
Crystal Plasticity Constitutive Modeling of Grain
Size-Texture Coupling with Application to Mg-4Al

by

Aaditya Lakshmanan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2022

Doctoral Committee:

Professor Veera Sundararaghavan, Chair
Professor John E. Allison
Professor Daniel J. Inman
Professor Amit Misra



“The important thing in science is not so much to obtain new facts as to

discover new ways of thinking about them.” – William Lawrence Bragg



Aaditya Lakshmanan

aadityal@umich.edu

ORCID iD: 0000-0002-0484-5196

© Aaditya Lakshmanan 2022

All Rights Reserved



ACKNOWLEDGEMENTS

I would first like to express my sincere gratitude to Prof. Veera Sundararaghavan for
giving me the opportunity and the freedom to pursue research in the area of crystal
plasticity. He has been a source of inspiration to me and his constant guidance and
positive attitude have been instrumental in shaping my research and thought pro-
cess. I would like to thank Professors Daniel Inman, John Allison and Amit Misra
for serving on my committee and taking the time to review my work. I have learnt
a great deal working with a large code base and assisting in the training workshops
as a member of the Center for PRedictive Integrated Structural Materials Science
(PRISMS), under the leadership of Prof. Allison. I am thankful to Prof. Misra
and his student, Dr. Mohsen Andani for sharing the experimental data and insights
that form the backbone of this thesis. I would like to thank Dr. Mohammadreza
Yaghoobi for his guidance in understanding and utilizing multiple features of the
PRISMS-Plasticity code. Special thanks to Professors Anand Kanjarla, Phaniku-
mar Gandham, Shyam Keralavarma and Sundararaman Mahadevan for sparking my
interest in diverse topics of mechanics and materials science.
I have been very fortunate to pursue my passion for mathematics through courses
taught by some amazing teachers. I would like to thank Prof. Jenny Wilson for
her course on topology, Prof. Zaher Hani for his course on dynamical systems, Prof.
Sijue Wu for her course on partial differential equations, and to the late Prof. Charles
Doering for his course on mathematical fluid dynamics. My love for mechanics has
only grown with time, thanks to Prof. John Shaw for his courses on solid mechanics
and elastic stability, and Prof. James Barber for his course on elasticity.
The company of my friends has been a constant source of happiness for me throughout

ii



my studies. I would like to thank Siddhartha for numerous interesting discussions
involving mathematics, mechanics, stand-up comedy and anime that accompanied
explorations of food and coffee around the campus. Thanks to Kunal for being an
amazing friend and roommate, feeding me delicious Indian food, helping me with my
taxes and for all those billiards games at Pierpont. I would like to thank Aniruddhe
for being the gem of a person that he is, and for sharing his passion for cooking,
numerical methods and turbulence, which have greatly enriched my outlook on many
fronts. Thanks to Aditya, my friend and brother from another mother, for tolerating
me as a roommate, for his cutting-edge humor, and for sharing my enthusiasm for
badminton and table tennis. I would like to thank Gurmeet for introducing me to
exercise routines, accompanying me to Yoon’s bakery to savor the cream bread and
for his preparations of delicious methi malai matar while appreciating Bill Burr’s
comedy. Thanks to Srihari for his insights on programming and high performance
computing, his camaraderie, and for being the undesignated driver to many trips. I
would like to thank Subramaniam for his company through math courses and sharing
his passion for quizzing, interesting stories and light-hearted gossips.
Thanks to Agnit for all those long drives in his Mazda while timeless ghazals played
in the background, to Akarsh for sharing my love for desserts and the dominos garlic
parmesan pizza, to Srinivasan for all the delicious South Indian food he prepared
amidst his singing, and to Vishwas for organizing great house parties and gatherings
during the festive season. Thanks to Vishnu and Harsh for all the cricket sessions in
the Willowtree tennis and basketball courts which disrupted the monotony during the
lockdown. Many thanks to Manish, Karan and Anand, my first roommates in Ann
Arbor, for setting a positive tone to my stay in the US through late night weekends
involving drinks and punjabi songs. I would like to thank all past/present MSSL
lab members for their help and advice when I most needed it : Arunabha, Sriram,
Shardul, Adam, Pınar, Jiangyi, Iman and Siddharth. I would like to thank my office
mates - Doreen, Gustavo, Avin, Hoang and Paul - for always maintaining a lively
presence around the office. I would like to thank the following people whose company
I have cherished over the years and who have made my journey a truly memorable one
: Akshay, Ananthakrishnan, Asmita, Corey, Deepak, Devina, Divya, Doğa, Guodong,

iii



Krystal, Mohit, Puneet, Rohit, Sagardeep, Shiyao, Sneha, Sravan, Srinivas Karthik,
Vishal, Yifan and Yukiko. Thanks to Chal and the Novelis modeling team for the
great experience and new learnings during my internship. My special thanks to
graduate coordinators, Denise Phelps and Ruthie Freeman for their immense help
throughout my graduate studies.
Finally, I would like to thank my parents, Vijayalakshmi and Lakshmanan, and my
sister, Priyanka, for their unconditional love and support throughout my stay away
from home. Words simply cannot describe my love for them. I would like to thank
my Mama and Mami, Mani and Mayuri, for always taking care of me like their own
child. Thanks to my sweet cousins, Shivani and Shriya, who constantly reminded me
of the joys of being a kid. Many thanks to my cousin, Advik, for always keeping in
touch with me through long drawn conversations about food and interesting stories
about Lviv. I would like to thank my extended family who have continually been a
positive influence during this time.
I acknowledge the U.S. Department of Energy, Office of Basic Energy Sciences, Divi-
sion of Materials Sciences and Engineering under Award #DE-SC0008637, as part of
the Center for PRedictive Integrated Structural Materials Science (PRISMS Center),
for financial support.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Magnesium alloys . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Hall-Petch effect in Mg alloys . . . . . . . . . . . . . . . . . . 4
1.3 Crystal plasticity modeling of Mg alloys . . . . . . . . . . . . 8
1.4 HR-EBSD measurements . . . . . . . . . . . . . . . . . . . . 12
1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

II. PRISMS-Plasticity Rate-Dependent Crystal Plasticity Model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Rate-Dependent Single Crystal Constitutive Model . . . . . . 16
2.1.1 Crystal Plasticity Formulation . . . . . . . . . . . . 16
2.1.2 Backstress Formulation . . . . . . . . . . . . . . . . 21
2.1.3 Deformation Twinning . . . . . . . . . . . . . . . . 22

2.2 Incremental Constitutive Model . . . . . . . . . . . . . . . . . 23

v



2.3 Solution to Nonlinear System . . . . . . . . . . . . . . . . . . 25
2.4 Deformation Solver . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Material Tangent Modulus . . . . . . . . . . . . . . . . . . . 29
2.6 PRISMS-CPFE Workflow . . . . . . . . . . . . . . . . . . . . 34
2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Example I : Simple Compression of OFHC-Cu poly-
crystal . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.2 Example II : Simple tension of Timetal 21S . . . . . 38
2.7.3 Example III : Cyclic deformation of Al 7075-T6 poly-

crystal . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Micro-Hall-Petch Parameters for Basal Slip . . . . . . . . . . . 45

3.1 Continuum Dislocation Pile-up Model . . . . . . . . . . . . . 46
3.2 Crystal Plasticity Simulations . . . . . . . . . . . . . . . . . . 52

3.2.1 Constitutive Model Calibration . . . . . . . . . . . . 53
3.2.2 Grain Boundary Neighborhood Simulations . . . . . 55

3.3 Grain Boundary Parameters . . . . . . . . . . . . . . . . . . . 70
3.4 Parametrizing the micro-Hall-Petch parameter . . . . . . . . 73
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

IV. Micro-Hall-Petch Parameters for Prismatic Slip . . . . . . . . 78

4.1 Grain Identification for Notch Creation . . . . . . . . . . . . 79
4.2 Dislocation Pile-up Model of Notch-Slip Band Combination . 82
4.3 Crystal Plasticity Simulations . . . . . . . . . . . . . . . . . . 88

4.3.1 Constitutive Model Calibration . . . . . . . . . . . . 89
4.3.2 Grain Boundary Neighborhood Simulations . . . . . 92

4.4 Grain Boundary Parameters . . . . . . . . . . . . . . . . . . . 98
4.5 Parametrizing the micro-Hall-Petch parameter . . . . . . . . 107
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

V. Micro-Hall-Petch Modeling in PRISMS-CPFE . . . . . . . . . 111

5.1 Micro-Hall-Petch Constitutive Model . . . . . . . . . . . . . . 111
5.1.1 Computation of slip system-level grain size . . . . . 112
5.1.2 Computation of micro-Hall-Petch parameter . . . . 113

5.2 Synthetic Microstructure Generation . . . . . . . . . . . . . . 117

vi



5.3 Calibration of constitutive parameters . . . . . . . . . . . . . 119
5.4 Parametric Studies . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Effect of simulated spread in texture . . . . . . . . . 133
5.4.2 Effect of loading direction . . . . . . . . . . . . . . . 139
5.4.3 Yield stress variation with grain morphology . . . . 140

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

VI. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 149

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

vii



LIST OF FIGURES

Figure

1.1 Integrated suite of multiscale/multiphysics computational codes de-
veloped by the various research groups affiliated with the PRISMS
center [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Slip and twin systems in Mg alloys. . . . . . . . . . . . . . . . . . . 5
2.1 Different configurations assumed by the material - B0 denotes the

reference configuration, B denotes the deformed configuration and
B̃ denotes the intermediate configuration obtained after relaxing
the deformed configuration, preserving only the plastic deformation.
The intermediate is isoclinic, i.e., det (F p) = 1. . . . . . . . . . . . . 18

2.2 The orientation of the twinned region can be obtained by construct-
ing the mirror image of the parent grain lattice with the twinning
plane acting as the mirror plane. . . . . . . . . . . . . . . . . . . . . 22

2.3 PRISMS-CPFE Workflow. . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 (a) Visualization of synthetic microstructure (b) Pole figures. . . . 37
2.5 (a) Variation in von Mises equivalent stress field throughout the mi-

crostructure, and (b) Variation in von Mises equivalent strain field
throughout the microstructure, and (c) Stress-strain curve compari-
son between rate-dependent model implemented in PRISMS-CPFE
and the rate-independent model of Anand et al. [2]. . . . . . . . . . 39

2.6 (a) Visualization of synthetic microstructure generated using DREAM.3D
(b) Pole figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Stress-strain curve comparison between PRISMS-CPFE and Qidwai
et al. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 (a) von Mises equivalent stress field in deformed microstructure, (b)
von Mises equivalent strain field in deformed microstructure. . . . . 42

viii



2.9 (a) Visualization of synthetic microstructure generated using DREAM.3D
(b) Pole figures corresponding to the microstructural cube. . . . . . 43

2.10 Cyclic stress-strain curve comparison between ABAQUS and PRISMS-
CPFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Continuum model of dislocation pile-up at a GB. Dislocations are
smeared out to a continuous density field and the red curve in the
adjacent grain denotes the pile-up stress due to a pile-up of disloca-
tions at the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 (a) HR-EBSD map of resolved shear stress onto the active slip sys-
tem in the upper grain. The stress concentration ahead of pile up
at GB can be observed. The solid lines represent the position of
the slip bands, and the dashed line with an arrowhead indicates the
direction along which the pile-up stress profile was extracted, (b)
The resolved shear stress profile ahead of a slip band blocked by a
GB with comparison to the pile-up stress expression from the con-
tinuum dislocation pile-up model to calculate the micro-Hall-Petch
parameters of each GB. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 (a) Microstructure section used to inform input texture for simula-
tions, and (b) experimental pole figures of extruded Mg-4Al (wt.%)
used in this study. The microstructure contains equiaxed grains with
an average grain diameter of 50 µm. RD: Radial Direction; ED: Ex-
trusion Direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Simple tension boundary conditions that the microstructures are
subject to. u0 denotes the displacement enforced corresponding to
3.5 % strain, i.e., u0 = 0.035L. . . . . . . . . . . . . . . . . . . . . . 54

3.5 (a) Pole figures of the polycrystalline RVE represented as an 8 x 8
x 8 voxelated grid with a distinct orientation for every voxel, and
(b) Comparison of simulated stress-strain response with experiment
resulting in the calibrated parameters in Table. 3.2. . . . . . . . . . 55

3.6 (a) Microstructure section from experimental SEM image, (b) Mi-
crostructural section used for simulation with grain IDs of individual
grains, and (c)Illustration of the grains sharing the GB (GB 1 in Ta-
ble. 3.4) of interest along with the trace of the slip band in one grain
blocked by the adjacent grain. . . . . . . . . . . . . . . . . . . . . . 58

3.7 Boundary conditions applied to the microstructure section corre-
sponding to the GB neighborhood for the GB of interest. . . . . . . 59

ix



3.8 (a)Accumulated slip for basal slip system 1, (b)Accumulated slip for
basal slip system 2, (c)Accumulated slip for basal slip system 3, (d)
Most active slip system ID map for microstructural section, and (e)
Most active slip system ID map for grains sharing GB of interest. . 61

3.9 (a) Microstructure section corresponding to the GB neighborhood for
GB 2 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 62

3.10 (a) Microstructure section corresponding to the GB neighborhood for
GB 3 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 63

3.11 (a) Microstructure section corresponding to the GB neighborhood for
GB 4 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 64

3.12 (a) Microstructure section corresponding to the GB neighborhood for
GB 5 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 65

x



3.13 (a) Microstructure section corresponding to the GB neighborhood for
GB 6 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 66

3.14 (a) Microstructure section corresponding to the GB neighborhood for
GB 7 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 67

3.15 (a) Microstructure section corresponding to the GB neighborhood for
GB 8 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 68

3.16 (a) Microstructure section corresponding to the GB neighborhood for
GB 9 with grain IDs, (b) Illustration of the grains sharing the GB
of interest along with the trace of the slip band in one grain blocked
by the adjacent grain, (c) Accumulated slip for basal slip system 1,
(d)Accumulated slip for basal slip system 2, (e) Accumulated slip
for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest. . . . . . . . . . . . . . . . . . . . . . 69

xi



3.17 A schematic representative for slip transmission through a GB. b⃗in:
Burgers vector of the incoming slip system, b⃗out: Burgers vector of
the outgoing slip system, n⃗in: Slip plane normal of the incoming
slip system, n⃗out: Slip plane normal of the outgoing slip system, l⃗in:
Intersection line of the incoming slip plane and GB, l⃗out: Intersection
line of the outgoing slip plane and GB, d⃗in: Slip direction of the
incoming slip system, d⃗out: Slip direction of the outgoing slip system,
θ: Angle between the two slip plane traces on the GB plane, κ:
Angle between slip directions, ψ: Angle between slip plane normals,
δ: Angle between the incoming slip direction and the incoming slip
plane trace on the GB plane. . . . . . . . . . . . . . . . . . . . . . . 71

3.18 (a) Schematic showing the GB plane, which is described by (b) the
GB trace angle, and (c) the GB plane angle. (d) The GB trace
angle (α) is measured using the plan view image of the GB. (e) The
GB plane angle (β) is measured using cross-section lamellae of GB
prepared by field ion beam milling. . . . . . . . . . . . . . . . . . . 72

3.19 (a) micro-Hall-Petch parameter plotted against (1−m′)c
α wherem′ is

the LRB factor, along with the linear fit. Kα
µ = 0.173 MPa µm1/2, cα =

1.04. (b) micro-Hall-Petch parameter plotted against (1 − m′)c
α

wherem′ is the LM factor, along with the linear fit. Kα
µ = 159 MPa µm1/2,

cα = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1 (a) EBSD data corresponding to microstructure section, (b) Parti-

tion microstructure into grains, and (c) Basal slip trace for all grains. 80
4.2 Plot of maximum Schmid factor among prismatic systems with grain

ids of grains satisfying satisfying the criterion from the second step. 81
4.3 Plot of ratio of maximum Schmid factor among basal systems to

maximum Schmid factor among prismatic systems, with grain ids of
grains satisfying the criterion from the third step. . . . . . . . . . . 81

4.4 (a) Grains selected based on first two steps, (b) Grains selected based
on orientation of prismatic plane normal from the final step. . . . . 83

4.5 Notch and slip band idealized as a continuous distribution of parallel
edge dislocations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



4.6 (a) HR-EBSD stress map of the resolved shear stress on the active
slip system in the right grain. The active slip system is defined
based on the trace analysis and CPFE. The observed stress profile in
front of the pile-up is extracted along the dashed line and compared
with the pile-up model. (b) The comparison of resolved shear stress
ahead of pile up was measured by HR-EBSD and the pile-up model
(Eqn. 4.6) to estimate the prismatic micro-Hall-Petch parameter for
different GBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Pole figures and synthetic microstructure for (a) Texture 1, and (b)
Texture 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Simple tension boundary conditions that the microstructures are
subject to. u0 denotes the displacement enforced based on the strain
- 2.5 % for texture 1 and 0.6 % for texture 2. Then u0 = 0.025L for
texture 1 and u0 = 0.006L for texture 2. . . . . . . . . . . . . . . . 91

4.9 Stress-strain curve comparison between experiments and CPFE for
(a) Texture 1, and (b) Texture 2. . . . . . . . . . . . . . . . . . . . 91

4.10 (a) Microstructure section from experiment containing a notch with
the tip shown from which a slip band emanates, (b) Read in exper-
imental data and assign grain IDs, (c) Rectangular domain contain-
ing notch meshed using Gmsh [4] containing 7780 elements, and (d)
Grain IDs assigned to elements of the mesh. . . . . . . . . . . . . . 94

4.11 Simple tension boundary conditions applied to the microstructure
slice with deformation along x-direction upto 2%, i.e., u0 = 0.02Lx. 95

4.12 Accumulated slip variation of different slip systems : (a) Basal 1 -
[112̄0](0001), (b) Basal 2 - [2̄110](0001), (c) Basal 3 - [12̄10](0001),
(d) Prismatic 1 - [12̄10](101̄0), (e) Prismatic 2 - [2̄110](011̄0), (f)
Prismatic 3 - [112̄0](1̄100). . . . . . . . . . . . . . . . . . . . . . . . 96

4.13 (a) Close-up of most active slip system ID map for GB 1, (b) Com-
plete map for most active slip system ID for GB 1. . . . . . . . . . . 97

4.14 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 2 with slip band trace, (b) Gmsh mesh containing 7780
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



4.15 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 3 with slip band trace, (b) Gmsh mesh containing 7635
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.16 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 4 with slip band trace, (b) Gmsh mesh containing 8118
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.17 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 5 with slip band trace, (b) Gmsh mesh containing 7479
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.18 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 6 with slip band trace, (b) Gmsh mesh containing 8042
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.19 Accumulated slip variation of different slip systems : (a) microstruc-
ture for GB 7 with slip band trace, (b) Gmsh mesh containing 7799
elements, (c) Accumulated slip for prismatic 1, (d) Accumulated slip
for prismatic 2, (e) Accumulated slip for prismatic 3, (f) Most active
slip system ID map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.20 A schematic representative for slip transmission through a GB. b⃗in:
Burgers vector of the incoming slip system, b⃗out: Burgers vector of
the outgoing slip system, n⃗in: Slip plane normal of the incoming
slip system, n⃗out: Slip plane normal of the outgoing slip system, l⃗in:
Intersection line of the incoming slip plane and GB, l⃗out: Intersection
line of the outgoing slip plane and GB, d⃗in: Slip direction of the
incoming slip system, d⃗out: Slip direction of the outgoing slip system,
θ: Angle between the two slip plane traces on the GB plane, κ:
Angle between slip directions, ψ: Angle between slip plane normals,
δ: Angle between the incoming slip direction and the incoming slip
plane trace on the GB plane. . . . . . . . . . . . . . . . . . . . . . . 105

xiv



4.21 (a) Schematic representation of the GB plane. (b) The GB trace
angle α is measured using the GB’s plan view image (SEM image).
(c) The GB plane angle β is measured using a cross-section of the
GB after FIB removal of adjacent material. . . . . . . . . . . . . . . 106

4.22 (a) micro-Hall-Petch parameter plotted against (1−m′)c
α wherem′ is

the LRB factor, along with the linear fit. Kα
µ = 687 MPa µm1/2, cα =

1.83. (b) micro-Hall-Petch parameter plotted against (1 − m′)c
α

wherem′ is the LM factor, along with the linear fit. Kα
µ = 699 MPa µm1/2,

cα = 1.07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1 Illustration depicting the computation of dα and kαµ . (a) Uniform

voxelated microstructure (b) For any microstructural point in grain
G and line passing through it with slip direction mα, find the neigh-
boring grains G1 and G2 based on the points of intersection of the
line with the boundary. (c) The slip system level grain size dα is
computed for every point in the microstructure by finding the length
of the line segment passing through that point connecting the two
points on the grain boundary along direction mα. (d) To compute
kαµ the primary quantity is the maximum compatibility factor which
is computed using the knowledge of slip systems corresponding to
the neighboring grains G1 and G2. . . . . . . . . . . . . . . . . . . . 114

5.2 Illustration depicting the workflow for synthetic microstructure gen-
eration in DREAM.3D. (a) 2D microstructure section from experi-
ment, (b) 2D grain size statistics extracted from microstructure sec-
tion not including boundary grains, (c) Use Saltykov method to ob-
tain 3D grain size statistics and fit it with lognormal distribution,
(d) Pole figures from experimental texture data, (e) Use best-fit log-
normal distribution parameters and orientation information as input
to DREAM.3D to generate synthetic microstructure. . . . . . . . . 120

5.3 Pole figures for (a) Texture 1, and (b) Texture 2. . . . . . . . . . . . 121
5.4 Stress-strain curve comparison between CPFE simulations and ex-

periments using calibrated parameters for (a) Texture 1, z-direction
loading, (b) Texture 2, z-direction loading and (c) Texture 2, x-
direction loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Yield stress(σY ) vs inverse square-root grain size(1/
√
d) comparison

between CPFE simulations and experiments using calibrated param-
eters for (a) Texture 1, z-direction loading, (b) Texture 2, z-direction
loading and (c) Texture 2, x-direction loading. Dotted lines denote
corresponding linear least-squares fit. . . . . . . . . . . . . . . . . . 126

xv



5.6 Stress-strain curve comparison between CPFE simulations and ex-
periments using the original parameters for (a) Texture 1, z-direction
loading, (b) Texture 2, z-direction loading and (c) Texture 2, x-
direction loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Yield stress(σY ) vs inverse square-root grain size(1/
√
d) compari-

son between CPFE simulations and experiments using the original
parameters for (a) Texture 1, z-direction loading, (b) Texture 2, z-
direction loading and (c) Texture 2, x-direction loading. Dotted lines
denote corresponding linear least-squares fit. . . . . . . . . . . . . . 130

5.8 Pole figures for increasing values of the ϵ value or spread in ori-
entations and the approximate number of grains constituting the
synthetic microstructure. Since, random texture corresponds to a
uniform distribution of orientations, the pole figures were not gen-
erated in the same manner as the previous pole figures. Instead, a
sample of random orientations was created using MTEX and speci-
fied as input to DREAM.3D. . . . . . . . . . . . . . . . . . . . . . . 135

5.9 (a) Yield stress(σY ) plotted against inverse square-root grain size(1/
√
d)

for different spreads of basal texture, and random texture. Dot-
ted lines denote corresponding linear least-squares fit. (b) Size-
dependent contribution of yield stress vs inverse square-root of grain
size to visualize difference in Hall-Petch slopes. (c) Hall-Petch slope
for different ϵ values. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.10 Comparison of average accumulated slip on basal, prismatic and twin
systems at the end of deformation for different values of the spread
ϵ. The average accumulated slip for a particular slip system type is
computed by averaging the total slip contribution of all slip systems
associated with that slip system type, over the entire microstructure.
B–Basal, P–Prismatic, T–Twin. . . . . . . . . . . . . . . . . . . . . 137

5.11 (a) Pole figures of strong basal texture used to generate the mi-
crostructures for this study. (b) Yield stress(σY ) plotted against
inverse square-root grain size(1/

√
d) for different relative loading di-

rections given by φ. Dotted lines denote corresponding linear-fit.
(c) Size-dependent contribution of yield stress. (d) Hall-Petch slope
plotted for different φ values. . . . . . . . . . . . . . . . . . . . . . . 141

