

and extended to include the evolution and segmentation of 3D microstructural recon-

structions described previously.

1.5 Overview of Property Evaluations for Polycrystalline Mi-

crostructure Images

Once the pixel/voxel-based discretization of the underlying polycrystalline structure

is instantiated through microscopy or the MRF reconstruction technique, as described

in Sections 1.1-1.4, the simulations of mechanical performance/properties (e.g., elastic

modulus, yield strength, residual strength, slip response, fatigue life, and stress/strain

contours) of the material in industrial applications need to be performed [135]. Recent

experiments have observed microscale strain localizations, in the form of fine shear

bands, on the surface of polycrystals undergoing large deformation using a combi-

nation of scanning electron microscopy (SEM) and digital image correlation (DIC)

[136, 137]. These microscale shear bands not only can act as precursors for damage

and failure but also have been associated with degradation in material strength, also

known as strain softening [138, 139]. Similarly, slip localization naturally occurs in

deforming polycrystalline aggregates in the form of lamellar bands with fractions of

microns in thickness [140]. The spacing between such slip bands decreases with in-

creasing plastic deformation [141]. Instabilities such as Lüders bands are preceded

by strain-softening and advanced by the formation of new slip bands parallel to the

old ones [142, 143, 144, 145]. Micropillar compression experiments [146, 147, 148]

have revealed plastic behavior characterized by strain bursts under stress-controlled

conditions, where such bursts are associated with local strain gradients in the interior

20



Ti-Al intermetallic 
turbine blade 

2𝟎 𝝁𝒎

2.91% Macroscopic  Strain 𝜀1

RD

TD

Figure 1.10: Tensile strain field in a Ti-Al intermetallic turbine blade, as experimen-
tally seen using microscale SEM-DIC, depict intense localization bands within each
grain.

of the material [149]. In-situ SEM-DIC experiments under monotonic loading, as

illustrated in Figure 1.10, also reveal sub-grain slip localizations even under positive

work-hardening rates [136, 150].

One of the popular numerical techniques for simulating deformation response in

polycrystalline aggregates is the crystal plasticity finite element method (CPFEM)

[151, 20], which describes the dislocation motions and their interactions using con-

tinuum mechanics principles. Finite element (FE) modeling of polycrystalline ma-

terials using crystal plasticity (CP) theory [131, 132, 133, 134] has allowed for a

greater understanding of mechanical behavior (e.g., stress and strain response), tex-

ture evolution, and crystallographic slip response. Such a capability has led to the

development of high-strength aluminum alloys [152, 153], soft magnetic materials

with low hysteresis [154], and multi-functional alloys with high-field induced strains

[155, 156, 157]. Nonetheless, the standard finite element model (FEMs) often run

into difficulties when modeling the local mechanical response of materials in the pres-

ence of discontinuities (e.g., voids, cracks, and soft precipitates). Additionally, the

magnitude of mechanical quantities computed by the standard FEM is also highly

dependent on the elemental size [135, 158], necessitating costly iterative mesh re-
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finement procedures along with considerable experimental efforts for numerical cal-

ibration [159, 160]. Improvements have been proposed for CPFEM to address the

issue of mesh dependency. The extended-FEM (X-FEM) and variational multiscale

method (VMM) enrich the computational space by introducing a sharp, discontin-

uous interpolating function to trigger strain localizations [161]. Nevertheless, these

techniques are not capable of predicting small-scale localizations naturally as a conse-

quence of the underlying principles. Thus, imperfections are often imposed to trigger

the strain localizations [21]. Alternatively, the mesh-free state-based PD technique

[162, 163, 164, 165], which replaces the traditional differential equations with an in-

tegral form of the non-local continuum mechanics theory, has attracted significant

attention for predicting damage nucleation and propagation with an intrinsic char-

acteristic length-scale [166, 167, 168, 169]. Figure 1.11 compares the strain fields

obtained by crystal plasticity PD (CPPD) and CPFEM simulations against reference

experimental imaging. While both CPPD and CPFEM capture comparable trends

in the strain fields, CPPD depicts localized patterns similar to the experiments that

are typically shown to be well-resolved, and otherwise smoothed out by CPFEM.

Figure 1.11: Experimental instrumentations such as SEM with the combination of
DIC have shown microscale strain localizations on the surface of polycrystalline ag-
gregates can act as precursors for damage nucleation and degradation in material
strength. However, unlike conventional CPFEM, CPPD models are shown to be ca-
pable of predicting such finite-scale localizations naturally as a consequence of the
underlying physics.
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1.5.1 Image-Based Crystal Plasticity Analyses Using Peridynamics

In the initial version of the PD as introduced in Siling [162], a bond-based technique

was employed in which forces in-between material particles are assumed to be pair-

wise, i.e., equal and direction-reversed. As a consequence of such an assumption,

the bond-based PD method is restricted to fixed values of Poisson’s ratio [170, 171].

This limits the general applicability of the bond-based PD approach and the pos-

sibility for simulations of complex material deformations such as in plasticity [172].

A more comprehensive PD scheme, commonly referred to as the non-ordinary state-

based PD (NOSBPD), was subsequently proposed in which force states are defined

by the interactions between the material particles [170]. This presents a generalized

form of the PD, allowing material particles to carry forces in all directions [173]. In

this approach, the non-locality is conveniently applied without the need to alter the

underlying constitutive principles and failure criteria [164, 174]. Accordingly, this

dissertation employs a non-ordinary state-based version of the PD theory to model

microstructural domains consisting of material particles (i.e., pixels in 2D and voxels

in 3D) with a uniform discretization as directly obtained via experimental character-

ization processes or numerical reconstruction techniques.

Although PD has been proven effective in the prediction of discontinuities and damage

initiations [164, 165, 175], there are still intrinsic issues with its numerical implemen-

tations, among which are (i) zero-energy (also known as hourglass) instability modes,

due to the weak integral formulation in non-local approximations of the deformation

gradient tensor [166, 176, 177, 178], and (ii) non-trivial treatment of boundary con-

ditions (BCs) [179, 180]. Although recent papers, as discussed in Section 1.5.2, have

attempted to resolve the hourglass-like instabilities, they have failed to remove the

instability modes altogether. In addition, since PD utilizes an integral-form equation

of motion, i.e., different from the partial differential equations (PDEs) in the conven-
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tional continuum mechanics, the enforcement of kinematic constraints at boundaries

is not able to follow the standard approach [181].

1.5.2 Zero-Energy Instabilities Modes in Crystal Plasticity Peridynamics

A particular problem of interest in this thesis using NOSBPD is the presence of zero-

energy instability modes [166, 176, 177, 178]. Such instability modes often worsen

with enlarged horizon interactions, inter-particle spacing, and regions with high-strain

gradients. Recently, different frameworks have been proposed to mitigate the spuri-

ous instability oscillations by introducing fictitious bonds between material particles

[179, 182, 183]. Even though these bond-based techniques provide an artificial stiffness

for stability by introducing a supplementary term of various forms to the force vector

states, they do not provide resolutions to the fundamental instability problem. They

are also highly sensitive to particle spacing and require additional parameters that

need to be calibrated on a case-by-case basis through repetitive numerical simulations

[184]. Moreover, to alleviate the zero-energy mode oscillations, Wu et al. [181] pro-

posed the replacement of the displacement components at the center material particles

with a weighted-average displacement of all neighboring particles in their respective

horizon interactions. Although this approach eliminates the need for supplementary

fictitious bonds, the issue of zero-energy mode oscillations still appears to remain,

particularly in the strain/stress fields. In Luo et al. [185], each finite horizon within

a nearest-neighbor PD family is assigned a stress point at which derivatives of field

variables are computed in order to enhance particle connectivity. Such an approach

is further improved in Cui et al. [186] by introducing higher-order PD derivatives,

incorporating horizon sizes beyond nearest-neighbor interactions. Subsequent im-

provements are also proposed based on higher-order operators to solve the non-local

PD equations up to an arbitrary degree of accuracy [187, 188, 189, 190, 191, 192].

Although these techniques address the fundamental problem in the correspondence
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formulation that leads to zero-energy oscillations, they often require extensive com-

putational efforts, reducing the general applicability of such stabilization procedures

in routine mechanical simulations. Accordingly, in Chapter V, a new novel method-

ology based on the Taylor series expansion of the deformation gradient is proposed

for stabilization control across both 2D and 3D material domains.

1.5.3 Improvements to Crystal Plasticity Peridynamics Approach

Chapter V in this dissertation presents, for the first time, a fully explicit implementa-

tion of the 3D NOSBPD technique for modeling elastoplastic quasi-static mechanical

deformation of 3D polycrystalline for capturing strain localization against experimen-

tal comparison [21]. Previous work by Littlewood [182] presents an implementation of

elasto-crystal viscoplastic material model within the framework of PD using a simple

baseline model of a hard inclusion in a single crystalline structure. The main focus of

this work is to study and compare the material response in the vicinity of a cracked

and uncracked particle in single crystallines with different orientations.

Moreover, since in microstructural simulations, uniform pixel or voxel-based struc-

tured discretizations can be conveniently obtained from microscopy and numerical

acquisition techniques [20, 92, 93], Chapter V proposes particle interaction weight

functions for uniformly-structured grids based on the NOSBPD implementation of

Newmark’s dynamic method with artificial damping [193]. In this approach, a tensor

formulation of the constraint equations on discrete influence weight functions for both

1D and higher-dimensional microstructural problems is presented based on Taylor se-

ries expansion of the deformation gradient [173]. Furthermore, to treat erroneous

BCs, additional material layers are introduced to enforce consistent displacement

across the boundary particles [77]. As a result, Chapter V presents the first 3D

PD implementation of CP by combining key algorithmic features: (i) an explicit

time-stepping scheme with artificial damping, (ii) time-step selection procedure, (iii)
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higher-order stabilization of zero-energy modes, and (iv) BC implementation. The

proposed CPPD model is validated by comparing the deformation texture develop-

ment in 2D and 3D polycrystals under various compression deformations using three

different horizon interactions. Finally, the strain hotspots are assessed in more detail,

where CPPD is shown to be successful in capturing localization patterns observed

in the experiments (especially those arising at the GBs) or showing signatures of

hotspots that are delocalized in the CPFEM simulations.

1.6 Outline of Thesis

This thesis attempts to address the process-microstructure-performance relationships

in polycrystalline metals by developing numerical tools that allow for the reconstruc-

tion and failure analysis of microstructural aggregates. The image reconstruction and

microstructure evolution framework that spans over Chapters II-IV integrates undi-

rected graphical models with adaptive sectional experimental images from electron

backscatter diffraction (EBSD) or polarized light microscopy and utilizes analytical

tools for quantification/validation of crystallographic features (e.g., grain size statis-

tics, orientation distribution function (ODF), nearest-neighbor grain correlation, etc.)

being reconstructed and/or evolved under solid-state sintering. Chapter V presents a

NOSBPD technique with CP that provides insight into the microstructure-property

relations in metals. Consequently, the thesis is organized as follows:

Chapter II describes the 3D MRF reconstruction process for generating a 3D mi-

crostructural representative volume element (RVE) from three orthogonal 2D poly-

crystalline, imaged on x, y, and z cross sections. The proposed algorithm builds 3D

models by matching slices at different voxels to the representative input 2D micro-

graphs, following an optimization procedure that ensures sampled windows meshes

seamlessly together in the 3D RVE. This chapter also examines the algorithm’s ac-
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curate representation of crystallographic orientations and grain morphologies for a

variety of micrographs obtained by EBSD and polarized light microscopy. It is demon-

strated that the MRF approach simulates both 1-point (e.g., grain size, texture dis-

tribution, shape moments) and 2-point (e.g., misorientation angles, grain boundary

networks) correlations that closely resemble those from the experimental/analytical

models.

Chapter III covers the embedding process of synthesized RVE models over a part-

scale CAD geometry. The embedding algorithm employs a constrained graph-based

optimization technique that maps every FE within the CAD model to a microstruc-

tural domain, while incorporating features such as affine transformations (e.g., scaling

and rotation) of the 3D RVE to allow for the generation of anisotropic and spatially-

varying crystallographic textures that are applicable in additive manufacturing. The

new computational approach enables the generation of 3D global maps of AM mi-

crostructures in real-time from a limited set of 2D orthogonal images, using known

microstructural patterns seen in experimental characterization techniques. Once gen-

erated, these synthetic large-scale AM microstructures can be used in various material

performance simulations (e.g., material mechanics, conductivity, etc.) or otherwise

provide insights for multi-dimensional analyses involving desirable processing modal-

ities (e.g., scanning pattern, laser velocity, power, etc.) and performance metrics,

which is a challenging task to achieve by experimental means alone.

Chapter IV build on the previous two chapters and delivers a novel physics-based

numerical framework based on the graph-cuts for simulations of microstructural evolu-

tion. In this approach, an energy optimization principle based on the Cauchy-Crofton

formulation, which embodies the underlying energetic mechanisms of GB formation,

is developed to find the globally-minimum facets (i.e., Wulff shape) in 2D/3D material

domains for a given set of Riemannian metrics. The specific computational parame-
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terization of the grain boundary characteristics and corresponding growth velocities

are obtained via a synchrotron X–ray-based technique. The efficacy of the proposed

numerical technique is demonstrated in several case studies and compared against

data from in-situ high-energy tomography techniques.

Chapter V provides a workflow for cross-validation of mechanical performance/prop-

erties of pixelated/voxelated discretizations as directly obtained from microscopy or

MRF numerical techniques. The elastoplastic response of polycrystalline aggregates

is computationally simulated by the NOSBPD technique. Despite the advantages

of PD formulation of CP for the treatment of deformation in the presence of high-

strain gradients, a particular drawback of NOSBPD is the presence of zero-energy

instability modes, primarily due to the weak integral formulation in non-local ap-

proximations of the deformation gradient tensor. As a result, this chapter focuses

on a computational scheme for eliminating the zero-energy mode oscillations using

a choice of influence functions that improve the truncation error in a higher-order

Taylor series expansion of the deformation gradient. The higher-order stabilization

scheme is demonstrated for multi-dimensional examples involving polycrystalline and

composite microstructures, along with comparisons against the conventional FEM.

Chapter VI concludes with the contributions and proposes future directions for this

dissertation.
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CHAPTER II

Three-Dimensional Polycrystalline Microstructure

Reconstruction From Orthogonal Images Using

Markov Random Field Technique

In this chapter, the numerical method for reconstructing 3D microstructures from

2D sections imaged on orthogonal planes is presented. The algorithm reconstructs

3D models by sampling voxel neighborhoods to representative 2D micrographs based

upon a Markovian assumption. The sampling is followed by an optimization proce-

dure, ensuring smoothness across the orthogonal sections of the synthesized voxels.

Previous 3D MRF microstructure reconstruction techniques were restricted to tradi-

tional grayscale images only. This method now enables the use of the entire RGB

spectrum, employing a histogram matching step. This chapter additionally examines

the algorithm’s accurate representation of orientations and morphologies, encompass-

ing a variety of micrographs from EBSD and polarized light microscopy. Using the

MRF algorithm, it is shown that both global features such as grain size, texture dis-

tribution, and grain neighborhood correlations, as well as localized information such

as precipitates and grain boundary networks, closely resemble those shown in the

experimental images.

The chapter is organized as follows. First, an overview of the MRF algorithm for unit-
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cell reconstructions of 3D microstructure from 2D orthogonal images is provided in

Section 2.1. There, the effect of sampling windows size on the statistical correlation

function of the 3D synthesized model as well as the breakdown of computational

cost pertaining to the MRF algorithm is also discussed. This follows by Section 2.2

demonstrating various examples of polycrystalline reconstructions for comparisons

of grain sizes statistics, orientation distributions, and nearest neighbor correlations

among synthesized and experimental exemplars.

2.1 3D Microstructure Reconstructions From 2D Orthogonal

Images

The objective here is to first present the MRF reconstruction methodology in Sec-

tion 2.1.1. The histogram matching extension, which provides the ability to recon-

struct color images, is described next in Section 2.1.2. Following this in Section 2.1.3,

the computational costs associated with MRF modeling and its correlation with sam-

pling window size is discussed in detail.

2.1.1 MRF Optimization Algorithm

The input to the MRF algorithm consists of either a single experimental image (for

isotropic structure) or three orthogonal planar exemplars (for anisotropic microstruc-

ture), whereas the output is a statistically-equivalent 3D solid model of the same

microstructure. In the following discussion, let Sx, Sy, and Sz denote the set of

orthogonal slices of the microstructure along their respective x, y, and z directions.

The symbol V indicates the synthesized 3D microstructure, and Vv represents the

color of voxel v in the solid synthesized microstructure. In this algorithm, three lay-

ers of color in the RGB channels (as a triplet) are allowed for representation of the

phase information. The exploitation of RGB scheme allows for significant flexibility
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in the choice of the microstructural colormap, enabling direct visualization of colors

throughout the reconstruction.

The sampling algorithm presented here is consistent with the Reference [77], except

that the averaging step is performed on each color channel separately. For peda-

gogy, let us consider how one of the RGB color channels in the 3D microstructure is

reconstructed. The hypothesis in the sampling approach is that the color assigned

to any voxel follows a Markovian property. That is, the PDF of a voxel given the

states of its spatial neighborhood is independent of the entire dataset. Thus, here the

neighbors are chosen over relatively small user-assigned windows around the voxel

v. The vectors denoting the spatial neighborhood of voxel v in the slices orthogo-

nal to the x, y, and z axes, as depicted in Figure 2.1(a), are denoted as V x
v , V y

v ,

and V z
v , respectively. Let Sx,w, Sy,w, and Sz,w denote a window of the same size

in the input 2D micrographs. In order to find the coloring of an unknown voxel

v, given the neighbor voxels in the x-plane, one needs to compute the CPD of Vv

given colorings of x -plane neighbors of v. Explicit construction of such a probability

density is often computationally intractable. An alternative approach is to estimate

the most likely RGB value of the voxel v by identifying a window Sx,w that is most

similar to V x
v in the 2D input micrograph. This window, as shown in Figure 2.1(b), is

denoted by Sx
v . Similarly, matching windows to the y and the z plane neighborhoods

of voxel v are found in the corresponding 2D sectional images, which are respectively

denoted as Sy
v and Sz

v . Each of these matching windows Sx
v , Sy

v , and Sz
v may have

different RGB coloring for the center pixel. Thus, an optimization methodology is

employed to effectively merge these disparate values and to identify a unique coloring

for the voxel v. The optimization approach is described next.

Let the value V x
v,u denote the RGB coloring of voxel u in the neighborhood V x

v . Let

the values Sx
v,u and Sx,w

u , respectively denote the RGB color of pixel u in the windows
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(𝒂) (𝒃)(a) 3D synthesized model(𝒂) (𝒃)(b) 2D orthogonal exemplars

Figure 2.1: The schematic of 3D microstructure reconstruction from three 2D orthog-
onal images using MRF sampling algorithm: (a) the neighborhoods of the voxel v in
the slices orthogonal to the x, y, and z axes are shown. (b) The windows in the input
2D micrograph shown in dotted lines are denoted by Si

v for i = x, y, and z. These
windows closely resemble the neighborhoods of the voxel, v, in the 3D synthesized
model.

Sx
v and Sx,w. Consequently, the 3D microstructure can be synthesized by posing

the problem as a Euclidean distance (L2) minimization of the energy function (also

known as the cost function) formulated below:

E(V ) =
∑

i∈{x,y,z}

∑
v

∑
u

ωi
v,u∥V i

v,u − Si
v,u∥22 (2.1)

where ||.||2 represents the L2 norm, and ωi
v,u denotes a per-pixel radially-symmetric

weighting factor. In order to preserve the short-range correlations of the microstruc-

ture, a Gaussian weighting scheme is used such that the weights for nearby pixels are

taken to be higher than pixels farther away. For instance, if the pixel u along the

x-plane is placed at a relative location (yu, zu) (in lattice units) with respect to the

voxel v, then ωx
v,u is given as:
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ωx
v,u =

exp

−y2u + z2u

2σ2


∑

j exp

−y2j + z2j

2σ2


(2.2)

the summation in the denominator is taken over all the pixels in Sx,w. Here, the

standard deviation σ, is taken to be 0.16×w, where w refers to the window size [90].

Similarly, ωy
v,u and ωz

v,u, respectively denoting per-pixel weighting factors in Sy,w and

Sz,w, can be computed.

The optimization of the energy function E(V ) in Equation (2.1), is carried out in two

steps: (i) the searching step, and (ii) the expectation step. In the first step, the energy

function is minimized with respect to Si
v. The assumption here is that the most likely

sample from the CPD of the center voxel in the 3D model along a particular direction

is the center pixel of the best-matching window in an experimentally-obtained 2D

slice on the corresponding plane. Hence, the best-matching neighborhood of voxel v

along the x-plane is selected by solving the following minimization problem:

Sx
v = arg min

Sx,w

∑
u

ωx
v,u∥V x

v,u − Sx,w
u ∥22 (2.3)

This is an exhaustive search that compares all the windows in the input 2D micrograph

to the corresponding x–slice neighborhood of voxel v and identifies a window that

leads to a minimum weighted squared distance.

Thus, for each voxel v, a set of three best-matching neighborhoods within the ex-

perimental images are identified. Generally, the center pixel values in each of these

neighborhoods are composed of different RGB colorings. Yet, a unique value of v
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needs to be found by weighting colors pertaining to location v in not only the match-

ing windows of voxel v but also its surroundings. This is done in the second step of

the optimization procedure. Here, the optimal color of voxel v is computed by setting

the derivative of the energy function with respect to Vv to zero. This leads to the

following weighted-average expression for the color of voxel v:

Vv = (
∑

i∈{x,y,z}

∑
u

ωi
u,vS

i
u,v)/(

∑
i∈{x,y,z}

∑
u

ωi
u,v) (2.4)

note that the subscripts u and v are switched in the above expression, compared to

Equation (2.1). This implies that the optimal color of the voxel v is the weighted-

average of the colors at locations corresponding to voxel v in the best-matching win-

dows of voxels u (i.e., Si
u) found within the synthesized 3D solid microstructure. The

color channels are averaged independently in the equation above. Since Vv is con-

tinuously changing after each step, the set of closest input neighborhoods Si
v varies

accordingly. Hence, the above two steps are repeated until convergence; that is until

the set Si
v remains unchanged.

2.1.2 Histogram Matching Algorithm

The primary issue with the above equations is the assumption that the color space

is continuous. Such an assumption allows for the partial derivatives of the energy

function, E(V ), to be obtained. However, the color space is typically discrete and

range bound. Consequently, the averaging performed in Equation (2.4), always tends

to shrink the color levels. For example the color level 0 always tends to increase,

since it is repeatedly averaged with all the color levels that are greater or equal to 0.

Similarly, the maximum color level G of each RGB channel (typically equals to 255)

has a tendency to decrease, due to it being averaged with other color levels that are

always smaller or equal to G. However, the general assumption in MRF reconstruction
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remains, that the two datasets (i.e., input images and solid synthesized model) have

the same range of color levels. To solve this issue, histogram matching (also known as

histogram specification) is applied after each iteration, allowing for the color levels to

be appropriately stretched back to values from 0 to G at each channel. In the image

processing community [194, 195], this step is often performed to achieve consistent

intensity (e.g., illumination or contrast) across two datasets (i.e., the reference and

the target images).

The stretching process is based on the cumulative distribution function (CDF) of

colors in the input micrographs. That means, the 2D micrographs are considered as

the reference images, whereas the 3D solid model’s color histogram is to be matched

following each iteration. Here, all three orthogonal images are lumped together in

order to generate the reference CDF. In current implementation, the histogram match-

ing algorithm is applied separately, for each color channel. Given the reference (2D)

and the target (3D) images, the color histograms are obtained by binning the pix-

els into G discrete intervals. Subsequently, CDFs of the two color histograms H2D

and H3D are computed and normalized. For each voxel (with RGB color value Vv)

in the 3D synthesized model, the color level X in the 2D image is found such that

H2D(X) = H3D(Vv). Accordingly, the color level associated with Vv (in the 3D

model) is replaced with color level X (from the 2D images). The histogram matching

scheme is depicted in Figure 2.2.

The application of histogram matching using an RGB image is illustrated in Fig-

ure 2.3. The first reconstruction (shown on the top of Figure 2.3) is based on the

algorithm presented in Reference [77]. Note, that phase information (e.g., grain size,

shape, orientation, boundary networks, etc.) is lost within the first few iterations.

Though with the current implementation (using histogram matching) the volume

fraction of each color level is preserved and stays consistent with the input images;
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Figure 2.2: The histogram matching algorithm: given the reference (2D) and the target
(3D) images, the color histograms are obtained by binning the colors into 255 discrete
intervals. Next, CDFs of the two color histograms, denoted as H2D(.) and H3D(.),
are then computed and normalized. The color level Gi in the synthesized 3D image is
switched for each RGB channel independently. The new color Gj has the same CDF
as input 2D exemplars.

the result of which is the reconstruction of a representative 3D microstructure. In

Figure 2.3, the same 2D micrograph is considered as the reference image for both

reconstruction schemes. The snapshots of the 3D solid models at iterations 0, 7, 21,

and 35 are shown, respectively.

Although the general approach presented in this chapter is not tied to a specific

input resolution, all the input images are resampled to 128×128 pixels prior to MRF

reconstruction. As a starting condition for 3D reconstruction, a random RGB color

from the input 2D images is assigned to each voxel v. The reconstruction process

is then carried out in a multi-resolution (or multi-grid) fashion [77]: starting with a

coarse voxel mesh while progressively interpolating the results to a finer mesh once the

coarser 3D image has converged to a local optimum. The multi-resolution approach

drastically increases the convergence rate to an optimum cost function. As such,
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𝟑𝟎𝟎 𝝁𝒎

Reference Image

Initialization 21st Iteration 35th Iteration7th Iteration

Figure 2.3: The effect of histogram matching on synthesized 3D microstructure: with-
out histogram matching (as illustrated on the first row), the color space continuously
shrinks and phase information is lost after the first few iterations; contrarily, with his-
togram matching (as shown on the bottom), the color space remains consistent with
the input reference image throughout the simulation.

three resolution levels (323, 643, and 1283) are used for presented reconstructions.

Respective window sizes of 7, 9, and 11 are chosen in the three resolution levels. The

pseudocode in Algorithm 1 summarizes the sampling and reconstruction schemes:

2.1.3 Computational Cost vs. Window Size

Although there are several free parameters throughout the reconstruction strategy,

window size is chosen to be the only adjustable variable for simplicity. Window size

plays an important role in the MRF reconstruction model. At window sizes much

smaller than the correlation lengths, false matches lead to inaccurate reconstructions

[78]. Contrarily, at very large window sizes, not enough matching windows can be

identified. Additionally, high window sizes require extensive computational power

for both sampling and reconstruction. Between these two extremes, there is an ideal

window size that needs to be realized through numerical trials. Normally, the win-

dow size should be larger than the average microstructural features, especially at
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Algorithm 1: Pseudocode for 3D MRF reconstruction of size N3.

Require: Orthogonal 2D images of size N2 as well as the sampling window size
for each level
Ensure: Optimum cost function given in Equation (2.1)
Resize 2D images to L2, where L = N/4
Initialize a random 3D microstructure of size L3, where L = N/4
Initialize level index: level← 1
while level < 4 do

while level unchanged do
Use Equation (2.3) to identify the best matching windows in orthogonal
2D images (Searching Step)

Use Equation (2.4) to compute the expected voxel channel values
(Expectation Step)
for each channel do

Compute CDFs of 2D images (H2D) and 3D solid model (H3D)
Find color level X in the 2D images such that H2D(X) = H3D(Vv)
Replace voxel channel color with color level X (Histogram Matching
Step)

end

end
Update image size: L← 2L
Resize 3D synthesized model to L3 and 2D images to L2

Update level index: level← level + 1
end

low-resolution levels. This allows the MRF algorithm to capture global attributes

(e.g., grain boundary network, inter-connectivity, size distribution, etc.) in the poly-

crystalline microstructure at early iterations while reconstructing finer details (e.g.,

precipitate, twin, etc.) at later resolution levels. Figure ?? depicts the effect of win-

dow size (within the highest resolution level, i.e., 1283) on the quality of synthesized

3D images. Note that only odd values are allowed for the window size so that the

sampled neighborhood is symmetric around the center voxel.