5.12 Comparison of average accumulated slip at the end of deformation
for basal, prismatic and twin systems for different angles φ. B–Basal,
P-Prismatic, T-Twin. . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvi



5.13 Yield stress (σY ) for different aspect ratios of grains. Note the asym-
metry in the yield stress relative to the logarithm of the aspect ratio
α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.14 (a) (0001) pole figure, (b) (101̄0) pole figure, and (c) theoretical
arrangement of HCP unit cells symmetrically about the extrusion
direction with the (101̄0) plane normal pointing along the extrusion
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.15 The average accumulated slip on the three basal and three prismatic
slip systems. The integers on the x-direction denote a specific slip
direction : ‘1’ - [112̄0], ‘2’ - [2̄110] and ‘3’ - [12̄10]. . . . . . . . . . 146

5.16 (a) Variation of yield stress with aspect ratio (b) δ(α) plotted against
log(α) based on the numerator in Eqn. 5.6. . . . . . . . . . . . . . 148

6.1 Map of L2-norm of GND density vector for FCC polycrystal subject
to 3% tensile strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xvii



LIST OF TABLES

Table

1.1 Literature review of the H-P slopes (KHP ) in Mg alloys for a vari-
ety of processing conditions and loading paths within a given range
of average grain sizes (d). FSP, ECAP, AD and PD represent the
friction stir processing, equal-channel angular processing, advanc-
ing direction and processing direction, respectively. RD, TD, and
ND refer to the rolling, transverse and normal direction of a rolled
plate, respectively. ED and FD are the extrusion direction and flow
direction of a rod [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Crystal plasticity constitutive model parameters for OFHC-Cu [6]. . 36
2.2 Crystal plasticity constitutive model parameters for Timetal 21S [3] 40
2.3 Crystal plasticity constitutive model parameters for Al 7075-T6 [7] . 42
3.1 micro-Hall-Petch parameters for basal slip for different GBs. . . . . 52
3.2 Calibrated crystal plasticity constitutive model parameters. . . . . . 53
3.3 Calibrated crystal plasticity constitutive model parameters . . . . . 60
3.4 Incoming and potential outgoing slip systems for different GBs iden-

tified by the GB ID . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Relevant geometric quantities(angles) computed from the slip system

and GB information to parametrize the micro-Hall-Petch parameter. 73
4.1 List of micro-Hall-Petch parameters for prismatic slip bands for dif-

ferent GBs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Calibrated crystal plasticity constitutive model parameters. . . . . . 92
4.3 Incoming and potential outgoing slip systems for different GBs. . . . 98
4.4 Relevant geometric quantities(angles) computed from the slip system

and GB information to parametrize the micro-Hall-Petch parameter. 107
5.1 Grain size information for the six different texture-grain size distri-

bution cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xviii



5.2 Calibrated micro-Hall-Petch crystal plasticity constitutive model pa-
rameters for Mg-4Al. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Comparison of Hall-Petch coefficients for the three texture-loading
direction cases between CPFE simulations and experiments, using
the calibrated parameters. . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Original micro-Hall-Petch crystal plasticity constitutive model pa-
rameters for Mg-4Al. The original parameters here only refer to the
basal and prismatic slip resistances and micro-Hall-Petch multipliers
while the remaining parameters are retained as is for the simulations. 127

5.5 Comparison of Hall-Petch coefficients for the three texture-loading
direction cases between CPFE simulations and experiments, using
the original parameters from Chapter III and Chapter IV. . . . . . . 129

xix



LIST OF APPENDICES

Appendix

A. Stress Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B. Matrix Exponential Gâteaux Derivative . . . . . . . . . . . . . . . . . 163

C. Cubic Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xx



ABSTRACT

Grain refinement is a common strategy to improve the yield strength of magnesium

(Mg) alloys quantified via the empirical Hall-Petch equation. Due to the hexagonal

close-packed (HCP) crystal structure of Mg alloys, the Hall-Petch effect, which char-

acterizes the sensitivity of the yield stress to the grain size, has been observed to be

strongly dependent on the underlying crystallographic texture, arising through the

effect of grain boundaries (GBs) as evidenced by several experimental studies. Crys-

tal plasticity (CP) simulations form a powerful modeling tool to model and simulate

the elastoplastic mechanical behavior of crystalline materials. Classical CP models

do not include the effect of grain size in the constitutive model and hence are unable

to simulate the Hall-Petch effect. There are also very few studies targeted towards

developing constitutive models which account for the effect of grain size on the yield

stress of the material. More so, those few studies do not account for the underlying

microstructural aspects due to which the coupling between texture and grain size is

not explicitly considered.

This thesis presents efforts towards developing such a constitutive model accounting

for this grain size-texture coupling by integrating high-resolution electron backscatter

diffraction experiments with dislocation pile-up theory and CP simulations. A rate-

xxi



dependent CP constitutive model was first developed within the PRISMS-Plasticity

framework, an open-source parallelized finite element code to simulate the elasto-

viscoplastic behavior of materials. In the context of the Hall-Petch effect, a con-

tinuum dislocation pile-up model was used to fit pile-up stress measurements ahead

of basal slip bands blocked by GBs in Mg-4Al, which along with some simplifying

assumptions, yields the micro-Hall-Petch parameters for basal slip for nine GBs. The

basal micro-Hall-Petch parameters varied from 54 MPa µm1/2 to 184 MPa µm1/2,

which were then related to GB metrics using an empirical power-law equation to

obtain the basal micro-Hall-Petch coefficients - the micro-Hall-Petch multiplier and

exponent. The GB metrics were constructed from incoming and potential outgo-

ing slip system information obtained from CP simulations of GB neighborhoods of

the GBs considered. Extending a similar procedure to prismatic slip, the prismatic

micro-Hall-Petch parameters varied from 138 MPa µm1/2 to 685 MPa µm1/2, which

were again related to GB metrics to obtain the prismatic micro-Hall-Petch coeffi-

cients - the micro-Hall-Petch multiplier and exponent. The potential outgoing slip

system information required to construct the GB metrics was obtained from CP

simulations of GB neighborhoods. The experimental work does not as yet consider

a micro-Hall-Petch equation for the pyramidal slip or extension twinning systems.

The micro-Hall-Petch model was implemented into PRISMS-Plasticity and calibrated

against experimental stress-strain curves obtained from samples of different textures

and grain sizes. The model is used to study the modulation of the grain size effect

due to additional parameters including texture, loading direction, and the grain as-

pect ratio. From the studies involving modulation of texture and loading direction,

xxii



we find that the relative competition between basal and prismatic slip activity with

texture changes determines the variations in the Hall-Petch slope. From the aspect

ratio study, we obtain an asymmetric variation in the yield stress with the aspect

ratio, which is justified using theoretical arguments. This approach provides the

foundation to quantitatively model and design microstructural features to enhance

the engineering properties of Mg alloys.
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CHAPTER I

Introduction

Understanding the microscopic mechanisms and physics governing strength, ductil-

ity and failure plays a key role in the development of metallic alloys that can be

applied in different applications requiring structural integrity as a key requirement.

Tailoring microstructures which are damage-tolerant is essential in many fields of en-

gineering, such as vehicles in the automotive industry and aircrafts in the aerospace

industry. For a long period of time, these developments were largely empirical. More

recently, however, with developments in computational architectures and methodolo-

gies, computational methods have become a common approach to either substitute

or complement existing empirical models. In this context, the development of more

complex materials with novel architectures leading to superior properties has made

it more challenging to analyze, understand and predict their behavior with ad-hoc

techniques. This is especially challenging for metals where there is a huge drive

towards enhanced performance,

With that perspective, Integrated Computational Material Engineering(ICME) [8]
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has emerged as a discipline that aims to integrate computational materials science

tools into a holistic system that can accelerate materials development, transform

the engineering design optimization process, and unify design and manufacturing.

The notion of ICME arose from the new simulation-based design paradigm that em-

ploys a hierarchical multiscale modeling methodology for optimizing load-bearing

structures. The methodology integrates material models with structure-property

relationships that are observed from experiments at different length scales. The pri-

mary focus of the ICME vision is establishing a knowledge base accessible to the

community-at-large for solving a plethora of disparate issues in materials science,

applied mechanics, and engineering. This knowledge base requires collection of ex-

perimental data describing phenomena at different scales (exploratory experiments,

calibration of material models, and validation of models), performing simulations at

different scales (atomic, molecular, dislocation, crystal-plasticity, macroscale FEA),

and linking all this information together to determine structure-properties relation-

ships, thereby leading to concepts and designs for new materials.

The goal of the PRedictive Integrated Structural Materials Science (PRISMS) cen-

ter [1] at the University of Michigan, that funded this work, is to establish a unique

scientific platform that will enable accelerated predictive materials science for struc-

tural metals(Fig. 1.1). The PRISMS-Plasticity code, of which the author has been

a co-developer, is a parallel numerical framework for implementing continuum and

crystal plasticity models, which form a critical part to the multiscale modeling of

metallic materials.
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Figure 1.1: Integrated suite of multiscale/multiphysics computational codes devel-
oped by the various research groups affiliated with the PRISMS center [1].

1.1. Magnesium alloys

The low density of Mg alloys allows for significant weight reduction in product devel-

opment, making them strong candidates for applications in the aerospace [9], auto-

motive [10] and medical [11] sectors. Utilization of magnesium alloys in U.S. Military

applications is presented in Mathaudu et al. [12] . Magnesium was profoundly used

in many aircraft during World War II (1939 - 1945), a key example being the B-36

bomber which had 5555 kg of magnesium sheet, which covered 25% of the exterior,

700 kg of magnesium forgings and 300 kg of magnesium castings. Magnesium cast-

ing alloys have been used to an extent in aircraft and helicopter components such as

gearbox housings, compressor and filter casings, canopy and brackets [13, 14]. One

of the most prominent current applications is that of magnesium transmission and
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gear housings in U.S. Army and Navy aircraft such as the Sikorsky Black Hawk [12].

1.2. Hall-Petch effect in Mg alloys

One of the major drawbacks in the widespread use of Mg alloys is their poor forma-

bility and ductility at room temperature that arises from the hexagonal close-packed

(HCP) crystal structure (c/a = 1.624). Unlike Al alloys with a cubic crystal struc-

ture which possess twelve equivalent slip systems to accommodate plastic deforma-

tion(Fig. 1.2), Mg alloys depict significant plastic anisotropy where prismatic and

pyramidal systems have significantly higher critical resolved shear stress (CRSS) or

slip system resistance relative to the three basal slip systems. As a result, during

the deformation the grains tend to reorient themselves such that the c-axis aligns

perpendicular to the rolling axis [15, 16]. This strongly basal texture limits ductility

by preventing easy activation of slip. When a specimen with a strongly basal texture

is loaded in uniaxial tension along the rolling direction, the basal slip system is not

favorably oriented in grains and therefore the non-basal systems with higher critical

resolved shear stress would be activated, thus inhibiting its ductility. Due to this

limitation, efforts have focused on tailoring the microstructure to enhance the ductil-

ity of Mg alloys. Strategies that attempt to achieve this include, but are not limited

to, precipitation hardening [17, 18, 19, 20], solid-solution strengthening [21, 22, 23],

texture control [24, 25] and grain refinement [26, 27]. The study of the effect of

grain refinement on the yield strength dates back to the classical work by Hall [28]

and Petch [29], where a linear relationship was drawn between the lower yield point

of mild steel(σY ) and the inverse square-root of the average grain size(d), loosely
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Figure 1.2: Slip and twin systems in Mg alloys.

based on the Eshelby-Frank-Nabarro solution [30] to a discrete dislocation pile-up

model :

σY = σ0 +
KHP√
d

(1.1)

where σ0 is the intercept(Hall-Petch intercept) of the linear relationship and denotes

the grain size-independent component of the yield stress, and KHP is the slope of the

linear relation. KHP is referred to as the “locking parameter” or Hall-Petch slope.

This dependence on the average grain size arises indirectly through the dependence

on the grain boundary(GB) itself. The grain size-induced strengthening of crys-

talline materials deforming through plastic slip is attributed to the blocking of slip

bands(accomodating localized deformation) by GBs. The smaller the average grain
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size, the larger the GB network, more effective is the blocking of slip bands which in

turn implies higher stresses need to be applied to achieve the same level of macro-

scopic deformation. Similar empirical power-law relationships have also been found

for other mechanical properties of polycrystalline materials in alloys other than mild

steel [31], which has motivated a myriad of similar studies for various Mg alloys [26],

[32, 33, 34, 35, 36, 37]. Cordero et al. [38] have presented an extensive review of

the Hall-Petch effect while Yu et al. [5] have reviewed previous work on Hall-Petch

relationship with specific focus to Mg alloys.

A characteristic of Mg alloys is the strong dependence of the Hall-Petch slope on

the crystallographic texture, as evidenced by previous experimental studies [26, 33,

37, 27]. For example, Wang et al. [37] studied the tensile behavior of a commercial

Mg AZ31B alloy exhibiting basal texture, relative to four average grain sizes and

five different loading directions. They reported values of σ0 in the range of 12 - 42

MPa and the Hall-Petch slope KHP in the range 158 - 411 MPa µm1/2. Wang et al.

[33] studied the tensile deformation of friction stir processed and extruded specimens

of Mg AZ31B alloy along the advancing direction, for a set of different grain sizes.

They observed a strong texture dependence of the yield stress on the grain size for

extruded samples recording σ0 ≈ 80 MPa and KHP ≈ 303MPa µm1/2. This was in

contrast to relatively weaker texture dependence for friction stir processed samples

with σ0 ≈ 10 MPa and KHP ≈ 160MPa µm1/2. Guan et al. [25] proposed a simple

equation based on a dislocation pile-up model to compute KHP for Mg AZ31B alloy

for different textures depending on two effective parameters, which are based on the

expected active slip systems. Table. 1.1 lists the Hall-Petch coefficients for Mg alloy
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AZ31 [5], where it can be observed that the Hall-Petch slope is strongly linked to

underlying texture, dictated by different processing conditions, loading paths and

gran size ranges.

Sample Processing Loading path d(µm) KHP (MPa µm1/2)

AZ31 [37] Rolling Tension//TD 26-78 411

AZ31 [37] Rolling Tension//ND 26-78 228

AZ31 [27] Rolling Tension//RD 5-25 319

AZ31 [39] Rolling Compression//RD 13-43 472

AZ31 [40] Extrusion Tension//ED 3-11 303

AZ31 [41] Extrusion Compression//ED 3-23 291

AZ31 [34] FSP Tension//PD 1-25 119

AZ31 [34] FSP Tension//TD 1-25 236

AZ31 [41] FSP Tension//AD 2.6-6.1 161

AZ31 [42] ECAP Tension//FD 3-33 205

AZ31 [43] ECAP Tension//ED 5-35 170

Table 1.1: Literature review of the H-P slopes (KHP ) in Mg alloys for a variety of
processing conditions and loading paths within a given range of average grain sizes
(d). FSP, ECAP, AD and PD represent the friction stir processing, equal-channel
angular processing, advancing direction and processing direction, respectively. RD,
TD, and ND refer to the rolling, transverse and normal direction of a rolled plate,
respectively. ED and FD are the extrusion direction and flow direction of a rod [5].
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1.3. Crystal plasticity modeling of Mg alloys

Crystal plasticity(CP) is a very useful modeling framework at the continuum level to

simulate the elasto-plastic response of crystalline materials [44, 45, 46, 47, 48]. Poly-

crystal plasticity models then link individual grain response to the overall mechanical

response of a polycrystalline aggregate. These polycrystal models appear in various

levels of sophistication and computational efficiency. The original application of crys-

tal plasicity theory was performed with the Taylor assumption where all grains were

considered to be subject to the same deformation [49, 6, 50, 51, 52, 53, 54, 55]. While

this simplistic assumption satisfies compatibility it fails to account for equilibrium

across GBs, which is a necessary condition to be satisfied. Alternative homogeniza-

tion schemes have included the viscoplastic self-consistent(VPSC) schemes [56, 57, 58]

which are based on describing each region as a viscoplastic inclusion embedded

in the effective medium represented by the other grains. While these approaches

are computationally efficient, they are not particularly well-suited for the study of

polycrystalline materials where the grain morphologies and sizes need to be ex-

plicitly modeled and the variation of continuum mechanical fields throughout the

microstructure are of interest. To model the heterogeneous variation of the con-

tinuum fields throughout the microstructure, discretized grain structures have been

modeled [59, 60, 61, 62, 63, 64, 65, 66], where microstructural constituents are ide-

alized grains with a fixed topology, or realistic polyhedral grains in two and three

dimensions. Accordingly, a variety of CP models have been developed to study

the mechanical behavior of HCP polycrystals incorporating crystallographic slip and
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twinning with the governing equations solved numerically using the finite element

method(FEM) [67, 68, 69, 70, 71, 72, 73]. Kalidindi [67] proposed a rate-dependent

crystal plasticity framework, together with an efficient time-integration scheme, for

incorporating the crystallography of deformation twinning in polycrystal plasticity

models. Staroselsky et al. formulated a rate-independent constitutive model which

accounts for both slip and twinning, a scheme to determine the active systems and

the shear increments on both the active slip and twin systems. This constitutive

model applied to the study of Mg alloy AZ31B [69]. Abdolvand et al. [70] developed

a rate-dependent CPFE code incorporating a model accounting for twin nucleation

and growth with application to Zircaloy-2. Fernandez et al. [71] proposed a crystal

plasticity constitutive model for HCP metals involving slip and twin mechanisms

with cross hardening, and applied it to the study of Mg alloy AZ31B. Their model

cast light on role of pyramidal slip <c + a> versus compression twinning. Addi-

tionally, they also proposed a failure criterion based on the activity of basal slip.

Zhang et al. developed a constitutive model based on [67] with experimentally

motivated slip and twin evolution equations for the study of pure Mg. They inves-

tigated the role of pre-existing heterogeneities such as initial twin population and

stiff, elastic inclusions on the single crystal macroscopic and microscopic responses.

Liu at al. [73] employed 3D Voronoi grains based microstructure and the crystal

plasticity constitutive model developed by Staroselsky et al. [69] to estimate the

dependence of critical resolved shear stresses (CRSS) of different slip/twinning sys-

tems on temperature. In addition to FEM-based approaches, there have also been

studies where CP models have been embedded in fast Fourier transform(FFT)-based
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formulations [50, 51, 74, 58, 57, 75, 76] and more recent formulations based on the

peridynamic theory of solid mechanics [77, 78, 79].

Due to the importance of twinning in the mechanical behavior of HCP materials,

there have also been multiple studies dedicated to twinning behavior [80, 81, 82, 83,

84, 85, 86, 87, 88, 89]. Tome et al. developed a model for twinning applicable to

zirconium alloys to model texture development under rolling, tension and compres-

sion models of deformation [80]. Beyerlein et al. [81] presented a basic probabilistic

theory based on the Poisson process for the nucleation of deformation twins in HCP

materials, where twin nucleation is assumed to rely on the dissociation of GB defects

under stress into the required number of twinning partials to create a twin nucleus.

Liu et al. [82] developed a model integration CP with a phase field framework where

a stochastic model was used to nucleate twins with a Ginzburg-Landau relaxation

governing their propagation and growth. Niezgoda et al. [83] developed a stochas-

tic model of twin nucleation cast as a survival model parameterized by the local

stress at the grain GB, and implemented it into a VPSC framework. Additionally,

enhancements have also been made to CP models of twinning to incorporate de-

twinning [90, 91, 92, 93, 94], which is an important aspect when cyclic loading is an

important consideration, e.g., in the fatigue behavior of Mg alloys [95, 96].

While classical crystal plasticity constitutive models have been extremely useful, by

construction they are unable to capture the difference in mechanical behavior that

arises from changes in the internal microstructural length scale, like the grain size.

To address this issue one alternative has been the strain-gradient plasticity approach

which has proven [97, 98, 99, 100] particularly useful in capturing the intrinsic size
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effects arising in a number of plasticity-related phenomena based on the construct

of geometrically necessary dislocations(GNDs). However, these models are relatively

expensive to evaluate and also pose a challenge for parameter calibration since they

involve a large number of internal variables. Additionally, the microscopic variables

derived from the strain gradients are used to inform the hardening behavior while

the effect of the microstructural length scale on the initial CRSS is set phenomeno-

logically. Another approach is the use of cohesive elements to explicitly model grain

boundaries within crystal plasticity where a traction–displacement relationship for

grain boundaries is derived from either lower scale simulations such as molecular

dynamics [101] or using dislocation theory [102, 103]. A simpler alternative has been

to include a grain size-dependent contribution to the CRSS of individual slip systems

by simply extending the Hall-Petch relationship to individual slip systems. Based

on such a modification, there have been very few computational studies addressing

the coupling between grain size and texture in Mg alloys. Jain et al. [104, 39] con-

ducted studies using a grain size-dependent VPSC model on a rolled Mg alloy, which

indicated the role of grain size associated with prismatic slip in the tensile behavior.

Raesinia et al. [105] fit the affine VPSC model to the data in Jain et al. [39] through

uniform scaling of the CRSS to establish a slip system-level Hall-Petch relationship,

which involves the slip system-level Hall-Petch coefficient and the average grain size.

Such VPSC models have also been used to explore the role of grain size on the twin

growth [106], the density of twins [107], and also the correlation between the crystallo-

graphic orientation of the grain and corresponding twin variant selected [108]. Ravaji

et al. [109] investigated the interacting effects between the grain size, loading direc-
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tion and texture on the response of an Mg alloy. They investigated the role of grain

size-texture coupling in reducing the net plastic anisotropy, the tension-compression

asymmetry and the tempering of extension twinning with grain refinement across

different textures and loading directions. Common in all these important studies

is that a single average grain size is used to modify the CRSS for all the grains in

the simulated microstructure. Moreover, this modification to the CRSS at the slip

system level, which resembles the linear dependence on the inverse square-root of the

average grain size, uses a constant Hall-Petch type parameter for a particular slip

system for all the grains in the microstructure. In other words, the microstructural

features are not captured directly in the parts of the constitutive model accounting

for the grain size effect.

1.4. HR-EBSD measurements

In various applications, from structural engineering parts to semiconductor compo-

nents, it is necessary to understand the state of stress fields in localized regions

in the materials [110]. For example, strain accumulation in semiconductors could

cause degradation of the device [111]; and stress concentration at twin/parent in-

terface could result in crack initiation in polycrystalline materials [112]. For these

reasons, experimental methods that can measure the local elastic stress/strain are

desirable. The cross correlation-based EBSD strain characterization technique (HR-

EBSD) is a novel measurement technique that provides the high spatial resolution

that electron diffraction techniques can offer while not suffering so much from sample

preparation [113]. This technique measures the elastic strain and lattice rotation
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by cross-correlating electron backscatter patterns to capture a small shift of feature

between two patterns [114, 115, 116, 117]. EBSD measurements can be used to

image microstructural sections providing information regarding the morphology of

grains and their orientations. The HR-EBSD technique can provide measurements

of residual stresses and GND density distributions useful for obtaining insights on

operating mechanisms from localized data.

1.5. Outline of thesis

This thesis attempts to address the problem of developing a quantitative model en-

coding the microstructural aspects in the grain size effect. This is performed by inte-

grating experimental residual stress measurements ahead of blocked slip bands using

HR-EBSD, theoretical dislocation pile-up models, some foundational hypotheses and

crystal plasticity constitutive modeling, to construct parameters which encode the

dependence of the slip resistance of individual slip systems on the grain size and

the texture(via grain neighbours). We demonstrate this integration for a specific

material system of Mg-4Al for which the relevant material parameters quantifying

this effect are identified. Even though the procedure is demonstrated with Mg-4Al

as a specific example, it is general enough to be extended to arbitrary crystalline

materials where the grain size effect is of primary interest.

Chapter 2 describes the rate-dependent crystal plasticity constitutive model that

forms the crystal plasticity formulation for our study. Details of the implementation

in the PRISMS-Plasticity framework are presented along with the relevant prepro-
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cessing and postprocessing tools, and concluding with some examples.