The computational cost to obtain 3D solid models is directly related to the voxel

resolution. In other words, higher voxel resolutions (1283 vs. 643) require more com-

putational power to perform searching and expectation steps. Table 2.1 provides a

breakdown of the computational cost as a function of the sampling window size as-
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sociated with the highest resolution level. The processing times here correspond to

the solid models shown in Figure ??. Note, simulation times generally vary drasti-

cally depending on the iteration number as well as the features being sampled. As

shown in Table 2.1, most of the computational burden is related to identifying the

best-matching windows in the orthogonal input images (i.e., searching step). This is

expected as the searching stage consists of an exhaustive approach that compares all

the windows in the input micrographs, in order to identify a neighborhood that leads

to a minimum weighted squared distance, formulated in Equation (2.3). Furthermore,

note that the computational burden associated with performing the histogram match-

ing step is typically related to the 3D voxel resolution, and it is independent of the

sampling window size. Given this reason, histogram matching is excluded from Ta-

ble 2.1. At the highest grid resolution, the typical time required to perform histogram

matching is minimal (usually fewer than 5 seconds) when compared to expectation

and searching steps.

Table 2.1: Breakdown of computational cost associated within the highest resolution
(128 × 128 × 128) level of the MRF reconstruction as a function of the sampling
window size. For reference, all reconstructions are executed using a single processor
and 4 GB of memory.

Relative Time (%)

Searching Step

Relative Time (%)

Expectation Step

Average Time

(min)

Window Size 3 65.05 34.95 1.69

Window Size 5 71.94 28.06 5.53

Window Size 7 74.31 25.69 11.09

Window Size 9 78.80 21.20 20.37

Window Size 11 81.31 18.69 32.25

In light of the above discussion regarding the computational burden caused by dif-

ferent window sizes, it is expected that mapping sample images to lower resolutions

would significantly improve the overall computational efficiency of the MRF algo-

rithm. Note, the reconstruction scheme presented in this chapter is not tied to a

specific input resolution. Thus, any 2D image resolution can be reconstructed, if
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needed. The implication is that the user should specify a sufficient pixel resolution

that would capture the phenomena of interest.

2.2 Unit-Cell Microstructure Reconstruction Examples

In Section 2.2.1, the MRF algorithm is examined by comparing grain sizes for a

previously studied sample in Reference [77] using the Saltykov method. Thereafter in

Sections 2.2.2 and 2.2.3, the reconstruction procedure is applied to an orthogonal set

of EBSD images and polarized light microscope data of an aluminum alloy to study the

nearest neighbor correlation and texture distributions after the MRF reconstruction

procedure.

2.2.1 Example 1: Polycrystalline Micrograph With Equiaxed Structure

Here, a polycrystal grayscale micrograph is chosen as an input exemplar. The image

is reconstructed in the RGB color space using the algorithm, presented in Section 2.1.

In this example, the ability of MRF to accurately model 3D grain size distribution

as predicted by the stereological/analytical formula is studied. Such validation has

not been done previously for 3D MRF algorithms. Grain size distribution is essential

for simulating mechanical properties in polycrystals via Hall-Petch models [196, 197,

198, 199]. The Saltykov approximation method, outlined in Appendix A, provides a

closed-form expression for the 3D grain sizes, given a 2D observation. The assumption

is that the grains are approximately spherical or equiaxed, which is reasonable given

that only one micrograph, as depicted in Figure 2.4(a) is used for all three orthogonal

sections. The resultant 3D reconstruction is shown in Figure 2.4(b).

In this example, the 2D grain statistics are captured in the following manner. The

incomplete grains on the outer-edge adjacent to the borders of the image are removed.

For every inner grain, the maximum possible diameter at all its boundary points is
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𝟓𝟎 𝐏𝐢𝐱𝐞𝐥𝐬

(a) 2D exemplar

𝟓𝟎 𝐏𝐢𝐱𝐞𝐥𝐬

(b) 3D reconstructed model

Figure 2.4: A polycrystalline microstructure reconstruction example with equiaxed
grains: (a) the experimental 2D microstructure is used as an exemplar for 3D MRF
reconstruction; (b) the 3D MRF synthesized model depicting similar grain morphology
as shown in input exemplar.

computed in pixel units. The PDF of the raw diameter data is then calculated over 24

bins using a log-normal distribution. The result of the Saltykov algorithm on this data

is plotted as solid points in Figure 2.5. To obtain the 3D grain size distribution, edge

detection is first performed on the solid synthesized structure, followed by segmen-

tation of grains. In the segmentation algorithm, grains are described by the number

of connected faces (six-fold connectivity) of a similar color. To obtain the grain size

distribution, the same process is followed as that used in the 2D image. That is the

external grains are first eliminated, and for each inner grain, the maximum diameter

for every boundary voxel is obtained. As illustrated in Figure 2.5, a close agreement

between the Saltykov estimation and the sampled grain size distribution from the

MRF reconstruction is observed. Minor deviations from Saltykov estimates are seen

at the tails of the distribution, where the 3D reconstruction marginally predicts a

higher probability of small and large grains.

For the 3D model presented here, one reference image is supplied as an exemplar for

all three orthogonal directions. Therefore, the model is assumed to be an equiaxed

microstructure. This implies that slices taken from the diagonal directions should
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(a)

(𝒂) (𝒃)
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Figure 2.5: Comparison of grain size statistics of 3D synthesized model against
Saltykov analytical approximations: (a) comparison of the PDFs of the 3D synthesized
microstructure and the Saltykov prediction, and (b) comparison of the CDFs of the
3D realised grain size distribution with Saltykov prediction.

exhibit similar statistics as orthogonal planes in the solid 3D model. Hence, for

comparison, the grain size distributions of these sections are examined next. The

process is carried out for total of 15 orthogonal planes (five in each direction) and 18

oblique sections (three in every face-diagonal direction) across the 3D microstructure

shown in Figure 2.4(b). A number of these sectional images are shown in Figure 2.6.

To acquire the sectional grain size statistics, same process as described for 2D input

image, is employed. The partial grains adjacent to the borders are eliminated, and for

each inner grain, the maximum diameter at every boundary node is computed using

pixel units. The probability densities of diameters for both orthogonal and diagonal

sections are then computed over 50 bins. As illustrated in Figure 2.7, a close trend

between the two data is observed.

2.2.2 Example 2: Reconstruction of EBSD Images

The following EBSD images, shown in Figure 2.8, correspond to an Al-Li alloy after

forging to 2.5-inch thickness. Here unlike the previous example in Section 2.2.1,

three orthogonal sections are characterized and used for the MRF reconstruction.
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(𝒂) (𝒃)
Figure 2.6: The oblique versus orthogonal cross sections of 3D polycrystalline mi-
crostructure: several sectional images of the 3D reconstructed model along diagonal
(shown on the left) and orthogonal (shown on the right) directions are illustrated. The
grain sizes and shapes along these sections nearly resemble the 2D reference image.

Experimentally, EBSD data is obtained using a SEM equipped with detectors normal

to each plane. To ensure a consistent MRF sampling across all EBSD sections, the

orientations need to be remapped such that all the images are observed in the same

sample coordinate system.

Here, the raw Euler angle data is mapped to nodes in a discretized ODF. The ODF

is a one-point probability function, describing the volume fractions of crystals as a

function of orientation. The orientation is represented here using an axis-angle format,

as initially proposed by Rodrigues. The format is based on the unique association

of orientation with an axis of rotation, n, and a counterclockwise rotation angle, θ

about n [92, 200, 201]. The Rodrigues’ parametrization, r, is scaled as r = n ·tan( θ
2
).

A proper rotation, R, relates the sample orientation to the crystal orientation. Here,

the example material’s lattice is of cubic symmetry. The 3D orientation space can

be reduced to a small subset called the fundamental region that accounts for the
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(𝒂) (𝒃)
(b)

Figure 2.7: Comparison of grain size statistics along orthogonal and diagonal cross
sections in synthesized 3D model: (a) comparison of the PDFs of 3D grain sizes
distributions along oblique and orthogonal sections from the 3D synthesized model, and
(b) comparison of the CDFs of the 3D grain diameters across oblique and orthogonal
cross sections.

cubic symmetry. The resulting Rodrigues fundamental region is shown in Figure ??.

For numerical analysis, the fundamental region is discretized using a finite-element

mesh. The symmetry of the ODF is an additional constraint that must be properly

considered. Due to cubic symmetries, several of the nodes in the grid are equivalent.

Hence, the ODF is represented using a smaller set of independent nodes, as shown in

Figures ?? and ??.

Each EBSD data point is mapped to the closest independent node in the ODF. If

the orientation is close to a non-independent node, the node that is the symmetry

equivalent to the dependent node is chosen. The 2D EBSD images are then colored

according to the nodal numbers. A simple choice for the colormap is to apply the Ro-

drigues vector itself as an RGB triplet, after normalization of each Rodrigues vector

component to a range of [0, 255]. Figure 2.8 shows the orthogonal set of images from

the rolled sample; grains are elongated in the rolling direction and shortened in the

transverse directions. The grains are colored based on the colormap in Figure 2.8,

depicting the color of each independent node in the ODF. Here, three 700×700 EBSD
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Figure 2.8: The colormap used for the representation of the independent nodes within
the fundamental Rodrigues region: the colormap shows the RGB values of individual
nodes in the face-centered cubic (FCC) fundamental region. The pixels’ RGB values
in the raw 2D orthogonal EBSD images are mapped to the closest node (in Euclidean
norm sense) using the colormap. The ODFs of all three input images are similar,
after adjusting the relative alignments of the detectors with respect to the sample.

sections are chosen and resampled to 128 × 128 images for the reconstruction. The

ODFs for all three sections are comparable after correcting for the relative orientation

of the camera with respect to the sample, as shown in Figure 2.8. The 3D reconstruc-

tion from the MRF algorithm is shown in Figure ??. A number of different sections

of the reconstructed model are also shown in Figure ??.

In this example, the averaging algorithm tends to smoothen the noise, supplying an

overall smoother reconstruction compared to the input 2D images which consist of a

significant amount of noise. Since the averaging step in the MRF algorithm introduces

deviation of colors from the original 2D colors, an additional step is employed to

remap the colors to the independent nodes of the ODF through the colormap shown

in Figure 2.8. The top four closest colors in the ODF that closely match the voxel

color are first identified. If there is a match within a threshold error, the voxel color

remains unaltered. Otherwise, the closest colors (in Euclidean norm sense) to the
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colormap are found. Of those colors identified as best matching, one randomly picked

to recolor the voxel. It is found that the resulting ODF and pole figures of the MRF

reconstructed microstructure match exceptionally well with the measured ODF, as

shown in Figures 2.9 and 2.10.
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Figure 2.9: Comparison of the ODFs between (a) the input 2D experimental exemplars
and (b) synthesized 3D microstructure.

In addition, a new analysis is performed, where the reconstruction algorithm is run

sequentially, using random slices of the previous 3D model as the input exemplars for

the next synthesis. Such an analysis exemplifies the ability of the 3D MRF algorithm

to preserve texture statistics, generate distinct equivalent microstructures, and, most

importantly, demonstrate how errors can be accumulated after every reconstruction.

An example of sequential reconstruction is shown in Figure 2.11. These sequences

reveal that our 3D reconstruction strategy succeeds in preserving the original ex-

emplars’ orientation distribution. Despite all, due to the averaging step, at some

point, deviations in statistics are expected to creep into reconstructions. This is only

anticipated after a relatively larger number of reconstructions.

2.2.3 Example 3: Reconstruction of Polarized Light Micrograph

The third example is an optical micrograph of an aluminum alloy obtained from Ref-

erence [202]. In this example, the microstructure is first etched with Barker’s reagent.
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(a) 2D experimental exemplars (b) 3D synthesized model

Figure 2.10: Comparison of the pole figures between (a) the input 2D experimental
exemplars and (b) synthesized 3D microstructure.
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Figure 2.11: Sequential texture analysis for the MRF reconstruction algorithm: each
reconstruction uses three random orthogonal slices of the previous 3D model (shown
on its left) as its input exemplars. Here, the orientation distribution of each recon-
struction is shown to be consistent with the original exemplars’ ODF.
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Next, an electric field is applied to produce a thick oxide layer over the aluminum

grains. When exposed to cross-polarized light, interference in these oxide layers pro-

duces colors that depend on the grain orientation. For reconstruction purposes, the

image is preprocessed such that all grain boundaries are accentuated to demarcate

the grains clearly. The 2D microstructure is depicted in Figure ??. Only one sectional

representation is used for the input to the MRF reconstruction algorithm, and the

other sections are assumed to be identical (similar to Example 1 in Section 2.2.1).

The microstructure is then reconstructed using the MRF algorithm and is shown in

Figure ??. Several orthogonal sections of the 3D synthesized model are also illustrated

in Figure ??.

The goal in this example is to examine the nearest neighbor-grain correlation, which is

a critical descriptor relating mechanical properties [203]. For this purpose, the grains

are classified in terms of four predominant colors observed in the image: purple (P),

blue (B), orange (O), and yellow (Y). The 2D and 3D microstructures with grains

marked by this classification are shown in Figure 2.12. For all yellow grains, the

number of blue neighbors, as well as all the other neighbors (purple, orange, and

yellow), are counted. The same process is repeated for the remaining colors. Similar

data is gathered from five slices in each direction (a total of 15 slices) across the 3D

synthesized microstructure. The neighbor statistics of the colors are compared in

Figure 2.12. In this figure, the x-axis denotes the color of the chosen grain, while

the color bars indicate the probability of occurrence of a yellow, orange, purple, or

blue neighbor for that specific grain. There are two bars for each neighbor color,

one for the 2D microstructure (located on the left-hand side) and another for the

3D reconstructed model (located on the right-hand side), as indicated by the legends

in the bar plot. The ranges on the tip of the 3D bars indicate the maximum and

minimum values of the neighbor color percentages along the x, y, and z planes. The

numbers on the bars indicate the relative percentage difference between the 2D and
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3D statistics. The maximum error between the 2D and 3D neighbor statistics is only

3.32%, which is associated with having a purple grain neighboring another purple

grain. This example indicates that the MRF algorithm is exceptional in maintaining

the nearest grain neighborhoods in the reconstructed image.
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Figure 2.12: Comparison of the nearest neighbor-grain correlations between synthe-
sized image and experimental exemplar: four predominant colors, purple (P), blue
(B), orange (O), yellow (Y), as marked on the 2D and 3D microstructures on the
left-hand side are classified. Neighbor statistics of the colors are shown on the right-
hand side, where the x-axis denotes the color of the chosen grain, and the bars indicate
the probability of occurrence of colored neighbor grains. There are two bars for each
neighbor color, one for the 2D image and another for the 3D reconstructed microstruc-
ture.

2.3 Conclusion

A numerical method for reconstructing diverse 3D multi-color microstructures from

2D micrographs imaged on orthogonal planes is presented. The algorithm reconstructs

3D solid models by matching orthogonal sections of the synthesized microstructure

to the representative 2D micrographs through an iterative minimization procedure.

In this chapter, the new reconstruction algorithm is applied to a wide variety of mor-

phologies, particularly equiaxed and elongated grains. Through the reconstruction of
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optical and EBSD datasets, it is shown that the MRF approach is able to precisely

capture crucial features of polycrystalline microstructure, such as grain size, orienta-

tion distribution, and grain neighborhood correlation. The method can be useful to

rapidly create a library of 3D microstructures from 2D micrographs for modeling and

simulation purposes.
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CHAPTER III

Large-Scale Synthesis of Metal

Additively-Manufactured Microstructures Using

Lapped Textures

In this chapter, a data-driven framework is developed and examined for creating

spatially-varying crystallographic textures over component-scale CAD models. Here,

a set of three orthogonal 2D micrographs of an AM stainless steel specimen are first

obtained experimentally through EBSD and subsequently converted to a 3D represen-

tative unit cell using the Markov Random Field technique, presented in Chapter II.

Features such as grain size statistics, crystallographic orientation, and grain boundary

misorientation distributions are used to validate the reconstructed 3D microstructure

against input experimental EBSD images. The variations of microstructural features

during a laser-based additive manufacturing process are subsequently modeled by

merging patches from the 3D snapshot of AM microstructural unit cell in a part-scale

geometry using a tensor-based optimization process. The optimization algorithm re-

peatedly pastes microstructural elements from the reconstructed MRF unit cell onto

the geometrical CAD domain until it is entirely covered. Here, through a simple

graphical user interface (GUI), the user specifies a tensor field over the volumetric

CAD model, defining the local control over grain-scale, anisotropy, and crystal growth
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orientation. This new approach provides a workflow for reconstructing global maps of

AM microstructures in real-time by embedding site-specific images based on known

AM microstructural patterns seen in experimental characterization techniques. The

numerical results are helpful specifically for the visualization of process-microstructure

relationships in metal additive manufacturing techniques.

The following details the structure of this chapter. The LEGOMAT algorithm to em-

bed the MRF synthesized microstructures is presented first in Section 3.1.1. Subse-

quently, the patch-based optimization process in correlation with material flow paths

is described in detail. Thereafter, numerical and experimental results, along with sta-

tistical comparisons for verification of grain size, crystal orientation distribution, and

grain boundary misorientation angles of the proposed methodology, are presented

in Section 3.2. Here, the efficacy (i.e., computational cost and accuracy) of the

LEGOMAT reconstruction framework is also compared against known experimental

characterization patterns and simulated images from SPPARKS kinetic Monte Carlo

[104].

3.1 Large-Scale Microstructure Reconstruction Workflow

In this section, the mathematical formulation and implementation for reconstructing

large-scale 3D AM microstructures are discussed. The overall process, as illustrated in

Figure 3.1, utilizes two separate algorithms. First, the MRF theory, from Chapter II,

is leveraged to reconstruct a representative 3D microstructural unit cell from three

orthogonal planar experimental EBSD exemplars. Next, Section 3.1.1 describes the

large-scale synthesis process for embedding site-specific unit cells through a tensor-

based optimization procedure that efficiently merges patches from the 3D unit cell

onto a CAD model.

Although the methodology presented hereon is not tied to any specific image resolu-
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Figure 3.1: Large-scale synthesis optimization process for embedding site-specific unit
cells: full-field component imaging built by using a single site-specific MRF unit cell.
Here, a small-scale texture of the AM 316L stainless steel specimen in three orthog-
onal planes is first extracted through SEM imaging. The 3D microstructure is then
reconstructed using the MRF sampling algorithm as introduced in Section 2.1. The
laser path, along with other processing parameters such as layer thickness and hatch
spacing (imposed by the user), is then used to embed the crystallographic patches from
the MRF unit cell onto the CAD model. The BD, SD, and TD axes here represent
the building, scanning, and transverse directions, respectively.
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tion, all the input experimental EBSD exemplars are initially resampled to 128× 128

pixels prior to the 3D MRF reconstruction. Next, a random RGB triplet from the

input planar exemplars is assigned to each voxel in the 3D microstructural unit cell

as an initial condition. The MRF optimization process is then carried out in a multi-

resolution framework: starting with a coarse voxelated mesh while progressively inter-

polating the results to a finer resolution. The multi-resolution approach considerably

increases the convergence rate associated with the sampling algorithm. The compu-

tational cost for the generation of the MRF unit cell is directly related to the pixel

resolution and the sampling window size. The detailed computational breakdown

however can be found in Section 2.1.3. In the following section, the numerical process

associated with the LEGOMAT for embedding the location-specific unit cell in an

engineering-scale geometry is discussed.

3.1.1 LEGOMAT Embedding Algorithm

The inputs of the LEGOMAT algorithm consist of a geometrical CAD model and an

exemplar solid 3D unit cell of an AM microstructure, as outputted from the MRF

reconstruction process. Here, the input CAD geometry is discretized into tetrahedral

meshes via Delaunay tetrahedralization algorithm [204]. In return, the LEGOMAT

output is of a 3D CAD model filled with microstructural patches from the exemplar

3D unit cell. It is worth noting that the LEGOMAT algorithm, as presented in this

chapter, is a stand-alone approach and can be ultimately utilized to reconstruct a

wide range of part-scale 3D solid textures using input unit cells obtained from either

experimental procedures or other existing numerical techniques (e.g., DREAM.3D,

Neper, etc.). The MRF algorithm, however, is notably more suitable for reconstruct-

ing small-scale AM unit cells since it can systematically model realistic grain struc-

tures (e.g., non-convex and non-equilibrium grain structures) without assuming an

idealized morphology based on Voronoi tessellation employed in Neper [47] or su-
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perellipsoid geometrical approach in DREAM.3D [71]. Furthermore, the generation

of statistically-representative 3D numerical models via DREAM.3D or Neper gener-

ally requires information such as spatial distributions and 3D grain shapes, which is

not readily attainable from a limited set of orthogonal planar exemplars as used in

this approach.

Metal additive manufacturing processes can often be classified based on powder-

delivery methods into two general categories: laser engineered net shaping (LENS)

and laser powder-bed fusion (LPBF). The LENS process utilizes a carrier gas stream

to transport powder through a nozzle directly onto the melt pool at the surface of

the build. In LPBF, however, a laser beam often rasters across the metallic powder

bed. Although these two manufacturing techniques have markedly different melt-

ing and solidification dynamics, they often exhibit similar underlying microstruc-

tural patterns. In particular, the solidification process results in the formation of

highly-localized non-equilibrium microstructural components within the fusion zone

[205, 206, 207]. Additionally, preferred crystallographic growth directions in these

manufacturing techniques tend to align the columnar grains in the direction of in-

creasing temperature. For instance, on the SD plane, the columnar grains tend to

grow perpendicular to the melt pool’s solidification surface, while curving toward the

laser beam directions [208, 209]. Hence, the alignment of such complex features in

3D geometrical space while using a single reference 3D snapshot, requires a tensor

field (i.e., a set of three orthogonal vector fields) that can thoroughly capture the

underlying material growth orientations after the solidification process.

In the current implementation, as illustrated in Figure ??, a volumetric vector field

is specified over the CAD model, simply by manually drawing the material growth

directions on the surface and cross-sections of the CAD model. The second direction

of the tensor field is then chosen randomly upon embedding each microstructural
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element, and the third direction is set to be the cross-product of the two vectors.

Alternatively, the volumetric tensor field can be automatically inferred directly by

the experimental measurements. However, such measurements are only possible to

obtain on external surfaces of the build and not across the interior cross-sections.

Though, one can incorporate thermal analyses and simulation softwares to reproduce

the volumetric temperature gradient that can ultimately inform the preferred mate-

rial flow directions [210, 211]. The latter approach is outside the scope of the current

methodology. However, it will be incorporated in future studies upon automation of

the material growth directions based on a set of input parameters such as hatch spac-

ing, layer thicknesses, and scanning patterns. For interpolation of the user-specified

vectors, a Laplacian smoothing scheme [212] is utilized, which has been previously

employed in lapped texture synthesis methods [213, 214]. Once the material flow

paths are scribed, the local scaling of the grain sizes, as seen in Figure ??, is specified

to incorporate size-varying crystals in the CAD model. Additional details regarding

manual specification of material flow fields and grain size scaling are provided in Sec-

tions 3.1.1.1 and Section 3.1.1.2, respectively. Next, the LEGOMAT algorithm, as

outlined in Section 3.1.1.3, repeatedly pastes the microstructural patches from the

MRF unit cell onto the CAD model while aligning the embedding microstructures

according to the local tensor orientation and specified scaling parameter. The result

of the embedding process is shown in Figure ?? along with a few of its cross-sections

across each orthogonal direction.

Contrary to the voxelated filling approach outlined in Section 2.1.1, a patch-based

optimization technique is implemented here that uses a tetrahedral discretization to

represent the solid geometrical CAD models. This formulation has certain benefits

over voxel representation used in Section 2.1.1. The main advantage is it requires

a substantially smaller number of elements to approximate the 3D CAD model, re-

sulting in considerably fewer iterations (and equivalently lower computational cost)
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to complete its reconstruction task. Next, the manual specifications of the material

flow field, grain size scaling, along with the numerical embedding process and its

implementation are explained in detail in Sections 3.1.1.1-3.1.1.3.

3.1.1.1 Material Flow Fields

In this work, the preferred crystallographic growth orientations illustrated in Fig-

ure ?? are manually drawn as a set of orthogonal vector fields based on known mi-

crostructural patterns seen in the experimental characterization techniques. Upon

specification of the growth orientations, the LEGOMAT optimization procedure in

Section 3.1.1.3 closely follows the local directional vector fields throughout the em-

bedding of the microstructural patches from the MRF unit cell onto the CAD model.

In structural systems manufactured by LENS or LPBF techniques with a zig-zag ras-

tering pattern, columnar-shape-like grains are formed away from the laser beam track

along the BD surface in-plane to the build. Additionally, on the SD plane, colum-

nar grains tend to elongate perpendicular to the melt pool’s solidification boundary

while curving in the direction of increasing temperature (i.e., toward laser beam

track) [5, 19, 32, 107, 108]. On the TD surface, the elongated grains tend to extend

nearly perpendicular to the laser beam track while becoming slightly inclined toward

scanning direction at regions closer to the beam track [5, 32, 117, 206, 215, 216].

Accordingly, given an input CAD model and processing modalities, the user can fol-

low the above crystallographic growth patterns by manually drawing the columnar

directions across surfaces orthogonal to the laser direction. The second direction of

the tensor field is then chosen at random, upon embedding each microstructural ele-

ment. At the same time, the third direction is set to be the cross-product of the two

local vector fields. For volumetric interpolation of these vectors, a Laplacian smooth-

ing scheme [212] is employed to approximate the preferred growth directions across

non-trivial faces with unspecified or unknown growth directions. The process for the
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manual drawing of the first directional vector pertaining to the crystal growth direc-

tion, along with relative experimental images from the work of Rodgers et al. [104]

for a LENS build with a zig-zag rastering pattern is shown in Figure 3.2.
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Figure 3.2: Manual drawing of local vector fields, representing the preferred crystal-
lographic growth orientation, based on known microstructural patterns seen from the
experimental characterization techniques. The shown TD image is taken from the cen-
terline of a beam pass. Here, the experimental images are reproduced from the work
of Rodgers et al. [104] under the terms of the Creative Commons CC-BY license.

3.1.1.2 Material Grain Size

As evident from experimental characterization techniques of AM components [5, 104,

117, 206, 216], small grains near the laser path tend to nucleate during the solidifi-

cation process. These grains, however, quickly transition to much larger elongated

grains in between the laser paths. Such transitions often result in three classes of

grain morphology depending on spatial location within the build: (i) large curved

columnar grains on TD and SD planes, (ii) fine equiaxed grains near the laser path

on BD plane, and (iii) large transversely-elongated columnar grains across regions

in between the laser paths across BD surface. The resulting heterogeneous mixture

of elongated and equiaxed grains often has a visible periodicity with the deposition

thickness, hatch spacing, and scanning pattern [104]. This transition is further con-

trolled by the thermal gradient and solidification rate at the solid-liquid interface. For
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instance, the width corresponding to small-scale grains along the laser beam track

often tends to grow with increasing laser speed or decreasing power [216]. Figure 3.3

illustrates these grain types in cross-sectional regions orthogonal to the scan direc-

tion. Although the curvature of these grains is mainly controlled by the directional

vector fields outlined in Section 3.1.1.1, for a more realistic reconstruction, grain-

scale parameterization must also be specified before initiating the embedding process

in Section 3.1.1.3. Accordingly, in the LEGOMAT approach, the user may enforce

smaller grain scales near the laser path in cross-sections perpendicular to the scan

direction. Such an approach can efficiently create the equiaxed-to-columnar grain

transitions, as elaborated above. The process for the manual specification of the

grain size parameterization for an AM build with a zig-zag tracing pattern is shown

in Figure 3.3.
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Figure 3.3: Manual parameterization of grain size scaling by embedding larger grains
farther away from the laser path in cross-sections orthogonal to the scan direction.
The experimental images shown here are reproduced from the work of Rodgers et
al. [104] under the terms of the Creative Commons CC-BY license.