Chapter 3 details the integration of experimental pile-up stress measurements ahead

of basal slip bands blocked by GBs, with theoretical pile-up stress expressions and

some simplifying hypotheses to estimate the micro-Hall-Petch parameters for basal

slip for different GBs. The micro-Hall-Petch parameters are then parametrized rela-

tive to some measures of compatibility for which the required information is obtained

from crystal plasticity simulations of microstructural sections representing the neigh-

borhoods of the GBs being investigated.

Chapter 4 details the integration of experimental pile-up stress measurements ahead

of prismatic slip bands blocked by GBs, with theoretical pile-up stress expressions and

some simplifying hypotheses to estimate the micro-Hall-Petch parameters for pris-

matic slip for different GBs. The micro-Hall-Petch parameters are then parametrized

relative to some measures of compatibility for which the required information is ob-

tained from crystal plasticity simulations of microstructural sections representing the

neighborhoods of the GBs being investigated.

Chapter 5 covers the incorporation of the micro-Hall-Petch equation for basal and

prismatic slip into the rate-dependent crystal plasticity constitutive model followed

by the calibration of the constitutive model with experimental stress-strain curves,

comparison with predictions from experimentally informed micro-Hall-Petch coeffi-

cients, and concluding with parametric studies to assess the model behavior.
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Chapter 6 concludes with the contributions and proposes future directions for this

thesis’s work.
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CHAPTER II

PRISMS-Plasticity Rate-Dependent Crystal

Plasticity Model

In this chapter, the rate-dependent single crystal plasticity constitutive model is de-

scribed. This includes the formulation and implementation into PRISMS-Plasticity

crystal plasticity finite element framework(PRISMS-CPFE) [118, 119, 95] including

both crystallographic slipping and twinning. This is followed by a brief overview of

the PRISMS-CPFE workflow including the preprocessing and postprocessing tools

and we conclude with a few numerical examples.

2.1. Rate-Dependent Single Crystal Constitutive Model

2.1.1. Crystal Plasticity Formulation

The primary kinematic ingredient of the constitutive model for an elastoplastic sin-

gle crystal is the deformation gradient tensor F , which is the tangent of a smooth

deformation mapping that associates the positions of material points in the refer-
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ence configuration to their corresponding positions in the deformed configuration.

A multiplicative decomposition of the deformation gradient into elastic and plastic

parts [120, 121] is assumed,

F = F eF p (2.1)

F p captures the homogenized distortion of the body as a consequence of crystallo-

graphic slip due to dislocation motion on specific slip systems and maps infinitesimal

material fibers in the reference configuration to their counterparts in the intermedi-

ate configuration. F e is the elastic part of the deformation gradient tensor which

encodes elastic stretch and rotation of the lattice and maps the intermediate config-

uration to the deformed configuration. The plastic part of the velocity gradient in

the intermediate configuration is related to the underlying crystallography through

the plastic kinematic equation :

Lp := Ḟ pF p−1 =
ns∑
α=1

γ̇αSα
0 =

ns∑
α=1

γ̇αmα
0 ⊗ nα

0 (2.2)

where Ḟ p denotes the material time derivative of F p, ns is the total number of

slip systems and γ̇α is the slip rate on slip system α (α ∈ {1, 2, . . . , ns}). mα
0

and nα
0 are unit vectors associated with the slip direction and slip plane normal,

respectively, for slip system α in the intermediate configuration. Sα
0 is the Schmid

tensor corresponding to slip system α defined as the tensor product of mα
0 and nα

0 .

Eqn. 2.2 physically represents the shearing of the body from plastic flow on plane

nα
0 along direction mα

0 . The kinematics of single crystal slip is illustrated in Fig.
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2.1. In the rate-dependent constitutive model a flow rule is prescribed where the

Figure 2.1: Different configurations assumed by the material - B0 denotes the refer-
ence configuration, B denotes the deformed configuration and B̃ denotes the inter-
mediate configuration obtained after relaxing the deformed configuration, preserving
only the plastic deformation. The intermediate is isoclinic, i.e., det (F p) = 1.

shearing rate on slip system α is explicitly related to the resolved shear stress, slip

resistance and the backstress on that slip system. Following Asaro et. al. [122] and

modifying it to include the backstress contribution, a phenomenological flow rule of

the power-law type is prescribed,

γ̇α = γ̇0


∣∣∣τα − wα

∣∣∣
sα

m

sign(τα − wα) (2.3)

18



where γ̇0 is the reference shearing rate and m is the strain-rate sensitivity exponent,

both assumed to be identical for all slip systems. τα, wα and sα are the resolved

shear stress, the backstress and the slip resistance, respectively, on slip system α.

sign(·) denotes the signum function. Eqn. 2.3 is one possible regularization adopted

to avert the under-determined system of equations arising in Eqn. 2.2 where there

are 8 independent components of Lp while ns > 8 for the crystal structures of

interest. The slip system resistance accounts for isotropic hardening of the material

while the backstress accounts for kinematic hardening important to capture tension-

compression asymmetry of the material.

The Piola-Kirchoff-II stress in the intermediate configuration, T is related to the

Piola-Kirchoff-I stress (defined in the reference configuration), and the Cauchy stress

(defined in the deformed configuration) as follows :

T = F e−1PF TF e−T = det(F e)F e−1σF e−T (2.4)

The elastic constitutive equation is motivated from a generalized version of standard

Hooke’s law where a linear relation relationship is prescribed between T and the

Green-Lagrange elastic strain measure, Ee (elastic power conjugate to T as noted

in Appendix A),

T = L ·Ee =
1

2
L · (F eTF e − I) (2.5)

where L denotes the fourth-order material stiffness tensor which is positive-definite

and exhibits both major and minor symmetries typical of hyperelastic constitutive
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laws . The ‘·’ denotes the product of a fourth-order and second-order tensor furnish-

ing a second-order tensor, i.e., A = L ·B =⇒ Aij = LijklBkl.

The resolved shear stress is expressed in terms of T as follows :

τα =
(
F eTF eT

)
: Sα

0 (2.6)

where the ‘:’ denotes the scalar product of second-order tensors, i.e., A : B = AijBij.

Eqn. 2.6 is obtained by equating the continuum mechanical contribution of plastic

power density to the power expended in crystallographic shearing on slip system

α(Appendix A). The resolved shear stress is approximated by ignoring the effects of

elastic stretching, which are not significant for the levels of deformation considered.

This yields,

τα ≈ T : Sα
0 (2.7)

The evolution of slip resistance is prescribed following Kalidindi et al. [6],

ṡα =
ns∑
α=1

qαβh0

(
1− sβ

sβs

)a ∣∣γ̇β∣∣ ; sα(0) = sα0 (2.8)

qαβ = q + (1− q)δ̃αβ

δ̃αβ =


1 ; α, β are coplanar

0 ; otherwise
(2.9)

where qαβ denotes the hardening multiplier contribution to slip system α arising
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from slip on slip system β. h0 is the hardening coefficient, q is the latent hardening

ratio, sβs is the saturation value of the slip resistance on slip system β and a is the

hardening exponent.

2.1.2. Backstress Formulation

With additional focus towards modeling fatigue behavior of polycrystals, a backstress

formulation is implemented. This serves as the basic implementation and backbone

for the open-source PRISMS-Fatigue framework [95], a platform that allows the

material science and mechanics community to use and contribute to fatigue-related

research and applications. As a part of this constitutive implementation, the back-

stress is modeled using a version of the Ohno-Wang backstress formulation [123]

which was later modified by McDowell [124] to simulate ratcheting behavior in rail

steels. On every slip system α two independent backstress components, i.e., wα
1 and

wα
2 , are defined which evolve as follows

ẇα
i = hiγ̇

α − ri

(
|wα

i |
bi

)mi

wα
i |γ̇α| ; (i = 1, 2)

wα =
2∑

i=1

wα
i (2.10)

where hi, ri, bi and mi are constant model parameters with bi = hi/ri denoting the

saturation value of the backstress.
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2.1.3. Deformation Twinning

Twin systems are treated as slip systems with an underlying asymmetry in the shear

direction, until they are reoriented. The crystallography of twins is depicted in

Fig. 2.2 indicating the parent grain, twinned region and their corresponding orien-

tations. The twinning formulation incorporated into PRISMS-CPFE closely follows

Figure 2.2: The orientation of the twinned region can be obtained by constructing
the mirror image of the parent grain lattice with the twinning plane acting as the
mirror plane.

the implementation by Staroselsky et al. [69] with two modifications - (i) Use of the

predominant twin reorientation(PTR) scheme [80], and (ii) Reorienting quadrature

points in place of entire grains. Under the PTR scheme, the fraction of the grain
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associated with each twinning system is given by

gn,ti =
∑
nt

∆gn,ti (2.11)

where gn,ti = ∆γn,ti

γS
, n is the nth quadrature point, nt steps is the number of timesteps,

ti is the ith twinning system and γS is the characteristic twin shear strain, which is

calculated to be 0.129 for Magnesium [125]. The threshold fraction for twinning is

calculated locally at each element making the method locally-sensitive

FT = 0.25

1 +
fN∑

i

gn,ti

 (2.12)

where fN is total reoriented volume fraction of the grain. If gn,ti > FT , the quadra-

ture point is reoriented to the appropriate orientation of the twin.

2.2. Incremental Constitutive Model

Here present the derivation of the incremental constitutive model important for nu-

merical implementation. We start with Eqn. (2.2), whose implicit time discretization

yields

Ḟ p =

(
ns∑
α=1

γ̇αSα
0

)
F p =⇒ F p ≈ exp

(
ns∑
α=1

∆γαSα
0

)
F p(t) (2.13)

where ≈ is used to denote a reasonable approximation, ∆γα = γ̇α∆t and exp(·)

denotes the matrix exponential defined using a power series(Appendix B). The elastic
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constitutive law reads

T =
1

2
L ·
(
F eTF e − I

)
=

1

2
L ·
(
F p−TF TFF p−1 − I

)
=

1

2
L ·

(
exp

(
ns∑
α=1

−∆γαSαT
0

)
A exp

(
ns∑
α=1

−∆γαSα
0

)
− I

)
(2.14)

where A := F p−T (t)F TFF p−1(t). Implicit time discretization of the isotropic hard-

ening law reads

sα = sα(t) +
ns∑
i=1

qαβh0

(
1− sβ

sβs

)a ∣∣∆γβ∣∣ (2.15)

while implicit time discretization of the Ohno-Wang backstress equation takes the

form,

wα
i = wα

i (t) + hi∆γ
α − ri

(
|wα

i |
bi

)mi

wα
i |∆γα| , (i = 1, 2) ; wα =

2∑
i=1

wα
i (2.16)

Combining Eqns. 2.14-2.16 yields the following system of equations

RT := T − 1

2
L ·

(
exp

(
ns∑
α=1

−∆γα(T ,w, s)SαT
0

)
A

exp

(
ns∑
α=1

−∆γα(T ,w, s)Sα
0

)
− I

)
= 0

(2.17)

Rα,i
w := wα

i − wα
i (t)− hi∆γ

α(T ,w, s) + ri

(
|wα

i |
bi

)mi

wα
i |∆γα(T ,w, s)| = 0 , (i = 1, 2) (2.18)
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Rα
s := sα − sα(t)−

ns∑
i=1

qαβh0

(
1− sβ

sβs

)a ∣∣∆γβ(T ,w, s)∣∣ = 0 (2.19)

where w denotes a vector comprising the 2ns backstress components and s denotes a

vector comprising the ns slip resistances. Eqns. (2.17)-(2.19) form a total of 3ns +6

equations in 3ns + 6 variables - T , w and s, whose solution we seek by employing a

numerical root finding scheme outlined next.

2.3. Solution to Nonlinear System

To solve the nonlinear system, Newton iteration augmented with a cubic line search

algorithm(Appendix C) is employed, which is more robust over the commonly used

Newton-Raphson iteration. This choice is essential here since the typically large

values of the strain rate sensitivity exponent m result in a stiff nonlinear system of

equations which can render the Newton-Raphson iteration particularly helpless when

initial guesses are not sufficiently close to the ‘true’ values of the state variables. The

cubic line search algorithm adapts the choice of step length along the search direction

based on certain conditions, improving the initial guess at the expense of minimal

computational cost. More importantly, when the initial guess is sufficiently close to

the ‘true’ values the Newton-Raphson step is adopted by the line search algorithm

and quadratic convergence is achieved.

Instead of solving the nonlinear system of 3ns + 6 equations simultaneously, we first

partition the system into two sets - (i) involving T and w which forms 2ns + 6

equations, and (ii) involving s which forms ns equations. First the values of slip

resistance on all ns slip systems are specified for a given level of iteration, which we
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refer to as the outer iteration. Let the vector of slip resistances corresponding to

the jth outer iteration be denoted by sj. Then Eqns. 2.17-2.18 are solved using the

Newton’s method augmented with a cubic line search algorithm, which constitutes

the second level of iteration, referred to as the inner iteration . Let [T (j,k),w(j,k)]

denote the estimate of the stress and backstress at the jth outer and kth inner itera-

tion. The residual for the kth inner iteration, R(j,k), is then computed by evaluating

Eqns. 2.17 - 2.18 at [T (j,k),w(j,k)]. The Jacobian matrix, J (j,k) comprises the partial

derivative of the residual relative to [T ,w] evaluated at [T (j,k),w(j,k)], resulting in a

(2ns + 6)× (2ns + 6) matrix,

J (j,k) =

 ∂RT

∂T
∂RT

∂w

∂Rw

∂T
∂Rw

∂w


T (j,k),w(j,k)

, R(j,k) =

RT

Rw


T (j,k),w(j,k)

∂RT

∂T

∣∣∣
T (j,k),w(j,k)

= Is +
ns∑
α=1

(L ·Cα,(j,k))⊗
(
κα(j,k)M

α
)

(2.20)

∂RT

∂wα
i

∣∣∣
T (j,k),w(j,k)

= −κα(j,k)L ·Cα,(j,k) (2.21)

∂Rα,i
w

∂T

∣∣∣
T (j,k),w(j,k)

= −

{
hiκ

α
(j,k) −


∣∣∣wα,(j,k)

i

∣∣∣
bi

mi

riw
α,(j,k)
i κα(j,k)

sign(T (j,k) : Sα
0 − wα,(j,k))

}
Mα (2.22)

∂Rα,i
w

∂wβ
j

∣∣∣
T (j,k),w(j,k)

= δαβδij + hiδαβκ
α
(j,k) + δαβδij(mi + 1)ri


∣∣∣wα,(j,k)

i

∣∣∣
bi

mi
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|∆γα(T (j,k),w(j,k))| − δαβri


∣∣∣wα,(j,k)

i

∣∣∣
bi

mi

w
α,(j,k)
i κα(j,k)sign(T (j,k) : Sα

0 − wα,(j,k))

(2.23)

Mα := Sα
0 + SαT

0 − diag(Sα
0 ) , κ

α
(j,k) :=

∆γ0m

sα,j

(∣∣T (j,k) : Sα
0 − wα,(j,k)

∣∣
sα,j

)m−1

Cα,(j,k) :=
∂(expM )

∂M

∣∣∣
−LpT

(j,k)∆t
: SαT

0 , Lp
(j,k) =

ns∑
α=1

γ̇α(T (j,k),w(j,k), sj)Sα
0

where Is represents the symmetric fourth-order identity tensor. diag(M ) denotes a

diagonal matrix with the main diagonal coinciding with that of M and remaining en-

tries zero and ∆γ0 := γ̇0∆t. Computation of Cα,(j,k) involves evaluating the Gâteaux

derivative of the matrix exponential whose theoretical and numerical implementation

is outlined in Appendix B. Once convergence of the stress and backstress is achieved

within set tolerances, denoted by [T j,wj], the slip increment for the outer iteration,

∆γα,j, is computed. This slip increment is then used to update the slip resistance

for the (j + 1)th outer iteration using Eqn. 2.15 with the following update

sα,j+1 = sα(t) +
ns∑
i=1

qαβh0

(
1− sβ,j

sβs

)a ∣∣∆γβ,j∣∣ (2.24)

The line search algorithm requires the following quantities as inputs

f (j,k) = 0.5R(j,k) ·R(j,k) , v(j,k) =

T (j,k)

w(j,k)


d(j,k) = −

(
J (j,k)

)−1
R(j,k)
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g(j,k) = 0.5
(
J (j,k) +

(
J (j,k)

)T)
R(j,k) (2.25)

where f (j,k) denotes the objective function to be extremized, v(j,k) the state vector

from the inner iteration comprising of the stress and backstress vectors, d(j,k) the

search direction and g(j,k) the gradient of f (j,k) relative to the state vector v(j,k). The

outer and inner iterations continue to be evaluated until convergence is simultane-

ously achieved in the stress and the backstress from the inner iteration, and the slip

resistances from the outer iteration. Tolerances are set for both levels of iteration,

and to prevent indefinite looping a maximum number of iterations is enforced. The

converged values of the stress, backstress components, and slip resistances at the end

of the previous deformation step are chosen as initial guesses for the iterative solver.

2.4. Deformation Solver

The kinematic problem can be expressed in Lagrangian framework as

∇0 · P + f = 0 (2.26)

where ∇0 · ( ) is the divergence of the argument in the initial reference configuration

and f is the reference body force. The principle of incremental virtual work states

that B0 is in equilibrium if and only if the Piola-Kirchoff-I stress field, P , satisfies

the virtual work functional for any kinematically admissible test function δũ,

G(δu, δũ) ≡
∫
B0

(P · ∇0 (δũ)− f · δũ) dV −
∫

∂B0

λ · δũ dA = 0 ; ∀ δũ ∈ V (2.27)
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where δu is the incremental displacement field, V is the vector space of all admissible

test functions in the material domain, f denotes the reference body force density

and λ denotes the traction field. The dependence of G on the unknown function

δu follows from the constitutive dependence of the stress tensor on the strain tensor

which, in turn depends on the displacement field u. In other words, P depends on

F via the constitutive response of the material, which is turns is derivable from the

displacement field via F = I +∇0u.

Under the finite element approximation, the displacement field u and the test func-

tion δũ are approximated using a finite number of interpolation functions, rendering

it now an element of Ṽ , which is a finite-dimensional vector space of all admissible in-

terpolated test functions. Using identical interpolation functions to approximate the

displacement field u completes the Bubnov-Galerkin finite element approximation to

obtain a nonlinear system of equations with a finite number of degrees of freedom,

amenable to numerical treatment. The Newton-Raphson scheme augmented with

line search is employed to solve the nonlinear system. Assembly of the global stiff-

ness matrix for the deformation solver requires computation of the material tangent

modulus, denoted by T and defined via the differential relation δP = T · δF .

2.5. Material Tangent Modulus

We start with the relation between σ, T and P which are

P = det(F )σF−T (2.28)

T = det(F e)F e−1σF e−T (2.29)
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The additional restriction that plastic deformation is isochoric implies det(F p) =

1 =⇒ det(F ) = det(F e). Then

P = F eTF eTF−T (2.30)

Computing the variation of the LHS and RHS of Eqn. 2.30 results in

δP = δ(F eTF eTF−T )

= δF eTF eTF−T + F eδTF eTF−T + F eT δF eTF−T + F eTF eT δ(F−T )

(2.31)

From the elastic constitutive relation we have

T = L ·Ee =
1

2
L ·
(
F eTF e − I

)
=⇒ δT =

1

2
L ·
(
δF eTF e + F eT δF e

)
= L ·

(
F eT δF e

)
(2.32)

where the last equality follows due to the minor symmetries of L. Additionally,

δ(F−T ) can be obtained as follows

FF−1 = I =⇒ δFF−1 + F δ(F−1) = 0

=⇒ δF−1 = −F−1δFF−1 =⇒ δF−T = −F−T δF TF−T (2.33)

Substituting Eqns. (2.32)-(2.33) in Eqn. (2.31) results in

δP = δF eTF eTF−T + F eL ·
(
F eT δF e

)
F eTF−T
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+ F eT δF eTF−T − F eTF eTF−T δF TF−T (2.34)

Then the computation of T depends completely on the computation of F defined by

the differential relation δF e = F · δF . To accomplish this we invoke the following

relationships

F = F eF p =⇒ δF = δF eF p + F eδF p (2.35)

Additionally

Ḟ p = LpF p =⇒ F p ≈ exp (Lp∆t)F p(t)

= exp

(
ns∑
α=1

γ̇α∆tSα
0

)
F p(t) = exp

(
ns∑
α=1

∆γαSα
0

)
F p(t) (2.36)

where ∆γα := γ̇α∆t Define the quantity P by δF p = P · δF e. Then Eqn. (2.35)

takes the form

δF = δF eF p + F e (PδF e) (2.37)

Taking a variation of the LHS and RHS of Eqn. (2.36) results in

δF p = δ

(
exp

(
ns∑
n=1

∆γαSα
0

))
F p(t) =

∂(expM )

∂M

∣∣∣
Lp∆t

:

(
ns∑
α=1

δ∆γαSα
0

)
F p(t)

=

(
ns∑
α=1

∂(expM )

∂M

∣∣∣
Lp∆t

: Sα
0 δ∆γ

α

)
F p(t)
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=
ns∑
α=1

(
∂(expM )

∂M

∣∣∣
Lp∆t

: Sα
0

)
F p(t).

(
∂∆γα

∂F e
: δF e

)
(2.38)

In the rate-dependent constitutive model, slip increments are expressed phenomeno-

logically as follows

∆γα = ∆γ0

(∣∣T : Sα
0 − wα

∣∣
sα

)m

sign (T : Sα
0 − wα) (2.39)

Assuming sign (T : Sα
0 − wα) remains unchanged upon computing the variation, we

have

δ(∆γα) = ∆γ0δ

[(∣∣T : Sα
0 − wα

∣∣
sα

)m]
sign(T : Sα

0 − wα)

= ∆γ0m

(∣∣T : Sα
0 − wα

∣∣
sα

)m−1

· δ
(
T : Sα

0 − wα

sα

)

= ∆γ0m

(∣∣T : Sα
0 − wα

∣∣
sα

)m−1(
δT : Sα

0 − δwα

sα
−
(
T : Sα

0 − wα

sα.sα

)
δsα
)

= κα
(
δT : Sα

0 − δwα −
(
T : Sα

0 − wα

sα

)
δsα
)

=⇒ δ(∆γα) + καδwα +
m∆γα

sα
δsα = καδT : Sα

0 (2.40)

Invoking the evolutionary equations prescribed for sα and wα to compute δsα and

δwα respectively, we have

ṡα =
ns∑
β=1

hαβ
∣∣γ̇β∣∣ = ns∑

β=1

qαβhβ
∣∣γ̇β∣∣ = ns∑

β=1

qαβh0

(
1− sβ

sβs

)a ∣∣γ̇β∣∣
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=⇒ sα = sα(t) +
ns∑
β=1

qαβh0

(
1− sβ

sβs

)a ∣∣∆γβ∣∣
=⇒ δsα =

ns∑
β=1

qαβh0

(
1− sβ

sβs

)a

δ(∆γβ).sign(∆γβ)

−
ns∑
β=1

qαβh0a

ss

(
1− sβ

sβs

)a−1 ∣∣∆γβ∣∣ δsβ
=⇒

ns∑
β=1

(
δαβ +

qαβh0a

sβs

(
1− sβ

sβs

)a−1 ∣∣∆γβ∣∣) δsβ =

ns∑
β=1

qαβh0

(
1− sβ

sβs

)a

δ(∆γβ).sign(∆γβ)

=⇒ [δs] = P−1.Q[δ(∆γ)] (2.41)

where [δs] and [δ(∆γ)] denote vectors comprising the variations of the slip resistance

and slip increments, respectively.

ẇα
i = hiγ̇

α − ri

(
|wα

i |
bi

)mi

wα
i |γ̇α| (i = 1, 2)

=⇒ wα
i = wα

i (t) + hi∆γ
α − ri

(
|wα

i |
bi

)mi

wα
i |∆γα|

=⇒ δwα
i = hiδ(∆γ

α)− ri

(
|wα

i |
bi

)mi

wα
i sign(∆γα)δ(∆γα)

− ri(mi + 1)

(
|wα

i |
bi

)mi

|∆γα|δwα
i

=⇒ δwα
i =

hi − ri

(
|wα

i |
bi

)mi

wα
i sign(∆γα)

1 + ri(mi + 1)

(
|wα

i |
bi

)mi

|∆γα|
δ(∆γα)
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=⇒ δwα =
2∑

i=1

hi − ri

(
|wα

i |
bi

)mi

wα
i sign(∆γα)

1 + ri(mi + 1)

(
|wα

i |
bi

)mi

|∆γα|
δ(∆γα) (2.42)

Substituting Eqns. (2.41)-(2.42) in the LHS and Eqn. (2.32) in the RHS of Eqn.