3.1.1.3 Tensor-Based Optimization Procedure

The LEGOMAT embedding process closely follows the lapped texture reconstruction

technique outlined in the work of Praun et al. [214], which was initially developed for

2D texture embedding. Here, in the process of volumetric embedding, a group (or a
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patch) of N tetrahedral elements, denoted as Ti for i = 0, 1, 2, ..., N − 1, is selected in

the CAD model such that there are slight variations in the user-defined tensor field

across the group. The size of the group of tetrahedral elements is always chosen to

be contained within the representative input MRF microstructure. In particular, let

the tetrahedron located at the center of the patch, denoted by T0, constitute as the

seeding element. The LEGOMAT algorithm then acquires all neighboring elements

of the seed tetrahedron for which the following two conditions are satisfied: (i) the

mapped vertices of the tetrahedron Ti are inside the microstructural unit cell, and (ii)

the dot product between the tensor fields associated with seed tetrahedron T0 and the

element Ti is greater than zero. In the case of uniform discretization, the total number

of assigned elements at each iteration varies considerably based on global processing

modalities and relative spatial locations to the laser path. Generally, fewer elements

are assigned along the laser path, where grain size scaling is small. In contrast, more

significant numbers of tetrahedra are being filled simultaneously at locations closer

to the melt pools boundary.

The embedding is based on an optimization process that computes the mapping of

the vertices of the 4-node tetrahedral elements Ti within each patch, to locations in

the MRF microstructure that closely resemble the user-specified tensor field. In the

following discussion, let v1, ...,v4 represent four vertices of the seed tetrahedron T0 in

the CAD model. Accordingly, the primary aim of the LEGOMAT embedding process

is to identify the linear mapping of these nodes to positions Ψ
(
v1

)
, ...,Ψ

(
v4

)
in the

representative MRF unit cell.

Here, let P̃ , Q̃, and R̃ represent the set of three local orthogonal vectors of the

tensor field associated with the seed tetrahedron, T0. Consequently, the barycentric

coordinates, denoted as p1, ..., p4, of tetrahedral element T0 can be used to represent

P̃ as follows:
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
p1v1 + p2v2 + p3v3 + p4v4 = P̃

p1 + p2 + p3 + p4 = 0

(3.1)

Similarly, Q̃ and R̃ can be represented using q1, ..., q4 and r1, ..., r4, respectively.

Furthermore, due to the mapping associated with vertices, i.e., vj 7→ Ψ
(
vj

)
for

j = {1, 2, 3, 4}, being linear, the mapping of vector P̃ in the CAD model to the

corresponding vector Ψ
(
P̃
)

in the microstructural space follows the same weighting

factors as in Equation (3.1), as formulated below:

Ψ
(
P̃
)

= p1Ψ
(
v1

)
+ p2Ψ

(
v2

)
+ p3Ψ

(
v3

)
+ p4Ψ

(
v4

)
(3.2)

Similarly, Ψ
(
Q̃
)

and Ψ
(
R̃
)

can be formulated in terms of barycentric coordinates

q1, ..., q4 and r1, ..., r4, respectively. Ideally, when mapped into the microstructural

domain, these vectors should be aligned with the orthogonal x, y, and z coordinate

axes in the microstructure. However, as illustrated in Figure 3.4 slight differences are

permitted in order to enforce microstructural continuity in the CAD model. There-

fore, difference vectors, denoted as dp, dq, and dr, are defined for the seed tetrahedron,

T0, as follows:


dp = Ψ

(
P̃
)
− (1, 0, 0)t

dq = Ψ
(
Q̃
)
− (0, 1, 0)t

dr = Ψ
(
R̃
)
− (0, 0, 1)t

(3.3)

The difference vectors associated with all tetrahedral elements in the patch, i.e., Ti for

i = 0, 1, 2, ..., N − 1, can be similarly computed. Therefore, let di
p, d

i
q, and di

r denote
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Figure 3.4: LEGOMAT optimization schematic: the optimization process minimizes
the difference vectors dp, dq, and dr between microstructure coordinate axes x,y,z
and respective transformed tensor axes Ψ
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)
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)
,Ψ
(
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)
for each tetrahedron.

the difference vectors associated with the tetrahedral element Ti. The LEGOMAT

optimization problem is to find the vertex mapping for all 4-node tetrahedra Ti within

the patch such that the least-squares functional defined below is minimized:

F =
1

N

N−1∑
i=0

∥di
p∥22 + ∥di

q∥22 + ∥di
r∥22 (3.4)

However, the minima corresponding to Equation (3.4) is unique up to a translation

vector. Thus, an additional constraint, as formulated below, is set to fix the center

of the seed tetrahedron, T0, to the center of the microstructural volume:

Ψ
(
v1

)
+ Ψ

(
v2

)
+ Ψ

(
v3

)
+ Ψ

(
v4

)
4

= (0.5, 0.5, 0.5)t (3.5)

Consequently, the optimized solution for mapped vertices associated with Ti for
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i = 0, 1, 2, ..., N − 1 from the constrained minimization problem formulated in Equa-

tions (3.4)-(3.5), can be efficiently obtained by solving a sparse linear system of equa-

tions. Once the patch of tetrahedral elements Ti is fully mapped to the microstructural

space, the LEGOMAT optimization procedure randomly continues with another lo-

cation in the CAD model consisting of an unmapped tetrahedron. The embedding

process repeats until all the nodes in the CAD model are mapped to the microstruc-

tural unit cell.

The tensor-based optimization procedure elaborated in here is specific to a 4-node

tetrahedral discretization. Generally, partitioned elements need to allow for a linear

interpolation of coordinates or variables as formulated in Equations (3.1)-(3.2). Ac-

cordingly, a 10-node tetrahedron will have non-linear interpolants and so need further

modifications in the LEGOMAT optimization algorithm to implement the mapping

process of the tensor fields in the CAD model onto the MRF microstructure. The

LEGOMAT algorithm and its GUI for the manual drawing of material growth direc-

tion and grain size scaling are implemented using C++ and OpenGL. Furthermore,

large-scale simulation times generally vary drastically depending on the complexity

of material flow fields (e.g., number of paths, layers, etc.) and the mesh density in the

CAD model. Amongst all the steps described in Section 3.1.1, the manual drawing of

the volumetric vector field is the most time-consuming process, especially for multi-

layer, multi-track scenarios. Nonetheless, LEGOMAT reconstruction framework is

fairly inexpensive in terms of computation and memory for representing large-scale

solid models.
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3.2 Component-Scale Microstructure Reconstruction Exam-

ple of 316L Stainless Steel

In this section, the process parameters for manufacturing and image acquisition of

EBSD sections of the AM 316L stainless steel specimen are explained. Thereafter,

the results for reconstructing digital twins using a set of locally orthogonal planar

images are highlighted. The efficacy of the MRF algorithm is assessed by compar-

ing the crystallographic orientations, grain boundary misorientations, and grain size

statistics of the synthetic and experimental images. Next, the LEGOMAT algorithm

is used to simulate various part-scale AM microstructures consisting of multi-layer

and multi-track processes. The part-scale results are then compared against known

experimental imaging and simulated microstructures using SPPARKS kinetic Monte

Carlo simulator [104].

The 316L stainless steel specimen was fabricated via a selective laser melting (SLM)

280 HL machine, equipped with two 400 W continuous wave (CW) Ytterbium fiber

laser beams with approximately 80 µm diameter at the focal point. The SLM 280

HL machine is composed of a building platform with a maximum capacity of 280 ×

280 × 350 mm3. Prior to the operation, argon gas was flooded into the chamber to

lower the oxygen level below 0.1%. The pre-alloyed 316L stainless steel powder, with

particle sizes between 30− 50 µm, was used as the printing substance. A fully-dense

cuboid of 10 × 6 × 10 mm3 sample was fabricated for microscopic analysis using

the manufacturer-recommended guidelines with core processing parameters of 200 W

laser power, 800 mm/s scanning speed, 30 µm layer thickness, and 120 µm hatch

spacing. The AM volume was printed using a bi-directional scanning technique in

which the laser beam moved across each layer in a zig-zag pattern. The cuboidal

sample was then sequentially polished through diamond suspensions of 9 µm, 6 µm,

and 3 µm. This is followed by alumina suspensions of 1 µm and 0.05 µm, intending
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to achieve fine smooth faces. The EBSD analyses of three orthogonal 700× 700 µm2

faces of the cuboidal specimen were subsequently performed using a high-resolution

SEM TESCAN MIRA3, equipped with an EDAX Hikari XP EBSD detector. The

orthogonal sections were mounted sequentially using a slow-set epoxy. Each EBSD

scan was taken at 30 kV voltage and 1.0 µm step size. The EBSD camera parameters

were set to 1×1 binning, high-gain, and low-exposure to achieve an average confidence

index (CI) of 0.6.

Once the experimental EBSD images were generated, the raw Euler angles were

mapped to nodes in a discretized ODF. The ODF provides a probability density

of the crystallographic textures by describing the Euler angles associated with each

node in the Rodrigues space. The lattice structure of the material of interest in this

chapter (i.e., 316L stainless steel) is of cubic symmetry. Such a lattice structure re-

duces the orientational space to a small subset, called the fundamental region, as

illustrated in Figure ??, that accounts for the cubic lattice structures in the scanned

material. For numerical analysis, the fundamental region can be discretized using a

tetrahedral finite-element mesh, as shown in Figure 3.5(a). Due to symmetry, several

of these nodes in the grid are equivalent, which reduces the discretized ODF even

further to a smaller set of independent nodes. As a result, measured EBSD images

can be colored based on these independent nodal numbers. A simple choice for the

colormap, as depicted in Figure 3.5(b), is to apply the Rodrigues vector itself for each

independent node as an RGB triplet.

Subsequently, for MRF reconstruction, a subset of experimental EBSD sections of

size 256× 256 µm2 along each orthogonal axis is selected and resampled to 128× 128

pixels. Note, the reconstruction scheme presented here is not tied to a specific input

resolution. Thus, any 2D image resolution can be reconstructed, if needed. The

implication is that the user should ensure to specify a sufficient pixel resolution to
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Figure 3.5: Illustration of the colormap associated with discretized ODF: (a) the dis-
cretized Rodrigues fundamental region for cubic symmetry with independent nodes
along the external surface, colored blue, (b) applied colormap showing the RGB values
of independent nodes in the fundamental region. Here, the internal elements have
been faded for better visualization of the RGB colormap.

capture the phenomena of interest. Following this, the texture colorings corresponding

to TD and SD directions were adjusted such that they represent a similar color

histogram as of BD image. The additive manufacturing processes tend to create

large variations in the crystallographic texture across a specimen. As such, performing

histogram matching can establish a consistent texture in the volumetric MRF unit

cell, as images are taken at different locations within the specimen. Figure 3.6(a)

elucidates the orthogonal set of images for 316L stainless steel specimen as inputted

to the MRF reconstruction algorithm. The 3D EBSD image from the MRF algorithm

is shown in Figure 3.6(b). A number of different sections of the reconstructed model

across TD direction are also shown in Figure 3.6(c). The averaging step performed in

Equation (2.4) tends to smoothen the noises within the MRF synthetic model, hence

providing an overall smoother reconstruction compared to input 2D exemplars.

Following the reconstruction of the MRF unit cell, each color level of the synthesized

model is mapped to an independent node in the fundamental Rodrigues region us-

ing the colormap shown in Figure 3.5(b). For every voxel in the unit cell, the four
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Figure 3.6: Illustration of the experimental 2D exemplars and synthesized 3D images
of AM 316L stainless steel: (a) set of orthogonal experimental EBSD images of AM
316L stainless steel microstructure as inputted in MRF sampling algorithm, (b) rep-
resentative 3D MRF reconstructed model, and (c) numerous sectional images of the
reconstructed model along TD axis.

closest colors (in Euclidean norm sense) in the discretized ODF space are identified.

The voxel coloring remains unaltered, provided the sampled RGB triplet is within

the user-specified threshold. Otherwise, the RGB coloring of the voxel is replaced

randomly with one of the four closest independent nodes in the ODF fundamental

region. As depicted in Figures 3.7(a)-3.7(b), it is found that the resulting pole figures

of the MRF reconstructed microstructure closely resemble the measured texture dis-

tribution. Such an assessment exhibits the ability of the MRF unit cell reconstruction

algorithm to accurately simulate the textural description of AM microstructures.

Once the RGB triplets are mapped through the discretized ODF colormap, the grain

boundary misorientation angles can be conveniently calculated. In the scheme of
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Figure 3.7: Texture comparison using ⟨111⟩, ⟨110⟩, and ⟨100⟩ pole figures for (a) the
orthogonal experimental images, against (b) the synthesized 3D MRF microstructure.

grain boundary geometry, the misorientation is defined in terms of the required angle

ϕ to bring the two neighboring grains into coincidence about an axis common to both

lattices. Such parameterization is concisely known as the angle-axis misorientation

pair. To perform mathematical manipulations, the misorientation is conveniently

expressed as a 3 × 3 orthonormal matrix, denoted as M . Consequently, for two

interfacing grains denoted as grains A and B, the columns of the matrix M are the

direction cosines that define the rotation of the crystal coordinate systems of grain B

to grain A, as grain A being the reference grain. The misorientation angle is obtained

from the matrix M as follows:

2 cosϕ + 1 = tr(M ) (3.6)

where tr(.) is defined to be the trace or the sum of elements on the main diagonal for
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an input matrix.

Furthermore, due to the symmetric nature of the crystallography involved, the axes

of grain B can be chosen in more than one way in respect to the reference grain

A. For cubic symmetry, this multiplicity is precisely 24; that is, there are 24 unique

(but equivalent) ways in which the misorientation matrix M can be expressed. This

results in 24 angle-axis pairs. Although these angle-axis pairs are all equivalent, it

is conventional to report the lowest angle solution when describing a misorientation

angle. Accordingly, low-angle grain boundaries (LAGBs), defined as ϕ < 15◦, are

often immediately obvious.

For the assessment of grain boundary misorientation angles of the MRF reconstruc-

tion, the reconstructed 3D image is properly segmented first. The GB misorientation

angles are then computed slice-by-slice using eight-fold connectivity, where the crystal

orientation (i.e., Rodrigues vectors) of every voxel is being compared against its adja-

cent neighbors (along the horizontal, vertical, and diagonal directions) positioned on

each cross-section. If the frequency of the most repeating orientation index in the 3×3

window is within a specified threshold, the two most frequent Rodrigues vectors inside

the sampling window are identified. Following this, the misorientation angle between

the two most frequently-occurring orientation indices is computed. The same process

is followed for the orthogonal experimental images. Figures 3.8(a)-3.8(b) illustrates

the spatial distribution of grain boundary misorientation angles for experimental and

3D synthesized EBSD images, respectively. As expected, the low-angle boundaries

ranging between 0◦-15◦, as illustrated in Figure 3.8, are highly pronounced in both

sets of images. The corresponding spatial distribution of misorientation angles of the

sections in Figure 3.6(c) are also depicted in Figure 3.8(c). Thereafter, the high-angle

grain boundary (HAGB) misorientation values (referred to as misorientation angles

greater or equal to 15◦) are sorted to allow for a quantitative comparison between
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Figure 3.8: Illustration of the spatial distribution of grain boundary misorientation
angles for: (a) set of orthogonal experimental images of 316L stainless steel AM
microstructure, (b) representative 3D MRF reconstructed model, and (c) numerous
sectional images of the MRF reconstructed model along TD axis.

the experimental and synthesized images. The probability densities of the HAGBs

for the set of three orthogonal images and cross-sections of the reconstructed MRF

model, as seen in Figure 3.9 are then calculated over 21 bins. Here, because of the

cubic symmetry of the measured specimen’s lattice structure, the maximum unique

misorientation angle possible is limited to 62.8◦. Overall, a close agreement between

the scanned and reconstructed MRF images is observed, with the 3D reconstruction

marginally predicting a lower probability for misorientation angles ranging between

40◦ − 52◦.

Next, the ability of the MRF algorithm to accurately model grain size statistics of the

316L stainless steel microstructure along TD axis as compared to the respective input

experimental exemplar is examined. Grain size distribution is essential for simulating
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Figure 3.9: Comparison of PDF of HAGB misorientations of the 3D synthesized
MRF microstructure against experimental images. Here, the probability densities of
the misorientation angles are computed over 21 bins. The maximum unique misori-
entation angle possible due to cubic symmetry is 62.8◦.

mechanical properties in AM structures using Hall-Petch models [196, 197]. In this

assessment, grain sizes of the 2D EBSD image are obtained using the following pro-

cedure. The incomplete grains along the outer edges adjacent to the borders of the

experimental EBSD image are removed. For every inner crystal, the grain areas, along

with the ratio of the major over minor diameters of the best-fitting ellipse with an

equivalent normalized second central moments, are computed and stored. Afterward,

abnormally small and large grains are removed from the measured grain area dataset.

The histograms of the grain area and the corresponding aspect ratio for each grain, as

depicted in Figures 3.10(a)-3.10(b) respectively, are then plotted over 21 bins using

a log-normal fit. Similarly, to capture the grain size distribution of the 3D synthe-

sized unit cell, slices along the TD axis are extracted, and the same process as used

in the 2D exemplar is applied. That is, the external grains for every slice are first

eliminated, and for each inner grain, the grain area and its respective aspect ratio are
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obtained. Here, aspect ratios near one represent near-circular (i.e., equiaxed) grain

morphology. In contrast, values close to∞ represent needle-like cross-sections. When

comparing grain size statistics, both the simulated and experimental log-normal dis-

tributions peak near 160 µm2, indicating a considerable fraction of small-size grains

in the dataset. Additionally, on the TD plane, nearly 51.9% and 47.6% of the grains

in experimental and simulated images, respectively, have aspect ratios ranging from

5 to 20. This implies that a large fraction of the realized 316L stainless steel mi-

crostructure on TD surface consists of highly-elongated morphologies, which is also

evident in Figure 3.6. Overall, as illustrated in Figure 3.10, close agreements between

the input experimental image and MRF reconstruction are observed [217], with minor

deviations seen for the low-frequency components, where the 3D MRF reconstruction

marginally predicts a lower probability.
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Figure 3.10: Comparison of PDFs for (a) grain size statistics, and (b) aspect ratio of
the 3D synthesized microstructure against experimental dataset along TD axis. The
probability densities of the measured statistics are computed over 21 bins and fitted
using a log-normal distribution.

Thereafter, the LEGOMAT reconstruction technique follows by constructing global

models shown in Figure ??, based on the single locally-extracted MRF microstruc-

ture shown in Figure 3.6(b). The LEGOMAT approach presented in this chapter is
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not tied to the MRF numerical reconstruction algorithm only and can be coupled

with a wide variety of unit cell microstructural exemplars obtained from other com-

putational frameworks (e.g., Voronoi tessellation [20], DREAM.3D [71], Neper [47],

supervised learning [45], etc.) or even experimental 3D characterization techniques

[32, 35, 36]. The MRF reconstruction algorithm, however, is particularly advanta-

geous for building realistic small-scale AM unit cells from a single set of orthogonal

2D planar exemplars. The LEGOMAT numerical approach is to embed the recon-

structed 3D microstructures in the CAD geometry based on experimentally observed

insights on AM microstructure formation, as it is inherently controlled by solidifi-

cation rate and thermal gradient which are also functions of laser parameters (e.g.,

speed, power) and the laser path (e.g., hatch spacing, layer thickness). The effects of

cooling rate and temperature gradient history on microstructural patterns during the

solidification process have been well studied in literature [108, 208, 209, 215]. Key

components seen in the solidification process include: (i) smaller grain growth near

the laser track because of high-temperature profile at the solid-liquid interface, (ii)

elongated grains away from the laser spot in-plane to the surface of the build, and

(iii) on SD face, the elongated grains tend to grow perpendicular to the melt pool’s

solidification surface, bending toward the laser track [218, 219]. The resulting het-

erogeneous mixture of elongated and equiaxed grains often has a visible periodicity

with the deposition thickness, hatch spacing, and scanning pattern.

The preferred crystallographic growth direction is often specified primarily by the

heat flow direction. The grain size scaling of a build, on the other hand, often de-

creases with increasing laser speed or decreasing laser power [216]. As a result of such

geometrical principles, a natural way to describe grain formation during the solidifi-

cation process is to align microstructural unit cells in the 3D geometrical space using

a material flow field as shown in Figure ??(left). Generally, these user-drawn vector

fields work best when they are divergence-free, as artifacts can appear around material
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flow fields with singularities (e.g., sink or source points). The issue of microstructural

artifacts with singular vector fields can often be alleviated to some extent by locally

enhancing the mesh density (subdividing the tetrahedral elements) at such regions,

or equivalently by reducing the grain size scaling, prior to LEGOMAT optimization

procedure. In addition to the material flow fields, the grain size scaling is represented

using the same approach as described in Section 3.1.1.2, with smaller grains along the

laser path gradually transitioning to columnar grains near the melt pool’s boundary.

Such geometric reconstruction methodology can systematically simulate the preferred

grain growth directionality and size scaling for large-scale engineering components

manufactured by laser additive manufacturing processes consisting of several passes

and deposition layers. Figure ??(right) presents the final reconstructed outputs, dis-

playing the grain sizes and shapes that result from the LEGOMAT optimization pro-

cedure for various simulations, ranging from single-layer to multi-layer multi-track

scenarios. This method can readily extend to simulate dozens of deposition layers

and hundreds of laser passes. The CAD models for the block geometries illustrated

in Figures ??-?? contain 22992, 31424, and 51312 linear tetrahedral elements, respec-

tively. Once generated, these synthetic large-scale AM microstructures can be used

in various material performance simulations (e.g., material mechanics, conductivity,

etc.) [20, 21, 220, 221] or otherwise provide insights for multi-dimensional analysis

involving desirable processing modalities and performance metrics [117], which is an

extremely difficult task to achieve by experimental means alone.

To further demonstrate the flexibility of the presented LEGOMAT strategy, an assess-

ment of the LEGOMAT simulated microstructure against SPPARKS kinetic Monte

Carlo simulation [104] with respective experimental EBSD images is provided. The

build in this example is deposited using LENS technique with a defocused high-power

laser beam, rastering back and forth at a scan rate of 10.58 mm/s, with intended layer

thickness and hatch spacing of 1.25 mm and 2 mm, respectively. Such a processing
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pattern results in similar formation principle as outlined in Sections 3.1.1.1-3.1.1.2.

In short, curved columnar grains are formed on TD and SD planes, and on the BD

plane, large grains elongate across the central regions while transitioning to finer

grains along each laser track [222]. These grain types are illustrated in Figure 3.11

alongside three orthogonal cross-sections of the build. The illustrated TD images in

Figure 3.11 are taken from the centerline of the beam pass. Qualitatively on BD

plane, both simulated microstructures correctly alternate between fine grains at the

center to larger transversely-elongated structures. Additionally, in the SD plane,

vertically-oriented grains found at the center of each pass transition to exception-

ally curved grains in between. The grains along the TD plane illustrate vertically-

elongated grains slightly incline toward the scan direction at the top. The strength

of the LEGOMAT approach, as presented in this example, is its ability to efficiently

create 3D microstructures with spatially-varying highly-curved non-convex structures

over large regions at significantly lower computational cost than existing large-scale

texture synthesis algorithms applicable for additive manufacturing. Additionally, as

depicted in Figure 3.11, physics-based models such as the kinetic Monte Carlo sim-

ulator often have difficulty modeling the textural descriptions (e.g., grain size and

curvature) of AM specimens. As a result, the LEGOMAT algorithm offers an alter-

native solution for the rapid visualization of microstructural variations with diverse

processing parameters. This is exceedingly important as AM microstructures vary

both globally with machine inputs and locally with build geometry, hence making

experimental characterization of AM build seemingly impossible.

Additionally, since experimental information along all three orthogonal directions is

available, quantitative comparisons of the experimental and simulated results are pos-

sible. Figure 3.12 displays histograms of grain size statistics for both SPPARKS (on

top) and LEGOMAT (on bottom) against the experimental microstructures across the

three orthogonal planes illustrated in Figure 3.11. To obtain the grain size statistics,
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Figure 3.11: Comparison between experimental and simulated AM microstructures
using SPPARKS kinetic Monte Carlo simulator and LEGOMAT geometrical approach
along orthogonal planes. The experimental and SPPARKS simulated images shown
here are reproduced from the work of Rodgers et al. [104] under the terms of the
Creative Commons CC-BY license.

similar procedure as in Figure 3.10 is applied. That is, all images are first segmented

and boundary grains along the border are removed. The grain area of all inner grains,

excluding abnormally small and large grains, is obtained and subsequently plotted

using a log-normal fit. Across each orthogonal plane, the LEGOMAT’s log-normal

distribution is found to be closely following the experimental distribution. This is

while SPPARKS simulated results are shown to deviate significantly for smaller-scale

grain sizes.

The simulated results presented for LEGOMAT reconstruction framework show sig-

nificant promise for generating large-scale AM microstructures. However, the manual

drawing of the volumetric vector field can be relatively time-consuming, especially for

multi-layer, multi-track examples. For instance, it takes the user about 18 minutes

to create a direction field for the CAD model shown in Figure ??(c), whereas the
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Figure 3.12: Comparison of grain size statistics for simulated SPPARKS kinetic
Monte Carlo [104] (on top) and LEGOMAT (on bottom) techniques against experi-
mental images across orthogonal (a) SD, (b) BD, and (c) TD planes.

scaling parametrization of the patches takes about 8 minutes, and only 7 minutes

to finalize the numerical computation pertaining to LEGOMAT embedding process

using a PC with 3.0 GHz CPU and 64.0 GB RAM. Consequently, future work will

focus on automating the manual drawing of the preferred direction field as well as the

parameterization of grain scaling based on a set of user-defined processing parameters

(e.g., hatch spacing, layer thicknesses, and scanning pattern, etc.). Nonetheless, the

LEGOMAT methodology presented in this chapter is still significantly computation-

ally inexpensive compared to existing physics-based models [101, 102, 104, 106, 108]

for representing large-scale AM solid textures.

Furthermore, the current LEGOMAT reconstruction framework is limited to embed-

ding a single 3D microstructural snapshot in the CAD model. However, the LEGO-

MAT approach can benefit from multiple input 3D exemplars imaged across various

spatial locations. One approach for direct implementation of spatial variations of
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the AM microstructure is to exploit the mean locations of the input microstructural

measurements in order to partition the CAD geometry in the form of a Voronoi dia-

gram. Mathematically, the measured locations directly correspond to the centroid of

the convex hull within each partition, which is also correlated with differences in mi-

crostructural features (e.g., grain size, shape, etc.). Accordingly, the Voronoi diagram

can provide a geometrical partitioning of the CAD specimen where the best-matching

measured 3D unit cell can be identified (based on its relative spatial coordinates to the

laser path) and then be sampled for the patching/embedding process. Additionally,

a numerical method can be developed to progressively enhance the resultant embed-

ding process conditioned on available input datasets. Here, geometric partitioning

of the CAD specimen can be updated as new measured 3D microstructures become

available. In this approach, regions in the CAD model for which new reclassifications

are available will be partitioned and then progressively re-sampled/re-patched. Work

on this is still in progress and will be reported in future articles.

3.3 Conclusions

In this chapter, an image-based framework is introduced for 3D microstructure syn-

thesis of metal AM materials over very large length-scale CAD models. The complete

workflow from orthogonal 2D experimental EBSD images to a full-field microstruc-

tural CAD visualization is an important and novel contribution in this work. Here,

a set of three EBSD exemplars imaged on orthogonal planes of a 316L stainless

steel specimen manufactured by SLM process is first obtained via SEM acquisition

technique. The microstructures are subsequently converted to a 3D representative

unit cell using the MRF sampling technique. The MRF algorithm reconstructs 3D

images through matching orthogonal neighborhoods of each voxel to the sectional

experimental micrographs while ensuring that the sampled voxels taken from the

2D input exemplars have meshed together seamlessly in the 3D synthesized image.
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Thereafter, statistical analyses of microstructural features, such as grain size, orien-

tation distribution, and grain boundary misorientation angles for the reconstructed

3D microstructures, are carried out against the original 2D EBSD images. The re-

sults demonstrate that MRF can effectively predict both textural and morphological

descriptions of AM microstructures at a small-length scale.

The variations of 3D microstructures during a laser additive manufacturing process at

larger length-scales are then captured using the LEGOMAT tensor-based optimiza-

tion process. The LEGOMAT optimization procedure embeds 3D microstructures

in a part-scale CAD geometry accordant with the user-specified material flow fields

that efficiently incorporates microstructural variations (e.g., grain size, shape, cur-

vature, anisotropy, and growth direction) in structural systems consisting of several

laser paths and deposition layers. Such formulation is shown to be highly effective for

modeling the location-specific microstructural geometries seen in experimental char-

acterization techniques. For instance, across BD surface, fine-size equiaxed grains

often nucleate near the laser track and then quickly transition to larger transversely-

elongated grains in between the laser paths. Similarly, on the TD plane near the laser

beam track, elongated grains tend to incline toward the scanning direction. On the

SD plane, the columnar grains tend to grow perpendicular to the melt pool’s solidifi-

cation surface, curving toward the laser beam direction. As a result, the LEGOMAT

approach can provide in real-time, an efficient methodology to describe textural com-

ponents in 3D geometrical CAD space via a user-defined tensor field, capturing the

preferred growth directions during the solidification process. Due to large-scale mi-

crostructure reconstruction model being primarily based on geometrical principles,

the LEGOMAT methodology is extremely robust and requires minimal computa-

tional power and memory, compared to existing phase-field simulations. Near-term

future work will focus on (i) implementing an encoder that accepts a number of in-

put microstructural unit cells while down selects the best 3D exemplar during each
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embedding iteration based on relative spatial location of the microstructural patch

within the CAD model to its nearest laser path, and (ii) automating the manual

specifications of the preferred growth orientation and grain size parameterization.
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CHAPTER IV

Physics-Based Evolution of Microstructural

Features Using Graph-Cut

This chapter introduces a novel numerical framework based on graph-theoretic tech-

niques to investigate the evolution of microstructures in isolated particles. The pri-

mary factor governing the formation of crystalline structures, precipitate coarsening,

and grain growth is the reduction of orientation-dependent surface-free energies. Con-

sequently, the equilibrium shape of the crystalline structure, commonly known as the

Wulff shape, can be accurately determined by minimizing its surface energies. How-

ever, modeling Wulff constructions numerically presents challenges, particularly in

estimating the curve lengths and surface areas of crystalline facets in respective pix-

elated 2D and voxelated 3D micrographs, presented in Chapters II and III, where

adding GB edges/facets can introduce high metrication errors. To address such

limitations, this chapter applies the concept of graph-cuts from integral geometry

[129] to compute the expected lengths of GBs using a pairwise formulation. The

framework is further generalized to incorporate anisotropic grain growth in 2D mi-

crostructures using an optimization principle that captures the underlying energetic

mechanisms pertinent to grain formation. These ideas can be directly extended to

3D microstructures, and the necessary modifications to the framework are provided,

along with applications for segmenting and denoising voxelated meshes developed
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in Chapter II. Additionally, to demonstrate the effectiveness of the graph-cut ap-

proach, proof-of-concept cases are presented and compared with data obtained from

in-situ tomographic and analytical techniques, validating the efficacy of the proposed

physics-based numerical framework for accurate prediction and quantification of mi-

crostructure evolution.

The following details the structure of this chapter. First, the Cauchy-Crofton formu-

lation is reviewed in Section 4.1.1 for 2D problems. Thereafter in Sections 4.1.2 and

4.1.3, the numerical implementation of the graph-cut technique, along with the use

of Riemannian metrics, are outlined for anisotropic surface energies. Sections 4.1.4

and 4.1.5 introduce the pairwise optimization technique for the simulation of iso-

lated particles and polycrystalline structures. Here, the process to correct GB angles

by minimizing the interfacial energy within the constraints posed through γ-plots is

described. This follows by Section 4.1.6 outlining the implementation of the Cauchy-

Crofton formulation in the 3D material domains. Subsequently, Section 4.2 illustrates

and discusses numerical examples for several multi-dimensional problems. Notably,

in Section 4.2.1, numerical results are obtained for computations of grain circumfer-

ence at various pixel densities against analytical solutions for a given isolated particle.

Implementation of surface energies as Riemannian metric is then examined in Sec-

tion 4.2.2. Thereafter in Sections 4.2.3 and 4.2.4, the Cauchy-Crofton results are

examined for modeling grain evolutions across single 2D particles and polycrystalline

aggregates, respectively. Section 4.2.5 then follows to demonstrate a 3D example for

segmentation of polycrystalline microstructures as directly obtained from the MRF

reconstruction approach. The proposed Cauchy-Crofton technique is shown to be

efficient in all numerical examples for the segmentation and simulation of crystalline

structures across multi-dimensional problems.
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4.1 Methodology

This section discusses the mathematical formulation and implementation for the seg-

mentation and evolution of crystalline particles. First outlined in Section 4.1.1, the

Cauchy-Crofton relations, from a previously-published work by Boykov et al. [129],

is summarized. Next, the numerical implementation of the Cauchy-Crofton approach

to pixelated microstructural images is presented in Section 4.1.2. These applications

are then extended to generalized microstructural models using Riemannian surface

energies as established in Section 4.1.3. Subsequently, the pairwise optimization tech-

niques for simulating particle evolution and grain growth in 2D microstructural im-

ages are introduced in Sections 4.1.4 and 4.1.5, respectively. Finally, Section 4.1.6

provides the extension of the Cauchy-Crofton techniques to 3D voxelated problems

for denoising and segmentation purposes of the synthesized MRF images.

4.1.1 Cauchy-Crofton Formulation

The computations of the boundary of a particle (i.e., length in 2D and areas in 3D),

when using pixelated images obtained through empirical devices [223, 224, 225] or

routine computational techniques [47, 60, 66, 71], can be often intractable. For in-

stance, consider the circular particle illustrated in Figure 4.1, where each pixel is

colored/labeled depending on whether it is positioned inside or outside the GB. In

such a representation, one can estimate the perimeter of the interface by summing

up the edges separating the red and blue regions, as indicated by the solid gray line

on the right-hand side. However, this procedure tends to falsify the GB interface

[129, 130] due to metrication error. To overcome these issues, concepts from integral

geometry, specifically Cauchy-Crofton relations [129] have been shown to be effec-

tive and more accurate than other numerical methods, e.g., thresholding [226], region

growing [227, 228, 229], and Moore-neighbor contour tracing algorithm [230, 231]. A

formal discussion of these relations is out of the scope of this chapter. However, inter-
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ested readers are encouraged to refer to Reference [232] for a complete and rigorous

introduction to the topic. This chapter will adopt a much more applied outlook.

True interface
Realized interface

Figure 4.1: Identification of particle’s boundary in pixellated images is generally in-
tractable. A depiction of possible lengths of the particle boundary, which in turn
affects the crystalline shape, can be found using the Cauchy-Crofton technique based
on intersection count.

The main idea in Cauchy-Crofton pursued in this chapter is that given a contour,

as illustrated in Figure 4.2(a), the total perimeter is proportional to the number

of intersections it makes with the ‘family’ of lines at various angles. This theorem

makes the basis of the many methods developed later in the chapter. However,

before going into this theorem’s applications, it is necessary to define a measure on

the set of lines. Hence, in the following discussion, consider a straight line in the

R2, denoted as L, determined by its normal parameters ρ and ϕ, as indicated in

Figure 4.2(b). In this parameterization, each line can be sufficiently described by a

point in L = {(ρ, ϕ) : ρ ≥ 0, ϕ ∈ [0, 2π]}. This parameterization is illustrated in

Figure 4.2(c). Accordingly, the Lebesque measure [233] for a subset of straight lines

ξ ⊂ L, can be defined by the integral
∫
ξ
dρdϕ.

Furthermore, let C represent a rectifiable curve in R2 with Euclidean length |C|ϵ.

The Cauchy-Crofton formula [233] establishes a connection between Euclidean length,

|C|ϵ, and a set of straight lines, L(ρ, ϕ), intersecting it, as follows:
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Figure 4.2: Illustration for Cauchy-Crofton relations and parameterization of a line
in R2: (a) length(Γ) is proportional to the numbers of intersections it makes with
lines at different angles, (b) parameterization of a line, L, in terms of ρ and ϕ, and
(c) set of all lines in R2, represented as L, using the (ρ, ϕ)-coordinates.

|C|ϵ =
1

2

∫
L

nc(L)dL =
1

2

2π∫
0

∞∫
0

nc(ρ, ϕ)dρdϕ (4.1)

where function nc(L) specifies the number of times any given line, L(ρ, ϕ), intersects

with the curve, C, and ρ and ϕ respectively represent the non-negative radius and

polar angle restricted to the interval [0, 2π] pertinent to line L.

4.1.2 Numerical Approximation to Cauchy-Crofton Relation

In 2D pixelated structures, each node, denoted by its spatial coordinates, i.e., νn ≡

(pn, qn), is embedded in a regular grid-like fashion with cells of size δ. Consequently,

a connection between two nodes, e.g., {νn, νm}, can be represented in the form of

a vector, denoted as −→enm = (pm − pn, qm − qn). Here, let NR represent a stencil

used to connect R numbers of neighboring nodes in the image. The elements of the

stencil consist of ordered pairs of vectors of the form −→ek with their respective weights,

wk ∈ R+. Hence, given the pixel νn and an stencil family {−→ek , wk} ∈ NR, a connection

can be drawn to νm = (pn, qn) + −→ek with an interaction energy set as wk, assuming
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constant weights within each family of edge-lines. Some examples of possible stencils,

where subscripts represent the numbers of neighborhood interactions, are illustrated

in Figure 4.3 for 2D domain. The example in Figure 4.4(a) depicts a regular grid

with all nodes having an identical N8 stencil as in Figure 4.3(b).

𝛿

𝛿

𝑒ଵ

𝑒ଶ 𝑒ଶ𝑒ଷ𝑒ସ

𝑒ଵ

𝜙௞

Δ𝜙௞

(a) N4, 4-neighbor stencil

𝛿

𝛿

𝑒ଵ

𝑒ଶ 𝑒ଶ𝑒ଷ𝑒ସ

𝑒ଵ

𝜙௞

Δ𝜙௞

(b) N8, 8-neighbor stencil

𝛿

𝛿

𝑒ଵ

𝑒ଶ 𝑒ଶ𝑒ଷ𝑒ସ

𝑒ଵ

𝜙௞

Δ𝜙௞

(c) N16, 16-neighbor stencil

Figure 4.3: Examples of possible 2D neighborhood interactions in a structured pixelated
discretization with uniform spacing δ respectively using (a) 4-neighbor,(b) 8-neighbor,
and (c) 16-neighbor stencils.

Δ𝜌ଵ

Δ𝜌௞
𝑒௞

𝜙௞

Φ

(a) 2D grid with 8-neighbor interaction

Δ𝜌ଵ

Δ𝜌௞
𝑒௞

𝜙௞

Φ

(b) One family of lines

Figure 4.4: Illustration of (a) a regular 2D pixelated grid with uniform spacing δ using
an N8 stencil, and (b) a single family of lines on the corresponding 2D grid.

Accordingly, by choosing an appropriate partitioning of the set [0, 2π] × R, Equa-

tion (4.1) can be approximated numerically by its partial sum, as follows:
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|C|ϵ ≈
1

2

|NR|∑
k=1

(∑
i

nc(i, k)∆ρk

)
∆ϕk =

|NR|∑
k=1

nc(k) · δ
2 ·∆ϕk

2 · ||−→ek ||2
(4.2)

where the approximation error on the left-hand side is due to the difference between

an integral and its partial sum, and as partitioning becomes finer, by incorporating

stencils with higher-neighborhood interactions, the error of approximation converges

to zero. Here, index i enumerates lines in the kth family of lines, nc(i, k) counts

intersections of line i in the kth family with curve C, and nc(k) =
∑

i nc(i, k) returns

the total number of intersections for the curve C with the kth family. Additionally,

as depicted in Figure 4.4, ∆ρk denotes the distance between two adjacent lines in the

kth family, and ∆ϕk quantifies the angle difference of link ek with its nearest link, i.e.,

∆ϕ1 = ϕ2 − ϕ1, ∆ϕ2 = ϕ3 − ϕ2, . . . .

Assuming constant edge weights within each element of the stencil, Equation (4.2)

can be simplified as follows:

|C|ϵ ≈
|NR|∑
k=1

nc(k) · wk (4.3)

where,

wk =
δ2 ·∆ϕk

2 · ||−→ek ||2
(4.4)
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4.1.3 Implementation of Anisotropic Surface Energies

The Cauchy-Crofton approximation in Equation (4.1) can also incorporate surface

energies, denoted as γ(−→n ) for facets with face normal −→n , in the form of wk. This can

be achieved by choosing a metric space,M, such that the following relation holds for

all phase boundaries:

|C|M =

∫
γ(−→n (s))ds (4.5)

where |C|M denotes the length of the boundary in the given metric, M.

For microstructure applications, a special case is considered where the curve’s length

is measured using a constant Riemannian metric, denoted by D, as follows:

|C|M =

∫ √−→
t T ·D · −→t ds (4.6)

where D is a positive definite matrix, specifying the local Riemannian metric at any

given pixel in the image, and
−→
t is a unit tangent vector to the contour, C. If the

surface energy can be represented as the integrand in Equation (4.6) (or in general,

as the summation of integrands for different D’s), then the Cauchy-Crofton formula

leads to values of weights, wk, for the kth link of the pixel, p, as follows:

wk =
δ2 · ||−→ek ||22 ·∆ϕk · detD

2 · (−→ek T ·D · −→ek )3/2
(4.7)
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Using these weights, the surface energy integral in Equation (4.5) can be computed by

summing up the weights of all intercepts on the particle surface. It is worth noting

that arbitrary surface energy functions cannot be modeled in this manner. It was

shown by [130] that the most general case that can be considered in this framework

is when |C|M is measured with respect to a subclass of Finsler metric. Interested

readers are referred to their work for further discussion on this topic.

4.1.4 Simulations of Particle Evolution

The problem of grain segmentation can be formulated as a graph labeling problem.

Each pixel in the image is treated as a vertex of a simple undirected graph, G(V , C),

where V and C denote the sets of all vertices and connections in the graph, respectively.

Here, each vertex, νn ∈ V , is assigned a label, Ln ∈ {l1, .., lM}, representing a grain

ID. The value of M denotes the total number of grains in the micrograph. A cost

function is assigned based on the graph’s completed labeling, with L = (L1, . . . , LN)

treated as a sequence and N denoting the total number of vertices. The cost, F (L),

for given labeling L of the graph is formulated to a Potts form as follows:

F (L) =
∑
νn∈V

H(|Ln − In|) +
∑

(n,m)∈E

Jnm(1− δLn−Lm) (4.8)

where H denotes the Heaviside function and I = (I1, . . . , IN) are the measured grain

IDs in the tomographic image, indexed in the same order as the vertices of the graphs.

Furthermore, the parameter Jnm incorporate surface energies, denoted as γ(−→n ) for

facets with face normal −→n , in the form of Jnm = wk, and the symbol δLn−Lm represents

the Kronecker delta. The first term in Equation (4.8) is referred to as the data term,

penalizing deviations from the image data. Whereas the second term is referred to

as the smoothening term and describes the interface properties between vertices with

different labelings, written typically in terms of surface area. Using the Cauchy-
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Crofton formulation, the interaction energies, denoted as Jnm, can be encoded such

that the second term in Equation (4.8) evaluates the expected surface energies of the

interface between the clusters of different labels. Hence, minimization of the energy

would allow a preferential selection of facets with minimal energy while retaining the

bulk phases measured in the original image.

4.1.5 Grain Growth Modeling

The local energy at the GB is often higher than the grains’ corresponding bulk ener-

gies. This energy provides a thermodynamic driving force for the motion of the GB.

Generally, the motion of GB decreases its surface area (or length in 2D), appearing

as growth in a few grains and consequent decay/annihilation of other grains. Compu-

tational approaches such as the Monte Carlo Potts model [234, 235], level sets [236],

and phase-field methods [124, 237] have been used to simulate the behavior of multi-

ple grains. A typical problem involves the initialization of a mesh and modeling the

motion of grains using energy or probability-based criteria. Methods like the Potts

model and cellular automata use probabilistic rules for evolution and do not capture

the detailed local physics that leads to abnormal grain growth. Level set and phase

field methods are well suited for modeling surface energies but are limited to obtain-

ing local minima. The approach presented here is an extension of the Cauchy-Crofton

segmentation method explained in Section 4.1.4 and is an altogether new approach

compared to those aforementioned techniques in the literature. Advantages of the

formulation include the realization of a global minimum for energy [238, 239, 240]

and use with voxelated images [241].

As the level set method, the approach presented here handles topological changes of

the evolving interface. The particular advantage of the proposed computational ap-

proach lies in its ability to target global minima of shapes using image-based meshes.

Previous work [242, 243] has applied this methodology successfully to the problems
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such as meshing and crack formation in polycrystals, and preliminary work towards

grain growth is illustrated in Reference [244]. Experimentally-measured grain growth

velocities from experiments will be used to simulate grain growth, including the effect

of initial size distribution and texture. The presented work shows that the methodol-

ogy captures the necessary physics of microstructure evolution in terms of annihilation

and merger of grains. The method also has the flexibility to use different surface en-

ergy functions using the novel notion of summation of Riemannian metrics. The

method is briefly explained next.

Grain growth in 2D is evaluated by minimizing the functional as follows [245]:

F (C) =

∫
A

bdA +

∫
C

γ(−→n (s))ds (4.9)

where γ(−→n ) is the surface energy defined for interface C with unit normal −→n and

b is the bulk energy density. Consider a smooth curve, C0, that is defining the GB

interface, where each point is displaced as dC = v∆t, with v denoting the normal

velocity of the GB and ∆t denoting the time step. The point-wise position of the new

curve is given as C(s) = C0(s) + dC(s) where s is the arc-length parameterization

of C0. A distance measure between C0 and C, as illustrated in Figure 4.5, can be

estimated using following relation (proof in [246]):

dist2(C,C0) = 2

∫
∆C

Do(p)dp

where p denotes points in the region ∆C between the two contours (region shaded

green in Figure 4.5), and the function Do(p) is a distance from point p to the nearest

91



point on curve C0.

𝐶

𝐶଴

𝑝

𝐷଴ 𝑝

Figure 4.5: Gradient flow evolution transforms the shape of contours giving the largest
energy decrease.

With these definitions in place, a graph-based minimizer for simulating grain growth

dynamics can be developed as follows:

Ct+∆t = argminC

(
µF (C) +

dist2(C,Ct)

2∆t

)
(4.10)

where Ct denotes the interface at time t, Ct+∆t is the evolved interface at time t+∆t,

and µ denotes the mobility of the GB [247]. Efficient graph-based algorithms to

minimize such functionals are available [241]. It can be proven [244] that the normal

velocity, v, of a grain C between grain i and j when using this approach, is given by

the well-known curvature-driven velocity [245]:

v = µ (γκ + (bi − bj)) (4.11)

where κ is the curvature of the GB. A critical aspect of the minimization process
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described in Equation (4.10) is the accurate estimation of grain surface areas to

compute the interfacial energy in F (C). For this, the Cauchy-Crofton-based encoding

of interfacial energies that was described previously is implemented. Although the

discussion thus far has focused on 2D cases only, similar expressions are available in

three dimensions, as subsequently explained.

4.1.6 Extension to Three-Dimensional Material Domains

The Cauchy-Crofton formula can also be extended to estimate the surface areas of

hypersurfaces in higher dimensions [248]. In this case, the Cauchy-Crofton formula-

tion as written in Equation (4.2) is modified as follows. Let M be a 3D surface with

an area A. The measure of the set of straight lines (counted with multiplicities) which

meets M is equal to π2A/2. The numerical version of this relation can be formalized

by following the same strategy to construct stencils, NR in 3D. The weights of the

connections are estimated as:

wk =
δ3 · ||−→ek ||32 ·∆Φk · detD

π · (−→ek T ·D · −→ek )2

where contrary to 2D case, ∆Φk correspond to a given partitionin gof unit sphere

among angular orientations Φ1, Φ2, . . . , and it is evaluated using the strategy pro-

posed in [129, 249, 250]. Each vector −→e k is projected onto a unit sphere. The

intersecting points are then used as a germ/grain for the Voronoi tessellation of the

sphere. The surface area of each spherical domain is then used as the weight for the

corresponding direction.

93



4.2 Results and Discussion

Here, the Cauchy-Crofton algorithm is examined for the simulation and segmentation

of 2D and 3D microstructural images. Specifically, Section4.2.1 presents numerical

findings for the computation of GB interface at different pixel densities for an indi-

vidual particle. The utilization of surface energies as a Riemannian metric is then

explored in Section4.2.2. Sections4.2.3 and 4.2.4 investigate the Cauchy-Crofton re-

sults concerning the modeling of grain evolutions in single particles and polycrys-

talline aggregates, respectively. Lastly, Section4.2.5 further showcases a 3D example,

demonstrating the segmentation of polycrystalline microstructures obtained through

the MRF reconstruction approach. The proposed Cauchy-Crofton technique proves to

be efficient in all numerical examples, enabling the simulation of crystalline structures

across multi-dimensional problems.

4.2.1 Example 1: Computation of Particles Circumference

For the first case study, the computation of the particle’s circumference in terms of

the lengthwise pixel density is demonstrated as a proof-of-concept. Here, a circular

grain with a radius r = 8 µm, as illustrated in Figure 4.6, is examined. It is intuitive

that as the pixel resolution, which is commonly measured in terms of the number of

pixels per micrometer-length (PPM), increases, the realized granular shape resembles

a circle more closely. Accordingly, in this example, the lengthwise pixel density is

successively doubled, reaching pixel densities up to 64 PPM. Thereafter, computa-

tional techniques, such as Cauchy-Crofton relations, as formulated in Equation (4.2),

and modified Moore-neighbor contour tracing algorithm [230], are compared for an

accurate representation of the circular grain. The first three images composed of the

lowest pixel densities are shown in Figures 4.6(a)-4.6(c).

Next, the metrication error, which relates the relative difference between the actual
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Figure 4.6: Illustration of a circular particle of the radius r = 8 µm with three vary-
ing lengthwise pixel densities. In this example, the lengthwise resolution is doubled
consecutively as measured by the number of pixels per micrometer-length (PPM). In-
tuitively, the realized red feature closely resembles a circular shape as the resolution
improves.

circular perimeter and the length obtained from the modified Moore-neighbor con-

tour tracing algorithm, is compared with the Cauchy-Crofton formula at different

pixel densities. As depicted in Figure 4.7, when incorporating fine resolutions, small

neighborhood interactions with N4 stencil, which consists of only the horizontal and

vertical neighbors, still results in relatively accurate estimates, compared to modified

Moore-neighbor contour tracing algorithm. However, when working with a coarse

lattice structure, such as Figure 4.6(a), the neighborhood interactions need to in-

crease in order to include more intersecting lines at different angles. For instance, at

a low resolution of 1 PPM, Cauchy-Crofton with N28 stencil can precisely estimate

the actual feature perimeter, with the error being around 0.5%. Additionally, as the

lengthwise pixel resolution doubles, Cauchy-Crofton’s estimates improve substantially

across different horizon interactions, whereas the metrication error increases, eventu-

ally plateauing at around 5.5%.
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Figure 4.7: Comparison of Cauchy-Crofton formulation against modified Moore-
neighbor tracing algorithm for calculations of the perimeter of the particle in terms
of image resolution. Here, Cauchy-Crofton approximations with three stencils of the
form N4, N12, and N28 are used to compute the grains circumference at various im-
age resolutions. The Cauchy-Crofton estimates have higher accuracy with increased
pixel interactions, whereas the Moore-neighbor contour tracing accuracy diminishes
and plateaus at around 5.5%.

4.2.2 Example 2: Implementation of Surface Energies as Riemannian

Metrics

The Cauchy-Crofton formula is used to compute surface integrals for different particle

shapes. Generally, the surface integrals estimated by Cauchy-Crofton tend to have

higher accuracy with increased pixel interactions, with the error ultimately converging

to zero. Here, the estimated values are computed by representing the surface energy

integral in terms of a Riemannian contour length as described in Equation (4.6). Ex-

amples of the use of the Cauchy-Crofton formula for different surface energy (i.e.,

γ-plots) and particle shapes are shown in Table 4.1 and compared with the analyt-

ical integrals. It is shown that the Cauchy-Crofton results are consistent with the
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analytical solutions.

Table 4.1: Various examples for the Cauchy-Crofton formula with different surface
energies for a given particle shape contour.

Contour γ-plot Analytical∫∫∫
γds

Cauchy-Crofton∫∫∫
γdsmode_D = 0, surfacefn(1,0,1)

cval = [1:10].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

𝑟 ൌ 128 𝜇𝑚

100 𝜇m

0
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/3
/2

2 /3

5 /6

7 /6

4 /3
3 /2

5 /3

11 /6

0

0.5

1

Analytical: 804.2477

imgsz = 512; % edge length of the cubic volume *---- choose even---
rad = imgsz/4; % radius of sphere, cube, etc
modeD = 0;

Crofton: 804

data_surface_array = [807, 806,  805, 805, 804, 804, 804, 804, 804, 804]

mode_D = 0, surfacefn(1,0,1)

cval = [1:10].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

𝑟 ൌ 128 𝜇𝑚

100 𝜇m

0

/6

/3
/2

2 /3

5 /6

7 /6

4 /3
3 /2

5 /3

11 /6

0

0.5

1

Analytical: 804.2477

imgsz = 512; % edge length of the cubic volume *---- choose even---
rad = imgsz/4; % radius of sphere, cube, etc
modeD = 0;

Crofton: 804

data_surface_array = [807, 806,  805, 805, 804, 804, 804, 804, 804, 804]

804.3 804

mode_D = 5, surfacefn(4,0,0.16)

cval = [1:10].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical: 1040

imgsz = 512; % edge length of the cubic volume *---- choose even---
shape = 'rectangle';
rad = [100 150];
modeD = 5;

Crofton: 1040

data_surface_array = [3195, 1716, 1199, 1040, 1002, 995, 1001, 1007, 1014, 1018]

150 𝜇𝑚

100𝜇𝑚

100 𝜇m

mode_D = 5, surfacefn(4,0,0.16)

cval = [1:10].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical: 1040

imgsz = 512; % edge length of the cubic volume *---- choose even---
shape = 'rectangle';
rad = [100 150];
modeD = 5;

Crofton: 1040

data_surface_array = [3195, 1716, 1199, 1040, 1002, 995, 1001, 1007, 1014, 1018]

150 𝜇𝑚

100𝜇𝑚

100 𝜇m

1040.0 1040

400 500

cval = [1 2 4 5 8 9 16 25 36 49 64 81 100 121 144 169 196];

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical: 523.6936

gth of the cubic volume *---- choose even---
of sphere, cube, etc

Crofton: 517

surfacefn(0.16,0,4)
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ሺ206 , 306ሻ

data_surface_array = [1629  895  895  626  626  626  537  513  506  507  509  512  514  515  516  517 517]

cval = [1 2 4 5 8 9 16 25 36 49 64 81 100 121 144 169 196];

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical: 1132.95230317525

gth of the cubic volume *---- choose even---
of sphere, cube, etc

Crofton: 1122 

surfacefn(1,0,16)
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2672        1581        1580        1209        1209        1209        1109        1098

1132.9 1122

mode_D = 5 + 1,     

cval = [1:15].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical:  2401.1 (based on analytical shape)
2391.2 (based on true image)

Crofton: 
2384 

data_surface_array = [8867, 4623, 3062, 2538, 2375, 2322, 2318, 2323, 2332, 2341, 2348, 2353, 2358, 2361, 2363, 2364, 
2365 2365 2365 2364 2364 2362 2362 2361 2359 2358]

100 𝜇m

mode_D = 5 + 1,     

cval = [1:15].^2;

To edit, go to: C:\Users\imana\Dropbox (University of Michigan)\Research\Iman Codes\crystalwithseed

Analytical:  2401.1 (based on analytical shape)
2391.2 (based on true image)

Crofton: 
2384 

data_surface_array = [8867, 4623, 3062, 2538, 2375, 2322, 2318, 2323, 2332, 2341, 2348, 2353, 2358, 2361, 2363, 2364, 
2365 2365 2365 2364 2364 2362 2362 2361 2359 2358]

100 𝜇m

2391.2 2384

In the past, a variety of approaches have been used for the segmentation and com-
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putation of the particle size distribution from tomographic images. These include

methods such as Delaunay tessellation, medial axis, and watershed-based methods

[251, 252]. Delaunay and medial axis methods are better suited for spherical parti-

cles, while watershed methods require arbitrarily set parameters to generate results

[253]. In sintering theories, these segmented particles can be used to compute various

descriptors, including pore coordination number distribution [254, 255], particle/-

pore size distribution [256, 257, 258], distribution of particle shape metrics such as

shape moment invariants [259, 260]. Many of these metrics are known for the case

of spherical particles but are not well known for polyhedral particles as well as for

bimodal/trimodal particle distributions. Accordingly, the use of surface energies to

perform segmentation based on Wulff construction, as presented in this chapter, is

novel.