(2.40) results in a matrix-vector equation that relates δ(∆γ) to [δF e], resulting in

an equation of the form

M .δ(∆γ) = N .[δF e] (2.43)

where M is a square matrix. If M is invertible then

δ(∆γ) = M−1N .[δF e] (2.44)

which can be substituted in Eqn. (2.38) to obtain P . Substituting P in Eqn. (2.35)

results in construction of F , which on substituting in Eqn. (2.34) completes the

computation of T .

2.6. PRISMS-CPFE Workflow

The first important feature of the PRISMS-CPFE software is the integration with ex-

perimental characterization schemes, such as electron backscatter diffraction (EBSD)

and synchrotron X-ray diffraction. The data obtained from characterization tech-

niques is then fed into softwares used for generating synthetic microstructures using

two packages in particular - DREAM.3D [126] and Neper [127]. The material proper-

ties and algorithm details are included in an input file, which also contains informa-
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tion about the files containing the microstructure mesh. The PRISMS- CPFE [119]

code is then used to execute a simulation given the input file and other associated

files. The postprocessing step is accomplished through integration with two packages

- MTEX [128, 129] for texture analysis and Paraview for visualization of mechanical

fields. The final step involves integration with Materials Commons [130] - a virtual

collaboration space and repository for curating, archiving and disseminating infor-

mation from experiments and computations. This workflow is illustrated in Fig. 2.3.

Figure 2.3: PRISMS-CPFE Workflow.
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2.7. Examples

We present three numerical examples with the rate-dependent formulation imple-

mented into PRISMS-CPFE : (i) Simple compression of oxygen free high conductivity(OFHC)-

copper including purely isotropic hardening [2], (ii) Simple tension of β-Ti alloy

Timetal 21S including purely isotropic hardening [3], and (ii) Cyclic deformation of

Al 7075-T6 including purely kinematic hardening.

2.7.1. Example I : Simple Compression of OFHC-Cu polycrystal

We consider simple compression of FCC polycrystal with properties of OFHC cop-

per [6] where their polycrystal was composed of 343 orientations sampled from a

random distribution representative of random texture. We setup a simulation with

a 200 grain polycrystal composed of 28,992 elements [119, 131] used for a similar

comparison . The constitutive model for this exercise includes only the power-law

isotropic hardening described earlier. The volxelated microstructure and pole figures

are visualized in Fig. 2.4. The elastic constants of C11 = 170 GPa, C12 = 124 GPa,

and C44 = 75 GPa were used. The crystal plasticity constitutive model parameters

of OFHC-Cu alloy used for this study are presented in Table 2.1.

m γ̇0(s−1) sα0 (MPa) h0 (MPa) sαs (MPa) a q

70 0.001 16 180 148 2.25 1.4

Table 2.1: Crystal plasticity constitutive model parameters for OFHC-Cu [6].

The polycrystal cubes were subject to 15% compressive engineering strain along the

36



(a)

(b)

Figure 2.4: (a) Visualization of synthetic microstructure (b) Pole figures.
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x-direction with simple compression boundary conditions, setup within PRISMS-

CPFE. Fig. 2.5 depicts the variation of the equivalent stress and strain fields, and

comparison of stress-strain curves. The underestimate in the stress arises because the

crystal plasticity model employed by Anand et al. was a rate-independent model on

a polycrystal where each element of the mesh was a distinct orientation while the cur-

rent rate-dependent model is a regularization of the otherwise stiff rate-independent

model.

2.7.2. Example II : Simple tension of Timetal 21S

In BCC materials, slip can occur on 48 distinct slip systems represented by three

families of planes: 12 systems are in the <1 1 1> {1 1 0} family, 12 in the <1 1 1>

{1 1 2} family, and 24 in the <1 1 1>{1 2 3} family. The material behavior can

also be approximated by considering a subset of the total number of slip systems.

Accordingly, 12 slip systems of <1 1 1>{1 1 0} family are considered in this example.

DREAM.3D is used to generate the initial voxelated microstructure consisting of a

total of 92 grains. Fig. 2.6 present the initial microstructure and pole figures. A

structured linear hexahedral mesh is superposed on this voxelated texture output

of DREAM.3D such that each element of the finite element mesh corresponds to a

voxel of the RVE. The total number of elements is 200, 192. Simple tension boundary

conditions are enforced with a tensile strain of 2.5% in the y-direction. The elastic

constants of C11 = 97.7 GPa, C12 = 82.7 GPa, and C44 = 37.5 GPa were used. The

crystal plasticity constitutive parameters for Timetal 21S are presented in Table. 2.2.
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(a) (b)

(c)

Figure 2.5: (a) Variation in von Mises equivalent stress field throughout the mi-
crostructure, and (b) Variation in von Mises equivalent strain field throughout the mi-
crostructure, and (c) Stress-strain curve comparison between rate-dependent model
implemented in PRISMS-CPFE and the rate-independent model of Anand et al. [2].
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m γ̇0(s−1) sα0 (MPa) h0 (MPa) sαs (MPa) a q

50 0.0023 200 1500 500 0.1 1.4

Table 2.2: Crystal plasticity constitutive model parameters for Timetal 21S [3]

(a)

(b)

Figure 2.6: (a) Visualization of synthetic microstructure generated using DREAM.3D
(b) Pole figures.

Fig. 2.7 depicts the comparison of the stress-strain curves between PRISMS-CPFE
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and the result from Qidwai et al. [3]. PRISMS-CPFE model is able to capture the

stress-strain curve of the Ti alloy polycrystal. Fig. 2.8(a) and Fig. 2.8(b) depict the

variation of the equivalent stress and strain fields, respectively, using Paraview.

Figure 2.7: Stress-strain curve comparison between PRISMS-CPFE and Qidwai et
al. [3].

2.7.3. Example III : Cyclic deformation of Al 7075-T6 polycrystal

We consider cyclic deformation of a 90 x 90 x 90 Al 7075-T6 polycrystal cube mi-

crostructure instantiated using DREAM.3D containing approximately 7500 grains

with orientations sampled from random crystallographic texture. The polycrystal

cube was subject to three fully reversed uniaxial straining cycles with strain ampli-

tude of 0.7% under periodic constraints. The constitutive material model for this

exercise includes the Ohno-Wang backstress model to capture kinematic hardening,

without any isotropic hardening. The cubic crystal elastic constants of C11 = 107.3

GPa, C12 = 60.9 GPa, and C44 = 28.3 GPa were used. A reference shearing rate
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(a) (b)

Figure 2.8: (a) von Mises equivalent stress field in deformed microstructure, (b) von
Mises equivalent strain field in deformed microstructure.

of 0.001 s−1 and strain-rate sensitivity exponent of m = 75 are used for the simu-

lations. The crystal plasticity constitutive parameters of Al 7075-T6 alloy are pre-

sented in Table 2.3. The results obtained from PRISMS-CPFE are compared against

an identical simulation setup(microstructure, boundary conditions, etc.) using the

rate-dependent constitutive model implemented in ABAQUS [7]. There is excellent

match between the PRISMS-CPFE and ABAQUS implementations for the cyclic

deformation of the Al 7075-T6 microstructure.

m sα0 (MPa) h1 (MPa) r1 h2 (MPa) r2 m1,m2

75 35 2 x 106 2 x 104 1.35 x 105 142 70

Table 2.3: Crystal plasticity constitutive model parameters for Al 7075-T6 [7]

Fig. 2.9a depicts the synthetic microstructure used for simulations and Fig. 2.9b
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visualizes the pole figures for the sample. Fig. 2.10 depicts the stress-strain curve

comparison between ABAQUS and PRISMS-CPFE.

(a)

(b)

Figure 2.9: (a) Visualization of synthetic microstructure generated using DREAM.3D
(b) Pole figures corresponding to the microstructural cube.
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Figure 2.10: Cyclic stress-strain curve comparison between ABAQUS and PRISMS-
CPFE.
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CHAPTER III

Micro-Hall-Petch Parameters for Basal Slip

In this chapter, we detail the integration of theory and computation with experiments

to obtain estimates of the micro-Hall-Petch parameters corresponding to basal slip

for different GBs for Mg-4Al alloy system. Subsequently, considering a dependence

of the micro-Hall-Petch parameters on two GB metrics via an empirical power law,

we compute the micro-Hall-Petch multiplier and exponent for basal slip. These

coefficients characterize the dependence of the size-dependent contribution of the

slip resistance on the GB, and are the important material properties. We start by

describing the continuum dislocation pile-up theory in 1D to model the slip band

blocked by a GB, as a continuous distribution of dislocations, which furnishes a

closed-form expression for the stress ahead of the pile-up. This expression is fit to

HR-EBSD measurements of the pile-up from which the micro-Hall-Petch parame-

ters for basal slip are estimated for different GBs. We then outline the calibration

procedure to obtain constitutive model parameters which are then used to simulate

neighborhoods of GBs of interest to obtain the incoming slip system(corresponding
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to the slip band) and he potential outgoing slip system in the adjacent grain blocking

the slip band. The micro-Hall-Petch parameters are then related to two GB metrics

motivated from slip transmission studies in order to identify the micro-Hall-Petch

coefficients - the micro-Hall-Petch multiplier and the micro-Hall-Petch exponent for

basal slip[132, 133].

3.1. Continuum Dislocation Pile-up Model

The following method to construct a model for a slip band based on the theory of

continuous distribution of dislocations is adapted from Hirth and Lothe[134]. Here

the slip band is treated as a distribution of dislocations in a one-dimensional domain

with the ends of the domain representing GBs. The slip band is idealized to the

interval [−L/2, L/2], where the boundaries of the domain represent GBs acting as

obstacles to dislocation slip transmission (Fig. 3.1). For any x ∈ [−L/2, L/2] a

dislocation density field ρ(x) is prescribed, so that the total number of dislocations

in a differential element δx is δn (x) = ρ(x)δx. A continuous density field in one-

dimension is a continuum representation of straight, infinite dislocations of positive

or negative type, for a given Burgers vector. The sign of the density field refers to

the group of dislocations of the corresponding sign. An applied stress field exerts

a configurational force on the dislocation of the Peach-Koehler type. Additionally,

there is a long-range stress field due to dislocations in the medium (by virtue of their

presence), which imposes a configurational force on a dislocation present anywhere

else in the medium. Any net force acting on the dislocations drives the system to an

equilibrium state which is characterized by zero net configurational force. Because
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Figure 3.1: Continuum model of dislocation pile-up at a GB. Dislocations are smeared
out to a continuous density field and the red curve in the adjacent grain denotes the
pile-up stress due to a pile-up of dislocations at the boundary.

the expressions for the stress fields of dislocations are derived based on linear elas-

ticity, the net configurational force is simply a sum of individual force terms. The

equilibrium condition is then expressed mathematically as:

τ(x)b+
µb2

2πκ

L/2∫
−L/2

ρ(x′)

x− x′
dx′ = 0 (3.1)

where τ(x) denotes the applied shear stress resolved along the slip system, L is the

grain size, µ the shear modulus for an isotropic elastic material, b the Burgers vector

strength, and κ = 1 (for screw dislocations) or κ = 1 − υ (for edge dislocations).

It is noted that Mg-4Al is close-to elastically isotropic so that the Eqn. 3.1 is a

reasonable approximation. For polynomial forms of τ(x) the equilibrium dislocation
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density distribution and pile-up stress can be analytically found. The special case

of a spatially constant resolved shear stress τ (x) = τ is considered in this study, for

which the equilibrium dislocation distribution takes the form

ρ(x) =
2κτ

µb

x√(
L
2

)2 − x2
+

CL

2
√(

L
2

)2 − x2
(3.2)

Where C is a constant appearing due to the homogeneous solution of the integral

equation. This constant can be related to the net Burgers vector considering all

the dislocations appearing in the slip band, which for simplicity is assumed to be

zero. In other words, there is an equal number of dislocations of both positive and

negative type. Accordingly, the stress ahead of the pile-up (pileup-stress) due to the

dislocation distribution alone takes the form

τp(x) =
µb2

2πκ

L/2∫
−L/2

ρ(x′)

x− x′
dx′ ; x > L/2

= τ

 X + L
2√(

X + L
2

)2 − (L
2

)2 − 1

 (3.3)

In comparison with experiments, it is noted that the theoretical prediction for the

pileup-stress must not include the effect of the resolved stress, because the experiment

measures the residual stress in the adjacent grain. This residual stress is considered

to arise primarily from the development of a dislocation distribution in the slip band

reminiscent of a dislocation pile-up. The sole purpose of the resolved shear stress

is to generate this dislocation distribution which develops irreversibly, and hence,
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retains the functional form even after removal of the resolved shear stress. In other

words, the generated dislocation distribution is assumed to change negligibly so that

the form of the pileup stress is not affected significantly. These simplifications are

debatable but in the interest of obtaining a simple analytical form, are suggested to

be an appropriate starting point. To purport a particular form of the resolved shear

stress, two assumptions are made :

1. The resolved shear stress on the slip system equals the initial slip system resis-

tance, which arises by neglecting the phenomenon of work hardening on that

slip system. In other words, the applied shear stress required to equilibrate a

dislocation distribution is identical to the initial slip system resistance which

must be overcome to produce the slip band and accommodate majority of the

applied deformation.

2. It is assumed that classical Hall-Petch relationship may be extended to the

slip system level, formerly termed as “micro-Hall-Petch” relation[135, 136]. It

is one way of quantifying the contribution of the grain size to the initial slip

resistance . Additionally, because the pile-up model doesn’t take into account

the GB character, the GB effect is subsumed in the estimates of the micro-

Hall-Petch coefficients. Accordingly, the slip system resistance is expressed in

the following form:

τα = τα0 +
kαµ√
dα

(3.4)

where τα0 is the size-independent component of the slip system resistance, kαµ
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is the micro-Hall-Petch parameter associated with the slip system α signifying

the strength of the size effect, and dα is the slip system-level grain size, which

in this case represents the length of the slip band across an entire grain, L or

Lα to be more precise. The term kαµ/
√
dα is the size-dependent contribution to

the slip system resistance.

In the context of the current experiment, Lα corresponds to the length of the slip

trace measured along the direction perpendicular to the dislocation(infinite edge or

screw) line and slip plane normal of the slip system from one GB to the opposite.

Substituting Eqn. 3.4 in Eqn. 3.3 yields:

ταp (x) =

(
τα0 +

kαµ√
Lα

) X + Lα

2√(
X + Lα

2

)2 − (Lα

2

)2 − 1

 (3.5)

The micro-Hall-Petch coefficients were computed for nine different GB types by per-

forming a linear least-squares fit of the pile-up stress expression in Eqn. 3.5, to the

experimentally measured stress field ahead of the pile-up (Fig. 3.2). The value of

the size-independent component of the slip resistance τα0 used for the fitting was

computed by incorporating the effect of solid solution strengthening due to 4 wt. %

Al [137] resulting in τα0 = 4.34 MPa. It must be noted that using a one-dimensional

continuum dislocation pile-up model is an oversimplification of the actual physics,

which is much more complicated. However, in the interest of drawing a simple anal-

ogy to a blocked slip band and obtaining first-order analytical expressions, we have

resorted to the aforementioned model. Table. 3.1 reports the micro-Hall-Petch pa-

rameters corresponding to basal slip estimated for the nine GBs studied, where these
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GBs block slip bands associated with the basal slip system.

Figure 3.2: (a) HR-EBSD map of resolved shear stress onto the active slip system in
the upper grain. The stress concentration ahead of pile up at GB can be observed.
The solid lines represent the position of the slip bands, and the dashed line with an
arrowhead indicates the direction along which the pile-up stress profile was extracted,
(b) The resolved shear stress profile ahead of a slip band blocked by a GB with
comparison to the pile-up stress expression from the continuum dislocation pile-up
model to calculate the micro-Hall-Petch parameters of each GB.
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GB ID Slip system-level grain size (µm) kbasalµ

(
MPa µm1/2

)
1 48.0 164.0 ± 20.0

2 55.0 91.0 ± 10.0

3 27.0 149.0 ± 20.0

4 8.0 172.0 ± 20.0

5 65.0 54.0 ± 10.0

6 21.0 108.0 ± 10.0

7 50.0 70.0 ± 10.0

8 60.0 143.0 ± 10.0

9 48.0 184.0 ± 20.0

Table 3.1: micro-Hall-Petch parameters for basal slip for different GBs.

The next step involves parametrizing the computed the micro-Hall-Petch parameters

with metrics computed from information about the GBs and slip systems in the grains

sharing the GB.

3.2. Crystal Plasticity Simulations

To parametrize the micro-Hall-Petch parameter values for different GBs, relevant

information about the slip systems in the grains sharing the boundary is necessary.

The information of the incoming slip system in the grain containing the slip band

is available by analyzing the trace of the slip band. Since we do not know apriori

which slip system will be chosen as the one to transmit slip in the neighboring

grain, we setup crystal plasticity simulations of the GB neighborhoods to obtain
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this information. We now cover details regarding calibration of the crystal plasticity

constitutive model and simulations of GB neighborhoods.

3.2.1. Constitutive Model Calibration

For the calibration step, the polycrystal idealized as an 8 x 8 x 8 voxelated RVE

was constructed, where each voxel was assigned a distinct orientation. Orientations

were sampled from an EBSD map of a microstructure(Fig. 3.3a) corresponding to

as-extruded texture(Fig. 3.3b). Fig. 3.5a depicts the pole figures associated with the

512 distinct orientations sampled from the underlying texture. This microstructure

was subject to simple tension along the y-direction(coinciding with the extrusion

direction or ‘ED’) up to 3.5% strain(Fig. 3.4 ). Fig. 3.5b depicts the comparison of

stress-strain response from the simulation to the experiment at the end of calibration.

The list of constitutive model parameters post-calibration is included in Table. 3.2.

In the hardening law, the latent hardening coefficient was set to q = 1.0, while the

flow rule parameters were set as γ̇0 = 0.001s−1 and m = 34.

Deformation mode sα0 (MPa) hα0 (MPa) sαs (MPa) aα

Basal 6.0 76.0 120.0 1.0

Prismatic 78.0 163.0 150.0 1.0

Pyramidal 140.0 187.0 150.0 1.0

Twin 13.0 116.0 100.0 1.0

Table 3.2: Calibrated crystal plasticity constitutive model parameters.
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Figure 3.3: (a) Microstructure section used to inform input texture for simulations,
and (b) experimental pole figures of extruded Mg-4Al (wt.%) used in this study. The
microstructure contains equiaxed grains with an average grain diameter of 50 µm.
RD: Radial Direction; ED: Extrusion Direction.

Figure 3.4: Simple tension boundary conditions that the microstructures are subject
to. u0 denotes the displacement enforced corresponding to 3.5 % strain, i.e., u0 =
0.035L.
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Figure 3.5: (a) Pole figures of the polycrystalline RVE represented as an 8 x 8 x
8 voxelated grid with a distinct orientation for every voxel, and (b) Comparison of
simulated stress-strain response with experiment resulting in the calibrated param-
eters in Table. 3.2.

3.2.2. Grain Boundary Neighborhood Simulations

To construct GB descriptors through which a relationship can be drawn to the micro-

Hall-Petch parameter, some information about the slip activity in the grains is nec-

essary. By virtue of capturing the resolved stress ahead of the blocked slip band, the

slip system in the adjacent grain which could potentially accommodate slip trans-

mission, is not known. Additionally, even in the grain containing the slip band, all

we know is that the band corresponds to a basal slip system. Since the three basal

systems share the same slip plane and the slip band is simply the trace of the slip

plane, the slip direction associated with the slip band is not know. We refer to

the slip system associated with the slip band as the incoming slip system. For this

purpose, crystal plasticity simulations are employed.

CPFE simulations were performed on the nine different microstructural neighbor-
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hoods of each GB of interest, consisting of the grains sharing that boundary and

a few other surrounding grains. The aim is to find the active slip system associ-

ated with the observed slip band and predict the outgoing slip system of the least

resistance. Since EBSD maps were available for just one section (sample surface),

three-dimensionality of the problem was preserved by extruding the 2D section to

obtain a one element slice of unit thickness(1µm) resulting in a uniform grid of hexa-

hedral elements. Additionally, to overcome the lack of knowledge of the state of stress

or displacements at the boundary of those neighborhoods, boundary conditions(Fig.

3.7) were enforced as follows:

1. The x and y components of displacements were enforced on the lateral bound-

aries based on a constant velocity gradient reminiscent of uniaxial tension along

direction y.

L = Ḟ F−1 =


−0.5 0 0

0 1 0

0 0 −0.5

 ; F (0) = I

ux = F11x+ F12y + F13z , uy = F21x+ F22y + F23z (3.6)

where L is the velocity gradient, F is the deformation gradient, t is the time,

and ux and uy are the x and y components of the displacement, respectively.

2. The x − y face at z = 0 is constrained from displacing along the z-direction

while the opposite face is treated as a traction-free surface.

Slices of the simulated microstructure were deformed to a strain of approximately
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2% where the grains of interest show some slip activity in order to identify the

most active system, which is computed as follows. This was performed for GB

neighborhoods associated with the nine GBs considered for the micro-Hall-Petch

parameter computation. Fig. 3.6a depicts an experimental SEM image of a sample

microstructural section while Fig. 3.6b depicts the corresponding microstructural

section used for simulations. Fig. 3.6c visualizes the grains sharing the GB and

the trace of the slip band in one grain blocked by the adjacent grain. For each

element of the FE mesh, the accumulated slip for each slip system was computed

based on the information available at the integration points. Fig. 3.8 depicts the

accumulated slip associated with the three basal slip systems. We are particularly

interested in the incoming slip system(corresponding to the slip band trace) and

potential outgoing slip system to be able to construct different metrics to parametrize

the micro-Hall-Petch parameter. For the grain containing the slip band, slip traces

only convey information about the slip plane, but no information is known about

the slip direction. That is where the CPFE simulation results dictate the choice of

the most active basal slip system since all three basal slip systems share the same

slip plane but possess different slip directions. For the grain blocking the slip band

(the adjacent grain) the most active slip system (potentially outgoing slip system)

is interpreted as the one offering the least resistance to the slip band so that when

slip transmission ensues, it occurs with the highest probability on this most active

slip system. For this purpose, the region at the GB containing the slip band in the

real microstructure was identified by its corresponding element in the uniform grid.

Then based on the most active slip system ID of the elements in the neighborhood
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(a)

(b)

(c)

Figure 3.6: (a) Microstructure section from experimental SEM image, (b) Mi-
crostructural section used for simulation with grain IDs of individual grains, and
(c)Illustration of the grains sharing the GB (GB 1 in Table. 3.4) of interest along
with the trace of the slip band in one grain blocked by the adjacent grain.
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Figure 3.7: Boundary conditions applied to the microstructure section corresponding
to the GB neighborhood for the GB of interest.

of this GB element the potential outgoing slip system is identified. This slip system

is interpreted as the one offering the least resistance to the blocked slip band.