4.2.3 Example 3: Wulff Shape Construction

Previous examples successfully illustrate the computation of surface integrals using

Riemannian metrics. This example further incorporates shape evolution problems to

capture the contour with minimum surface energies, also known as the Wulff shape.

The equilibrium shape of isolated crystals is given by the Wulff construction based

on orientation-dependant γ-plots for a fixed volume. Hence, as the first case study,

the evolution of a circular-shaped grain is considered, as depicted in Figure 4.8, with

Riemannian matrix D11 = 4, D12 = D21 = 0, and D22 = 25. It is observed that the

grain gradually reduces its width while growing in height to achieve minimum surface

energy. It is worth noting that if the total surface energy is minimized without con-

straining the volume, the algorithm eventually shrinks the particle to zero, as that is

the lowest surface energy one can obtain. Hence, a constraint is placed on the vol-

ume such that the algorithm dilates the shape vertically after several iterations since,

based on the γ-plot, the energy is lowest along the vertical facets. Figure 4.8(right)
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represents the Wulff construction, where the crystalline shape (depicted in orange)

minimizes the surface energy (represented as a blue line).

time

time

Crystal Shape

Wulff Plot

Crystal Shape

Wulff Plot

Figure 4.8: Simulation of grain evolution for a circular-shaped grain with Riemannian
surface energy denoted by D11 = 4, D12 = D21 = 0, and D22 = 25.

Next, the Cauchy-Crofton is shown to be useful for denoising microstructural images.

The results are presented in Figure 4.9, where the procedure shows to smoothen the

data by relabeling the noisy pixels. Moreover, using a larger stencil and finer densities,

especially along the GB, can provide better results in terms of the curvature of grains.

time

time

Crystal Shape

Wulff Plot

Crystal Shape

Wulff Plot

Figure 4.9: Simulation of grain evolution for a noisy circular-shaped grain with Rie-
mannian surface energy denoted by D11 = 4, D12 = D21 = 0, and D22 = 25.

4.2.4 Example 4: Evolution of 2D Polycrystalline Microstructure

This section examines the Cauchy-Crofton formulation for topological changes of the

evolving interfaces in a 2D polycrystalline microstructure. Accordingly, the simulation

of 2D polycrystalline microstructure is considered in Figure 4.10. As expected, smaller

grains in the initial configuration depicted on the left-hand side are annihilated as

time progresses. This illustrates that the Cauchy-Crofton methodology captures the

necessary physics of microstructure evolution in terms of annihilation and merger of
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polycrystals. In microstructural aggregates, the energy at the GB is typically higher

than the bulk energies of the grains themselves. This energy serves as a thermody-

namic driving force for the simulation of grain growth. Hence, the motion of the GB

leads to a decrease in its surface area, resulting in the growth of a few grains while the

remaining grains decay or annihilate. Computational techniques, such as the Monte

Carlo Potts model [234, 235], level sets [236], and phase-field methods [124, 237], have

been employed to simulate the behavior of polycrystals. The particular advantage

of the proposed computational approach lies in its ability to target global minima

of shape using image-based meshes. In future work, experimentally-measured grain

growth velocities from experiments will be supplemented to simulate grain growth,

including the effect of initial size distribution and texture.

time

Figure 4.10: Simulation of grain growth in 2D polycrystalline structure using Cauchy-
Crofton formula.

4.2.5 Example 5: Segmentation of MRF 3D Reconstructions

The Cauchy-Crofton method is also shown to be robust against noise and partial

volume effects. As a result, in the next case study, the Cauchy-Crofton algorithm is

supplied as the post-processing step for the output of MRF reconstruction, discussed

in Chapter II. Here, a 3D diffraction contrast tomography (DCT) microstructure of

Al-Cu alloy [42], shown in Figure 4.11, is taken as a proof-of-concept for the proposed

coupling reconstruction-segmentation technique. The raw Euler angles are mapped

to a discretized ODF, accounting for the cubic symmetry of the scanned material.
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Subsequently, each voxel in DCT data is mapped to the closest independent node

within the ODF. The DCT microstructure is then colored according to the nodal

numbers. Thereafter, all slices within each orthogonal direction (i.e., x, y, and z) of

the original DCT data are extracted and categorized based on their underlying 2D

grain size statistics and texture distributions. The best three orthogonal slices of the

original 3D DCT dataset are selected as the input exemplars for the MRF recon-

struction process, discussed in Chapter II. These planar exemplars are illustrated in

Figure 4.11. As illustrated in Figure 4.12(a)-4.12(b), these exemplars display similar

cumulative pole figures to the original 3D dataset. The reconstruction process is fol-

lowed by the segmentation procedure, outlined in Chapter IV. Herein, the measured

microstructure contains mostly spherical grains (i.e., equiaxed crystals), and so in the

following, the Riemannian matrix, D, is set to the identity matrix, i.e., D = I. The

resulting segmented image of the Cauchy-Crofton process is shown in Figure 4.11.

Subsequently, the Euler angles associated with each voxel in the synthesized solid

model can be mapped to a discretized pole figure, i.e., a graphical representation

of the stereographic projection of crystal orientations onto a particular plane. Two

pole figures (e.g., ⟨100⟩ and ⟨111⟩) are sufficient to fully define the crystallographic

orientations of each grain. As depicted in Figure 4.12(a)-4.12(c), it is found that the

pole figures of the experimental DCT model match exceptionally well to the respective

pole figures of the segmented 3D model shown in Figure 4.11.
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Original 3D DCT 
Experimental Dataset

MRF Input Exemplars 

Segmented MRF 
3D Image

MRF Reconstructed 
3D Image

The name of the denoised image is Clean_mrf64.m 
………….. For the main paper ask veera to send you the 

noisy data set cuz this is just from our previous 
conversation and has a low quality

Figure 4.11: Coupling Cauchy-Crofton segmentation algorithm to augment the MRF
reconstructions: three orthogonal planar images of the original DCT dataset are ex-
tracted for MRF reconstruction. The Cauchy-Crofton segmentation technique is fol-
lowed for the segmentation of the reconstructed 3D image.
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Figure 4.12: Comparison of ⟨100⟩ and ⟨111⟩ pole figures for (a) the original 3D
DCT sample against (b) the MRF planar input exemplars and (c) the segmented 3D
synthesized image.
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Additionally, the 3D grain statistics of the synthesized models are examined against

the experimental image. Here, the external grains along the outer surfaces of the 3D

image are eliminated. Edge detection based on six-fold connectivity is then performed

on the internal grains. The raw volumetric data (in voxel units) is then calculated

over 32 bins using a lognormal fit. As illustrated in Figure 4.13, a close agreement

between the original 3D DCT and synthesized images is observed.

lognormal fit

Figure 4.13: Comparison of the grain size distribution of the 3D microstructures for
the original DCT dataset and two segmented MRF images.

Figure 4.14 demonstrates the effect of using the Cauchy-Crofton weights for the seg-

mentation process. Figure 4.14(a) shows the result without the use of Cauchy-Crofton

weights, which results in metrication artifacts with abnormally flat grains. However,

use of Cauchy-Crofton formula (N26 in Figure 4.14(b) and N122 in Figure 4.14(c))

systematically improves grain shapes. Accordingly, using a larger stencil provides

better results in terms of the curvature of grains.
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(a) (b) (c)

Figure 4.14: Segmentation of 3D microstructure as a graph labeling problem: (a)
reconstruction without the use of Cauchy-Crofton weights results in metrication arti-
facts with unusual flat grains. 3D microstructure after segmentation procedure using
(b) N26 and (c) N122.

4.3 Conclusions

In this chapter, a physics-based model is developed to simulate multiphase flow for

studying microstructure evolution using a pairwise energy form. This formulation is

more computationally intensive than the modified Moore-neighbor tracing algorithm,

but at the same time, metrication errors are severely suppressed. Additionally, a

basic 2D Riemannian metric based on the implementation of the Cauchy-Crofton

formulation was verified for modeling 2D microstructural evolution using several test

cases with pixelated meshes. It is shown that the methodology captures the neces-

sary physics of microstructure evolution in terms of annihilation and merger of grains.

Moreover, the equilibrated solution matches the analytical conditions at the triple-

point junctions. The evolution laws for anisotropic length metrics are identified and

are used to simulate non-equiaxed microstructures. The ideas can be extended to-

wards the segmentation of 3D microstructures where unlabelled grains in experimental

images can be identified by minimizing data cost and by using a regularization term

for the surface energy. This procedure can also be used to remove the noisy voxels

of images while preserving the overall data microstructure. Future work may include
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the inclusion of strain energy, in addition to bulk and interfacial energy, in the for-

mulation to model other material science problems such as growth and coarsening of

precipitates within a grain [261]. This work has identified a few areas where further

research is required to improve microstructure evolution models. In its present state,

the surface energies that can be represented in the pairwise formulation are restricted

by corresponding length metrics that can be modeled using Crofton relations. This

restriction is a significant hurdle in developing a complete simulation suite for mi-

crostructure evolution, where GB energy is much more complicated. This work has

also shown that metrication errors can be suppressed using concepts from integral

geometry.
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CHAPTER V

Image-Based Crystal Plasticity Analysis of

Microstructures

As described previously in Chapters II-IV, uniform pixel or voxel-based structured dis-

cretizations can be conveniently obtained from microscopy and numerical acquisition

techniques [20, 92, 93]. Subsequently, once the underlying structure of a material is

realized, modeling mechanical performance for aerospace applications remains an area

of interest in the material science community. As a result, here in this chapter, the

NOSBPD technique is employed to simulate fine-scale localizations in polycrystalline

microstructures undergoing elastoplastic deformation. Microscale data from electron

microscopy and DIC have indicated that slip localizations arise early in deforma-

tion and act as precursors to mechanical failure and fracture mechanisms [136, 137].

However, classical numerical approaches such as CPFEM are generally unable to

predict the emergence and distribution of such localizations. Alternatively, the PD

formulation has attracted significant attention for its unique treatment of deforma-

tion in the presence of high-strain gradient fields, providing a unique capability for

solving problems involving discontinuities. The correspondence-based PD models,

however, often suffer from zero-energy mode instabilities, primarily due to the ap-

proximations of the non-local deformation gradient tensor. This chapter focuses on a

computational scheme for eliminating the zero-energy mode oscillations for both 1D
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and higher-dimensional problems using a choice of influence functions that improve

the truncation error in a Taylor series expansion of the deformation gradient. The

novelty here is a tensor-based derivation of the linear constraint equations, which can

be used to systematically identify the particle interaction weight functions for various

user-specified horizon radii. The proposed stabilization scheme is shown to be highly

effective in suppressing the spurious zero-energy mode oscillations in all numerical

examples while enabling efficient simulations of strain localizations across material

interfaces.

The chapter is organized as follows. A review of the non-ordinary state-based PD

is first outlined in Section 5.1. In Section 5.2, a brief explanation on the origin

of zero-energy modes follows. The higher-order approximation theory of deforma-

tion gradient is then proposed in Section 5.3. Numerical examples are shown and

discussed in Section 5.6 for various multi-dimensional problems. Notably, in Sec-

tion 5.6.1, the higher-order approximation results for a number of long-range inter-

actions are compared against the analytical solutions and PD methods without any

stabilization control [262] for a simple case of 1D cantilever bar. Effects of zero-energy

mode oscillations on 2D polycrystalline microstructures involving texture evolution

are then introduced in Section 5.6.2. Thereafter, the CPPD numerical results are

examined against conventional CPFE techniques in modeling fine length-scale shear

bands across polycrystalline aggregates. This follows by Sections 5.6.3-5.6.5 that

respectively demonstrate 3D examples of composite and polycrystalline microstruc-

tures subjected to Dirichlet boundary conditions. Here, the proposed PD technique

is shown to be superior to CPFE models in simulating the sharp small-scale strain

localizations across the microstructural interface.
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5.1 Non-Ordinary State-Based Peridynamics

In this section, the NOSBPD theory is briefly reviewed. Thereafter, the discretization

process along with an overview of the numerical algorithm, is outlined. Next, the zero-

energy mode oscillation and its relationship with the material point interactions are

discussed. In Section 5.3, a novel solution for suppressing the zero-energy instability

noise for 1D, 2D, and 3D problems using higher-order approximations of deformation

gradients is introduced. Next, in Section 5.4, a boundary treatment based on constant

deformation gradient is introduced that encompasses large horizon interactions.

The non-ordinary state-based PD theory forms the foundation of the present work.

This model was first proposed by Silling et al. [170] and consists of a non-local integral

reformulation of the classical continuum mechanical theory. Unlike bond-based PD

models [162, 263], which are restricted to a specific Poisson’s ratio, the state-based PD

theory can be generalized to include various classical constitutive material models,

enabling the integration with crystal elastoplasticity [21]. Here, consider a material

particle in the reference configuration at position x, which can only interact with

its neighboring points in a self-centered horizon Hx, within a finite radius δ. Given

the displacement field u of the material particle at x, the deformed location of the

corresponding material particle in the current configuration is represented as y =

x + u. Here, as depicted in Figure 5.1, the reference configuration of the body is

denoted as B0 at time t = t0 and the deformed configuration as B1 at time t1.

Let x′ denote the position of a particular material particle belonging to Hx, and

ξ = x′ − x denote a bond between the respective material particle at x′ and the

center particle at x. The deformation vector state, indicated as Y[x, t]⟨x′ − x⟩,

maps the bond ξ in the reference configuration to its deformed counterpart, i.e.,

Y[x, t]⟨x′− x⟩ = y′− y. The corresponding deformation gradient tensor F(x, t), can

be defined in terms of Y[x, t]⟨x′ − x⟩, as follows:
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F(x, t) =

(∫
Hx

ω(Y[x, t]⟨x′ − x⟩ ⊗ ξ)dVx′

)
K−1(x) (5.1)

where ω is a weight function, quantifying the impact of neighboring particles on the

center particle at x. Here, the weight function ω, can be selected as a radially-

symmetric parameter based on the initial bond length, i.e., ω = ω(|ξ|). Also, K(x)

is a symmetric, positive-definite shape tensor, defined as:

K(x) =

∫
Hx

ω(ξ ⊗ ξ)dVx′ (5.2)

Therefore, the governing equations of state-based PD at time t can be formulated as

follows:

ρü(x, t) = L(x, t) + b(x, t)

L(x, t) =

∫
Hx

(T[x, t]⟨x′ − x⟩ −T[x′, t]⟨x− x′⟩)dVx′ (5.3)

where T[x, t]⟨x′−x⟩ is a force vector state, operating on the bond ξ for the particle at

position x and time t. Here, L(x, t) is the summation of the forces per unit reference

volume due to the interactions of the particle at location x with its neighboring

particles inside the self-centered horizon Hx. Furthermore, vector b(x, t) denotes the

body force density corresponding to the material particle at x and time t, while ρ

refers to the material density.

In correspondence with the classical continuum theories, the force state T[x, t]⟨x′−x⟩

is related to the first Piola-Kirchoff (PK-I) stress tensor, denoted as P(x, t), via the
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Figure 5.1: Kinematics of NOSBPD. B0 denotes the reference configuration of the
body, while B1 is the deformed configuration. The particle at x is bonded to its neigh-
boring particles, located at x′, x′′, and x′′′, within a finite region Hx. The body deforms
so the particle at x displaces to y. The mapping can be described by the correspond-
ing deformation gradient F(x, t). T = T[x, t]⟨x′ − x⟩ and T′ = T[x′, t]⟨x − x′⟩ are
force vector states in the reference configuration for particles locating at x and x′,
respectively. In the non-ordinary state-based PD theory, these two force vectors are
not necessarily parallel and can be obtained from the classical stress tensor.

following equation:

T[x, t]⟨x′ − x⟩ = ωP(x, t)K−1(x)ξ (5.4)

Hence, P(x, t) can be computed from a classical constitutive model using the deforma-

tion gradient F(x, t). Compared with the governing equations of classical continuum

mechanics, no spatial derivative appears in Equation (5.3). This places fewer restric-

tions on the regularity properties of deformation descriptors. Furthermore, it is worth

noting that despite the current PD model being non-ordinary, the balance of angular

momentum is ensured due to the relation in Equation (5.4) [21, 170].

In this chapter, an explicit dynamic relaxation method with the quasi-static assump-

tion and a careful time-step selection, as outlined in Appendix B, is adopted. Non-

linear problems involving static solutions can alternatively be solved iteratively as a

dynamic problem using artificial damping.
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5.1.1 Numerical Discretization Scheme and Algorithm

Assume there are N neighboring particles surrounding the central material particle

located at x, then Equation (5.3) can be discretized for a specific time frame t = tn

as in the following, while neglecting the body force b(x):

L(x) =
N∑
i=1

(
T[x]⟨x′

i − x⟩ −T[x′
i]⟨x− x′

i⟩
)
Vx′

i
= 0 (5.5)

where x′
i is the location of the ith neighboring particle in x’s horizon, and Vx′

i
is its

corresponding volume. Next, the deformation gradient F(x), for the material particle

at x at the specific time frame t = tn, can be discretized as:

F(x) =
( N∑

i=1

ωi(y
′
i − y)⊗ (x′

i − x)Vx′
i

)
K−1(x) (5.6)

where y′ and y represent the images (i.e., the deformed positions) of material particles

at x′ and x, respectively, and ωi denotes the weight function of the ith particle within

the horizon of the center particle at x. Similarly, the shape tensor, K(x), can be

computed as:

K(x) =
N∑
i=1

ωi(x
′
i − x)⊗ (x′

i − x)Vx′
i

(5.7)

Given the constitutive model, represented by an operator F , the force states T[x]⟨x′
i−

x⟩ for the particle at x and T[x′
i]⟨x − x′

i⟩ for the particle at x′, as found in Equa-

tion (5.5), can be obtained from:
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T[x]⟨x′
i − x⟩ = ωiF

(
F(x)

)
K−1(x)(x′

i − x)

T[x′
i]⟨x− x′

i⟩ = ωiF
(
F(x′

i)
)
K−1(x′

i)(x− x′
i) (5.8)

Yet, in order to acquire F(x′
i) and K(x′

i) for the particle at x′
i, information about the

ith particle’s horizon must be determined. Figure 5.2 is an illustration of interactions

of one particle with its nearest neighbors in a 2D material domain.

12
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10

11

12

13

Figure 5.2: Particle interactions with closest neighbors in a2DPD model. Particles
i = 2, 3, 4, 5 are the nearest neighbors of the particle 1 (denoted as the center particle
at x); while particles i = 1, 9, 10, 11 are the nearest neighbors of the particle 4 (denoted
as the particle at x′

i). In this case, all 13 particles shown above should be included in
order to obtain L(x) at particle x in Equation (5.5).

With all force vector states obtained, the adaptive dynamic relaxation scheme (ADRS),

as elaborated in Appendix B, is applied to solve the equation L(x) = 0. For a 2D

problem, the global equation of motion can be organized as a vector system with

a size of 2 × Ntotal, where Ntotal is the total number of particles in the simulation.

Since L(x) is completely dependent on the current field, the system can be explicitly

started with an initial guess of displacement, velocity, and acceleration fields. During

dynamic iterations in one loading step, two absolute errors, denoted as ε1 and ε2, are
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calculated at each iteration with the definitions as:

ε1 =
∥L(x)∥2
Ntotal

and ε2 =
∥δu∥2
Ntotal

(5.9)

where ∥.∥2 denotes a Euclidean norm. The first error ε1, describes the degree to

which L(x) approaches zero, while the second error ε2, denotes the magnitude of

displacement increments between two adjacent iteration steps. In order to normalize

the error from initial guesses, two corresponding relative errors e1 and e2 are then

monitored, as computed below:

e1 =
ε1
ε01

and e2 =
ε2
ε02

(5.10)

where ε01 and ε02 are the initial absolute errors in each loading step. Iterations stop

only when both criteria are satisfied, i.e., e1,2 < el with el = 10−6. All quantities are

then updated into the next loading step. To improve the computational performance,

parallel libraries such as OpenMP and OpenMPI, are adopted in the code. Given

that kinematic properties, such as the displacement u and deformation gradient F,

are known beforehand due to the use of an explicit method, the constitutive model

can be applied to different particles in parallel. In other words, the computation

involved in acquiring P(x) = F
(
F(x)

)
and P(x′) = F

(
F(x′)

)
corresponding to the

material particles at x and x′, respectively, are completely independent. The compu-

tation domain is therefore partitioned into several groups in order to parallelize the

calculation of the stress tensors. Finally, all information is gathered in the assembly

of the vector system L(x). The flowchart in Figure 5.3 summarizes the important

numerical steps within the non-local state-based PD scheme described above.

In the presented PD framework, a crystal elastoplasticity model with deformation

113



6

Algorithm Flowchart

Start

Loop over particles with neighbors

𝐊 𝐱 = σ𝑖=1
𝑁 𝜔𝑖(𝐱𝑖

′ − 𝐱)⨂(𝐱𝑖
′ − 𝐱) 𝑉𝐱𝑖

′

𝐅 𝐱 = [σ𝑖=1
𝑁 𝜔𝑖(𝐲𝑖

′ − 𝐲)⨂(𝐱𝑖
′ − 𝐱) 𝑉𝐱𝑖

′]𝐊−1 𝐱

Constitutive model 𝐏 𝐱 = ℱ 𝐅 𝐱

𝐓 𝐱 𝐱𝑖
′ − 𝐱 = 𝜔𝑖𝐏 𝐱 𝐊−𝟏(𝐱)(𝐱𝑖

′ − 𝐱) σ𝑖=1
𝑁 𝐓 𝐱 𝐱𝑖

′ − 𝐱 − 𝐓 𝐱𝑖
′ 𝐱 − 𝐱𝑖

′ 𝑉𝐱𝑖
′ = 𝜌 ሷ𝐮

ADRS: Δ𝑡, 𝑐

Update 𝐮

Yes

Next loading step

𝑒1,2 < 𝑒𝑙
No

Figure 5.3: Flowchart for the explicit NOSBPD scheme using ADRS.

twinning, as elaborated in Section 5.5, is incorporated, where a generalized Hooke’s

law characterizes the elastic behavior of the microstructure and is accompanied by

a rate-independent CP formulation to model the plastic constitutive behavior [158].

The rate-independent CP constitutive model implementation is elaborated in detail

in [172, 264].

5.2 Zero-Energy Modes

The PD technique used in this chapter incorporates a correspondence material model

in determining the bond forces from the PK-I stress tensor. The inherent stability

issue of zero-energy modes is essentially the result of non-unique mapping between

deformation states and force states via the PD deformation gradient tensor [173, 181,

185, 191]. To better understand the origin of zero-energy numerical oscillations, a

simple example is discussed next. Consider a 2D uniform lattice as illustrated in

Figure 5.4, where x and x′ indicate the positions of the central material particle and

one of its neighbors, respectively, at the original configuration. Let Fold(x, t) denote

the initial deformation gradient, while Fnew(x + ud, t) represents the deformation

gradient after a small displacement disturbance ud, applied to the center particle at
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x. The new deformation gradient Fnew(x + ud, t) can be then calculated based on

Equation (5.1) as:

Fnew(x + ud, t) =
(∫
Hx

ω(Ynew[x + ud, t]⟨x′ − x− ud⟩ ⊗ ξ)dVx′

)
K−1(x)

=
(∫
Hx

ω
[
(Yold[x, t]⟨x′ − x⟩ − ud)⊗ ξ

]
dVx′

)
K−1(x)

= Fold(x, t)− ud ⊗
(∫
Hx

ωξdVx′

)
K−1(x) (5.11)

With the assumption of a regular lattice discretization and a spherically-symmetric

influence function ω, the integration term on the right-hand side becomes zero. This

is the case of admissible displacement fields producing the same deformation gradient

and potential energy, which is appropriately called the zero-energy mode. This is a

common stability issue when using correspondence material methods with mesh-free

discretizations [265, 266].

x x� udud

at center

Fold Fnew

Figure 5.4: An illustration of zero-energy modes in a 2D regular lattice. A small
disturbance applied to the center particle has no impact on the calculation of the
deformation gradient.

One of the previous ideas to address the zero-energy mode instability issue includes

the introduction of the artificial force state, Ta[x]⟨x′−x⟩, for the particle at location

x and bond x′ − x, as follows:
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T[x, t]⟨x′ − x⟩ = ωP(x, t)K−1(x)ξ + Ta[x, t]⟨x′ − x⟩ (5.12)

The artificial force term can be calculated using interconnected springs or average

displacement states [179, 185]. The linear springs introduced between particles can

be represented as:

Ta[x, t]⟨x′ − x⟩ = C1ω[u(x′)− u(x)] (5.13)

where C1 is a spring constant. Alternatively, the following method computes an added

force based on the average of displacement states over a given horizon size, as follows:

Ta[x, t]⟨x′ − x⟩ = C2

∫
Hx

ω[u(x′)− u(x)]dVx′ (5.14)

Although these supplementary forces have a suppression effect on the zero-energy

modes, their efficacy highly depends on the mesh size and the problem itself. Ad-

ditionally, to determine the optimum values of the artificial coefficients (i.e., C1 and

C2) preliminary calculations need to be performed beforehand [173, 179]. Yet, none

of these methods completely suppresses zero-energy modes. Alternatively, in Sec-

tion 5.3, a thorough discussion on the accuracy and stability of a novel explicit nu-

merical scheme, termed higher-order approximation theory, towards the elimination

of the zero-energy mode oscillations is described.

5.3 Higher-Order Approximation Theory

The higher-order approximation method was initially proposed in Yaghoobi et al. [173]

for 2D lattice structures and later enhanced in Javaheri et al. [221]. The basic idea
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is to adjust the influence weight functions based on a Taylor series expansion to

better approximate the deformation gradient. This approach is shown to be highly

effective in suppressing spurious zero-energy mode oscillations. In addition, higher-

order approximations are easily implementable within the state-based PD framework,

where larger horizon sizes can be used.

In the continuum mechanics, the relation between the deformed bond δy = y′ − y,

and the reference bond δx = x′−x, as illustrated in Figure 5.1, can be expressed via

the Taylor series expansion, as follows:

y′ − y =
∂y

∂x
(x′ − x) + O[(x′ − x)2] (5.15)

where the notation O denotes the order of the leading error term. Here, ∂y
∂x

is equiv-

alent to the deformation gradient tensor. In order to incorporate the state-based PD

deformation gradient, a tensor product on the reference bond x′−x is first performed

on both sides of Equation (5.15), and the result is then integrated over the initial

horizon Hx, as follows:

∫
Hx

ω[(y′−y)⊗ (x′−x)]dVx′ =

∫
Hx

∂y

∂x
ω[(x′−x)⊗ (x′−x)]dVx′ +O[(x′−x)3] (5.16)

Therefore, the deformation gradient tensor at time t can be approximated by:

F(x, t) =
∂y

∂x
=

(∫
Hx

ω[(y′ − y)⊗ (x′ − x)]dVx′

)
K−1(x) + O(x′ − x) (5.17)

Once the error term, i.e., O(x′−x), is eliminated, Equation (5.17) becomes the same
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as Equation (5.1), where K(x) is defined as the shape tensor in the state-based PD

model. Note that the leading error term in Equation (5.17) is of the first order of

the distance between material particles located at x′ and x. In order to achieve a

more accurate deformation gradient, appropriate influence function values ω, for the

required horizon can be chosen to artificially increase the leading error order. This is

explained for multi-dimensional domains in Section 5.3.1. The specific contribution

area of this chapter is developing a set of higher-order tensor equations to efficiently

identify the constraint formulations for the influence weight functions when using the

higher-order approximation method.

5.3.1 Multi-Dimensional Discrete Formulation

Hereon, the multi-dimensional Taylor series expansion is applied for deriving weight

function values ω across 1D, 2D, and 3D material domains with a constant particle

spacing h for δ ≤ 3h, where δ denotes the interacting horizon radius. This chapter

incorporates a uniform particle discretization, i.e., equally-spaced particles along a

line in 1D, quadrilateral discretizations in 2D, or cubic patterns in 3D having a con-

stant particle spacing h with a fixed particle volume ∆V . Accordingly, the influence

function values ω are always assumed to be spherically-symmetric, i.e., ω = ω(|ξ|).

For the sake of simplicity, the Einstein tensor notation is adopted in the following

discussion. The shape tensor K(x) in Equation (5.2), and the deformation gradient

tensor F(x, t) in Equation (5.1) can alternatively be expressed in Einstein notation,

as follows:
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Kij =

∫
Hx

ωδxiδxjdVx′ (5.18)

Fpq = (

∫
Hx

ωδypδxjdVx′)K−1
jq (5.19)

Due to the symmetric nature of the particle discretizations, the shape tensor in Equa-

tion (5.18) can be reformulated as:

Kij =
N∑
a=1

ωa(δxiδxj)a∆V = Ω(ω1, ω2, ω3, ...)h
2∆V δij (5.20)

where N is the total number of neighboring material particles within the horizon Hx,

δij is the Kronecker delta function, and Ω is a function of all independent ω1, ω2, ...,

ωN in the horizon. For instance, consider a 2D quadrilateral particle discretization

as depicted in Figure 5.5, with a horizon size δ = 2h. While there are a total of

12 neighboring material particles within the given horizon radius δ = 2h, due to

the radially-symmetric nature of the discretization pattern, only three independent

weight function values are labeled, i.e., ω1 = ω(h), ω2 = ω(
√

2h), and ω3 = ω(2h).

Consequently, by substituting Equation (5.20) into Equation (5.19), the deformation

gradient can be reformulated as:

Fpq =
δjq

h2Ω∆V

∫
Hx

ωδypδxjdVx′ =
1

h2Ω

N∑
a=1

ωa(δypδxq)a (5.21)

Accordingly, a multi-dimensional Taylor series expansion of the deformed bond δy

on the reference bond δx is required. The first three leading terms are shown here
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ω1

ω2

ω3

center

ω1 � ωphq
ω2 � ωp?2hq
ω3 � ωp2hq

h

h

Figure 5.5: Independent weight function values for a 2D quadrilateral particle pattern.
Here, ω is a radially-symmetric weight function on neighboring material particles. The
horizon radius is δ = 2h, with h denoting the distance between the nearest particles.

without showing the derivations:

δyp = Fpiδxi +
1

2!
Gpijδxiδxj +

1

3!
Hpijkδxiδxjδxk + O(h4) (5.22)

where Fpi = ∂δyp
∂δxi

is the deformation gradient; Gpij = ∂2δyp
∂δxiδxj

and Hpijk = ∂3δyp
∂δxiδxjδxk

are

the second-order and third-order derivatives, respectively.

Finally, by substituting Equation (5.22) into Equation (5.21), the deformation gradi-

ent then turns into:

Fpq = Fpq +
1

2!h2Ω
Gpij

N∑
a=1

ωa(δxiδxjδxq)a +
1

3!h2Ω
Hpijk

N∑
a=1

ωa(δxiδxjδxkδxq)a + O(h3)

(5.23)

Accordingly, it is possible to achieve higher-order approximations by selecting explicit

weight functions in Equation (5.23). It is worth noting that in a spherically-symmetric
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and intact discretization, for every bond (δx)m, there is another bond (δx)n symmetric

about the origin such that (δx)m = −(δx)n. Hence, when there are odd δx-products,

the summation terms in Equation (5.23) become:

N∑
a=1

ωa(δxiδxj . . . δxm)a = 0 (5.24)

As odd δx-product summations vanish, symmetric particle patterns with intact hori-

zons always lead to an accuracy order equal or greater than O(h2). One additional

equation, as formulated below, needs to be satisfied to obtain a higher truncation

error in the order of O(h4):

Aijkl =
N∑
a=1

ωa(δxiδxjδxkδxl)a = 0 (5.25)

Furthermore, the satisfaction of the following two equations leads to higher accuracy,

in the order of O(h6):


Aijkl =

∑N
a=1 ωa(δxiδxjδxkδxl)a = 0

Bijklrs =
∑N

a=1 ωa(δxiδxjδxkδxlδxrδxs)a = 0

(5.26)

Criteria outlined in Equations (5.25) and (5.26) hold true regardless of the material

dimensions, i.e., 1D line, 2D quadrilateral, or 3D cubic patterns. The final selection

of weight function values should satisfy the constraint inequality Ω(ω1, ω2, ω3, ...) ̸= 0

to ensure the shape tensor K(x) obtained in Equation (5.20) is invertible. It is worth

noting that larger horizon sizes with more independent weight function values often

lead to increased orders of truncation error.
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The weight function values for a 1D particle-discretized bar with a constant spacing

h, and horizon sizes up to δ = 4h are tabulated in Table 5.1. For the sake of simplicity

and unity, the weight function value corresponding to the particle closest to the center

particle is set to be 1, i.e., ω1 = 1. Additionally, the order of leading truncation

error increases when the horizon size δ grows, providing a more accurate deformation

gradient. For a 1D bar with a horizon δ = 2h as depicted in Figure 5.6, there

are 5 material particles at xi+j for j = 0,±1,±2 with only two independent weight

functions ω1 and ω2, pertaining to particles at xi±1 and xi±2, respectively. Hence,

setting ω1 = 1 and ω2 = −1/16 produces a fourth-order leading error of the form

O(h4) in the Taylor series expansion of the deformation gradient in Equation (5.23)

when δ = 2h.

ω3 ω2 ω1 ω1 ω2 ω3

xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

δ = 2h

Figure 5.6: Example of a 1D particle-discretized bar with a constant spacing h. Here,
ω is a symmetric weight function. Dashed box with δ = 2h illustrates the horizon of
the center particle xi, including only the nearest four particles.

Table 5.1: Higher-order approximation weight functions for 1D particle discretization
with a constant spacing h.

Horizon Size Weight Function Values Leading Error

ω1 ω2 ω3 ω4

δ = h 1 0 0 0 O(h2)

δ = 2h 1 -1/16 0 0 O(h4)

δ = 3h 1 -1/10 1/135 0 O(h6)

δ = 4h 1 -1/8 1/63 -1/896 O(h8)

Next is a brief discussion on the number of non-trivial components in the fourth-order

tensor Aijkl for a 2D quadrilateral discretization pattern. First of all, it is worth noting

the subscript indices can be swapped, as follows:
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Aijkl = Ajikl = Aijlk (5.27)

Consequently, in the case of 2D quadrilateral particle pattern, where subscript indices

can only take on values 1 and 2, only six components of tensor Aijkl are independent.

These independent elements are A1111, A2111, A2211, A2221, and A2222.

Secondly, due to the axis symmetry of the horizon and particle discretization, the

coordinate index 1 and 2 can be swapped, yielding to the following two constraints:

A1111 = A2222 and A2111 = A1112 (5.28)

Thirdly, assume that there is a bond with rectangular coordinates (x, y) and a weight

function ω1. Owing to the symmetry of coordinate axes, three other bonds with

respective coordinates (−x, y), (−x,−y), and (x,−y) are expected to be in the same

horizon as well. Hence, based on the definition in Equation (5.25), the A2221 entry

becomes:

A2221 = ω1y
2(xy − xy + xy − xy) = 0 (5.29)

Eventually, only two components of the fourth-order tensor Aijkl are non-zero. These

components are A1111 and A2211.

Consistent with 1D discretizations, the weight function value corresponding to the

particle closest to the center particle is set to be 1, i.e., ω1 = 1. In order to achieve

O(h4), two more independent weight function values (i.e., ω2 and ω3) need to be

calculated. Consequently, the horizon with radius δ = 2h in Figure 5.7 is the smallest
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horizon size that can achieve a truncation error in the order of O(h4) in the 2D

quadrilateral pattern. In terms of horizons with excess independent weight functions,

but not enough to achieve higher-order truncation errors, the weight function values

are generally not unique. These horizon selections could possibly bring noise or

numerical oscillations to the ultimate solutions. As a result, the numerical simulations

in Section 5.6 primarily focus on horizon sizes with unique weight function values,

as tabulated in Tables 5.2-5.3. Typically, the magnitude of weight function values

decrease from the closest particles to distant particles, and the value on the farthest

particle should be non-zero.

For 2D quadrilateral patterns, horizon sizes up to δ = 3h are studied. Figure 5.7

illustrates all possible spatial distributions of neighboring particles for different hori-

zon sizes. Here, only a quarter of the interacting circular space is depicted due to

the symmetric nature of material particle discretization. The unique weight function

values for these horizon sizes are obtained using the following process. The constraint

equations for the weight function values to achieve the desired leading error, such as

Equations (5.25) and (5.26), are identified. These constraints typically lead to a mul-

tiple non-unique set of weight functions for a given horizon size δ. As such, additional

equations from the next set of higher-order constraint equations that do not contain

the ω1 term are added to the existing set of constraint equations. The solution to

such a constraint set leads to a unique set of weight function values for the specific

material interaction. Table 5.2 shows these unique weight function values to achieve

the corresponding higher-order accuracy for the 2D quadrilateral discretization. The

constraint solutions that have either resulted in a zero influence function value at

the material particle farthest from the center particle or led to a non-invertible shape

tensor are excluded from Table 5.2.

Similarly, for 3D cubic patterns, the horizon sizes up to δ ≤ 3h are investigated,
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Figure 5.7: All possible 2D horizon shapes with a quadrilateral particle discretization
up to δ = 3h. Since the weight function ω is radially-symmetric, only a quarter of
interacting circular regions are depicted for each horizon size δ.

Table 5.2: Higher-order approximation weight functions for a 2D quadrilateral dis-
cretization pattern with a constant spacing h. Here, horizon sizes in Figure 5.7 that ei-
ther encompass a zero influence function value at the farthest material particle within
the given horizon radius or lead to a non-invertible shape tensor are excluded.

Horizon Size Weight Function Values Leading Error

ω1 ω2 ω3 ω4 ω5 ω6

δ = h 1 0 0 0 0 0 O(h2)

δ = 2h 1 0 -1/16 0 0 0 O(h4)

δ = 3h 1 0 -1/10 0 0 1/135 O(h6)

where h represents the spacing between nearest particles. Figure 5.8 illustrates all

possible distributions of neighboring material particles for different horizon sizes δ.

Here, similar to the 2D quadrilateral distribution, only a small portion of the inter-

acting sphere is illustrated due to the symmetric nature of ω. Subsequently, a similar

procedure as for 2D quadrilateral discretization is employed to derive the most op-

timal unique weight function values. Weight function values that either result in a

zero value for the material particle farthest within the horizon shape or lead to a non-

invertible shape tensor are disregarded in numerical simulations. Table 5.3 shows the

unique weight function values to achieve corresponding higher accuracy for 3D cubic

patterns.
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Figure 5.8: All possible 3D horizon shapes with a cubic particle discretization up to
δ = 3h. Since the weight function ω is spherically-symmetric, only one-eighth of the
interacting spherical regions are depicted for each horizon size δ.

Table 5.3: Higher-order approximation weight functions for a 3D cubic discretization
pattern with a constant spacing h. Here, horizon sizes in Figure 5.8 that either en-
compass a zero influence function value at the farthest material particle within the
given horizon radius or lead to a non-invertible shape tensor are excluded.

Horizon

Size
Weight Function Values Leading Error

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

δ = h 1 0 0 0 0 0 0 0 O(h2)

δ = 2h 1 0 0 -1/16 0 0 0 0 O(h4)

δ = 3h 1 -80/267 16/89 -25/178 14/267 -8/267 -2/267 1/267 O(h6)
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5.4 Boundary Treatment

Conventional constraint conditions, such as Dirichlet and Neumann boundary condi-

tions, are supposed to be imposed in different forms, as the PD governing equations

are applied in the non-local formulation. In the case of simulations with no boundary

treatment, defect horizons can still approximate the deformation gradient across the

boundary layer. However, as the horizon size δ increases, irregular defects ultimately

lead to disordered and unstable solutions around the particles located at the margins.

Since higher-order approximations are derived using the internal particles with a fully

symmetric horizon, defect horizons along the external boundary are expected to give

rise to numerical errors when approximating the deformation gradient. One possible

solution, as suggested by Macek and Silling [267], is to apply an inward fictitious ma-

terial layer along the boundary layer. As illustrated in Figure 5.9(a), the thickness or

depth of the fictitious boundary layer should be equal to the horizon size δ, to ascer-

tain that prescribed constraints are sufficiently enforced on the real material region.

The same discretization spacing should be applied in both the fictitious boundary

layer and the real material domain. Shadow particles are therefore introduced in the

fictitious layer, as shown in Figure 5.9(b).
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(a) Inward fictitious layer
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Figure 5.9: Boundary treatment on a 2D polycrystalline domain. (a) The fictitious
boundary layer is inward, possessing a thickness equal to the prescribed horizon radius
δ. (b) A horizon of δ = h is illustrated in this plot, where h is the particle spacing.
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Considering no information is provided outside the original boundary, Madenci et al.

[164] suggested that the prescribed displacement vector should be the same as that of

the closest material particle at the boundary. This operation results in zero strain and

stress across the fictitious boundary layer. An alternative option is to apply a constant

deformation gradient across the fictitious boundary layer. In this chapter, displace-

ments on shadow particles are prescribed based on a constant deformation gradient.

Consequently, stress at shadow particles can be calculated by the correspondence

constitutive model. This special boundary treatment has been particularly effective

when larger-horizon interactions are applied, encompassing simulations beyond the

nearest-neighbor PD family [185]. With such a boundary treatment procedure, all in-

formation (e.g., displacement and stress) on shadow particles are presumably known,

in contrast with boundary particles where only the displacement field is given [164].

5.5 Crystal Elastoplasticity Theory

Generalized Hooke’s law characterizes the elastic behavior of the polycrystal, ac-

companied by a rate-independent CP formulation to model the plastic constitutive

behavior [158]. The deformation gradient, F, forms the primary kinematic descriptor

of deformation and assumes a multiplicative decomposition into its constituent elas-

tic, Fe, and plastic, Fp, parts which can be properly expressed as F = FeFp. Here,

dislocation slip on specific slip systems is assumed to be the primary mechanism by

which plastic deformation is accommodated. This occurs on a finite number of slip

systems which can be completely identified by crystallographic plane normals and

directions. A simple schematic of different configurations with the slip systems under

deformation is shown in Figure 5.10.

The kinematics of plasticity is encoded in the plastic part of the velocity gradient

which is expressed as a linear combination of slip rates on individual slip systems as

128



m

n

m

n

m

n

θ

γ

F

Fp

Fe

Figure 5.10: Schematic of slip systems under deformation gradient F = FeFp. m
and n are the slip direction and normal vector, respectively. γ is the shear strain
due to plastic deformation gradient Fp while θ is the angle of rotation under elastic
deformation gradient Fe.

follows:

Lp = ḞpFp−1 =
∑
α

γ̇αSα
0 sign(τα) (5.30)

where γ̇α is the plastic slip rate, τα refers to the resolved shear stress, and Sα
0 =

mα
0 ⊗ nα

0 denotes the Schmid tensor, all corresponding to the αth slip system. Here,

sign(·) denotes the signum function, which returns 1 when its argument is positive

and 0 otherwise. The elastic constitutive law relates the second Piola-Kirchoff stress

(henceforth referred to as the intermediate stress) in the intermediate configuration

to the Green-Lagrange elastic strain, which is its elastic power conjugate deformation

measure. The intermediate stress is related to the Cauchy stress, σ, by the relation:

T̄ = detFeFe−1σFe−T. This stress measure is used to compute the resolved shear

stress on the αth slip system defined by τα = T̄ · Sα
0 . The elastic constitutive law
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takes the form T̄ = Le · Ēe, where Le is the fourth-order anisotropic elastic stiffness

tensor, and Ēe is the Green-Lagrange elastic strain defined as Ēe = 1
2
(FeTFe− I). To

accommodate the phenomenon of strain hardening an evolution equation for the slip

system resistance is prescribed as follows [158]:

ṡα(t) =
∑
β

hαβ(t)γ̇β(t) ; sα(0) = τα0 (5.31)

hαβ(t) =


hβ
0

(
1− sβ(t)

sβs

)a
if nα = nβ

qhβ
0

(
1− sβ(t)

sβs

)a
if nα ̸= nβ

where hαβ is the hardening coefficient matrix, γ̇β(t) > 0 is the plastic shearing rate

on the βth slip system, τα0 is the initial slip system resistance on the αth slip system, q

captures latent hardening, sβs is the saturation stress on slip system β, and hβ
0 dictates

the maximum value of the hardening coefficient associated with a slip system β. The

rate-independent CP constitutive model implementation is elaborated in Appendix C,

while detailed derivations are presented in References [172].

5.6 Results and Discussion

Here, the non-local state-based PD algorithm is examined for a 1D elastic bar with

a varying Young’s modulus of elasticity. The resultant displacements of the PD

scheme with the higher-order stabilization (HOS) approach are compared against

analytical solutions as well as numerical algorithms with no stability implementation.

Thereafter, 2D and 3D numerical schemes are tested for different microstructures.

Comparisons are performed against analytical, experimental, and FEM solutions as

needed. The examples aim to demonstrate that increasing the order of interactions
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in material particles can improve the accuracy of the numerical solution and reduce

the hourglass instability modes of the non-local state-based PD framework.

5.6.1 Example 1: 1D Cantilever Bar

The classic 1D cantilever elastic bar example [173, 179, 185], as depicted in Fig-

ure 5.11(a), is conducted for validation of the higher-order implementation. Here, the

bar has a total length Ltot, and a constant cross-sectional area A. Displacement con-

straints are applied on each side of the bar, i.e., u(x = 0) = 0 and u(x = Ltot) = uend.

In this 1D example, uend is set to be 0.005Ltot. A variable Young’s modulus, as plotted

in Figure 5.11(b), is also adopted as follows:

E(x) =


E0 0 ≤ x ≤ Ltot/2

E0

(
1 + β

2α
1√

x/Ltot−1/2

)−1

Ltot/2 < x ≤ Ltot

(5.32)

Consequently, the corresponding analytical displacement u(x) can be computed to be

as follows:

u(x) =


αx 0 ≤ x ≤ Ltot/2

αx + βLtot

√
x/Ltot − 1/2 Ltot/2 < x ≤ Ltot

(5.33)

where parameters are set as α = 0.001, β = 0.004
√

2, Ltot = 1, and E0 = 1.

Subsequently, a uniform mesh with 500 equally-distant material particles is employed

to study the effect of using higher-order approximations framework on the resultant

axial displacements u(x), under outward displacement constraint uend = 0.005Ltot.

A comparison between the higher-order approximation solutions and those with no

stabilization control method [262] is shown in Figure 5.12. Since a higher-order ap-
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Figure 5.11: 1D cantilever bar. (a) A 1D elastic bar under tension with displacement
constraints is used to study the effect of using higher-order approximations of the
deformation gradient. (b) The example exhibits a varying Young’s modulus along the
x-axis.

proximation approach only takes effect in large-horizon families, i.e., δ > h, two

horizon selections δ = 2h and δ = 3h, are illustrated in Figure 5.12. As the horizon

size increases, the hourglass oscillations grow dramatically if no control method is

applied. In contrast, the higher-order approximation method suppresses the numeri-

cal oscillations in both cases (i.e., δ = 2h and δ = 3h) and dampens the zero-energy

modes effectively.

5.6.2 Example 2: 2D Polycrystalline Microstructure

Here, a 1× 1 mm2 polycrystalline microstructure with 21 grains, synthetically gener-

ated by Voronoi tessellation [20], is considered. In this example, 12 different orienta-

tion angles from the interval [−π/2, π/2) are distributed randomly among grains. The

discretized computational domain, as depicted in Figure 5.13, is based on a uniform

50 × 50 particle discretization for PD technique, and 50 × 50 square-faced elements

for FEM. With the number of particles being the same as the number of elements,

the material particles in the PD model are located at the center of elements in the FE

model. Consequently, each material particle occupies a constant area in the reference
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Figure 5.12: Effect of zero-energy modes on the displacement field of 1D bar obtained
from the higher-order approximation approach with two different horizon sizes (a)
δ = 2h and (b) δ = 3h. Results are based on a uniform mesh with 500 material
particles.

configuration that is equal to the corresponding enclosed FE area. Linear basis func-

tions and traditional implicit solvers are employed in the FEM. Although different

solvers are applied in PD and FE models, the same constraint on errors is set, i.e.,

el = 10−6.

Furthermore, a compression velocity gradient, as shown below, with plane strain

assumptions is applied on microstructure boundaries to simulate the process of y-axis

compression:

L = η

 1 0

0 −1

 (5.34)

where η = 0.0020 denotes a constant strain rate. Each simulation is performed over

30 steps with the corresponding velocity gradient leading to a final strain around 0.06.

The isotropic elastic stiffness matrix is taken as C11 = 2, C12 = 1, and C33 = 2 (in
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GPa).

The inward boundary treatment, as elaborated in Section 5.4, is then applied to

constrain the velocity gradient of the fictitious boundary particles to that shown in

Equation (5.34) for the PD model. As the horizon radius δ grows, the boundary layer

thickness (equal to the horizon radius) increases, and the number of material par-

ticles within the computational domain decreases. Figure 5.13 provides an example

illustrating the effect of enforcing the inward boundary treatment. In Figure 5.13(a),

low-magnitude stress values are captured around the external edges without the fic-

titious boundary layer. This is mainly because of the erroneous deformation gradient

approximated by the defect horizons. In contrast, the stress field obtained from the

boundary enforcement, as depicted in Figure 5.13(b), shows no spurious values along

the four outermost edges.

𝑦
→

𝑥 →

(a) No boundary treatment

𝑦
→

𝑥 →

(b) Boundary enforcement

Figure 5.13: The effect of boundary treatment on PD stress distributions with a hori-
zon size δ = 3h.

Next, Figure 5.14 provides a comparison of the PD and FE techniques for model-

ing crystal orientation changes of the same polycrystal under a y-axis compression

test, using three different horizon selections in Table 5.2. In the following, the quan-

tification of the crystal orientation changes is briefly explained. In 2D polycrystals,
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each grain can be characterized by a rotation tensor, denoted as R, relating the

local crystal lattice frame to the reference sample frame. Given an orientation θ

(i.e., the angle between crystal and sample axes), the associated rotation matrix sup-

ports parametrization as R = cos(θ)I − sin(θ)E, where E is a 2D alternator (i.e.,

E11 = E22 = 0, E12 = −E21 = 1), and I is a 2D identity tensor. Consequently,

the rotation tensor can be evaluated through a polar decomposition of the elastic

deformation gradient as F = RU. The spin tensor Φ can then be expressed as

Φ = ṘRT = −θ̇E, where θ̇ = ∂θ
∂t

is the crystal reorientation velocity. Alterna-

tively, in the component form, the crystal reorientation velocity can be expressed as

θ̇ = (Φ21−Φ12)/2. Accordingly, using the reorientation velocity, the crystal texturing

is tracked by ∆θ = θ̇∆t at each time step.

Reorientation of grains predicted by PD and FE models are compared in Figure 5.14

at the final strain value of 0.06. The overall reorientation contours and locations of

the shear bands are mostly similar between the two models at the same degree of

mesh refinement. The localized shear bands seen from FE simulations are compar-

atively more diffuse due to the lack of an internal length-scale. Along the direction

of arrows, the width of a shear band obtained by PD simulations is smaller, and

its boundary is more conspicuous, which are qualitatively closer to those seen in ex-

periments [21, 136, 137, 268]. It is clear from Figure 5.14 that zero-energy modes

are effectively suppressed in all long-range horizon selections. This is in agreement

with the 1D elastic bar tension test seen previously in Section 5.6.1, where the HOS

implementations are compared against the solutions with no stabilization control.

Additionally, as evident from PD simulations in Figure 5.14, larger horizon interac-

tions make the reorientation results more stable. Nevertheless, it is shown in Yaghoobi

et al. [173] that by including more neighboring particles, the higher-order approxi-

mation framework may lead to less stable results if the increased horizon size is not
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Figure 5.14: Orientation changes for 2500 particles under a y-axis compression test
for FE and PD results with three different horizon sizes at final strain of 0.06. Along
the direction of arrows, sharper and more number of shear bands can be seen in PD
results. Here, δ is the horizon radius, and h is the distance between the nearest
material particles. The margin around the boundary in PD models is due to the
inward boundary treatment.

able to obtain a greater accuracy (e.g., δ = h vs. δ =
√

2h). This is different from

the 1D bar test in Section 5.6.1, in which larger horizon sizes consistently reduced

the spurious zero-energy mode oscillations.

5.6.3 Example 3: 3D Matrix with Soft Precipitate

For the first 3D example, a cubic matrix of dimensions 3 × 3 × 3 mm3 along with

a central spherical precipitate with a diameter 0.875 mm having a lower modulus,

as illustrated in Figure 5.15, is modeled using both FE and PD techniques. The

transversely-isotropic elastic matrix is assigned with the following stiffness constants:

Cmat
11 = 59.3, Cmat

12 = 25.7, Cmat
13 = 21.4, Cmat

33 = 61.5, and Cmat
44 = 16.4 (in GPa).

Contrarily, the stiffness constants assigned to the spherical precipitate are reduced

by a factor of 10, i.e., Cppt
ij = 0.1 × Cmat

ij , where Cppt
ij denotes the (i, j) entry of the

elastic stiffness tensor pertaining to the precipitate particles. Here, both materials are

assumed to be elastic under a small deformation. Thus, the strain tensor is computed

as ϵ = 1
2
(F + FT ) − I, where I is the identity tensor. Also, Cauchy stress tensor

σ = C : ϵ is used in lieu of P in Equation (5.4), assuming a small deformation, where

C represents the elastic stiffness tensor.
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Figure 5.15: Illustration of the 3D matrix with soft precipitate in the middle. (a) A
3D matrix microstructure (colored in blue) with dimension l = 3 mm consisting of a
soft precipitate (colored in red) with diameter d = 0.8750 mm locating at the center.
The material domain is discretized into 48× 48× 48 particles with a constant inter-
particle spacing h = 62.5 µm. (b) This illustration provides the interior information
along the slice z = 1.5 mm. The spherical precipitate is fully retained for a better
visualization.