Figs. 3.8a-3.8c depicts the accumulated slip on the three basal slip systems. The

accumulated slip on just basal systems is depicted since their activity is significant

compared to the activity of prismatic slip systems. Fig. 3.8d visualizes a map of

the most active slip system ID throughout the entire microstructural section while

Fig. 3.8e depicts it for the grains sharing the GB of interest. Table. 3.3 includes

information about which slip system associated with a particular slip system ID. It

is evident that basal slip dominates as the most active slip system throughout the

entire microstructural section. Then for this particular GB case, the most active slip

system in the grain containing the slip band has ID 3, i.e., (0001)[12̄10] while the

most active slip system in the adjacent grain has ID 1, i.e., (0001)[112̄0].
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Slip system ID Slip plane Slip direction

1 (0001) [112̄0]

2 (0001) [2̄110]

3 (0001) [12̄10]

4 (101̄0) [12̄10]

5 (011̄0) [2̄110]

6 (1̄100) [112̄0]

Table 3.3: Calibrated crystal plasticity constitutive model parameters

Performing the same procedure for the eight remaining GB cases yields the incom-

ing slip system in the grain containing the slip band, and the potential outgoing

slip system in the adjacent grain blocking the slip band. Figs. 3.9-3.16 depict the

microstructural sections for the remaining GBs, each depicting the microstructural

section used in simulations, the grains sharing the GB, the accumulated slip on the

three basal slip systems and the most active slip system ID in the grains sharing the

GB. Table. 3.4 lists the incoming and potential outgoing slip system for each case.
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(a) (b)

(c) (d)

(e)

Figure 3.8: (a)Accumulated slip for basal slip system 1, (b)Accumulated slip for
basal slip system 2, (c)Accumulated slip for basal slip system 3, (d) Most active slip
system ID map for microstructural section, and (e) Most active slip system ID map
for grains sharing GB of interest.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: (a) Microstructure section corresponding to the GB neighborhood for
GB 2 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a)
(b)

(c) (d)

(e)
(f)

Figure 3.10: (a) Microstructure section corresponding to the GB neighborhood for
GB 3 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a)
(b)

(c) (d)

(e) (f)

Figure 3.11: (a) Microstructure section corresponding to the GB neighborhood for
GB 4 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a)

(b)

(c) (d)

(e)

(f)

Figure 3.12: (a) Microstructure section corresponding to the GB neighborhood for
GB 5 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a)

(b)

(c) (d)

(e)
(f)

Figure 3.13: (a) Microstructure section corresponding to the GB neighborhood for
GB 6 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a)

(b)

(c) (d)

(e)
(f)

Figure 3.14: (a) Microstructure section corresponding to the GB neighborhood for
GB 7 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: (a) Microstructure section corresponding to the GB neighborhood for
GB 8 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.

68



(a)
(b)

(c) (d)

(e) (f)

Figure 3.16: (a) Microstructure section corresponding to the GB neighborhood for
GB 9 with grain IDs, (b) Illustration of the grains sharing the GB of interest along
with the trace of the slip band in one grain blocked by the adjacent grain, (c) Accu-
mulated slip for basal slip system 1, (d)Accumulated slip for basal slip system 2, (e)
Accumulated slip for basal slip system 3, and (e) Most active slip system ID map for
grains sharing GB of interest.
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GB ID Incoming slip system Potential outgoing slip system

1 (0001)[12̄10] (0001)[112̄0]

2 (0001)[12̄10] (0001)[12̄10]

3 (0001)[2̄110] (0001)[2̄110]

4 (0001)[112̄0] (0001)[112̄0]

5 (0001)[2̄110] (0001)[12̄10]

6 (0001)[12̄10] (0001)[12̄10]

7 (0001)[2̄110] (0001)[2̄110]

8 (0001)[12̄10] (0001)[12̄10]

9 (0001)[112̄0] (0001)[2̄110]

Table 3.4: Incoming and potential outgoing slip systems for different GBs identified
by the GB ID

3.3. Grain Boundary Parameters

To parametrize the micro-Hall-Petch parameters by different metrics associated with

the GB, a number of angular quantities(Fig. 3.17) need to be determined. These

angles are computed from some information of the slip systems in the two grains

sharing the GB and also the GB itself. The previous section described the proce-

dure to obtain the incoming and potential outgoing slip systems. Hence, the only

information required to obtain is the GB plane orientation - the angles α and β - as

illustrated in Fig. 3.18. Using this information the relevant angles(ψ, δ, θ, κ) are

computed, as listed in Table. 3.5 for all the nine GBs.
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Figure 3.17: A schematic representative for slip transmission through a GB. b⃗in:
Burgers vector of the incoming slip system, b⃗out: Burgers vector of the outgoing slip
system, n⃗in: Slip plane normal of the incoming slip system, n⃗out: Slip plane normal
of the outgoing slip system, l⃗in: Intersection line of the incoming slip plane and
GB, l⃗out: Intersection line of the outgoing slip plane and GB, d⃗in: Slip direction of
the incoming slip system, d⃗out: Slip direction of the outgoing slip system, θ: Angle
between the two slip plane traces on the GB plane, κ: Angle between slip directions,
ψ: Angle between slip plane normals, δ: Angle between the incoming slip direction
and the incoming slip plane trace on the GB plane.
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Figure 3.18: (a) Schematic showing the GB plane, which is described by (b) the GB
trace angle, and (c) the GB plane angle. (d) The GB trace angle (α) is measured
using the plan view image of the GB. (e) The GB plane angle (β) is measured using
cross-section lamellae of GB prepared by field ion beam milling.
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GB ID θ(◦) κ(◦) ψ(◦) δ(◦)

1 58.54 73.75 70.68 84.55

2 53.31 5.61 54.59 73.21

3 73.79 37.30 31.70 45.24

4 76.16 87.81 31.77 55.64

5 33.87 55.69 25.95 26.46

6 38.84 54.14 48.32 86.18

7 46.52 46.94 47.13 24.57

8 74.92 66.16 87.18 34.41

9 70.16 88.42 86.91 86.38

Table 3.5: Relevant geometric quantities(angles) computed from the slip system and
GB information to parametrize the micro-Hall-Petch parameter.

3.4. Parametrizing the micro-Hall-Petch parameter

Among the multitude of relationships that can be established between the micro-Hall-

Petch parameter and the different angular quantities, we consider two particular GB

metrics for the parametrization. These GB metrics are motivated from earlier studies

targeted towards the development of slip transmission criteria[138] :

• The Lee-Robertson-Birnbaum(LRB) factor[139, 140, 141] defined as cos(θ)cos(κ).

This factor was originally proposed in the context of determining the outgoing

slip system as a result of slip transmission across GBs, based on in situ strain-

ing TEM experiments on FCC alloys. This relationship agrees with studies by
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Lim et al.[142] where the strengthening effect of GBs in Fe–3%Si was modeled

by defining the GB obstacle stress, τobs as τobs = τ ∗(1− cos(θ)cos(κ)) where τ ∗

represents the maximum obstacle strength. The Hall-Petch coefficient is also

known to be correlated with the GB obstacle stress[134] and hence is indirectly

related to the LRB factor. We note that this parameter depends on the slip

system information in neighboring grains, and the GB inclination.

• The Luster-Morris(LM) factor[143, 138] defined as cos(ψ)cos(κ). A slip trans-

mission criterion was proposed in their work on the study of a two-phase Ti-

Al alloy where they conducted a detailed analysis of active slip systems using

transmission electron microscopy (TEM) on deformed samples. Based on a the-

oretical calculation of a geometric compatibility factor characterizing the best

slip transfer across adjacent grains, they were able to deduce the role played

by the type of orientation relationship between grains in producing active de-

formation systems that allow the maximum compatibility of deformation. We

note that this parameter depends solely on the slip system information in the

neighboring grains.

Let m′ denote either the LRB factor or LM factor, which we refer to as the compat-

ibility factor since it is a measure of compatibility between adjacent grains - higher

the value of m′ greater the probability of slip transmission. Then we consider a

simple empirical power-law dependence of the micro-Hall-Petch parameter on the

compatibility factor :

kαµ = Kα
µ (1−m′)

cα
; cα > 0 (3.7)
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whereKα
µ is the micro-Hall-Petch multiplier and cα is the micro-Hall-Petch exponent.

Since a higher value of the micro-Hall-Petch parameter kαµ signifies higher blocking

tendency of the GB to an incoming slip band, it is assumed to monotonically increase

with the factor 1−m′ which signifies the loss of compatibility in some sense. cα de-

notes the exponent appearing in the empirical power-law relationship. Performing

a linear least-squares fit of log
(
kαµ
)

relative to log (1−m′) yields the best fit micro-

Hall-Petch multiplier and exponent, which is considered a material property since

the GB dependence is now subsumed in m′. Figs. 3.19a- 3.19b depict the plots of the

micro-Hall-Petch parameter against the corresponding metrics, i.e. the LRB factor

and LM factor, respectively. The fit results in Kα
µ = 173 MPa µm1/2, cα = 1.04

for the LRB factor and Kα
µ = 159 MPa µm1/2, cα = 0.6 for the LM factor. It is

interesting to note a close-to-linear relationship between micro-Hall-Petch parame-

ter and (1 −m′) where m′ is the LRB factor. Even though the parametrization of

the micro-Hall-Petch parameter relative to the LRB factor is more appropriate, the

parametrization relative to the LM factor is simple both in terms of ease of con-

structing the LM factor from experiments and in incorporating it in CPFE models

where the GBs are not explicitly captured except in terms of shared faces between

grains.

3.5. Conclusion

An integration between experimental measurements, dislocation pile-up theory, crys-

tal plasticity simulations and some empirical modeling has been presented in order

to determine the micro-Hall-Petch multiplier and exponent for basal slip, which are

75



(a) (b)

Figure 3.19: (a) micro-Hall-Petch parameter plotted against (1−m′)c
α where m′ is

the LRB factor, along with the linear fit. Kα
µ = 0.173 MPa µm1/2, cα = 1.04. (b)

micro-Hall-Petch parameter plotted against (1 − m′)c
α where m′ is the LM factor,

along with the linear fit. Kα
µ = 159 MPa µm1/2, cα = 0.6.

the relevant material properties characterizing the dependence of the size-dependent

contribution of the slip system resistance on certain GB parameters. Pile-up stress

measurements were fit to a theoretical expression derived from continuum disloca-

tion pile-up theory to obtain estimates of the micro-Hall-Petch parameter for nine

different GBs. To parametrize the micro-Hall-Petch parameters relative to differ-

ent metrics encoding the slip system information, CPFE simulations were conducted

on neighborhoods of the GBs to obtain the incoming slip system(corresponding to

the observed experimental slip band) and the potential outgoing slip system(in the

adjacent grain blocking the slip band). Using this information and GB inclination in-

formation two parametrizations were considered for the micro-Hall-Petch parameter

relative to the LRB factor and LM factor based on an empirical power-law relation-

ship. The multiplier and exponents associated with the power-law furnish material
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parameters which encode the effect of the GB on the size-dependent contribution of

the slip system resistance corresponding to basal slip.
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CHAPTER IV

Micro-Hall-Petch Parameters for Prismatic Slip

In this chapter, we detail the integration of theory and computation with experi-

ments to obtain estimates of the micro-Hall-Petch parameters for different GBs, and

subsequently compute the micro-Hall-Petch coefficients. We start by describing the

procedure to identify potential grains where the notch may be constructed in order to

initiate prismatic slip from the notch tips. This is followed by the continuum disloca-

tion pile-up theory in one-dimension to model the notch-slip band combination as a

continuous distribution of dislocations, which furnishes a closed-form expression for

the stress ahead of the pile-up. This expression is fit to HR-EBSD measurements of

the pile-up from which the micro-Hall-Petch parameters for basal slip are estimated

for different GBs. We then outline the calibration procedure to obtain constitutive

model parameters which are then used to simulate neighborhoods of GBs of inter-

est to obtain the potential outgoing slip system in the grain blocking the slip band,

which are used to construct relevant GB metrics. The micro-Hall-Petch parameters

are then related to two GB metrics motivated from slip transmission studies in order
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to identify the micro-Hall-Petch coefficients - the micro-Hall-Petch multiplier and

the micro-Hall-Petch exponent for basal slip [132, 133]. [144].

4.1. Grain Identification for Notch Creation

It is well known that the anisotropy of the HCP crystal structure reflects significantly

higher critical resolved shear stress for prismatic relative to the basal slip system.

To preferentially activate prismatic slip at the low level of stress (which is impor-

tant to consider for capturing high-resolution Kikuchi patterns) a series of sharp

micro-notches were machined in grains oriented (relative to the loading direction)

specifically for the prismatic slip to act as slip initiation sites. Given the EBSD data

of the microstructure section(an example microstructure), grains were then identified

using the following procedure :

1. Read in the EBSD data using MTEX and partition the microstructure section

into different grains(Fig. 4.1).

2. Identify grains for which at least one prismatic slip system possesses a Schmid

factor (corresponding to tension along the extrusion direction) greater than or

equal to 0.4(Fig. 4.2). This was to ensure that there is at least one prismatic

slip system-oriented favorably for plastic slip relative to loading.

3. Separate grains with threshold in the ratio of the maximum Schmid factor of

basal slip systems to the maximum Schmid factor of prismatic slip systems(Fig.

4.3). This is to ensure that the basal system is not as favorably oriented as the

prismatic system obtained from the previous step.
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(a)

(b)

(c)

Figure 4.1: (a) EBSD data corresponding to microstructure section, (b) Partition
microstructure into grains, and (c) Basal slip trace for all grains.
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Figure 4.2: Plot of maximum Schmid factor among prismatic systems with grain ids
of grains satisfying satisfying the criterion from the second step.

Figure 4.3: Plot of ratio of maximum Schmid factor among basal systems to maxi-
mum Schmid factor among prismatic systems, with grain ids of grains satisfying the
criterion from the third step.
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4. For ease of fabricating the notch using FIB milling, identify those grains with

prismatic systems obtained from the previous steps(Fig. 4.4a) having a plane

normal lying favorably in the plane of the sample surface(Fig. 4.4b).

The above steps were automated using a MATLAB script using the MTEX [128, 129]

toolbox to postprocess EBSD data.

4.2. Dislocation Pile-up Model of Notch-Slip Band Combina-

tion

A simple one-dimensional continuum dislocation pile-up model is used as an analogy

to describe the region in the grain constituting the notch and the slip band (Fig.

4.5). Both the notch and the slip band are represented by a continuous distribution

of straight parallel edge dislocations [145, 146] with the dislocation line pointing in

the z-direction, and Burgers vector along the x-direction with magnitude be. Let ρ(x)

denote the distribution of dislocations in the domain [−a, a] where the subinterval

[−b, b] represents the notch. We would then like to solve for ρe(x) which is the

dislocation density in equilibrium with an effective resolved stress τe(x), where the

equilibrium condition takes the following form [147] :

µbe
2π(1− ν)

 −b∫
−a

ρe(x
′)dx′

x− x′
+

b∫
−b

ρe(x
′)dx′

x− x′
+

a∫
b

ρe(x
′)dx′

x− x′

+ τe(x) = 0

τe =


τ ; |x| < b

τ − τf ; b < |x| < a

(4.1)
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(a)

(b)

Figure 4.4: (a) Grains selected based on first two steps, (b) Grains selected based on
orientation of prismatic plane normal from the final step.
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Figure 4.5: Notch and slip band idealized as a continuous distribution of parallel
edge dislocations.

where µ is the shear modulus, ν is the Poisson’s ratio, τ is the applied shear and τf

is the friction stress acting only in the slip band inhibiting the motion of prismatic

dislocations. τf is assumed to be constant. We are interested in a closed-form

expression for the pile-up stress, τp(x) defined as follows :

τp(x) =
µbe

2π(1− ν)

 −b∫
−a

ρe(x
′)dx′

x− x′
+

b∫
−b

ρe(x
′)dx′

x− x′
+

a∫
b

ρe(x
′)dx′

x− x′

 ; x > a (4.2)

Eqn. 4.1 is an integral equation with a closed-form solution for ρe(x), which upon

substituting into Eqn. 4.2 yields [147, 148]

τp(x) =
τ − 2τfcos−1

(
b
a

)√
1−

(
a
x

)2 + 2τfcosec−1

(√
1 +

(x2 − a2) b2

(a2 − b2)x2

)
− τ ; x > a (4.3)
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Shifting the origin to x = a by a change of variables X := x − a the expression for

the pile-up stress is

τp(X) =
τ − 2τfcos−1

(
b
a

)√
1−

(
a

X+a

)2 + 2τfcosec−1

(√
1 +

X (2a+X) b2

(a2 − b2) (X + a)2

)
− τ ; X > 0

(4.4)

Invoking the micro-Hall-Petch assumption with decomposition of τ into size-independent

and size-dependent contributions at the level of the slip system, we replace τ with

τα corresponding to slip system α. The decomposition then takes the simple form

τα = τα0 +
kαµ√
2a

(4.5)

where τα0 is the size-independent contribution to the critical resolved shear stress

on slip system α, kαµ is the micro-Hall-Petch parameter and a is the grain size.

Substituting Eqn. 4.5 into Eqn. 4.4 and specializing to slip system α yields

ταp (X) =
τα0 +

kαµ√
2a

− 2τfcos−1
(
b
a

)√
1−

(
a

X+a

)2 + 2τfcosec−1

(√
1 +

X (2a+X) b2

(a2 − b2) (X + a)2

)
−

(
τα0 +

kαµ√
2a

)
(4.6)

Eqn. 4.6 furnishes an expression for the pile-up stress ahead of the pile-up, which is

fit to the data obtained from HR-EBSD residual stress measurements. Here a and b

are known parameters since they are lengths which can be measured in experiments.

An estimate of τα0 is obtained by multiplying σ0(the Hall-Petch intercept) and the
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average Schmid factor associated with prismatic slip for the as-extruded texture.

The average Schmid factor for prismatic slip is obtained by first computing the

maximum Schmid factor for each orientation among the prismatic slip systems, and

then finding the mean of those values. In our case, this value is 0.451, very similar

to previous work [149] which reported a value of 0.43. σ0 denotes the yield strength

for the microstructure with theoretically infinite grain size, and multiplying this by

the average Schmid factor for prismatic slip results in an estimate of the grain-size

independent critical resolved shear stress for prismatic slip. In our case we obtain

τα0 = 42.54 MPa. The parameters kαµ and ταf are the unknowns which are optimized

for by performing a least-squares fit of Eqn. 4.6 to the pile-up stress measurements

from experiments(Fig. 4.6). This was carried out for seven different GBs for which

the slip band size, notch size and micro-Hall-Petch parameter are included in Table.

4.1.
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Figure 4.6: (a) HR-EBSD stress map of the resolved shear stress on the active slip
system in the right grain. The active slip system is defined based on the trace analysis
and CPFE. The observed stress profile in front of the pile-up is extracted along the
dashed line and compared with the pile-up model. (b) The comparison of resolved
shear stress ahead of pile up was measured by HR-EBSD and the pile-up model (Eqn.
4.6) to estimate the prismatic micro-Hall-Petch parameter for different GBs.
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GB ID Slip band size (µm) Notch size (µm)

micro-Hall-

Petch parameter

(MPa µm1/2)

1 40 20 455± 50

2 40 20 618± 60

3 39 19 661± 70

4 44 21 635± 70

5 41 18 685± 20

6 41 17 138± 20

7 41 17 641± 70

Table 4.1: List of micro-Hall-Petch parameters for prismatic slip bands for different
GBs.

4.3. Crystal Plasticity Simulations

To parametrize the micro-Hall-Petch parameter values for different GBs relative to

GB metrics, relevant information about the slip systems in the grains sharing the

boundary is necessary. The information of the incoming slip system in the grain

containing the slip band is available by analyzing the trace of the slip band, since

this time it is a prismatic slip system. Since we do not know apriori which slip system

will be chosen as the one to transmit slip in the neighboring grain, we setup crystal

plasticity simulations of the GB neighborhoods to obtain this information similar

to Chapter III. We now cover details regarding calibration of the crystal plasticity
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constitutive model and simulations of GB neighborhoods.

4.3.1. Constitutive Model Calibration

The crystal plasticity constitutive model parameters are obtained by matching the

stress-strain curves between simulations and experiments for Mg-4Al samples for two

different textures. Fig. 4.7 depicts the pole figures and the synthetic microstructures

corresponding to both textures generated using DREAM.3D represented as a 60 x 60

x 60 voxelated grid containing approximately 2000 grains. Microstructures from both

scenarios were subject to simple tension along the z-direction(Fig. 4.8) to different

values of strain - (i) the microstructure with texture 1 was subject to approximately

2.5% elongation, and (ii) the microstructure with texture 2 was subject to approxi-

mately 0.6% elongation. All crystal plasticity simulations were performed assuming

possible activity of 12 slip systems - 3 basal, 3 prismatic, 6 pyramidal <c+a> - and

6 extension twin systems. Fig. 4.9 depicts the comparison between the stress-strain

curves from CPFE simulations and experiments for the first and second scenario,

respectively, showing a reasonable match. The elastic stiffness constants for Mg-4Al

have been adopted from earlier work [150, 151] - C11 = 59.4 GPa, C33 = 61.6 GPa,

C12 = 25.61 GPa, C13 = 21.44 GPa and C44 = 16.4 GPa. Table 4.2 lists the crystal

plasticity constitutive model parameters obtained post-calibration. In the hardening

law, the latent hardening coefficient was set to q = 1.0, while the flow rule parameters

were set as γ̇0 = 0.001s−1 and m = 34.
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(a)

(b)

Figure 4.7: Pole figures and synthetic microstructure for (a) Texture 1, and (b)
Texture 2.
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Figure 4.8: Simple tension boundary conditions that the microstructures are subject
to. u0 denotes the displacement enforced based on the strain - 2.5 % for texture 1
and 0.6 % for texture 2. Then u0 = 0.025L for texture 1 and u0 = 0.006L for texture
2.

(a) (b)

Figure 4.9: Stress-strain curve comparison between experiments and CPFE for (a)
Texture 1, and (b) Texture 2.
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Deformation mode sα0 (MPa) hα0 (MPa) sαs (MPa) aα

Basal 10.0 0 - 1.0

Prismatic 78.0 1000.0 150.0 1.0

Pyramidal 140.0 0.0 - 1.0

Twin 18.0 0 - 1.0

Table 4.2: Calibrated crystal plasticity constitutive model parameters.

4.3.2. Grain Boundary Neighborhood Simulations

To construct GB descriptors through which a relationship can be drawn to the micro-

Hall-Petch parameter, some information about the slip activity in the grains is nec-

essary. By virtue of capturing the resolved stress ahead of the blocked slip band, the

slip system in the adjacent grain which could potentially accommodate slip trans-

mission, is not known. In the grain containing the slip band, the slip trace and

crystallographic orientation can be used to infer the slip system corresponding to

that slip band (incoming slip system). To find the slip system that could potentially

accommodate slip transmission (potential outgoing slip system), crystal plasticity

simulations are employed.

To accomplish this, for each GB case studied, a rectangular region around this GB

is identified (Figs.4.10a-4.10b), which contains the grains sharing this boundary and

some of their neighbors. The approximate coordinates of the center of the notch

and its length are identified. This information is then used to create a rectangular

geometry of the region of interest, with the notch approximated as an ellipse with

the same center as that of the notch and major axis length equal to the notch size.
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This microstructure section (a 2D section) is then meshed using 4-noded quadri-

lateral elements using Gmsh [4], an open-source 3D finite element mesh generator

(Fig. 4.10c), with a finer mesh in the neighborhood of the notch. The elements

are then assigned an identifier corresponding to whichever grain the element cen-

troid constitutes in the original microstructure (Fig. 4.10d). The 2D microstructure

section is then extruded along the third direction to create a 3D microstructural

slice with 8-noded hexahedral elements. The microstructure slices were then sub-

ject to simple tension boundary conditions with deformation along x-direction upto

2% strain(Fig. 4.11). Simulations were performed for seven different GB neighbor-

hoods for which the micro-Hall-Petch parameters were computed from the pile-up

stress measurements combined with curve fitting. Simulations were conducted on

GB neighborhoods for seven GB cases. Fig. 4.12 depicts the variation of accumu-

lated slip for the three basal and three prismatic slip systems for the specific GB

neighborhood. It is interesting to observe relatively significant prismatic slip corre-

sponding to all three prismatic slip systems in the grain containing a notch close to

both notch ends. This is most likely caused by significant changes in the in-plane

stress state around the notch due to the curvature of the sharp notch. Crystal plas-

ticity finite element simulations cannot capture the nucleation and propagation of

slip bands as observed in the experiments. However, the experimental hypothesis as-

sociated with the activation of prismatic slip ahead of the notch tip is corroborated

by the accumulated slip variation which shows profuse prismatic slip activity close

to the notch. While the true physics associated with choice of a specific slip band is

a very complex problem to study, such simulations can be setup with models more
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(a) (b)

(c) (d)

Figure 4.10: (a) Microstructure section from experiment containing a notch with
the tip shown from which a slip band emanates, (b) Read in experimental data and
assign grain IDs, (c) Rectangular domain containing notch meshed using Gmsh [4]
containing 7780 elements, and (d) Grain IDs assigned to elements of the mesh.
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Figure 4.11: Simple tension boundary conditions applied to the microstructure slice
with deformation along x-direction upto 2%, i.e., u0 = 0.02Lx.

enriched with the underlying physics to capture slip band initiation. For the present

case, our interest lies in the potential outgoing slip system in the neighboring grain

blocking the slip band in the experiment. Fig. 4.13b is a discrete map denoting

the slip system ID with the most accumulated slip at each element of the FE mesh,

with Fig. 4.13a zooming in on the region around the notch from which the slip band

emanates in experiments. This map particularly highlights the point made earlier

about different prismatic slip systems being dominant at different regions around the

notch. In this particular case, the alignment of the notch corresponds to that of the

[12̄10] (101̄0) prismatic system, for which the slip band emanates from the notch tip

in the experiments. The slip system ID map is used to obtain the potential outgoing

slip system. We choose this to be the slip system with the highest accumulated slip

in the neighborhood of the slip band trace-GB intersection at the end of deforma-

tion. In the case of conflict in the choice of slip systems, we choose the potential

outgoing system as the one that is the most dominant in the neighborhood of the slip

trace-GB intersection. In this case, the potential outgoing slip system is chosen as
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Accumulated slip variation of different slip systems : (a) Basal 1 -
[112̄0](0001), (b) Basal 2 - [2̄110](0001), (c) Basal 3 - [12̄10](0001), (d) Prismatic 1 -
[12̄10](101̄0), (e) Prismatic 2 - [2̄110](011̄0), (f) Prismatic 3 - [112̄0](1̄100).
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the one with ID 2, which is the basal system [2̄110](0001). Repeating this procedure

Figure 4.13: (a) Close-up of most active slip system ID map for GB 1, (b) Complete
map for most active slip system ID for GB 1.

for the remaining 6 boundaries yields a potential outgoing slip system for each case.