The cubic material domain represented in Figure 5.15(a) is discretized into a 48 ×

48 × 48 structured particle grid. A similar discretization refinement is adopted for

the FE simulation, where each linear hexahedral volumetric element encompasses

the material particle in the PD model. In addition, Dirichlet boundary conditions

dictated by the following diagonal velocity gradient, are applied to the microstructure

boundaries to simulate an x-axis tension up to 0.02 strain:

L =


1.0 0 0

0 −0.5 0

0 0 −0.5

 (5.35)

Subsequently, numerical PD simulations are carried out using the higher-order in-

fluence weight functions tabulated in Table 5.3 for δ = h, 2h, 3h, and weighting
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value coefficients without any stabilization framework for δ = 2h, 3h [262]. An in-

ward boundary treatment, as outlined in Section 5.4, is then enforced to constrain

the velocity gradients of the shadow particles in PD models. Figure ?? depicts the

variations in y-displacement contours at the midsection z = 1.5 mm for stabilized PD

framework using horizon sizes of δ = h, 2h, and 3h at the final strain value 0.02. FEM

simulation prediction is also included for comparison. Although the overall displace-

ment fields are mostly similar between PD and FE models, the localizations around

the precipitate as obtained from FEM simulation are comparatively more diffuse due

to the lack of an internal length-scale.

Next, Figure ?? depicts the variations in the x-displacement contours for PD tech-

nique with and without the stabilization control of zero-energy modes, across the

midsection z = 1.5 mm using horizon sizes δ = 2h and 3h at the final strain value

0.02. For the case of a PD scheme without any control of zero-energy modes (termed

‘no control’), an influence function of the form ω = 1
∥ξ∥2 is employed [262], where ξ

denotes the bond vector associated with neighboring material particles. While ‘no

control’ simulations tend to produce significant increases in erroneous zero-energy

modes with successive horizon sizes, the resultant displacements with higher-order

approximation scheme (termed ‘higher-order’) illustrates stabilized solutions for both

horizon sizes δ = 2h and 3h. Figure 5.16 depicts the profiles of x-displacements

through centerline along the x-direction for the contours shown in Figure ??. The

plots here are also compared against the FEM solution as seen in Figure ??. Fig-

ure 5.16(a) exhibits the emergence of the instability modes for the ‘no control’ case

of δ = 2h right across the interface of soft precipitate and stiff matrix, as the hour-

glass oscillations grow dramatically within the spherical precipitate. In the case of

δ = 3h shown in Figure 5.16(b), the hourglass oscillations significantly worsen for ‘no

control’ procedure, affecting the displacements even along the stiff matrix. In both

horizon sizes, the resulting contours pertaining to the higher-order approximation
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scheme effectively dampen the hourglass oscillations and remain close to the FEM

solution.
Crop window:
1.4
1.8
4.7
5

(a) δ = 2h

(b) δ = 3h

Figure 5.16: Contours of x-displacements through centerline along the x-direction for
two horizon interactions (a) δ = 2h and (b) δ = 3h, respectively at final strain.

Thereafter, four additional stiffness constants are assigned to the spherical precipitate

using the following ratios: rc = 10−2, 10−3, 10−4, and 10−5, where Cppt
ij = rc × Cmat

ij .

As the stiffness ratio decreases, the precipitate properties tend toward the properties

of a void with a zero modulus. As observed in the previous examples, the interface

between a stiff and soft material has particularly sharp gradients in the strain and

stress fields. Hence, a non-local theory becomes advantageous due to its ability in
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capturing discontinuities without enforcing any traction boundary conditions around

the precipitate interface. Figure 5.17 illustrates x- and z- component displacements

along the midsection z = 1.5 mm as obtained from the stabilized non-local PD

simulation using the horizon size δ = 3h for all the stiffness ratios considered. As

the stiffness of the precipitate decreases towards that of a void, one would expect

a decreased force transmission across the precipitate interface, and consequently, a

decreased displacement at the void’s center. As demonstrated in Figure 5.17, the

stabilized higher-order PD model correctly captures the zero displacements at the

center as the elastic modulus pertaining to the spherical precipitate decreases.

Figure 5.18 denotes the plots for component-wise displacements at the center of the

precipitate as a function of the stiffness ratio rc, for different horizon sizes δ. Here,

the FEM predicts close to a constant non-zero displacement at the center. However,

one would expect convergence toward a zero-displacement since no force transmis-

sion occurs across the precipitate interface in the case of a zero-modulus material,

e.g., vacuum. Despite that, PD, a non-local method, depicts a faster convergence

toward a zero center-displacement with growing horizon sizes δ, as the stiffness ratio

rc decreases. For a given horizon size δ, the absolute value of all the displacement

components decreases with reducing stiffness ratio rc. The convergence rate of the

non-local PD solutions to the zero-displacement at the center of the precipitate de-

pends on the horizon size, δ. This is expected as the non-local horizons utilize the

information from both sides (i.e., low and high stiffness particles) to capture the sharp

strain gradient. Additionally, with a given stiffness ratio rc, the absolute values of the

displacement components drop with increasing horizon size δ. As the horizon size δ

increases, the sharp gradient around the void’s interface is captured more efficiently

since there are more particles to decide upon the interface behavior.
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Figure 5.17: Comparison of (a)-(d) x-displacements and (e)-(h) z-displacements (both
in µm) along midsection z = 1.5 mm for varying stiffness ratios as obtained from the
high-order stabilized PD model with δ = 3h.

5.6.4 Example 4: 3D Polycrystalline Microstructure with Spherical Void

The previous 3D example demonstrates the efficacy of the HOS scheme in the case

of an elastic matrix. Here, the example includes an elastoplastic 3D model of the

polycrystalline aggregates using a soft precipitate with a stiffness ratio rc = 0.1.

Specifically, a 3D polycrystalline microstructure consisting of 78 grains with dimen-

sions l = 3 mm, and a soft precipitate with diameter d = 0.8750 mm at the center

is considered. The 3D material domain is discretized into 48× 48× 48 particles with
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Figure 5.18: Variations in the displacement components at the center of the spherical
precipitate in terms of the stiffness ratio rc, for different horizon sizes δ.

a constant inter-particle spacing h = 62.5 µm as shown in Figure 5.19(a). More-

over, Figure 5.19(b) illustrates the interior cross-section of the 3D polycrystalline

microstructure along slice z = 1.5 mm without depicting the precipitate region. The

polycrystal is simulated with properties of WE43 alloy-T5 temper, as provided in

Lakshmanan et al. [21] with 18 slip systems, including 3 basal⟨a⟩, 3 prismatic⟨a⟩, 6

pyramidal⟨a⟩, and 6 pyramidal⟨c + a⟩ slip systems. For interested readers, a de-

tailed review of Magnesium alloy crystal plasticity models can be found in Ref.

[269, 270, 271].The boundary conditions are the same as those considered in Sec-

tion 5.6.3.

Figure ?? depicts the x- and y- strains, with and without control of zero-energy modes,

along the midsection z = 1.5 mm using a horizon size δ = 3h. For the case of the PD

scheme without any control of zero-energy modes (termed ‘no control’), an influence

function ω = 1
∥ξ∥2 is employed [262] similar to the previous example in Section 5.6.3.

The ‘no control’ case shows patchy/pixellated locations not just along the precipitate
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Figure 5.19: 3D polycrystalline microstructure with a spherical void. (a) A 3D poly-
crystalline microstructure consisting of 78 grains with dimensions l = 3 mm and a
soft precipitate with diameter d = 0.8750 mm at the center. (b) Interior of the 3D
microstructure along slice z = 1.5 mm. The spherical precipitate at the center is
removed for a better visualization. Grains with similar orientation ID share the same
Rodrigues orientation vector. The black lines denote grain boundaries.

interface (similar to the elastic matrix example) but also within the grains, where

one can expect strain localizations across grain boundaries due to property variations

as a function of crystal orientations (i.e., across hard and soft grains depending on

their crystal orientations relative to the loading direction). Nevertheless, the results

associated with the HOS scheme show an effective control of the erroneous zero-energy

mode oscillations.

Next, the PD results are compared against the FEM solution in Figure ??, which

depicts the profile of equivalent strain at midsection z = 1.5 mm for horizon sizes

δ = h, 2h, and 3h. Unlike the 3D composite microstructure in Section 5.6.3, where

there exist significant strain localizations only around the interface of the precipitate;

here, there are expected to be strain concentrations across the granular interfaces

as well. In the FEM solution, the interfacial strain localizations are computed to

be significantly more pronounced than the granular strain localizations within each
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crystal. Contrastingly, the PD solution identifies both strain localizations, along the

precipitate boundary as well as granular interfaces. Additionally, the PD results are

stable across the three horizon sizes δ = h, 2h, and 3h. Implementation of the HOS

control in these examples required no additional computational cost per time step,

as the influence function values are explicitly adjusted for each user-defined horizon

interaction δ. However, as shown in Silling et al. [263], the maximum stable time step

for PD is, in general, also a function of the horizon radius for long-range interactions

(i.e., δ > h) and needs to be scaled based on the von Neumann stability analysis as

the horizon radius δ rises [185].

5.6.5 Example 5: CPPD Simulations vs SEM-DIC Experimental Data

Here, the CPPD framework predictions are compared with state-of-the-art in-situ

SEM-DIC data of WE43 magnesium alloy [272]. SEM-DIC is a useful in-situ, non-

destructive technique for characterizing microscopic surface strains. A speckle pattern

placed on the microstructure during thermomechanical loading is tracked by the DIC

setup, which is then post-processed to obtain the surface displacement fields, from

which the surface strains can be computed. Details of the SEM-DIC experiments that

were performed for the WE43 alloys are described in greater detail in Reference [273].

The primary material used for the experiments is a hot-rolled annealed WE43 plate

with a thickness of 31 mm, subjected to T5 temper condition. EBSD scans of the

surface prior to loading were used to extract grain orientation information. Intergran-

ular and intragranular strain localization patterns are widely observed throughout the

microstructure under tensile loading, while no twinning is recorded. The comparison

of CPPD with experimental results for the above experiment is examined.

The mechanical test is modeled using CPPD as a boundary value problem (BVP)

using the EBSD map of the microstructure within the DIC window. The displacement

of the boundary of the microstructure is obtained from experiments and these are used
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to set up displacement BCs on the lateral boundaries. Measurements are made on the

surface of the sample, which is a traction-free surface, and hence, the top and bottom

surfaces in the simulation are traction-free. For the sake of comparison with an FE

implementation, the same problem is simulated using the PRISMS-CPFE framework

[172].

Figure ?? provides an example of the CPPD computational domain. The thickness of

the plate is set equal to the distance between the nearest particles, while the horizon

size is set equal to the smallest inter-particle distance. The four sides of the plate

are displacement-constrained based on DIC experimental data. In each loading step,

0.2% of the final displacement is imposed so that 500 displacement increments are

arrive at the total displacement. In addition, the bottom surface is constrained only

in the z-direction. Simulations are performed with 200 particles, in both x and y

directions. Additionally, for each level of refinement, 2 and 3 slices of particles are

constructed so that 8 different cases are simulated in total. The initial damping ratio

is set to c0 = 0.5.

The corresponding FEM problem involves a 200 × 200 × 1 grid with displacement

BCs on the lateral boundaries (obtained from the experiment) and the remaining two

surfaces being traction-free. The final displacement on the boundary is achieved in

1000 simulation steps using the same constitutive model and parameters as done for

the CPPD simulations.

Figure ?? depicts the comparison of the x and y components of displacement be-

tween experimental data, CPPD simulations (using 200 particles and 3 slices), and

CPFE simulation. Tables 5.4 and 5.5 tabulate the grain averaged displacement com-

ponents. A very good match is obtained for the grain-averaged displacement field

predictions between CPPD, CPFE, and experiments, as evidenced by the percent-

age difference with the experiment. This affirms, on the first level, the ability of the
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CPPD framework to solve elasto-plastic BVPs directly comparable with experimental

measurements.

Table 5.4: Comparison of grain-averaged displacement component u.

Grain ID u(Exp) u(200) Error(%) u(CPFE) Error(%)

13 131.214 129.4983 1.3076 131.3805 0.2169

14 93.3969 92.0990 1.3897 93.6352 0.2551

16 161.7453 156.2533 3.3955 155.6439 3.7722

19 124.3817 121.1535 2.5954 123.6302 0.6042

23 138.9585 139.0753 0.0840 138.5096 0.3230

27 96.4904 95.8660 0.6471 96.1437 0.3593

28 116.7845 113.0817 3.2246 113.7660 2.5847

Table 5.5: Comparison of grain-averaged displacement component v.

Grain ID u(Exp) u(200) Error(%) u(CPFE) Error(%)

13 47.1972 47.0030 0.4144 46.5021 1.4727

14 46.7184 44.7065 4.3063 44.0925 5.6207

16 71.2743 66.7874 6.2952 67.0213 5.9671

19 36.3375 39.0665 7.5103 40.0881 10.3215

23 33.5344 33.6929 0.4727 34.7998 3.7734

27 38.1632 35.7701 6.2708 34.8351 8.7207

28 27.5032 27.3063 0.7160 27.6984 0.7098

Next, the predictions in strain components are compared quantitatively. Since the

displacement components in 2D are recorded in the experiment, the data is post-

processed to extract the in-plane strain components ϵxx, ϵyy and ϵxy. Figure ??

shows the comparison in the three strain components between experiments and CPPD

simulations with both discretizations. Qualitatively the strain fields look similar

between experiments, CPPD, and CPFE. To verify that the strain fields are also

similar in an averaged sense, the mean strain fields in each grain are tabulated in
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Tables 5.6 and 5.8. Grains with their respective orientation IDs are depicted in

Figure ??.

Table 5.6: Comparison of grain-averaged strain component ϵxx.

Grain ID ϵxx(Exp) ϵxx(200) Error(%) ϵxx(CPFE) Error(%)

13 0.04098 0.03461 15.5482 0.03396 17.1246

14 0.03446 0.03018 12.4256 0.03027 12.1663

16 0.04336 0.06783 56.4480 0.06588 51.9527

19 0.02124 0.02045 3.7538 0.01911 10.0501

23 0.02842 0.03226 13.5155 0.03361 18.3105

27 0.01915 0.01607 16.0673 0.01647 13.9886

28 0.01784 0.01633 8.4606 0.01670 6.374

Table 5.7: Comparison of grain-averaged strain component ϵyy.

Grain ID ϵyy(Exp) ϵyy(200) Error(%) ϵyy(CPFE) Error(%)

13 -0.02160 -0.0236 9.4808 -0.02412 11.6862

14 -0.01450 -0.01750 20.6573 -0.01722 18.7973

16 -0.02024 0.02695 33.1052 -0.02462 21.6700

19 -0.01200 -0.00952 20.6618 -0.00717 40.2660

23 -0.01860 -0.01986 6.7538 -0.02037 9.5068

27 -0.00714 -0.01123 57.2670 -0.01153 61.4748

28 -0.00716 -0.00625 12.6451 -0.00675 5.6594

Table 5.8: Comparison of grain-averaged strain component ϵxy.

Grain ID ϵxy(Exp) ϵxy(200) Error(%) ϵxy(CPFE) Error(%)

13 0.008463 -0.007252 185.6957 0.001733 79.5209

14 -0.000586 -0.004273 628.5678 -0.004056 592.239

16 0.000837 0.0005 40.305 -0.0004487 153.551

19 0.002951 0.001927 34.6781 0.001093 62.9728

23 0.007106 0.004915 30.8361 0.003429 51.7704

27 0.001594 -0.002358 247.8851 -0.003940 347.0241

28 0.000337 0.001583 369.444 0.001886 459.8341
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The tabulated results showcase, to some extent, the ability and efficacy of the CPPD

framework to predict the grain-averaged strain components. Grain 42 is an outlier

because it forms but a tiny fraction of the microstructure under consideration.

While both CPPD and CPFE depict signatures of strain localization, the patterns

are relatively finer (as also seen in the experiment) in CPPD for the same element

size/interparticle spacing, or equivalently the kinematic fields are relatively smoothed

out in CPFE. Hence, these strain localization signatures resulting from CPPD simu-

lations are investigated in the following. The comparison depicts the overall success of

CPPD in predicting the normal strain components and, specifically, the localization

patterns arising at the boundaries of the domain. Strain hotspots in the interior of

the material or at the grain boundaries are seen as signatures in simulations. Still,

these are delocalized across multiple points instead of appearing in a more prominent

or singular manner.

5.7 Conclusion

In this chapter, a higher-order approximation to the non-local deformation gradient

is developed to suppress zero-energy instability modes in PD models beyond nearest-

neighbor interactions. In microstructural simulations, pixel or voxel-based structured

discretizations are often preferred as they can be readily obtained directly from mi-

croscopy, tomographic imaging, or numerical acquisition techniques. As a result, a

mesh-less non-ordinary state-based implementation of the PD via Newmark’s dynamic

method with artificial damping is employed for solving deformation and stress fields

on structured grids. However, such correspondence-based PD models often suffer

from zero-energy mode oscillations, which, as studied in this chapter, can be effec-

tively mitigated by choosing material weight functions via a Taylor series expansion of

the deformation gradient. The novelty here is a tensor-based derivation of the linear
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constraint equations, which can be used to systematically identify the particle inter-

action weight functions for various user-specified horizon radii. It is demonstrated

that unique weighting value coefficients can be obtained by combining the governing

equations for the desired leading truncation error, along with an additional set of

constraint equations from the next higher-order approximations that do not contain

first-order interaction weight functions.

The efficacy of the HOS method is first demonstrated for a simple 1D elastic cantilever

bar, where results are compared with exact and PD solutions with no stabilization

control. The zero-energy modes are demonstrated to be effectively dampened us-

ing the proposed higher-order particle interaction weight functions. Next, in the

case of 2D polycrystalline microstructures, observed shear bands are shown to be

stable across different horizon sizes while being relatively sharper and more local-

ized within intergranular regions relative to the FEM solution. The proposed HOS

scheme is also demonstrated for examples involving 3D composite and polycrystalline

microstructures, along with comparisons against the FE technique. In addition to

the stabilization scheme effectively suppressing the zero-energy mode oscillations, it

is shown that the PD approach, unlike FEM, converges towards a zero-displacement

in the precipitate with a decrease in the stiffness. Overall, the presented stabiliza-

tion scheme can lead to high-quality and consistent non-ordinary state-based results

for PD simulations beyond nearest-neighbor interactions. Furthermore, the proposed

higher-order approximation framework can be directly applied to PD problems involv-

ing discontinuities such as damage/fracture propagation, once an appropriate damage

continuum model is adopted. All the codes and examples constituting the current

CPPD implementation will be available in an open-source platform to the community

upon publication of the work.
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CHAPTER VI

Conclusions and Future Work

The chapter is organized as follows. First, a comprehensive summary of this thesis is

provided in Section 6.1. This follows by Section 6.2, supplementing the future work

for each chapter.

6.1 Summary

It is commonly observed from experimental characterization techniques that slices

taken in a specific direction from a solid 3D microstructure ‘look alike’. This mea-

sure of similarity can be systematically quantified through an underlying stationary

probability distribution that generates all possible microstructural samples. How-

ever, quantifying this high-dimensional joint probability distribution explicitly for all

pixels is computationally intractable. To address this issue, new sampling and op-

timization methods are presented to simulate the stationary distribution pertaining

to microstructural formations. For many polycrystalline structures, the probability

of a pixel color can be sufficiently conditioned based on the state of its surrounding

neighbors. Hence, in this work, polycrystalline are represented as undirected proba-

bilistic graphical models, alternatively known as MRFs, with each pixel interacting

with its neighbors over a relatively-small sampling window size. Hence, a robust nu-

merical method for reconstructing diverse microstructures from three 2D micrographs
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imaged on orthogonal planes is presented in which the algorithm reconstructs 3D im-

ages through matching slices at different voxels to representative input 2D exemplars.

This process is posed as an iterative two-step optimization procedure where the first

step involves searching for patches in the 2D micrographs that closely resemble the

spatial neighborhood of the 3D voxel, followed by a second step involving optimiza-

tion of an energy function that ensures various patches from the 2D micrographs mesh

together seamlessly in the 3D model. It is shown that the MRF approach can pre-

cisely capture both 1-point (e.g., grain size, orientation distribution) and 2-point (e.g.,

misorientation angles, shape moments) correlations consistent with experimental pat-

terns. Subsequently, to capture the variations of the 3D microstructures at larger

length scales, a tensor-based optimization process is employed to iteratively embed

microstructural patches onto the part-scale CAD geometry based on user-specified

material flow fields and grain size scaling that are often inferred from experimental

characterization techniques. The efficacy of this new approach is demonstrated for

generations of full-field microstructure maps of AM structure with millions of grains

in real-time and has been shown to be more efficient than existing phase-field and

kinetic Monte Carlo simulations in literature.

For the aforementioned image reconstruction strategies in materials applications,

where measured features contain physical considerations, it is crucial to incorpo-

rate the corresponding physics back into the reconstruction technique. Nevertheless,

the MRF techniques only sample local statistics over relatively-small windows and

do not enforce any particular physics-based constraints on GB formation. Hence, a

novel physics-based numerical framework that utilizes graph-theoretic techniques is

examined, as a post-reconstruction step, for the spatio-temporal evolution of synthe-

sized polycrystalline microstructures. One crucial factor in numerically modeling GB

structure is the computation of lengths in 2D and surface areas in 3D from pixelat-

ed/voxelated images. To address this shortcoming, the concept of graph-cuts from
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integral geometry is employed in order to compute the expected lengths of GB facets

based on a pairwise labeling problem. The framework is then extended to employ

anisotropic grain growth using an energy optimization principle. The Cauchy-Crofton

method was applied against noise and partial volume effects for MRF reconstructions.

Lastly, the theory of NOSBPD is used to investigate the structure-performance re-

lationships in polycrystalline aggregates. This work led to a 3D PD implementation

of CP and highlights its significant aspects, including explicit time-stepping with

artificial damping, a time-step selection procedure, higher-order stabilization of zero-

energy modes, and boundary condition implementation. Although this approach

offers a unique capability to solve problems involving singularities (e.g., fracture and

crack propagation), it often encounters numerical instabilities known as zero-energy

mode oscillations. These instabilities primarily arise from the weak integral formu-

lation used in non-local approximations of the deformation gradient tensor. Hence,

a numerical scheme based on high-order Taylor series expansion of the deformation

gradient is employed to eliminate the spurious zero-energy mode oscillations. The

particular contribution of this thesis lies in a tensor-based derivation of linear con-

straint equations, which systematically identifies particle interaction weight functions

for different user-specified horizon radii. The effectiveness of the higher-order stabi-

lization scheme is demonstrated in this paper through multi-dimensional problems

involving polycrystalline microstructures. The results are compared against conven-

tional FEMs, showcasing the proposed stabilization scheme’s ability to significantly

suppress the undesired zero-energy mode oscillations in all numerical examples. The

CPPD predictions are further compared to a recent experimental study of uniax-

ial tension in a magnesium WE43 alloy, indicating overall agreement in predicted

localization patterns.
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6.2 Future Work Direction

The proposed methodologies can be supplemented and extended in multiple ways, as

described in the following:

6.2.1 3D Unit-Cell Microstructure Reconstruction

In Chapter II, MRF was used to reconstruct a wide variety of microstructures, using

just the surface images. The model was successful in cases where the 2D images carry

all the statistics of the 3D microstructure. The presumption behind MRF reconstruc-

tion methodology is that input surface images are representative (i.e., having similar

grain morphology and textural information) to every slice in their respective direc-

tions. This requires the user to carefully select volumetric regions in which one single

image can adequately describe the entire dataset along that particular axis. This

approach is efficient in capturing a wide variety of microstructural features. However,

there are samples for which the above requirement is insufficient. Figure 6.1 demon-

strates a synthesized 3D microstructure with a non-uniform morphology. Here, grains

are densely populated at z = 128 and scarcely generated on z = 0 slice. Due to the na-

ture of the given microstructure, no single image can thoroughly capture the varying

morphology along the z direction. As a result, to reconstruct an equivalent 3D model

using MRF, one needs to take into account the statistics of additional orthogonal or

oblique sections in their exemplars [80].
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Figure 6.1: Limitation of MRF algorithm to reconstruct graded microstructures in z
direction: this example is specifically selected to illustrate the limitation of the MRF
reconstruction algorithm as presented in Chapter II in this paper. The varying mor-
phology of the given microstructure along the z direction can not be captured by only
one single image orthogonal to that axis. Consequently, the MRF algorithm can not
be used to properly reconstruct such a 3D model. Here, the slices on the right-hand
side correspond to z = 0, 64, and 128, respectively.

6.2.2 Large-Scale Microstructure Synthesis

In Chapter III, the LEGOMAT approach was presented to synthesize the microstruc-

tural variations in a large component by using tensor fields to generate the size and

orientation of the microstructural patches at different locations in the specimen. One

limitation of the texture optimization approach is that the embedded microstructural

patches are not necessarily continuous beyond the group of tetrahedral elements where

the local parameters (i.e., scaling and directionality) are similar. Consequently, this

can result in crystalline structures along the boundary of patches being partially

cut-off in some instances, especially when modeling slowly-varying microstructures,

e.g., microstructures with large precipitates. For illustration, the unit-cell polycrys-

tal shown in Figure 2.4, is embedded over a curved cylindrical CAD model, as shown

in Figure 6.2(a), using the LEGOMAT algorithm with a uniform grain size scaling

throughout. Here, in Figure 6.2(b), the seamlines become noticeable when embed-

ding low-frequency components. This, however, can be alleviated to an extent by

increasing the mesh density or equivalently subdividing local tetrahedral meshes in

the regions along the patch boundary. Nonetheless, in the case of AM microstruc-
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tures, these seams are less pronounced due to the highly-stochastic nature of the

AM microstructure. Yet, it is important to optimize the alignment between adjacent

patches within the CAD model to avoid seamlines that occur along the intersecting

surfaces of tetrahedral groups from neighboring patches.

Section A-A 
 Seamline 

(a)

Section A-A 
 Seamline 

(b)

Figure 6.2: Limitation of LEGOMAT algorithm resulting in noticeable seamlines when
embedding low-frequency components: (a) LEGOMAT embedding for polycrystal pat-
tern in a curved cylinder filed with cobblestone-like texture, (b) cut-off crystalline
structures across patch boundary.

Additionally, during the generation of the volumetric tensor fields, there may be

singularity conditions where different tensors lead to sharp changes across the mi-

crostructure, e.g., near the laser paths where the tensor fields meet. This can often

be resolved via mesh refinement or smoothing user-specified vectors using the Lapla-

cian technique [212]. Furthermore, to increase the physical representability of the

microstructures in additive manufacturing, one should incorporate thermal analysis

to reproduce the volumetric temperature gradient that can ultimately inform the pre-

ferred material flow directions, and thus, the imposed tensor fields in the LEGOMAT

embedding process [210, 211]. Accordingly, in the future, the generations of process-

dependent flow fields can be automated by specifying grain growth directions based

on a set of input parameters, such as hatch spacing, layer thicknesses, and scanning

patterns using thermal simulations.
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Finally, the use of multiple RVE datasets from a library to represent multi-material

microstructures should be of interest. An interesting application of this can be in the

large-scale reconstruction of specimens from adaptive microscopy, as illustrated in

Figure 6.3, where microstructures are imaged at different locations, and the LEGO-

MAT is supplied to predict the microstructures at the interface. Further microscopy

can refine these regions, but the LEGOMAT embedding algorithm can reduce the

number of experimental measurements needed.

LEGOMAT 
Synthesis

Experiment Model

Adaptive sampling using 
optical/electron microscopy 

Figure 6.3: Generations of full-field microstructural maps from limited microscopic
scans of adaptively-selected regions.

6.2.3 Physics-Based Evolution of Reconstructed Microstructures

In Chapter IV, a basic 2D Riemannian metric based on the implementation of the

Cauchy-Crofton formulation was verified for modeling 2D microstructural evolution

using several test cases with pixelated meshes. Furthermore, a brief extension to the

3D domains for denoising and segmentation of microstructures obtained from MRF

reconstruction algorithm was shown. Since the MRF algorithm is a global optimizer,

the local features are not sharply obtained. Hence, the reconstruction strategies

can benefit from the use of the Cauchy-Crofton formula as a post-processing step to

recover GBs. Hence, future work should attend to the following aspects:

• The 2D microstructure evolution case should be extended to anisotropic GB
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energies. For this purpose, one needs to develop a regression technique to de-

termine the Riemannian metric combination that best approximates any given

surface energy.

γ =
∑
i

√
τT ·Di · τ (6.1)

• Validation of the 3D Cauchy-Crofton algorithm using test cases similar to the

ones shown here for 2D. The surface area of a 3D object using the Riemannian

metric and Cauchy-Crofton formula can be derived as follows:

∫
γds =

∫ √
(detD) · nT ·D−1

i · nds (6.2)

• Extension of the microstructure evolution algorithm to 3D should be considered.

The main issue with this is the computational expense of performing graph-cut

evolution on 3D grids. This can be solved using adaptive grids that are refined

only at the GBs where evolution occurs. Parallelization of the codes should also

be considered.

6.2.4 Peridynamic Modeling of Microstructure Plasticity

In Chapter V, mechanical modeling of microstructures was performed using PD, tak-

ing advantage of voxel grids as directly generated by the MRF algorithm. The results

are similar to FEM for small horizon sizes but can capture localization features when

the horizon size increases. The significant advantage with the NOSBPD approach

is that conventional continuum constitutive models can be used in formalism. We

demonstrated implementation of conventional crystal plasticity models in this for-

malism including modeling of mechanisms such as twinning [274, 275, 276]. In the

future work, the code can be extended to address problems such as capturing size ef-

fects in plasticity [277, 278] and fracture modeling [243]. a continuum damage model
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can be added in the new CPPD model to captures fracture and failure at the mi-

crostructural scale. Past efforts have relied on various crack initiation criteria and

crack path search algorithms for performing crack prediction in polycrystalline mate-

rials [279] while NOSB peridynamics presented in this work is expected to evolve the

cracks naturally by including a simple damage evolution law such as Gurson model

at macro-scale or energy based models at microstructural scales based on cohesive

energies of facets and GBs.
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APPENDIX A

Saltykov Method for Quantification of 3D Grain

Size Distribution

The Saltykov approximation method provides a closed-form expression for the 3D

grain size distributions from 2D observations [280]. The primary assumption when

using Saltykov is that the realized grains are approximately equiaxed/circular. As a

result, when given a 2D equiaxed structure, as shown in Figure A.1(a), the Saltykov

formula can be employed to unfold the 2D apparent grain-size distribution into the

actual 3D PDF, denoted as F (R). The derivation used here is based on Figure A.1(b),

where z =
√
R2 − r2 corresponds to a random cut location across a sphere of radius

R with r being its apparent 2D grain size. Since the probability of z follows a uniform

distribution (i.e., P (z) = 1
R

), the probability of r can be computed in a closed-form

by the change of variables, as follows:

Pr(r) = P (z)

∣∣∣∣dzdr
∣∣∣∣ =

r

R
√
R2 − r2

(A.1)

Integrating Equation (A.1) leads to:
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P (r1 < r < r2) =

r2∫
r1

Pr(r)dr =
1

R

(√
R2 − r21 −

√
R2 − r22

)
(A.2)

where R corresponds to the 3D grain size; r1 and r2 are respectively the lower and

upper limits of the interval for 2D grain size, and P (r1 < r < r2) is the probability

to cut the section within the defined interval.

Figure A.1: The schematic pertinent to the Saltykov closed-form approximation: (a)
grains are assumed as spheres with a random section seen in the 2D image; (b) prob-
ability of a given 3D grain size R given its 2D section with radius r can be obtained
by a change of variables; and (c) in the case where multiple 3D structures exist, the
Saltykov estimate takes into account the probability that a plane can cut a sphere of
radius R. Hence, the spheres of larger radii are more likely to intersect the section
plane.

Furthermore, the probability that a plane cuts a sphere of radius R is 2R (per unit

length). The likelihood of cutting such spheres depends not only on their numbers but

also on their sizes, since larger spheres are more likely to intersect a random section
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plane, as shown in Figure A.1(c). Also, the likelihood of a sphere with a radius R in

the unit volume is calculated to be F (R)∆. Here, ∆ denotes the width of the bins

used to quantify the grain size statistics and can be calculated as follows:

∆ =
Rmax −Rmin

k
(A.3)

where k equals the total number of bins in the grain size distribution plot.

Hence, the probability of a 2D section with radius r can be numerically approximated

by taking the product of Equation (A.2) with 2RF (R)∆ and by summing it over all

the bins, as follows:

P (r1 < r < r2) = 2∆
∑
i

(√
R2

i − r21 −
√

R2
i − r22

)
F (Ri) (A.4)

As a result, Equation (A.4) can be inverted to obtain a closed-from approximation

for quantification of 3D grain size distribution, F (R), when 2D sectional observations

are available.
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APPENDIX B

Adaptive Dynamic Relaxation Scheme

In the absence of body forces, the equation of motion, as shown in Equation (5.3) can

be rewritten in a vector form, as follows:

ü(x, t) + cu̇(x, t) = f(u,x, t) (B.1)

where c is a damping coefficient, and the force vector f is defined as f(u,x, t) =

Λ−1L(x, t), in which Λ is a diagonal fictitious density matrix. Based on the adaptive

dynamic relaxation method, the most desired density matrix and damping coefficient

can be determined using Greschgorin’s theorem and Rayleigh’s quotient, respectively

[281].

Let un, u̇n, ün, and fn denote the displacement, velocity, acceleration, and force vector

fields for a given material particle at t = tn, respectively. In the central difference

scheme, the velocity and acceleration vectors can be approximated as follows:
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u̇n ≈ un+1 − un−1

2∆t
(B.2)

ün ≈ un+1 − 2un + un−1

∆t2
(B.3)

where ∆t refers to the incremental time step. Substituting Equations (B.2) and (B.3)

into Equation (B.1), while rearranging the terms yields to an updated scheme for the

displacement field:

un+1 =
2∆t2fn + 4un + (c∆t− 2)un−1

2 + c∆t
(B.4)

Accordingly, Equation (B.5) is employed to estimate u−1 for initialization of the

displacement update:

u−1 = u0 −∆tu̇0 +
∆t2

2
ü0 (B.5)

where u0, u̇0, and ü0 are the initial displacement, velocity, and acceleration vectors,

respectively. The velocity and acceleration vectors may subsequently be updated

using Equations (B.2) and (B.3). With the assumption of a unit diagonal matrix Λ,

the time step ∆t can be selected based on Greschgorin’s theorem [281], as expressed

in the following:

∆t ≤
√

4Λii∑
j |Kij|

=

√
4∑

j |Kij|
=

√
4

||K||∞
(B.6)

where Λii represents the diagonal coefficients of the density matrix, K denotes the
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stiffness matrix of the system, and || · ||∞ denotes the vector-induced matrix ∞

norm. Since the stiffness matrix Kij is not explicitly computed, another approxi-

mation scheme can be applied for the computation of time step size. An appropriate

value of ∆t for the 1D PD model is based on the wave speed, denoted as cs, using

the Courant-Friedrichs-Lewy (CFL) condition [265]:

∆t ≤ 2∆x

cs
(B.7)

where ∆x represents the minimal grid size, or the minimal bond length in PD model-

ing. In higher-dimensional problems however, the CFL condition becomes stringent.

For an n-dimensional problem with a uniform grid, the critical ∆t may be estimated

as:

∆t ≤ 2∆x

n

√
ρ

Emax

(B.8)

where Emax is the largest eigenvalue of the elastic stiffness matrix. It is worth noting

that the CFL condition in Equation (B.8) can be conservative since the derivation is

based solely on the nearest neighbors [263].

Next, the damping ratio, c, is selected based on the lowest frequency of the system

using Rayleigh’s quotient [281]:

cn = 2

√
(un)Tknun

(un)Tun
(B.9)

where kn is a diagonal local stiffness matrix given by:
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kn
ii = − 1

Λii

fn
i − fn−1

i

un
i − un−1

i

= −fn
i − fn−1

i

un
i − un−1

i

(B.10)

Here, fn
i is the ith component of the force vector f , at time t = tn. Since the local

stiffness matrix calculation involves division by the difference of displacements in

consecutive time steps, it is plausible to encounter a division by zero. Accordingly,

the local stiffness kn
ii is set to zero, when the difference between displacement fields

vanishes. Finally, a guess damping ratio, c0, can be chosen to start the computation.
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APPENDIX C

Crystal Plasticity Constitutive Update Scheme

All quantities below are described relative to the undeformed (also known as reference)

configuration, and quantities at the current time step are denoted by subscript (n +

1). Given the deformation gradient Fn+1, the update procedure below numerically

computes the PK-I stress (numerically converged) P = F(Fn+1), where the operator

F denotes the constitutive model. Implicit time integration scheme of Equation (5.30)

results in the following approximation with the additional assumption that ∆γ ≪ 11:

Fp = exp
(

∆t
∑
α

γ̇αSα
0 sign(τα)

)
Fp

n ≈
(
I +

∑
α

∆γαSα
0 sign(τα)

)
Fp

n (C.1)

where ∆γα = γ̇α∆t. Substituting Equation (C.1) into the multiplicative decomposi-

tion relation F = FeFp and rearranging terms yields:

Fe = Fe
trial

(
I−

∑
α

∆γαSα
0 sign(τα)

)
(C.2)

1This assumption will be invoked through the rest of the calculations so as to obtain linear
approximations whenever necessary.
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where Fe
trial = Fn+1F

p−1
n is the trial elastic deformation gradient. The initial con-

dition Fp(0) = I signifies that the reference configuration is plastically undeformed.

The Green-Lagrange elastic strain measure computed using Equation (C.2) then takes

the form:

Ēe =
1

2

(
FeTFe − I

)
= Ēe

trial −
1

2

∑
α

∆γαBαsign(τα) (C.3)

where Ēe
trial and Bα are defined as:

Ēe
trial =

1

2

(
(Fe

trial)
TFe

trial − I
)
, (C.4)

Bα = (Sα
0 )T(Fe

trial)
TFe

trial + (Fe
trial)

TFe
trialS

α
0 (C.5)

Using Equation (C.3) the intermediate stress T̄ = Le · Ēe takes the form:

T̄ = T̄trial −
1

2

∑
α

∆γαLe ·Bαsign(ταtrial) (C.6)

where T̄trial = Le · Ēe
trial.

A trial resolved shear stress ταtrial = T̄trial : Sα
0 is then computed so that potentially

active set of slip systems (denoted as PA) may be identified based on the criterion

that |ταtrial| − sα > 0. The active systems (for which γ̇α > 0) are assumed to follow

the Kuhn-Tucker consistency condition: |τα| = sα. Substituting Equation (C.6) into

the consistency yields:
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|τα| = sα =⇒ |ταtrial| −
1

2
sign(ταtrial)

(∑
β

∆γβLe ·Bβsign(τβtrial)
)

: Sα
0 = sαn +

∑
β

hαβ(sβ)∆γβ

=⇒
(
hαβ +

1

2
sign(ταtrial)sign(τβtrial)

(
Le ·Bβ

)
: Sα

0

)
∆γβ = |ταtrial| − sα

where α, β ∈ PA and it is assumed that sign(τα) = sign(ταtrial). When the consistency

conditions are written out for all the potentially active slip systems, the following

linear system can be obtained:

∑
β∈PA

Aαβ∆γβ = bα (C.7)

where

Aαβ = hαβ +
1

2
sign(ταtrial)sign(τβtrial)

(
Le ·Bβ

)
: Sα

0 ,

bα = |ταtrial| − sα (C.8)

Once the linear system is solved, a consistency check is performed to determine

whether the potentially active systems are active, i.e., if ∆γβ ≥ 0 ; ∀β ∈ PA.

Any system which fails consistency is removed from the set of potentially active sys-

tems. The entire procedure is repeated until ∆γβ > 0 ; ∀β ∈ PA at which point the

potentially active slip systems are indeed active.

169



BIBLIOGRAPHY

170



BIBLIOGRAPHY

[1] National-Research-Council. Integrated computational materials engineering: a
transformational discipline for improved competitiveness and national security.
National Academies Press, 2008.

[2] Wei Xu, Edward W. Lui, Aaron Pateras, Ma Qian, and Milan Brandt. In
situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior
mechanical performance. Acta Materialia, 125:390–400, 2017.
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Lebedkina, Mikhäıl A. Lebyodkin, and Rustam Kaibyshev. Effect of microstruc-
ture on continuous propagation of the Portevin–Le Chatelier deformation bands.
International Journal of Plasticity, 96:210–226, 2017.

[144] John A. Shaw and Stelios Kyriakides. Initiation and propagation of localized
deformation in elasto-plastic strips under uniaxial tension. International journal
of plasticity, 13(10):837–871, 1997.

[145] Taylor R. Jacobs, David K. Matlock, and Kip O. Findley. Characterization
of localized plastic deformation behaviors associated with dynamic strain ag-
ing in pipeline steels using digital image correlation. International Journal of
Plasticity, 123:70–85, 2019.

[146] Dennis M. Dimiduk, Chris Woodward, Richard LeSar, and Michael D. Uchic.
Scale-free intermittent flow in crystal plasticity. Science, 312(5777):1188–1190,
2006.

[147] Julia R. Greer, Warren C. Oliver, and William D. Nix. Size dependence of me-
chanical properties of gold at the micron scale in the absence of strain gradients.
Acta Materialia, 53(6):1821–1830, 2005.

[148] Jinyu Zhang, Gang Liu, and Junsun R. Sun. Strain rate effects on the mechan-
ical response in multi-and single-crystalline Cu micropillars: Grain boundary
effects. International Journal of Plasticity, 50:1–17, 2013.

183



[149] Robert Maaß, Steven Van Petegem, Helena Van Swygenhoven, Peter M. Derlet,
Cynthia A. Volkert, and Daniel Grolimund. Time-resolved laue diffraction of
deforming micropillars. Physical Review Letters, 99(14):145505, 2007.

[150] McLean P. Echlin, Jean C. Stinville, Victoria M. Miller, William C. Lenthe,
and Tresa M. Pollock. Incipient slip and long range plastic strain localization
in microtextured Ti-6Al-4V titanium. Acta Materialia, 114:164–175, 2016.

[151] Franz Roters, Philip Eisenlohr, Luc Hantcherli, Denny D. Tjahjanto, Thomas R.
Bieler, and Dierk Raabe. Overview of constitutive laws, kinematics, homoge-
nization and multiscale methods in crystal plasticity finite-element modeling:
Theory, experiments, applications. Acta Materialia, 58(4):1152–1211, 2010.

[152] Hirofumi Inoue and Takayuki Takasugi. Texture control for improving deep
drawability in rolled and annealed aluminum alloy sheets. Materials Transac-
tions, 48(8):2014–2022, 2007.

[153] Olaf Engler and Jürgen Hirsch. Texture control by thermomechanical process-
ing of AA6xxx Al-Mg-Si sheet alloys for automotive applications—a review.
Materials Science and Engineering: A, 336(1-2):249–262, 2002.

[154] Veera Sundararaghavan and Nicholas Zabaras. A multi-length scale sensitivity
analysis for the control of texture-dependent properties in deformation process-
ing. International Journal of Plasticity, 24(9):1581–1605, 2008.

[155] Eric M. Summers, Rob Meloy, and Suok-Min Na. Magnetostriction and tex-
ture relationships in annealed galfenol alloys. Journal of Applied Physics,
105(7):07A922, 2009.

[156] Ruoqian Liu, Abhishek Kumar, Zhengzhang Chen, Ankit Agrawal, Veera Sun-
dararaghavan, and Alok Choudhary. A predictive machine learning approach for
microstructure optimization and materials design. Scientific Reports, 5:11551,
2015.

[157] Pinar Acar and Veera Sundararaghavan. Linear solution scheme for microstruc-
ture design with process constraints. AIAA Journal, 54(12):4022–4031, 2016.

[158] Lallit Anand and Mrityunjay Kothari. A computational procedure for rate-
independent crystal plasticity. Journal of the Mechanics and Physics of Solids,
44(4):525–558, 1996.

[159] Marion Calcagnotto, Dirk Ponge, Eralp Demir, and Dierk Raabe. Orientation
gradients and geometrically necessary dislocations in ultrafine grained dual-
phase steels studied by 2D and 3D EBSD. Materials Science and Engineering:
A, 527(10-11):2738–2746, 2010.

[160] Timothy J Ruggles and David T. Fullwood. Estimations of bulk geometrically
necessary dislocation density using high resolution EBSD. Ultramicroscopy,
133:8–15, 2013.

184



[161] Francisco Armero and Krishna R. Garikipati. An analysis of strong discon-
tinuities in multiplicative finite strain plasticity and their relation with the
numerical simulation of strain localization in solids. International Journal of
Solids and Structures, 33(20-22):2863–2885, 1996.

[162] Stewart A. Silling. Reformulation of elasticity theory for discontinuities and
long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175–
209, 2000.

[163] Thomas L. Warren, Stewart A. Silling, Abe Askari, Olaf Weckner, Micahel A.
Epton, and Jifeng Xu. A non-ordinary state-based peridynamic method to
model solid material deformation and fracture. International Journal of Solids
and Structures, 46(5):1186–1195, 2009.

[164] Erdogan Madenci and Erkan Oterkus. Peridynamic Theory and Its Applica-
tions. Springer, 2014.

[165] Walter H. Gerstle. Introduction to practical peridynamics: computational solid
mechanics without stress and strain, volume 1. World Scientific Publishing Co
Inc, 2015.

[166] Michael R. Tupek and R. Radovitzky. An extended constitutive correspondence
formulation of peridynamics based on nonlinear bond-strain measures. Journal
of the Mechanics and Physics of Solids, 65:82–92, 2014.

[167] Sahir N. Butt and Günther Meschke. Peridynamic analysis of dynamic fracture:
influence of peridynamic horizon, dimensionality and specimen size. Computa-
tional Mechanics, 67(6):1719–1745, 2021.

[168] Abigail Agwai, Ibrahim Guven, and Erdogan Madenci. Predicting crack prop-
agation with peridynamics: A comparative study. International Journal of
Fracture, 171(1):65–78, 2011.

[169] Xin Gu, Qing Zhang, and Erdogan Madenci. Non-ordinary state-based peri-
dynamic simulation of elastoplastic deformation and dynamic cracking of poly-
crystal. Engineering Fracture Mechanics, 218:106568, 2019.

[170] Stewart A. Silling, Michael A. Epton, Olaf Weckner, Jifeng Xu, and E. Askari.
Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2):151–
184, 2007.

[171] Stewart A. Silling and Richard B. Lehoucq. Peridynamic theory of solid me-
chanics. Advances in Applied Mechanics, 44:73–168, 2010.

[172] Mohammadreza Yaghoobi, Sriram Ganesan, Srihari Sundar, Aaditya Lak-
shmanan, Shiva Rudraraju, John E. Allison, and Veera Sundararaghavan.
PRISMS-plasticity: An open-source crystal plasticity finite element software.
Computational Materials Science, 169:109078, 2019.

185



[173] Amin Yaghoobi and Mi G. Chorzepa. Higher–order approximation to suppress
the zero-energy mode in non-ordinary state-based peridynamics. Computers
and Structures, 188:63–79, 2017.

[174] Michael R. Tupek, Julian J. Rimoli, and R. Radovitzky. An approach for
incorporating classical continuum damage models in state-based peridynamics.
Computer Methods in Applied Mechanics and Engineering, 263:20–26, 2013.

[175] Youn D. Ha and Florin Bobaru. Studies of dynamic crack propagation and
crack branching with peridynamics. International Journal of Fracture, 162(1-
2):229–244, 2010.

[176] Stewart A. Silling. Stability of peridynamic correspondence material models
and their particle discretizations. Computer Methods in Applied Mechanics and
Engineering, 322:42–57, 2017.

[177] Pan Li, Zhiming Hao, and Wenqiang Zhen. A stabilized non-ordinary state-
based peridynamic model. Computer Methods in Applied Mechanics and Engi-
neering, 339:262–280, 2018.

[178] Xin Gu, Qing Zhang, Erdogan Madenci, and Xiaozhou Xia. Possible causes
of numerical oscillations in non-ordinary state-based peridynamics and a bond-
associated higher-order stabilized model. Computer Methods in Applied Me-
chanics and Engineering, 357:112592, 2019.

[179] M. Scot Breitenfeld, Philippe H. Geubelle, Olaf Weckner, and Stewart A. Silling.
Non-ordinary state-based peridynamic analysis of stationary crack problems.
Computer Methods in Applied Mechanics and Engineering, 272:233–250, 2014.

[180] Huilong Ren, Xiaoying Zhuang, Yongchang Cai, and Timon Rabczuk. Dual-
horizon peridynamics. International Journal for Numerical Methods in Engi-
neering, 108(12):1451–1476, 2016.

[181] Chengtang Wu and Bo Ren. A stabilized non-ordinary state-based peridynamics
for the nonlocal ductile material failure analysis in metal machining process.
Computer Methods in Applied Mechanics and Engineering, 291:197–215, 2015.

[182] David J. Littlewood. A nonlocal approach to modeling crack nucleation in AA
7075-t651. In ASME 2011 International Mechanical Engineering Congress and
Exposition, pages 567–576. American Society of Mechanical Engineers, 2011.

[183] David J. Littlewood. Simulation of dynamic fracture using peridynamics, finite
element modeling, and contact. In ASME International Mechanical Engineering
Congress and Exposition, volume 44465, pages 209–217, 2010.

[184] Ji Wan, Zhuang Chen, Xihua Chu, and Hui Liu. Improved method for zero-
energy mode suppression in peridynamic correspondence model. Acta Mechan-
ica Sinica, 35(5):1021–1032, 2019.

186



[185] Jiyangyi Luo and Veera Sundararaghavan. Stress-point method for stabiliz-
ing zero-energy modes in non-ordinary state-based peridynamics. International
Journal of Solids and Structures, 2018.

[186] Hao Cui, Chunguang Li, and Hong Zheng. A higher-order stress point method
for non-ordinary state-based peridynamics. Engineering Analysis with Bound-
ary Elements, 117:104–118, 2020.

[187] Erdogan Madenci, Atila Barut, and Michael Futch. Peridynamic differential
operator and its applications. Computer Methods in Applied Mechanics and
Engineering, 304:408–451, 2016.

[188] Erdogan Madenci, Mehmet Dorduncu, Atila Barut, and Nam Phan. Weak
form of peridynamics for nonlocal essential and natural boundary conditions.
Computer Methods in Applied Mechanics and Engineering, 337:598–631, 2018.

[189] Timon Rabczuk, Huilong Ren, and Xiaoying Zhuang. A nonlocal operator
method for partial differential equations with application to electromagnetic
waveguide problem. Computers, Materials & Continua 59 (2019), Nr. 1, 2019.

[190] Erdogan Madenci, Mehmet Dorduncu, Nam Phan, and Xin Gu. Weak form
of bond-associated non-ordinary state-based peridynamics free of zero energy
modes with uniform or non-uniform discretization. Engineering Fracture Me-
chanics, 218:106613, 2019.

[191] Hailong Chen. Bond-associated deformation gradients for peridynamic corre-
spondence model. Mechanics Research Communications, 90:34–41, 2018.

[192] Hailong Chen and Benjamin W. Spencer. Peridynamic bond-associated corre-
spondence model: Stability and convergence properties. International Journal
for Numerical Methods in Engineering, 117(6):713–727, 2019.

[193] Jiangyi Luo, Ali Ramazani, and Veera Sundararaghavan. Simulation of micro-
scale shear bands using peridynamics with an adaptive dynamic relaxation
method. International Journal of Solids and Structures, 130:36–48, 2018.

[194] Dinu Coltuc, Philippe Bolon, and Jean-Marc Chassery. Exact histogram spec-
ification. IEEE Transactions on Image Processing, 15(5):1143–1152, 2006.

[195] Dori Shapira, Shai Avidan, and Yacov Hel-Or. Multiple histogram matching.
In 2013 IEEE International Conference on Image Processing, pages 2269–2273.
IEEE, 2013.

[196] Shang Sun and Veera Sundararaghavan. A probabilistic crystal plasticity model
for modeling grain shape effects based on slip geometry. Acta Materialia, 60(13-
14):5233–5244, 2012.

187



[197] Mohsen Taheri Andani, Aaditya Lakshmanan, Veera Sundararaghavan, John
Allison, and Amit Misra. Quantitative study of the effect of grain boundary
parameters on the slip system level hall-petch slope for basal slip system in
Mg-4Al. Acta Materialia, 200:148–161, 2020.

[198] Mohsen Taheri Andani, Aaditya Lakshmanan, Veera Sundararaghavan, John
Allison, and Amit Misra. Estimation of micro-hall-petch coefficients for pris-
matic slip system in Mg-4Al as a function of grain boundary parameters. Acta
Materialia, 226:117613, 2022.

[199] Mohsen Taheri Andani, Aaditya Lakshmanan, Mohammadreza Karamooz-
Ravari, Veera Sundararaghavan, John Allison, and Amit Misra. A quantita-
tive study of stress fields ahead of a slip band blocked by a grain boundary in
unalloyed magnesium. Scientific reports, 10(1):1–8, 2020.

[200] Veera Sundararaghavan and Nicholas Zabaras. Linear analysis of texture prop-
erty relationships using process-based representations of Rodrigues space. Acta
Materialia, 55(5):1573–1587, 2007.

[201] Pinar Acar and Veera Sundararaghavan. Utilization of a linear solver for mul-
tiscale design and optimization of microstructures. AIAA Journal, pages 1751–
1759, 2016.

[202] Tom Quested. Micrograph 712 and full record. Department of Materials Science
and Metallurgy at University of Cambridge. CC BY-NC-SA 2.0 UK. URL:
www.doitpoms.ac.uk/miclib/micrograph record.php?id=712, 2003. (accessed:
07.19.2019).

[203] Veera Sundararaghavan, Abhishek Kumar, and Shang Sun. Crystal plastic-
ity simulations using nearest neighbor orientation correlation function. Acta
Materialia, 93:12–23, 2015.

[204] Hang Si. On refinement of constrained Delaunay tetrahedralizations. In Pro-
ceedings of the 15th International Meshing Roundtable, pages 509–528. Springer,
2006.

[205] Huiliang Wei, John W. Elmer, and Tarasankar A. DebRoy. Origin of grain
orientation during solidification of an aluminum alloy. Acta Materialia, 115:123–
131, 2016.

[206] Yanis Balit, Eric Charkaluk, and Andrei Constantinescu. Digital image corre-
lation for microstructural analysis of deformation pattern in additively manu-
factured 316L thin walls. Additive Manufacturing, 31:100862, 2020.

[207] Emil Cederberg, Vahid A. Hosseini, Chamara Kumara, and Leif Karlsson.
Physical simulation of additively manufactured super duplex stainless steels–
microstructure and properties. Additive Manufacturing, 34:101269, 2020.

188

https://www.doitpoms.ac.uk/miclib/micrograph_record.php?id=712


[208] Huiliang Wei, John W. Elmer, and Tarasankar A. DebRoy. Crystal growth
during keyhole mode laser welding. Acta Materialia, 133:10–20, 2017.

[209] Huiliang Wei, John W. Elmer, and Tarasankar A. DebRoy. Three-dimensional
modeling of grain structure evolution during welding of an aluminum alloy. Acta
Materialia, 126:413–425, 2017.

[210] Vahid Fallah, Masoud Alimardani, Stephen F. Corbin, and Amir Khajepour.
Temporal development of melt-pool morphology and clad geometry in laser
powder deposition. Computational Materials Science, 50(7):2124–2134, 2011.

[211] Xibing Gong and Kevin Chou. Phase-field modeling of microstructure evolution
in electron beam additive manufacturing. JOM, 67(5):1176–1182, 2015.

[212] David A. Field. Laplacian smoothing and Delaunay triangulations. Communi-
cations in Applied Numerical Methods, 4(6):709–712, 1988.

[213] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. Lapped
solid textures: Filling a model with anisotropic textures. In ACM SIGGRAPH
2008 Papers. Association for Computing Machinery, New York, NY, USA, 2008.

[214] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, page 465–470, USA, 2000.

[215] Arnoldo Badillo and Christoph Beckermann. Phase-field simulation of the
columnar-to-equiaxed transition in alloy solidification. Acta Materialia,
54(8):2015–2026, 2006.
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