Figs.4.14-4.19 depict some information associated with each of those cases - (i) the

microstructure with the slip band trace (ii) the mesh generated using Gmsh with

Grain IDs assigned (iii) accumulated slip variation for just the prismatic systems,

and (iv) the most active slip system ID considering all slip systems. Table.4.3 lists

the incoming and potential outgoing slip system for all seven GBs.
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GB ID Incoming slip system Potential outgoing slip system

1 (011̄0)[2̄110] (0001)[2̄110]

2 (011̄0)[2̄110] (101̄0)[12̄10]

3 (101̄0)[12̄10] (0001)[2̄110]

4 (1̄100)[112̄0] (0001)[2̄110]

5 (101̄0)[12̄10] (0001)[12̄10]

6 (011̄0)[2̄110] (011̄0)[2̄110]

7 (011̄0)[2̄110] (0001)[2̄110]

Table 4.3: Incoming and potential outgoing slip systems for different GBs.

4.4. Grain Boundary Parameters

To parametrize the micro-Hall-Petch parameters by different metrics associated with

the GB, a number of angular quantities(Fig. 4.20) need to be determined. These

angles are computed from some information of the slip systems in the two grains

sharing the GB and also the GB itself. The previous section covered the procedure to

obtain the incoming and potential outgoing slip systems. Hence, the only information

required to obtain is the GB plane orientation - the angles α and β - as illustrated

in Fig. 4.21. Using this information the relevant angles(ψ, δ, θ, κ) are computed, as

listed in Table. 4.4 for all the seven GBs.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Accumulated slip variation of different slip systems : (a) microstructure
for GB 2 with slip band trace, (b) Gmsh mesh containing 7780 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Accumulated slip variation of different slip systems : (a) microstructure
for GB 3 with slip band trace, (b) Gmsh mesh containing 7635 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.16: Accumulated slip variation of different slip systems : (a) microstructure
for GB 4 with slip band trace, (b) Gmsh mesh containing 8118 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Accumulated slip variation of different slip systems : (a) microstructure
for GB 5 with slip band trace, (b) Gmsh mesh containing 7479 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.18: Accumulated slip variation of different slip systems : (a) microstructure
for GB 6 with slip band trace, (b) Gmsh mesh containing 8042 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.19: Accumulated slip variation of different slip systems : (a) microstructure
for GB 7 with slip band trace, (b) Gmsh mesh containing 7799 elements, (c) Accu-
mulated slip for prismatic 1, (d) Accumulated slip for prismatic 2, (e) Accumulated
slip for prismatic 3, (f) Most active slip system ID map.
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Figure 4.20: A schematic representative for slip transmission through a GB. b⃗in:
Burgers vector of the incoming slip system, b⃗out: Burgers vector of the outgoing slip
system, n⃗in: Slip plane normal of the incoming slip system, n⃗out: Slip plane normal
of the outgoing slip system, l⃗in: Intersection line of the incoming slip plane and
GB, l⃗out: Intersection line of the outgoing slip plane and GB, d⃗in: Slip direction of
the incoming slip system, d⃗out: Slip direction of the outgoing slip system, θ: Angle
between the two slip plane traces on the GB plane, κ: Angle between slip directions,
ψ: Angle between slip plane normals, δ: Angle between the incoming slip direction
and the incoming slip plane trace on the GB plane.
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Figure 4.21: (a) Schematic representation of the GB plane. (b) The GB trace angle
α is measured using the GB’s plan view image (SEM image). (c) The GB plane
angle β is measured using a cross-section of the GB after FIB removal of adjacent
material.
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GB ID θ(◦) κ(◦) ψ(◦) δ(◦)

1 65.89 69.94 63.26 27.48

2 70.22 88.33 88.35 9.64

3 80.95 70.06 65.53 26.67

4 79.26 59.01 53.72 49.29

5 47.36 47.53 40.92 59.65

6 43.92 31.10 22.73 86.94

7 87.95 70.54 72.79 58.48

Table 4.4: Relevant geometric quantities(angles) computed from the slip system and
GB information to parametrize the micro-Hall-Petch parameter.

4.5. Parametrizing the micro-Hall-Petch parameter

Among the multitude of relationships that can be established between the micro-

Hall-Petch parameter and the different angular quantities, we consider two partic-

ular GB metrics for the parametrization. We follow the procedure identical to the

parametrization performed for the micro-Hall-Petch parameters for basal slip. Let

m′ denote either the LRB factor or LM factor, which we refer to as the compatibility

factor since it is a measure of compatibility between adjacent grains - higher the value

of m′ greater the probability of slip transmission. Then we consider a simple empir-

ical power-law dependence of the micro-Hall-Petch parameter on the compatibility

factor

kαµ = Kα
µ (1−m′)

cα
; cα > 0 (4.7)
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whereKα
µ is the micro-Hall-Petch multiplier and cα is the micro-Hall-Petch exponent.

Since a higher value of the micro-Hall-Petch parameter kαµ signifies higher blocking

tendency of the GB to an incoming slip band, it is assumed to monotonically increase

with the factor 1−m′ which signifies the loss of compatibility in some sense. cα de-

notes the exponent appearing in the empirical power-law relationship. Performing

a linear least-squares fit of log
(
kαµ
)

relative to log (1−m′) yields the best fit micro-

Hall-Petch multiplier and exponent, which is considered a material property since

the GB dependence is now subsumed in m′. Figs. 4.22a- 4.22b depict the plots of the

micro-Hall-Petch parameter against the corresponding metrics, i.e. the LRB factor

and LM factor, respectively. The fit results in Kα
µ = 687 MPa µm1/2, cα = 1.83

for the LRB factor and Kα
µ = 699 MPa µm1/2, cα = 1.07 for the LM factor. It is

interesting to note a close-to-linear relationship between micro-Hall-Petch parame-

ter and (1 −m′) where m′ is the LRB factor. Even though the parametrization of

the micro-Hall-Petch parameter relative to the LRB factor is more appropriate, the

parametrization relative to the LM factor is simple both in terms of ease of con-

structing the LM factor from experiments and in incorporating it in CPFE models

where the GBs are not explicitly captured except in terms of shared faces between

grains.

4.6. Conclusion

An integration between experimental measurements, dislocation pile-up theory, crys-

tal plasticity simulations and some empirical modeling has been presented in order to

determine the micro-Hall-Petch multiplier and exponent for prismatic slip, which are
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(a) (b)

Figure 4.22: (a) micro-Hall-Petch parameter plotted against (1−m′)c
α where m′ is

the LRB factor, along with the linear fit. Kα
µ = 687 MPa µm1/2, cα = 1.83. (b)

micro-Hall-Petch parameter plotted against (1 − m′)c
α where m′ is the LM factor,

along with the linear fit. Kα
µ = 699 MPa µm1/2, cα = 1.07.

material properties characterizing the dependence of the size-dependent contribution

of the slip system resistance on certain GB parameters. First grains were identified in

the microstructure to create notches to initiate prismatic slip since they possess rela-

tively high critical resolved shear stress compared to basal slip. Subsequently, pile-up

stress measurements were fit to a theoretical expression derived from continuum dislo-

cation pile-up theory to obtain estimates of the micro-Hall-Petch parameter for seven

different GBs. To parametrize the micro-Hall-Petch parameters relative to different

metrics encoding the slip system information, CPFE simulations were conducted on

neighborhoods of the GBs to obtain the the potential outgoing slip system(in the

grain blocking the slip band). Using this information and GB inclination information

two parametrizations were considered for the micro-Hall-Petch parameter relative to

the LRB factor and LM factor based on an empirical power-law relationship. The
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multiplier and exponents associated with the power-law furnish material parameters

which encode the effect of the GB on the size-dependent contribution of the slip

system resistance corresponding to prismatic slip.
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CHAPTER V

Micro-Hall-Petch Modeling in PRISMS-CPFE

This chapter covers the implementation of the micro-Hall-Petch constitutive model

into the PRISMS-CPFE code, followed by calibration of constitutive parameters and

comparison with predictions using the original set of parameters obtained from inte-

gration of experiments, theory and simulations. The calibrated parameters are then

used to perform some parametric studies to investigate the behavior this constitutive

model.

5.1. Micro-Hall-Petch Constitutive Model

The incorporation of the micro-Hall-Petch constitutive model into crystal plasticity

involves modification of the initial slip resistance using the micro-Hall-Petch equation

:

sα0 = sαI + sαS = sαI +
kαµ√
dα

(5.1)
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where sα0 denotes the initial slip resistance associated with slip system α, decomposed

into a grain size-independent contribution, sαI and a grain size-dependent contribu-

tion, sαS. The grain size-dependent contribution has a form similar to the classical

Hall-Petch equation but extended to the slip system level where kαµ denotes the

micro-Hall-Petch parameter and dα is a measure of the slip system-level grain size.

Chapters III and IV concluded with empirical expressions relating kαµ to different

grain boundary metrics for basal and prismatic slip systems involving the micro-

Hall-Petch multiplier and the micro-Hall-Petch exponent as the primary material

properties. The computation of kαµ and dα in the context of implementation within

the crystal plasticity framework is detailed(illustrated in Fig. 5.1).

5.1.1. Computation of slip system-level grain size

Let’s start with a microstructure discretized as a uniform grid of voxels with the

grains identified by a set of grain identifiers(integers). Associated with each grain we

also have the orientation information. Given this setup, the slip system-level grain

size is computed in the following manner

1. Consider any particular voxel defined by it’s centroidal coordinates pc = (xc, yc, zc)

and the corresponding grain, G, it resides in. For this particular voxel, consider

the slip system α with mα denoting the corresponding slip direction.

2. For grain G, identify its boundary ∂G, which is essentially represented as a col-

lection of rectangular faces since the microstructure is represented as a uniform

voxelated grid.

112



3. Find the point p1 on ∂G closest to point pc along direction mα and denote

this closest distance by dα1 .

4. In a similar fashion, find the point p2 on ∂G closest to point pc along direction

−mα and denote this closest distance by dα2 .

5. Define the slip system-level grain size, dα for point p and slip system α as

dα = dα1 + dα2 . A very similar methodology has been adopted by Nieto-Valeiras

et al. [152], where the computed distances were used in dislocation-density

evolution equations to study the effect of slip transfer at GBs on the strength

of FCC polycrystals.

Conceptually, the slip system-level grain size for point p and slip system α denotes

the smallest distance along the direction mα subtended by the corresponding grain

boundary. We note that this is a heterogeneous property varying throughout the mi-

crostructure and can be computed apriori with the knowledge of the microstructural

points and orientations alone.

5.1.2. Computation of micro-Hall-Petch parameter

The micro-Hall-Petch parameter was related to different grain boundary metrics

defined based on the slip systems in neighboring grains and the grain boundary

inclination. While the grain boundary inclination is an important part of this char-

acterization it is not particularly well-suited for implementation into crystal plasticity

models involving discretized microstructures for the following reasons

1. Most of the commonly used synthetic microstructure generation softwares do
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Figure 5.1: Illustration depicting the computation of dα and kαµ . (a) Uniform voxe-
lated microstructure (b) For any microstructural point in grain G and line passing
through it with slip direction mα, find the neighboring grains G1 and G2 based on
the points of intersection of the line with the boundary. (c) The slip system level
grain size dα is computed for every point in the microstructure by finding the length
of the line segment passing through that point connecting the two points on the grain
boundary along direction mα. (d) To compute kαµ the primary quantity is the max-
imum compatibility factor which is computed using the knowledge of slip systems
corresponding to the neighboring grains G1 and G2.
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not possess the functionality to include statistical information associated with

grain boundary inclinations as an input to the microstructure generation en-

gines.

2. The grain boundary inclination is dependent on how the microstructure is

meshed and while two microstructures might be quite similar in their descrip-

tion, depending on how those microstructures are meshed, the grain bound-

ary inclination can be different. This is also evident in that a package like

DREAM.3D generates voxelated meshes where the grain boundary face nor-

mals can only be aligned with one of the three sample axes, while a software

like Neper generates polyhedra where different faces of a grain can be oriented

differently.

As noted earlier, the angles θ and δ depend on the grain boundary inclination while

ψ and κ do not. Then we parametrize the micro-Hall-Petch parameter on the grain

boundary metrics through the angles ψ and κ as follows :

kαµ = Kα
µ (1− cos(ψ)cos(κ))c

α

(5.2)

where Kα
µ is the micro-Hall-Petch multiplier and cα is the micro-Hall-Petch expo-

nent, both of which are constants for a particular material. Note that the quantity

cos(ψ)cos(κ) is commonly referred to as the Luster-Morris factor motivated from

earlier studies [143, 138] on slip transmission. Then kαµ is computed as follows :

1. In the process of computing dα we had identified the points p1 and p2 lying on

the grain boundary. Using this information we identify the neighboring grains
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sharing these points with grain G. Denote by G1 and G2 those grains sharing

points p1 and p2, respectively, with grain G.

2. Define ψαβ
1 as the angle satisfying the relation cos

(
ψαβ
1

)
= nα · nβ

1 where nα

is the slip plane normal corresponding to slip system α and nβ
1 is the slip plane

normal corresponding to slip system β in G1.

3. Define καβ1 as the angle satisfying the relation cos
(
καβ1

)
= mα ·mβ

1 where mα

is the slip direction corresponding to slip system α and mβ
1 is the slip direction

corresponding to slip system β in G1.

4. Compute the quantity µα
1 obtained by maximizing

∣∣∣cos
(
καβ1

)
cos
(
ψαβ
1

)∣∣∣ over

all admissible slip systems in G1, i.e., µ1 = max
β

∣∣∣cos
(
καβ1

)
cos
(
ψαβ
1

)∣∣∣. Here

| · | denotes the absolute value of the argument.

5. Define ψαβ
2 as the angle satisfying the relation cos

(
ψαβ
2

)
= nα · nβ

2 where nα

is the slip plane normal corresponding to slip system α and nβ
2 is the slip plane

normal corresponding to slip system β in G2.

6. Define καβ1 as the angle satisfying the relation cos
(
καβ2

)
= mα ·mβ

2 where mα

is the slip direction corresponding to slip system α and mβ
2 is the slip direction

corresponding to slip system β in G2.

7. Compute the quantity µα
2 obtained by maximizing

∣∣∣cos
(
καβ2

)
cos
(
ψαβ
2

)∣∣∣ over

all admissible slip systems in G2, i.e., µ2 = max
β

∣∣∣cos
(
καβ2

)
cos
(
ψαβ
2

)∣∣∣. Here |·|

denotes the absolute value of the argument.
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8. Define µα := max(µα
1 , µ

α
2 ), which we refer to as the maximum compatibility

factor for the point under consideration for slip system α. Then compute

kαµ = kαµ(1− µα)c
α .

Identical to dα, kαµ is a heterogeneous property varying throughout the microstructure

for different slip systems. Conceptually, this is based on the hypothesis that the slip

system in the neighboring grain used to compute the relevant metrics is the one that

is in some sense best aligned with the slip system in the grain of interest. We now

cover aspects about synthetic microstructure generation using experimental data and

subsequent calibration of crystal plasticity constitutive parameters.

5.2. Synthetic Microstructure Generation

Here we outline the procedure for generating synthetic microstructures which we use

for all our forthcoming simulation studies. This microstructure information is passed

as an input to the preprocessing step detailed earlier to compute the slip system-level

grain size and micro-Hall-Petch parameter for all voxels in the microstructure.

We use DREAM.3D for generating synthetic microstructures given certain input

statistics. The primary inputs supplied to DREAM.3D are the orientation informa-

tion in terms of crystallographic texture, and the grain size information in terms of

the grain size distribution. As input from experiments, we have a 2D section of the

EBSD data in the form of an orientation image map. This data is read in MATLAB

using MTEX toolbox which stores the relevant data - the positions and crystallo-

graphic orientation of the all pixels constituting the 2D section. The orientation data

is then output in the form of Bunge Euler angles to a text file which can be read
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into DREAM.3D.

Using the pixel position information we then compute the 2D grain size, which is

the equivalent area circle diameter, i.e., the diameter of the circle encompassing the

same area as the grain. Since the 2D dataset also contains grains on the boundary

which are truncated, and hence their grain size is underestimated. To prevent this we

only use the 2D grain size information from grains which are completely contained

within the 2D section without being intercepted by the boundaries. It is important

to note here that the 2D grain size is not a true representation of the grain size

for that grain. This is apparent since the 2D grain size is computed based on a 2D

section of a 3D grain. In other words, the 2D grain size is also a lower estimate on the

actual grain size that is required as input to the micro-Hall-Petch preprocessor which

computes the slip system-level grain sizes for a 3D microstructure. To address this

problem we employ the Saltykov method [153, 154, 155, 156] to obtain an estimate

of the 3D grain size distribution. In the context of microstructures, the Saltykov

method is particularly well-suited when grains are equiaxed, which is a fairly good

approximation for the microstructures considered for our study. The output from

the Saltykov method implementation is a histogram bin data - the centers of the

histogram bins representing a particular 3D grain size, and the height of the bins

denoting the fraction of grains with a 3D grain size belonging to that bin with

a particular width. Since the grain size input to DREAM.3D is parameters of a

standard lognormal distribution, the 3D grain size histogram dataset is fit with a

standard lognormal distribution yielding the best fit parameters - the mean and

standard deviation of the natural logarithm of the random variable. The standard
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lognormal probability distribution function takes the form

P (X) =
1

xσ̄
√
2π

exp

(
−(ln(x)− µ̄)2

2σ̄2

)
(5.3)

where µ̄ and σ̄ are the mean and standard deviation of the natural logarithm of

the random variable, X. We apply the Saltykov method of unfolding the 2D grain

distribution using GrainSizeTools [157], an open-source Python script for grain

size analysis and paleopiezometry. The orientation data and 3D lognormal distri-

bution parameters are then fed to a DREAM.3D pipeline to generate a synthetic

microstructure represented as a uniform grid of voxels(illustrated in Fig. 5.2).

5.3. Calibration of constitutive parameters

The crystal plasticity constitutive model is calibrated with nine stress-strain curves

obtained from experimental mechanical tests. These nine stress-strain curves cor-

respond to different texture-loading direction-grain size combinations noted below

:

1. Samples corresponding to Texture 1(Fig. 5.3(a)) with three different grain size

distributions were deformed along the z-direction under tension with periodic

boundary constraints to a strain of 1 %.

2. Samples corresponding to Texture 2(Fig. 5.3(b)) with three different grain size

distributions were deformed along the z-direction under tension with periodic

boundary constraints to a strain of 0.35%.
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Figure 5.2: Illustration depicting the workflow for synthetic microstructure genera-
tion in DREAM.3D. (a) 2D microstructure section from experiment, (b) 2D grain
size statistics extracted from microstructure section not including boundary grains,
(c) Use Saltykov method to obtain 3D grain size statistics and fit it with lognormal
distribution, (d) Pole figures from experimental texture data, (e) Use best-fit lognor-
mal distribution parameters and orientation information as input to DREAM.3D to
generate synthetic microstructure.
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3. Samples corresponding to Texture 2(Fig. 5.3(b)) with three different grain size

distributions were deformed along the x-direction under tension with periodic

boundary constraints to a strain of 1%.

(a)

(b)

Figure 5.3: Pole figures for (a) Texture 1, and (b) Texture 2.

Then following the procedure outlined in the previous section, microstructures were

generated for these nine cases using DREAM.3D with inputs being the texture and

3D grain size distribution, which were obtained from microstructure sections available

for all the cases. We note that only six synthetic microstructures were generated

since there are in total two texture combinations with three grain sizes per texture.

The remaining three cases involve simply a change in the loading direction so that
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new microstructures were required to be generated. The six microstructures are

represented as a 50 x 50 x 50 uniform voxelated grid consisting of approximately

500 grains. The best-fit lognormal distribution parameters are included in Table 5.1

along with the measure of 2D grain size commonly used, i.e., the grain area average

size. The grain area average size is computed for the 2D microstructural section by

computing the weighted average of the grain sizes with the grain area playing the

role of the weights.

Texture Average size (µm) µ̄ σ̄

Texture 1 55 3.796 0.351

Texture 1 187 5.103 0.255

Texture 1 333 5.387 0.633

Texture 2 68 3.707 0.587

Texture 2 227 5.168 0.329

Texture 2 343 5.556 0.425

Table 5.1: Grain size information for the six different texture-grain size distribution
cases.

All crystal plasticity simulations are setup considering 12 slip systems - 3 basal, 3 pris-

matic, 6 pyramidal <c+a> - and 6 extension twin systems. The elastic stiffness con-

stants for Mg-4Al have been adopted from earlier work [150, 151] - C11 = 59.4 GPa,

C33 = 61.6 GPa, C12 = 25.61 GPa, C13 = 21.44 GPa and C44 = 16.4 GPa. In the

hardening law, the latent hardening coefficient was set to q = 1.0, while the flow

rule parameters were γ̇0 = 0.001s−1 and m = 34. Additionally, for all simulations
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the micro-Hall-Petch coefficients are set to specific values - cα for basal = 0.6 and cα

for prismatic = 1.07 - based on Chapter III and Chapter IV, respectively. We also

set the slip resistance for the pyramidal < c+ a > slip systems to 140 MPa without

any hardening. For the scenarios studied in this work, the primary slip systems are

basal and prismatic with some role played by twinning. While we have a micro-

Hall-Petch model for basal and prismatic slip, we account for the size effect from

twinning via a simple Hall-Petch type modification to the slip resistance. In this

modification, the twinning resistance st is expressed as st = st0 + Kt/
√
deq, where

st0 is the size-independent contribution of the slip resistance, while the additional

term Kt/
√
deq accounts for the size-dependent contribution with deq denoting the

average grain size based on the lognormal distribution. We refer to Kt as the twin-

ning Hall-Petch coefficient. Nine parameters are considered as free parameters for

calibration purpose - the micro-Hall-Petch multipliers, slip resistances and hardening

coefficient for basal and prismatic, the twinning Hall-Petch coefficient, slip resistance

and hardening coefficient.

Figs. 5.4(a)-5.4(c) depict the stress-strain curve comparison between CPFE simula-

tions and experiments for all nine cases considered after calibration. The calibrated

parameters are included in Table 5.2. Figs. 5.5(a)-5.5(c) depict the yield stress, σY

plotted against the corresponding inverse square-root of grain size, 1/
√
d based on

the simulations with the calibrated parameters. The yield stress for all cases is de-

fined as the 0.2% offset, and the Hall-Petch intercept, σ0 and Hall-Petch slope, KHP

are the intercept and slope, respectively, of the corresponding linear least-squares fit

from σY vs 1/
√
d dataset. It is important to note that in the σY vs 1/

√
d plots,
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d refers to the grain area average grain size computed from the corresponding 2D

dataset, since this is the measure of grain size that has been traditionally used in

such plots. Table 5.3 shows the comparison between the Hall-Petch coefficients for

the three texture-loading direction cases considered.

(a) (b)

(c)

Figure 5.4: Stress-strain curve comparison between CPFE simulations and experi-
ments using calibrated parameters for (a) Texture 1, z-direction loading, (b) Texture
2, z-direction loading and (c) Texture 2, x-direction loading.
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Deformation mode sα0 (MPa) hα0 (MPa) sαs (MPa) aα Kα
µ (MPa µm1/2) cα

Basal 9.3 300 150 1.0 60 0.6

Prismatic 51 600 150 1.0 1000 1.07

Pyramidal 140 0 200 1.0 0 0

Twin 17.5 500 100 1.0 25 0

Table 5.2: Calibrated micro-Hall-Petch crystal plasticity constitutive model param-
eters for Mg-4Al.

Hall-Petch coef-

ficient

Texture 1,

z-direction

loading :

Exp.

Texture 1,

z-direction

loading :

CPFE

Texture 2,

z-direction

loading :

Exp.

Texture 2,

z-direction

loading :

CPFE

σ0(MPa) 110.06 112.59 37.66 37.52

KHP (MPa µm1/2) 372.42 308.36 69.44 68.96

Hall-Petch coef-

ficient

Texture 2,

x-direction

loading :

Exp.

Texture 2,

x-direction

loading :

CPFE

σ0(MPa) 97.44 91.84

KHP (MPa µm1/2) 254.62 200.52

Table 5.3: Comparison of Hall-Petch coefficients for the three texture-loading direc-
tion cases between CPFE simulations and experiments, using the calibrated param-
eters.
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(a) (b)

(c)

Figure 5.5: Yield stress(σY ) vs inverse square-root grain size(1/
√
d) comparison be-

tween CPFE simulations and experiments using calibrated parameters for (a) Tex-
ture 1, z-direction loading, (b) Texture 2, z-direction loading and (c) Texture 2,
x-direction loading. Dotted lines denote corresponding linear least-squares fit.
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Figs. 5.6(a)-5.6(c) depict the stress-strain curve comparison between CPFE sim-

ulations and experiments for all nine cases with the original parameters(Table 5.4)

obtained from experiments as noted in Chapter III and Chapter IV. The only param-

eters modified here are the basal and prismatic slip resistances and micro-Hall-Petch

multipliers to the original parameters, while the rest of the parameters are set iden-

tical to the calibrated parameters in Table 5.2. It is interesting to note that even

though the stress-strain curves don’t all match with a single parameter set, they

produce quite reasonable stress-strain curves. This is especially considering the fact

that the slip resistance values used here were fed to dislocation pile-up models, and

the micro-Hall-Petch coefficients were then obtained from localized pile-up stress

measurements ahead of slip bands blocked by grain boundaries. Figs. 5.7(a)-5.7(c)

depict the yield stress plotted against the corresponding inverse square-root of grain

size based on the simulations with the original parameters. Table 5.5 shows the com-

parison between the Hall-Petch coefficients for the three texture-loading direction

cases between experiments and CPFE simulations with the original parameters.

Deformation mode sα0 (MPa) hα0 (MPa) sαs (MPa) aα Kα
µ (MPa µm1/2) cα

Basal 4.34 300 150 1.0 159 0.6

Prismatic 42.54 600 150 1.0 699 1.07

Pyramidal 140 0 200 1.0 0 0

Twin 17.5 500 100 1.0 25 0

Table 5.4: Original micro-Hall-Petch crystal plasticity constitutive model parameters
for Mg-4Al. The original parameters here only refer to the basal and prismatic
slip resistances and micro-Hall-Petch multipliers while the remaining parameters are
retained as is for the simulations.

127



(a) (b)

(c)

Figure 5.6: Stress-strain curve comparison between CPFE simulations and experi-
ments using the original parameters for (a) Texture 1, z-direction loading, (b) Texture
2, z-direction loading and (c) Texture 2, x-direction loading.
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Hall-Petch coef-

ficient

Texture 1,

z-direction

loading :

Exp.

Texture 1,

z-direction

loading :

CPFE

Texture 2,

z-direction

loading :

Exp.

Texture 2,

z-direction

loading :

CPFE

σ0(MPa) 110.06 91.02 37.66 30.55

KHP (MPa µm1/2) 372.42 267.96 69.44 120.07

Hall-Petch coef-

ficient

Texture 2,

x-direction

loading :

Exp.

Texture 2,

x-direction

loading :

CPFE

σ0(MPa) 97.44 73.06

KHP (MPa µm1/2) 254.62 216.77

Table 5.5: Comparison of Hall-Petch coefficients for the three texture-loading direc-
tion cases between CPFE simulations and experiments, using the original parameters
from Chapter III and Chapter IV.

We note that the calibrated values of the basal and prismatic slip resistances and

micro-Hall-Petch multipliers(Table 5.2) are not in agreement with the original val-

ues(Table 5.4). The calibrated basal slip resistance is about twice that of the original

basal slip resistance, which was adopted from Akhtar et al. [137] who studied the

substitutional solution hardening of magnesium single crystals with different alloy-

ing elements. The higher calibrated value indicates additional factors contributing

to the initial slip resistance(without size effect contribution) possibly stemming from

the underlying defect microstructure in the polycrystalline sample. The calibrated
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(a) (b)

(c)

Figure 5.7: Yield stress(σY ) vs inverse square-root grain size(1/
√
d) comparison be-

tween CPFE simulations and experiments using the original parameters for (a) Tex-
ture 1, z-direction loading, (b) Texture 2, z-direction loading and (c) Texture 2,
x-direction loading. Dotted lines denote corresponding linear least-squares fit.
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prismatic slip resistance is however, not very different from original prismatic slip re-

sistance because the original values were estimated from yield stress of polycrystalline

stress-strain curves rather than studies on single crystals.

The calibrated basal micro-Hall-Petch multiplier is about 0.4 times that of the orig-

inal basal micro-Hall-Petch multiplier obtained from localized measurements of the

pile-up stress ahead of blocked slip bands and parametric curve fitting. Here it is

important to note that the original basal micro-Hall-Petch multiplier was obtained

by fitting the micro-Hall-Petch parameters for eight grain boundaries to a power-law

type function of the maximum compatibility factor. The micro-Hall-Petch param-

eters for those eight grain boundaries were obtained by fitting pile-up stress mea-

surements ahead of a blocked slip band, to expressions obtained from a continuum

dislocation pile-up model. On the other hand, the crystal plasticity finite element

simulations form a homogenized representation of the microstructure where a large

number of points in the simulated microstructure accommodate slip as opposed to

localized slip bands in experiments. Since all microstructural points in the synthetic

microstructures are endowed with a micro-Hall-Petch coefficient and an underlying

slip system-level grain size, this implies that a lower value of the basal micro-Hall-

Petch multiplier is sufficient to capture the contribution of basal slip to the grain

size effect. We additionally note that if not all microstructural points but only se-

lect number were endowed with the basal micro-Hall-Petch multiplier, the calibrated

basal micro-Hall-Petch multiplier will increase and be closer to the original basal

micro-Hall-Petch multiplier.

On the contrary, the calibrated prismatic micro-Hall-Petch multiplier is about 1.4
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times that of the original prismatic micro-Hall-Petch multiplier obtained from local-

ized measurements of the pile-up stress ahead of blocked slip bands and paramet-

ric curve fitting. Here again the original prismatic micro-Hall-Petch multiplier was

obtained by fitting the micro-Hall-Petch parameters for seven grain boundaries to a

power-law type function of the maximum compatibility factor. The micro-Hall-Petch

parameters for those seven grain boundaries were obtained by fitting pile-up stress

measurements ahead of a blocked slip band(initiated from a notch within a grain),

to expressions obtained from a continuum dislocation pile-up model. In this case,

the implication is that even with a homogenized model like crystal plasticity where

each microstructural point has a contribution to the size effect, a relatively higher

prismatic micro-Hall-Petch multiplier is necessary to capture the grain size effect. In

other words, the effect of grain boundaries on prismatic slip is possibly more profuse

when analyzing many different boundaries as compared to just the seven boundaries.

We also note that the implementation of the micro-Hall-Petch constitutive model

accounts for the maximum compatibility factor purely dependent on the orienta-

tion of neighboring grains without accounting for grain boundary inclination, which

is not very straightforward to account for in a universal manner just because it is

dependent on the underlying mesh used for computational studies. However, if a pos-

sible standardization can be achieved in the inclusion of grain boundary information

across microstructure generation frameworks, then this information can be included

without much additional effort providing better insights and possibly even better

agreement between calibration parameters and experimentally-informed parameters.
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5.4. Parametric Studies

We now carry out some simple parametric studies with the calibrated parameters to

explore different examples where the grain size and texture are coupled.

5.4.1. Effect of simulated spread in texture

Here we simulate and study the behavior of the Hall-Petch slope for microstructures

whose crystallographic textures are represented by predominantly basal texture su-

perposed with a spread in orientations. This spread is representative of orientations

spreading almost uniformly, away from the basal poles. All the microstructures used

in this study were generated using DREAM.3D in which the respective textures

were created by specifying the Euler angle(Bunge convention) triplet of (0, 0, 0) with

a weight equal to 100 and spread(denoted by ϵ) equal to a positive value denoting the

respective spread in the orientations. For each texture, a base microstructure was

first generated for the smallest grain size using the lognormal distribution parame-

ters corresponding to the smallest grain size for Texture 2. This base microstructure

was then uniformly scaled to twice, thrice and four times its size, to generate geo-

metrically similar microstructures with different grain sizes. For a measure of the

average 2D grain size, we used the grain area average size of the experimental 2D

microstructure from which the 3D lognormal distribution parameters were obtained.

Then for the smallest grain size case, the grain area average size is 68µm, and ac-

cordingly, 136µm, 204µm and 272µm for the microstructures scaled to twice, thrice

and four times the smallest size, respectively. Additionally, to better represent the
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underlying texture, microstructures with larger number of grains were created for

the textures corresponding to ϵ = 20, ϵ = 23 and random texture. Figs. 5.8(a) -

5.8(i) depict the pole figures generated for different values of the spread considered,

denoted by the ϵ value, alongwith the approximate number of grains contained in the

synthetic microstructure for that texture. Simulations were performed in which the

microstructures were deformed in tension along the z-direction to 1% strain, with

periodic boundary constraints. Fig. 5.9(a) depicts the plots of the yield stress(σY )

against inverse square-root of grain size(1/
√
d) for the different textures from which a

linear least-squares fit (denoted by dotted line in the plots) yields the Hall-Petch in-

tercept and the Hall-Petch slope (Fig. 5.9(c)). Here d denotes the measure of average

2D grain size noted earlier. Fig. 5.9(b) depicts the variation of the size-dependent

component of the yield stress with inverse square-root of grain size for the differ-

ent textures to better visualize the Hall-Petch slope. The Hall-Petch slope increases

progressively from 49 MPa µm1/2 for ϵ = 5 to 79 MPa µm1/2 for ϵ = 23, close to

the Hall-Petch slope for random texture at about 93 MPa µm1/2. First a gradual

increase is observed from 49 MPa µm1/2 for ϵ = 5 to 58 MPa µm1/2 for ϵ = 15, after

which the increase is more drastic to 79 MPa µm1/2 to ϵ = 23. We now investigate a

measure of the slip activity of different slip system families to reason this behavior.

Fig. 5.10 visualizes the average accumulated slip on the basal, prismatic and twin

systems at the end of deformation for the smallest grain size. The average accu-

mulated slip for a particular slip system type(basal, prismatic or twin) is computed

by averaging the total slip contribution of all slip systems associated with that slip

system type, over the entire microstructure. For example, for the basal system the
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(a) ϵ = 5 ≈ 500 grains. (b) ϵ = 7 ≈ 500 grains.

(c) ϵ = 9 ≈ 500 grains. (d) ϵ = 11 ≈ 500 grains.

(e) ϵ = 15 ≈ 500 grains. (f) ϵ = 17 ≈ 500 grains.

(g) ϵ = 20 ≈ 800 grains. (h) ϵ = 23 ≈ 800 grains.

(i) Random texture ≈ 1300 grains.

Figure 5.8: Pole figures for increasing values of the ϵ value or spread in orientations
and the approximate number of grains constituting the synthetic microstructure.
Since, random texture corresponds to a uniform distribution of orientations, the pole
figures were not generated in the same manner as the previous pole figures. Instead,
a sample of random orientations was created using MTEX and specified as input to
DREAM.3D.
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(a) (b)

(c)

Figure 5.9: (a) Yield stress(σY ) plotted against inverse square-root grain size(1/
√
d)

for different spreads of basal texture, and random texture. Dotted lines denote
corresponding linear least-squares fit. (b) Size-dependent contribution of yield stress
vs inverse square-root of grain size to visualize difference in Hall-Petch slopes. (c)
Hall-Petch slope for different ϵ values.
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total slip contribution from the three basal slip systems is computed for all points in

the microstructure, and then the mean is taken over all those microstructural points.

The Hall-Petch slope is a reflection of the activity of individual slip systems, since

Figure 5.10: Comparison of average accumulated slip on basal, prismatic and twin
systems at the end of deformation for different values of the spread ϵ. The average
accumulated slip for a particular slip system type is computed by averaging the total
slip contribution of all slip systems associated with that slip system type, over the
entire microstructure. B–Basal, P–Prismatic, T–Twin.

even physically, slip has to ensue on individual slip systems for the effect of the grain

boundaries(or alternatively the grain size) to be felt. As the spread increases from

ϵ = 5 to ϵ = 15 , there is an increase in the average basal accumulated slip and a

decrease in the average twin accumulated slip. Note that for twinning there does

not exist a maximum compatibility factor when accounting for the size-dependent

contribution to the slip resistance, while for the basal systems the micro-Hall-Petch

coefficient is multiplied with a power-law type function of the maximum compatibil-
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ity factor. Additionally, for twinning there is a single average grain size used in the

expression to modify the slip resistance, while for basal systems the slip system-level

grain size, which is a heterogeneous property, comes into play. As a result, while

the effect of twinning is almost homogeneous across all points where twinning ac-

commodates slip, that is not the case for basal which shows a larger spread in it’s

contributions. Then there are two competing factors – (i) The decrease in twinning

activity with increase in ϵ which reduces contribution of twinning to the Hall-Petch

slope, while (ii) Increased basal activity combined with spread in texture increases

basal contribution to the Hall-Petch slope due to delocalization of texture – more

diffuse texture =⇒ lower values of maximum compatibility factor =⇒ increased

contribution of basal slip to grain size effect. The increase in the Hall-Petch slope

signifies the dominance of increased basal slip activity over twinning activity as we

go from sharper texture for ϵ = 5 to more diffuse texture for ϵ = 15. Beyond ϵ = 15

the Hall-Petch slope increases drastically and this is attributed to further delocal-

ization of texture and the activation of prismatic systems, which have a relatively

high micro-Hall-Petch coefficient compared to basal system. Even though prismatic

slip systems don’t show significant activity, combining the high micro-Hall-Petch

coefficient of prismatic slip with smaller values maximum compatibility factor and

increased prismatic slip activity ensures a steady increase in the Hall-Petch slope as

the texture approaches random texture.

138



5.4.2. Effect of loading direction

In this section we study computationally the Hall-Petch slope of microstructures

with sharp basal texture relative to the angle φ, made between the loading direction

and direction of basal poles. This is in principle very similar to the experimental

study presented by Wang et al. [37] which was performed for Mg-AZ31 alloy with

more diffuse basal texture. Similar to that study, we consider five values of φ – 0◦,

22.5◦, 45◦, 67.5◦ and 90◦. For each φ, a microstructure was first generated for the

smallest grain size using the lognormal distribution parameters corresponding to the

smallest grain size for Texture 2. This microstructure was then uniformly scaled

to twice, thrice and four times its size, hence generating the same microstructure

with different grain sizes. Similar to the previous study, for the smallest grain size

case, the grain area average size is taken to be 68 µm, and accordingly, 136 mum,

204 µm and 272 µm for the microstructures scaled to twice, thrice and four times the

smallest size, respectively. Each microstructure was constructed as a 50 x 50 x 50

voxelated grid with approximately 500 grains. The synthetic microstructures were

then deformed in tension along z-direction to a strain of 1% with periodic boundary

constraints.

Fig. 5.11(a) a depicts the pole figures representing the orientation distribution based

on which the synthetic microstructures were generated for this study. Fig. 5.11(b) de-

picts the plots of the yield stress(σY ) against inverse square-root of grain size(1/
√
d)

for different φ, from which a linear least-squares fit (denoted by dotted line) yields

the Hall-Petch intercept and Hall-Petch slope (Fig. 5.11(d)). Here d denotes the

measure of average 2D grain size noted earlier. Fig. 5.11(c) depicts the variation of
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the size-dependent component of the yield stress with inverse square-root of grain

size for the different φ. A very interesting behavior is observed here where the Hall-

Petch slope first decreases to a minimum at φ = 45◦ after which it increases again

to φ = 90◦. Fig. 5.12 visualizes the average accumulated slip on the basal, prismatic

and twin systems at the end of deformation for the smallest grain size. As φ varies

from 0◦ to 45◦ , the activity of basal slip increases while the twinning activity de-

creases. Unlike the previous parametric study, the texture is the same for different

relative angles of loading and the decrease in effect of twinning activity dominates

over the increased basal activity, resulting in a decrease in the Hall-Petch slope from

47 MPa µm1/2 when twinning predominates at 0◦ to 15 MPa µm1/2 when basal pre-

dominates at 45◦. Subsequently, as φ increases from 45◦ to 90◦ prismatic activity

increases significantly while basal activity decreases and twinning activity remains

negligible. Due to the relatively high micro-Hall-Petch coefficient of prismatic system

compared to basal system, the increase in prismatic activity dominates the decrease

in basal activity, contributing to the net increase in the Hall-Petch slope from 45◦ to

90◦.

5.4.3. Yield stress variation with grain morphology

In this section, we study the variation of yield stress of simulated microstructures with

different grain morphologies with underlying crystallographic texture corresponding

to the Texture 1 from experiments. First, a microstructure was generated for the

smallest grain size using the lognormal distribution parameters corresponding to the

smallest grain size. The synthetic microstructure used for this study is a 50 x 50 x
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(a)

(b)

(c) (d)

Figure 5.11: (a) Pole figures of strong basal texture used to generate the microstruc-
tures for this study. (b) Yield stress(σY ) plotted against inverse square-root grain
size(1/

√
d) for different relative loading directions given by φ. Dotted lines denote

corresponding linear-fit. (c) Size-dependent contribution of yield stress. (d) Hall-
Petch slope plotted for different φ values.
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Figure 5.12: Comparison of average accumulated slip at the end of deformation for
basal, prismatic and twin systems for different angles φ. B–Basal, P-Prismatic, T-
Twin.

50 voxelated grid consisting of approximately 500 grains. Different morphologies are

quantified by the aspect ratio α, which is used to modify the voxel spacings depend-

ing on the relative aspect ratios along three orthogonal directions. Let us consider a

microstructure containing equiaxed grains with voxel resolutions of ∆l along the x, y

and z-direction, for which we wish to construct a microstructure with grains possess-

ing an aspect ratio of α. Then the triplet of resolutions for the equiaxed microstruc-

ture, (∆l,∆l,∆l) is transformed to the new triplet (α−1/3∆l, α−1/3∆l, α2/3∆l). This

preserves the volume of the each voxel and hence the entire grain, as a result preserv-

ing the grain size statistics as well. Additionally, the aspect ratio now corresponds

to the ratio of the transformed resolution along the z-direction to that along the x(or

y)-direction. This eventually affects the computation of slip system-level grain size
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and subsequently the contribution to the slip resistance. Earlier work on incorpo-

rating the grain size effect has focused on modifying the slip resistance based on the

average grain size alone, which in this case is the same for all microstructures since

the grain volumes are preserved. As a result, the morphology of the grains cannot

be captured in those models, unlike the present one where the morphology affects

the slip system-level grain sizes.

CPFE simulations are performed on the microstructures which are deformed in ten-

sion along the z-direction to 1% engineering strain with periodic boundary con-

straints. Nine different aspect ratios(α) are considered: 1/5, 1/4, 1/3, 1/2, 1, 2,

3, 4, 5. Fig. 5.13 depicts the variation of the yield stress with change in aspect

ratio. It is interesting to note that the yield stress is asymmetric relative to the

Figure 5.13: Yield stress (σY ) for different aspect ratios of grains. Note the asym-
metry in the yield stress relative to the logarithm of the aspect ratio α.

logarithm of the aspect ratio. This is in contrast to a symmetric trend obtained by
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Sun et al. [158] in their statistical approach using a grain size orientation distribution

function to couple crystallographic texture and grain size in the study of grain size-

effect in two-dimensional microstructures exhibiting two slip systems. To explain

this asymmetry, we obtain the relevant expressions using elementary geometry and

some crystallographic and plastic properties particular to as-extruded texture.

We first note that the microstructures for different aspect ratios used in this study

are generated by uniform stretches along the three orthogonal directions of a mi-

crostructure with equiaxed grains. Since equiaxed grains are essentially space filling

representations of spheres, the grains in microstructures with aspect ratios different

from 1 are prolate or oblate spheroids depending on α > 1 or α < 1, respectively,

with the axis of circular symmetry coinciding with the z-direction. Now consider such

an ellipsoid with axes lengths abiding the ratio dictated by the triplet of resolutions

used to generate the microstructure. Denote the semi-axes lengths along the x, y

and z directions by a, b and c respectively, and let R denote the radius of the sphere

representing the equivalent sphere grain diameter of the equiaxed grain from which

the ellipsoidal grain was obtained. Then the semi-axes lengths must be a = α−1/3R

, b = α−1/3R and c = α2/3R resulting in the following equation for the ellipsoid :

x2

a2
+
y2

b2
+
z2

c2
= 1

=⇒ x2

α−2/3
+

y2

α−2/3
+

z2

α4/3
= R2

:=
r2

α−2/3
+

z2

α4/3
= R2 (5.4)

In the context of the as-extruded texture, the (101̄0) poles are concentrated in the ex-
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trusion direction, as seen in the (101̄0) pole figure. In addition to this, the basal plane

normals are aligned perpendicular to the extrusion direction, with almost uniform

distribution as evidenced by the close to vertical band in the (0001) pole figure. This

suggests a theoretically uniform arrangement of the HCP unit cells about the extru-

sion direction with the (101̄0) prismatic plane normal being parallel to the extrusion

direction (Fig. 5.14). From the perspective of plasticity, the basal and prismatic

systems are the primary slip systems activated when this texture is deformed along

the extrusion direction. Fig. 5.15 depicts a plot of the percentage contribution to

average accumulated slip at the end of deformation by the three individual basal and

prismatic slip systems. Even though there is some difference in the average accu-

Figure 5.14: (a) (0001) pole figure, (b) (101̄0) pole figure, and (c) theoretical ar-
rangement of HCP unit cells symmetrically about the extrusion direction with the
(101̄0) plane normal pointing along the extrusion direction.

mulated slip by slip systems corresponding to different slip direction, let’s assume for

theoretical purposes that they are equal. In other words, slip systems corresponding

to each slip direction contribute equally to the total average accumulated slip due to
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Figure 5.15: The average accumulated slip on the three basal and three prismatic
slip systems. The integers on the x-direction denote a specific slip direction : ‘1’ -
[112̄0], ‘2’ - [2̄110] and ‘3’ - [12̄10].

basal and prismatic systems. This means that among the three slip directions one of

them is always perpendicular to the extrusion direction while the remaining two are

at 30◦ to the extrusion direction. In our case, slip direction ‘1’ is perpendicular to the

extrusion direction, while the remaining two directions are at 30◦ to the extrusion

direction. Let’s now consider the measure of grain size for a particular slip direction

as the length of the line segment passing through the center of the ellipsoid with

direction coinciding with the slip direction. Denote this grain size measure for slip

direction ‘i’ by di. With knowledge of the slip directions relative to the ellipsoid the

grain size measures are straightforward to obtain using Eqn. 5.4 :

d1 = α−1/3R ; d2 = d3 =
2R√
3

(
α2/3

3
+ α−4/3

)−1/2

(5.5)
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With the earlier assumption of equal contribution of slip from the slip directions, the

size-dependent contribution to the yield stress can be expressed as being proportional

to the quantity β defined using Eqn. 5.5 with the inverse square-root dependence on

grain size measure:

β :=
3∑

i=1

1√
di

=
1√

α−1/3R
+

√
2
(
α2/3 + 3α−4/3

)1/4
√
R

=
1√
R

(√
α1/3 +

√
2
(
α2/3 + 3α−4/3

)1/4)
=
δ(α)√
R

(5.6)

Where δ(α) encodes the dependence of the yield stress on the aspect ratio α. This

function is visualized by plotting it(Fig. 5.16). We retrieve a curve very similar to the

variation captured in Fig. 5.13, demonstrating that the trends in the role of aspect

ratio on the yield stress based on the micro-Hall-Petch equation can be captured to

a reasonable extent using simple theoretical arguments.

5.5. Conclusions

In this chapter we detailed one possible implementation of the micro-Hall-Petch

constitutive model into the PRISMS-CPFE framework. Subsequently, the crystal

plasticity constitutive parameters and micro-Hall-Petch coefficients were calibrated

against macroscopic stress-strain curves from nine different texture-grain size-loading

combinations. After comparison of the calibrated parameters with the original pa-

rameters obtained from Chapter III and Chapter IV, the calibrated parameters were
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(a) (b)

Figure 5.16: (a) Variation of yield stress with aspect ratio (b) δ(α) plotted against
log(α) based on the numerator in Eqn. 5.6.

used to perform parametric studies to study the Hall-Petch slope variation relative to

changes in spread around basal texture and loading direction relative to basal poles.

This was also followed by examining predictions of the yield stress for different aspect

ratios of grains, where the asymmetry in the trend was explained based on a simple

derivation.

148



CHAPTER VI

Conclusions and Future Work

6.1. Summary

The primary goal of this thesis was to propose and develop a general methodology to

couple the grain size-effect with the underlying microstructural aspects, with specific

application to Mg-4Al alloy system.

First, the rate-dependent crystal plasticity formulation, implementation into PRISMS-

CPFE and some numerical examples were presented, which formed the basic con-

stitutive model for all crystal plasticity simulations in the rest of the thesis. We

then delved into the integration of dislocation pile-up theory, crystal plasticity sim-

ulations with HR-EBSD measurements to estimate the micro-Hall-Petch parameters

corresponding to basal slip for different GBs. The micro-Hall-Petch parameters for

basal slip were obtained by fitting HR-EBSD pile-up stress measurements ahead of

a slip band blocked by a GB, to an analytical expression obtained from a CDD

model combined with the micro-Hall-Petch assumptions. The relevant grain bound-

ary required to parametrize the micro-Hall-Petch parameters required relevant slip
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system information in the grains sharing the GB. Crystal plasticity simulations of

the microstructural sections representing the neighborhoods of the GBs of interest

were used to furnish this information. Subsequently, the micro-Hall-Petch parame-

ters were parametrized relative to the LRB factor and LM factor via an empirical

power-law expression, and the resulting fit yielded the micro-Hall-Petch multiplier

and micro-Hall-Petch exponent for the basal system, which are the key material

constants associated with the grain size-effect on basal slip.

A similar metholodology was adopted to estimate and parametrize the micro-Hall-

Petch parameters for prismatic slip with some key differences - (i) identification of

grains with notches to initiate a prismatic slip band due to the relatively high slip

resistance compared to basal slip, (ii) a modified dislocation pile-up model account-

ing for the notch, and (iii) crystal plasticity simulations of microstructural sections

representing neighborhoods of the GB, also accounting for the notch. Subsequently,

the micro-Hall-Petch parameters were parametrized relative to two GB metrics moti-

vated from slip transmission studies - the Lee-Robertson-Birnbaum (LRB) factor and

Luster-Morris (LM) factor - which are geometric quantities that encode information

about active slip systems in neighboring grains and the inclination of the GB plane.

In particular, the LRB factor is computed from the trace of slip planes associated

with relevant slip systems in neighboring grains on the GB, and the slip directions.

The LM factor, on the other hand, is only computed from the slip plane and slip

direction information associated with the relevant slip systems in neighboring grains,

without any dependence on the GB inclination. This parametrization was performed

via an empirical power-law expression, and the resulting fit yielded the micro-Hall-
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Petch multiplier and micro-Hall-Petch exponent for the prismatic system, which are

the key material properties associated with the grain size-effect on prismatic slip.

Finally, the problem of incorporating the micro-Hall-Petch model into PRISMS-

CPFE was addressed providing a specific procedure to accomplish this. The model

was then calibrated with macroscopic stress-strain curves on Mg-4Al samples includ-

ing nine texture-grain size-loading combinations. The calibrated parameters were

then compared to the parameters estimated from localized experimental studies and

the discrepancies were briefly addressed. We then concluded this with some para-

metric studies to investigate the model behavior with respect to different scenarios -

texture modification, loading direction and aspect ratio of grains.

The key contributions of this thesis include the development of a framework integrat-

ing CP simulations, continuum dislocation pile-up theory, HR-EBSD pile-up stress

measurements and empirical rules to obtain key material parameters that character-

ize the effect of the grain size on the slip system resistance of basal and prismatic slip

systems. Further, we demonstrated a methodology to incorporate framework into

CP constitutive models, performing calibration against experimental stress-strain

data and performing some parametric studies to assess the model behavior. Such

an approach can be quite useful in encoding the effect of grain size, or in general, a

microstructural length scale in polycrystalline plasticity models so as to capture the

coupling between grain size and texture for arbitrary alloy systems.

6.2. Future Work

The proposed methodology can be supplemented and extended in multiple ways :
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1. Presently, the maximum compatibility factor used in the model is solely de-

pendent on the orientation of neighboring grains and the slip systems under

consideration through the LM factor. This approach can further be refined,

with some caution, to include the grain boundary inclinations via the LRB

factor. However, this must also be supplemented with usage of microstructure

meshes which can furnish this information of the grain boundary inclinations

and that this information is independent of the meshing itself. This is partic-

ularly important since two identical microstructures can be meshed to provide

very different distribution of grain boundary inclinations, which can make the

results irreproducible or too specialized. One possible way to achieve this is

by using algorithms to smoothen the grain boundaries [159, 160] represented

in the underlying microstructure mesh. More importantly, apart from tex-

ture and grain size distributions, some information associated with the grain

boundary inclinations must also be included in synthetic microstructure gen-

eration algorithms. Rohrer et al. [161, 162] presented a review of techniques

that can be used to study the mesoscopic crystallographic structure of grain

boundary networks and to determine the grain boundary character distribu-

tion(GBCD), which is the essential information to construct LRB factors for

the microstructure. Lieberman et al. [163] proposed new technique utilizing

first order Cartesian moments of binary indicator functions, to determine grain

boundary normals directly from a voxelized microstructure image. These as-

pects can be integrated to use the input GBCD to construct a synthetic mi-

crostructure from which the grain boundary normals can be computed from

152



the computational technique.

2. The micro-Hall-Petch coefficients obtained from our previous work involving

localized experiments associated with slip bands blocked by grain boundaries,

are not in agreement with the parameters obtain post-calibration with stress-

strain curves. This is not unexpected since the basis of these two approaches is

quite different – pile-up stress measurements are localized while crystal plastic-

ity constitutive modeling is homogenized. One possible line of study could be

trying to relate the two sets of coefficients through some multiscale modeling

approach, in which the micro-Hall-Petch coefficients obtained from calibration

can be derived(to some degree of approximation) through coarse-graining the

micro-Hall-Petch coefficients obtained from pile-up stress studies. Without any

reference to the micro-Hall-Petch model, some efforts in determining the Hall-

Petch slope from the slip system-level Hall-Petch slope has been addressed

in earlier work [37, 27, 5]. Such an approach can be adopted but with the

micro-Hall-Petch model being the locally operating model to coarse-grain.

3. While the micro-Hall-Petch modification was incorporated for basal and pris-

matic slip systems, extending the approach to twinning is a natural next step.

To accomplish this will involve developing a model to obtain expressions of the

pile-up stress ahead of a twin blocked by a grain boundary. There has been pre-

vious work in the description of twins using dislocation models [164, 165, 166]

and associated applications of these models [167, 168, 169]. This work can

be integrated with experimental pile-up stress measurements ahead of a twin

blocked by a grain boundary and then relate the micro-Hall-Petch parameters
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to appropriate measures of compatibility [170, 171, 172].

4. One of the shortcomings of the micro-Hall-Petch constitutive model is that it

addresses the effect of grain size through the microstructural aspects only on the

initial slip resistance and not during the hardening stages. On the contrary, the

well-researched field of strain-gradient plasticity [97, 98, 99, 100], which is based

on the idea of GNDs targets exactly this issue, but without any modifications

to the initial slip resistance. In this approach, the loss of compatibility of the

lattice is captured using the plastic part of the deformation gradient(F p) [173],

G = F p (∇× F p) (6.1)

where G is the kinematic incompatibility tensor which is a measure of the

incompatibility associated with the intermediate configuration. Attributing

this incompatibility to the presence of dislocations which are required to be

present in order to accommodate this geometric incompatibility we have

GT =

NG∑
α=1

ραGb
α ⊗ tα (6.2)

where NG is the total number of GND systems, ραG denotes the GND density

on GND system α, with Burgers vector bα and unit line direction tα. The task

to compute ρG = [ραG] (GND density vector) when GT is known, reduces to

solving an under-determined system. Arsenlis et al. [174] proposed a way to

address this issue by defining convex objective functions in terms of the GND
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densities, whose minimizer, subject to Eqn. 6.2, is unique. Two objective

functions were proposed - (i) L-2 norm of the GND density vector and (ii) L-1

norm of the GND density vector. While the quadratic objective function is

reminiscent of the stored energy due to the GNDs the linear objective function

relates to the total GND line length. In the present scenario, for the sake

of simplicity we choose to minimize the L-2 norm objective function, which

furnishes a closed-form expression for the GND density vector.

Denote ρG by the vector of GND densities. The objective function augmenting

the constraint Eqn. 6.2 takes the form

ϕ (ρG, c) = ρG · ρG + c · (AρG − b) (6.3)

where b and A are vector and matrix rearrangements of the LHS and RHS,

respectively, of Eqn. 6.2. Further, we note that A is a 9× n while b is a 9× 1

vector. The vector of GND densities takes the form

ρG = AT
(
AAT

)−1
b = Ab (6.4)

Fig. 6.1 depicts the L2-norm of the GND density vector(obtained through

post-processing alone) for an FCC polycrystal deformed upto 3% tensile strain,

where higher numerical values of the GND density are computd at the GBs.

This can be particularly important in developing criteria based on the stored

defect energy computed from the GND density to nucleate either second phases,

twins or recrystallization nuclei at the GBs. The GND density can also be used
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Figure 6.1: Map of L2-norm of GND density vector for FCC polycrystal subject to
3% tensile strain.

in informing both isotropic and kinematic hardening laws [175, 176, 177] which

in turn can capture the effect of the microstructural length scale on hardening,

ταc = τα0 + µαbα

√√√√ Ng∑
β=1

LαβρβG (6.5)

Then the micro-Hall-Petch constitutive model can be integrated with a strain-

gradient crystal plasticity model, wherein the initial slip resistances are modi-

fied based on the micro-Hall-Petch model and subsequent hardening is encoded

within the strain-gradient plasticity framework. This, of course, comes at the

cost of a large number of experiments that will need to be performed in order

to calibrate the strain-gradient plasticity model due to the large number of

parameters arising via the hardening matrix.

5. While the calibration of the constitutive model was performed with respective

to macroscopic stress-strain curves, the calibrated parameters can be used to
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examine predictions on local strain field distribution which can be extracted

using 2D SEM-DIC experiments [131, 178, 179] or in 3D via High energy diffrac-

tion microscopy (HEDM) [180]. When using SEM-DIC, it is noted that the

micro-Hall-Petch constitutive model requires 3D data of the microstructure

which is not necessarily straightforward to obtain, specific algorithms can be

used which preserve the same SEM-DIC section while generating different mi-

crostructure instances depending on different choices of the subsurface grains.

Ganesan et al. [181] have developed a generalized inverse Voronoi approach

for reconstruction of 3D microstructures from 2D images. They demonstrated

the non-trivial effect of the subsurface grains in the third dimension, on the

continuum fields for a given microstructural section. When using 3D HEDM,

far field measurements can be used to obtain the strain distribution in the

microstructure but this is accompanied by the loss of grain boundary features

because only the center of masses of grains are obtained in this modality. Ad-

ditional methods such as Markov random field sampling [182, 183, 184] can be

used to develop realistic reconstructions of the microstructural samples for use

in micro-Hall Petch CP codes.

6. It is well known that grain size plays an important role in fatigue life of al-

loys [185], primarily determined by the role grain boundaries play in accumu-

lation of elastic stored energy in grains in the role of an impediment to disloca-

tion transmission across grains [186]. Micro-Hall Petch models can be used to

study this effect as a function of crystallographic texture, grain size, and grain

morphologies to demonstrate the effects of these attributes on extreme value
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fatigue response. Recently, the effects of crystallographic texture and grain

morphology on the extreme value fatigue response of 7075 Aluminum alloy was

computationally demonstrated using an ellipsoidal model of grains [187]. The

results show that the grain morphology effect is critical for the microstructures

that deviate from equiaxed grains. For example, addition of grain size and mor-

phology effects in crystal plasticity simulations increase the maximum plastic

shear strain range most notably for grains strained in the direction of grain

elongation. The work also indicates that equiaxed grains represent the “worst

case” scenario for the driving forces for fatigue crack formation. The effect of

grain morphology predicted by theory can benefit from validation against ex-

perimental measurements using HEDM as well as the use of micro-Hall Petch

based crystal plasticity models as a microstructure design tool to increase fa-

tigue life can be explored [188, 189, 190].

The procedure described in this thesis is by no means restricted to a specific material

system and can be extended to any crystalline material system where plasticity is

dominated by dislocation flow which manifest in the form of localized slip bands,

and where the grain size effect is linked to the ability of grain boundaries to blocking

these slip bands.
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APPENDIX A

Stress Power

Following [191], the stress power per unit volume of the isoclinic intermediate con-

figuration is given as,

ω̇ = det (F )σ : L (A.1)

where F is the deformation gradient, σ is the Cauchy stress and L is the velocity

gradient. Expanding L we obtain

L := Ḟ F−1 = ˙F eF pF eF p−1

= Ḟ eF e−1 + F eḞ pF p−1F e−1 (A.2)

which upon substituting into Eqn. A.1 yields

ω̇ = ω̇e + ω̇p
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=
(
det (F )σ :

(
Ḟ eF e−1

))
+
(
det (F )σ :

(
F eḞ pF p−1F e−1

))

with ω̇e and ω̇p denoting the elastic and plastic contributions, respectively, to the

total stress power.

The elastic stress power, ω̇e can be rearranged as follows

ω̇e = det(F )σ :
(
Ḟ eF e−1

)
= tr

(
det(F )σF e−T Ḟ e

T
)

= tr
(
F eF e−1det(F e)σF e−T Ḟ e

T
)

= tr
(
F edet(F e)F e−1σF e−T Ḟ e

T
)

= tr
(
F eT Ḟ e

T
)

= tr
(
T Ḟ e

T
F e
)

= tr
(
T Ėe

)
= T : Ėe (A.3)

yielding power conjugate stress and strain measures which are related through a

linear relationship using the generalized Hooke’s law. Following a similar procedure

for the plastic stress power results in,

ω̇p = det (F )σ :
(
F eḞ pF p−1F e−1

)
= tr

(
det (F )σF e−TF p−T Ḟ p

T
F eT

)
= tr

(
F edet (F )F e−1σF e−TF p−T Ḟ p

T
F eT

)
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= tr
(
F eTF p−T Ḟ p

T
F eT

)
= tr

(
F eTF p−T Ḟ p

T
F eT

)
= tr

(
F eTF eTF p−T Ḟ p

T
)

=
(
F eTF eT

)
:
(
Ḟ pF p−1

)
=
(
F eTF eT

)
: Lp (A.4)

Expanding Lp in terms of the slip rates in individual slip systems yields

ω̇p =
(
F eTF eT

)
:

(
ns∑
α=1

γ̇αSα
0

)

=
ns∑
α=1

γ̇α
(
F eTF eT

)
: Sα

0 (A.5)

Equating the above expression to the plastic stress power arising from physical ar-

guments, i.e., ω̇p =
ns∑
α=1

ταγ̇α, the resolved shear stress takes the form

ω̇p =
ns∑
α=1

ταγ̇α =
ns∑
α=1

((
F eTF eT

)
: Sα

0

)
γ̇α ; ∀ γ̇α

=⇒ τα =
(
F eTF eT

)
: Sα

0 (A.6)
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APPENDIX B

Matrix Exponential Gâteaux Derivative

A more comprehensive review of tensorial derivatives of tensor-valued functions is

presented in [192] while it’s importance in the context of rate-independent and rate-

dependent crystal plasticity constitutive models is covered in [193]. Let Mn denote

the space of all n × n matrices, closed under addition, scalar multiplication and

matrix multiplication. Further let exp : Mn → Mn denote the matrix exponential,

which maps any n×n matrix M to another n×n matrix Me via the following series

Me = exp(M) = I +M +
1

2!
M 2 + . . .+

1

k!
M k + . . . (B.1)

It is already known that the matrix exponential is well-defined, i.e., the series in Eqn.

(B.1) is convergent for any arbitrary choice of M . We wish to compute the Gâteaux

derivative or the directional derivative of this exponential map. In other words, the
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following limit is of interest to us

∂(expM )

∂M

∣∣∣∣∣
M

: H = Dexp(M)H := lim
t→0

exp (M + tH)− exp (M )

t
(B.2)

where H ∈ Mn. Eqn. (B.2) is precisely the directional derivative of the exponential

map evaluated at M along the direction H . Then

Dexp(M)H = lim
t→0

exp (M + tH)− exp (M)

t

= lim
t→0

1

t

(
∞∑
k=0

1

k!
(M + tH)k −

∞∑
k=0

1

k!
M k

)

= lim
t→0

[
H +

1

2!
(HM +MH) +

1

3!

(
HM 2 +MHM +M 2H

)
+ . . .

]
+ lim

t→0
O(t)︸ ︷︷ ︸
0

=
∞∑
k=0

1

(k + 1)!

(
k∑

l=0

M k−lHM l

)
(B.3)

The final expression in Eqn. (B.1) is the directional derivative of the matrix expo-

nential evaluated at M along H . Now construct a 2n × 2n matrix P as follows

:

P =

M H

0 M

 (B.4)
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Computing a few powers of P and representing it in the block matrix form

P 1 =

M H

0 M

 , P 2 =

M 2 MH +HM

0 M 2


P 3 =

M 3 M 2H +MHM +HM 2

0 M 3

 , . . .

Paying attention to the (1, 2) block for each power of P , we observe successive

contributions to the sum in Eqn. (B.3) appearing exactly once. Then it is clear that

Dexp(M)H =

[
∞∑
k=1

1

k!
P k

]
(1,2)

= [exp(P )](1,2) (B.5)

Eqn. (B.5) implies that computing Dexp(M)H reduces to evaluating exp(P ). This

is has already been implemented in the function ‘dexpm’ which forms a part of

(Manopt), a MATLAB toolbox for optimization on manifolds ([194]). I present an

alternative procedure without the need to compute the exponential of a 2n × 2n

matrix, and that is based on the following property.

Theorem : The directional derivative of the exponential map can be expressed as

Dexp(M)H =
∞∑
i=0

1

i!
Ti
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where the sequence {Ti} possesses the following generating function

Ti = M .Ti−1 + Ti−1.M −M .Ti−2.M ∀i ∈ {2, 3, 4, . . . , } ; T1 = H , T0 = 0

(B.6)

Proof. From Eqn. (B.3) we have

Ti−1 =
i−1∑
l=0

M i−1−lHM l ; Ti−2 =
i−2∑
l=0

M i−2−lHM l

=⇒ M .Ti−1 + Ti−1.M −M .Ti−2.M

=
i−1∑
l=0

M i−lHM l +
i−1∑
l=0

M i−1−lHM l+1 −
i−2∑
l=0

M i−1−lHM l+1

=
i−1∑
l=0

M i−lHM l +HM i +
�����������i−2∑
l=0

M i−1−lHM l+1 −
�����������i−2∑
l=0

M i−1−lHM l+1

=
i∑

l=0

M i−lHM l = Ti
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APPENDIX C

Cubic Line Search

The Newton-Raphson scheme offers quadratic convergence when the initial guess is

sufficiently close to the actual solution to a root-finding problem. However, for stiff

systems the simple Newton-Raphson iteration does not ensure convergence simply

because of the sensitivity of the objective function to relatively small changes in the

estimate of the minmizer. This is where line search plays a crucial role in improving

the initial guess so as to eventually achieve quadratic convergence offered by the

Newton-Raphson scheme. The line search and backtracking algorithm outlined below

has been adopted from [195].

Let f(x) denote the function whose root, x0 we would like to compute. The root-

finding problem can then be recast into an optimization problem where we wish to

minimize the objective function g(x) := 1
2
f(x) ·f(x). Now let xn denote an estimate

of the root at the nth iteration, so that the search direction, p corresponding to the
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Newton-Raphson iteration is

p = − (∇f)−1 · f (xn)

xn+1 = xn + p (C.1)

where ∇ denotes the square matrix of partial derivatives of f relative to x. In the

classical Newton-Raphson iteration, if the initial guess is sufficiently close to the

actual solution, the update based on Eqn. C.1 suffices to furnish a root. While

the search direction p represents a descent direction for g(x), taking an entire step

along that direction does not necessarily ensure a decrease in the objective function.

Rather, a more reasonable update procedure is of the form xn+1 = xn+κp ; κ ∈ (0, 1]

where the value of κ is determined adaptively to ensure that the objective function

continues to decrease sufficiently so that subsequent guesses get progressively better.

We then require the average rate of decrease of g to be atleast some fraction α of the

initial rate of decrease ∇g · p,

g (xn+1) ≤ g (xn) + α∇g · (xn+1 − xn) (C.2)

We set α = 10−4 for our purpose. Following this, a procedure is necessary to furnish

an estimate of the root(the next guess) keeping in line with sufficient decrease. This

is done through a backtracking routine. Define

h(κ) ≡ g (xn + κp) (C.3)
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so that

h′(κ) = ∇g · p (C.4)

We start with h(0) and h′(0) available. The first step is the Newton-Raphson step,

i.e., κ = 1, which if it is not acceptable leaves us with h(1) as well. Then modeling

h(κ) uniquely as a quadratic using the information h(0), h′(0) and h(1) yields g2(κ),

g2κ = [h(1)− h(0)− h′(0)]κ2 + h′(0)κ+ h(0) (C.5)

for which we are interested in the value of κ minimizing g2κ which is

κ = − h′(0)

2 [h(1)− h(0)− h′(0)]
(C.6)

To prevent κ values from being prohibitively small we set κmin = 0.1. For subsequent

backtracks, prior information is used to model h(κ) as a cubic uniquely,

g3(κ) = aκ3 + bκ2 + h′(0)κ+ h(0) (C.7)

where the constants a and b are identified from the additional conditions that g3(κ1)

and g3(κ2) give the correct values, which would have been previously evaluated. This

is the case since κ1 and κ2 will have failed the sufficient decrease condition which

would have led to further backtracking. Once a and b are computed, the minimum
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of the cubic in Eqn. C.7 is attained at

κ =
−b+

√
b2 − 3ah′(0)

3a
(C.8)

additionally enforcing 0.1κ1 ≤ κ ≤ 0.5κ1.
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