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A B S T R A C T

A data-driven framework is developed and examined for creating spatially-varying crystallographic textures
over component-scale Computer-Aided Design (CAD) models. Here, a set of three orthogonal 2D micrographs
of an Additively-Manufactured (AM) specimen are first obtained experimentally through Electron Backscatter
Diffraction (EBSD) and subsequently converted to a 3D representative unit cell using the Markov Random Field
(MRF) technique. Features such as grain size, crystallographic orientation, and grain boundary misorientation
distributions are used to validate the reconstructed 3D microstructure against input experimental EBSD
images. The variations of microstructural features during a powder-based additive manufacturing process
are subsequently modeled by merging patches from the 3D snapshot of AM microstructural unit cell in
a part-scale geometry using a tensor-based optimization process. The optimization algorithm repeatedly
pastes microstructural elements from the reconstructed MRF unit cell onto the geometrical CAD domain
until it is entirely covered. Here, through a simple Graphical User Interface (GUI), the user specifies a
tensor field over the volumetric CAD model, defining the local control over grain-scale, anisotropy, and
crystal growth orientation. This new approach provides a workflow for reconstructing global maps of AM
microstructures in real-time by embedding site-specific images based on known AM microstructural patterns
seen in experimental characterization techniques. The numerical results are helpful specifically for the
visualization of process–microstructure relationships in metal additive manufacturing techniques.
1. Introduction

With the emerging paradigm of Integrated Computational Materials
Engineering (ICME) [1], multiscale design optimization approaches
for tailoring engineering properties of Additively-Manufactured (AM)
structures through controlled processing parameters [2–7] are of great
interest to the design and additive manufacturing communities. Such
multi-level simulations often involve solving process–microstructure-
dependent properties to properly define the governing equations for
macro-scale analyses. This requires models beyond the grain-scale level
that can accurately capture the underlying morphology and texture of
the materials [8,9]. The 2D microstructures are conventionally charac-
terized through experimental instrumentations [10–13]. However, sec-
tional information obtained from 2D empirical characterization tech-
niques is generally insufficient for defining inherent microstructural
parameters (e.g., neighbor connectivity, grain size/shape, boundary
networks, etc.) [14,15]. Nevertheless, these parameters are a critical
aspect of the materials design and can strongly affect the capability of
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the structural systems to perform in their respective loading environ-
ments [16–18]. As a result, there has been a growing desire to develop
accurate measurements, allowing for the direct acquisition of full-field
3D microstructural information [19,20].

The need to precisely characterize 3D microstructures has led to
the development of several experimental methods, which are mainly
variants of two major procedures: serial sectioning [21–23] and High-
Energy Diffraction Microscopy (HEDM) [24–27]. Serial sectioning is
a destructive approach in which layers of controlled thickness are
sequentially polished away with high accuracy. This enables metal-
lographic etching and captures sectional images of a material’s mi-
crostructure. Post-processing follows to render these 2D images into
a solid 3D model. Contrary to serial sectioning, HEDM is a non-
destructive technique that uses high-energy X-rays to probe a relatively
bulk specimen. The diffraction pattern in this approach determines the
crystallographic orientations of the AM microstructure. Acquiring 3D
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Nomenclature

Symbols in MRF sampling algorithm

𝑺 𝑖 Set of three orthogonal 2D exemplars taken
along 𝑖-axis for 𝑖 = {𝑥, 𝑦, 𝑧}

𝑺 𝑖,𝑤 Windows of size 𝑤 (in pixel units) in corre-
sponding 𝑺 𝑖 micrograph

𝑺 𝑖,𝑤
𝑢 RGB triplet of pixel 𝑢 in respective 𝑺 𝑖,𝑤

window
𝑽 Synthesized 3D microstructure
𝑽 𝑣 RGB triplet of voxel 𝑣 in 𝑽
𝑽 𝑖

𝑣 Spatial neighborhoods of voxel 𝑣 along 𝑖-axis
for 𝑖 = {𝑥, 𝑦, 𝑧}

𝑽 𝑖
𝑣,𝑢 RGB triplet of voxel 𝑢 in respective cross-

section 𝑽 𝑖
𝑣

𝑺 𝑖
𝑣 Best-matching window to 𝑽 𝑖

𝑣 in respective 𝑺 𝑖

exemplar
𝑺 𝑖
𝑣,𝑢 RGB triplet of pixel 𝑢 in respective 𝑺 𝑖

𝑣 window
𝜔𝑖
𝑣,𝑢 Gaussian weighting factor associated with

pixel 𝑢 in respective 𝑺 𝑖,𝑤 window
𝐻(.) Histogram generator function for RGB chan-

nels

Symbols in LEGOMAT embedding algorithm

𝑁 Total number of tetrahedra in each patch
𝑇0 Tetrahedral mesh seed
𝒗1,… , 𝒗4 Vertices of tetrahedral mesh seed 𝑇0 in geomet-

rical domain
𝛹 (𝒗1),… , 𝛹 (𝒗4) Mapped vertices of 𝒗1,… , 𝒗4, in the mi-

crostructural domain
�̃� , �̃�, �̃� Local orthogonal vectors of tensor field within

mesh seed 𝑇0

Other symbols

𝜃, 𝒏 Angle-axis pair corresponding to crystal orien-
tation

𝒓 Rodrigues–Frank parameterization of crystal
orientation

𝑴 Orthonormal misorientation matrix
𝜙 Misorientation angle

microstructures with the above experimental techniques is generally a
prodigious process and requires the aid of expensive empirical scan-
ning devices. Additionally, such procedures uncover microstructural
information over a relatively small volume of materials at a time.
Hence, a large number of specimens must be scanned and seamlessly
merged to generate a component-scale Computer-Aided Design (CAD)
model. Such limitations reduce the general applicability of the exper-
imental procedures, urging the development of robust computational
reconstruction strategies [28,29].

Current numerical methods for predicting AM microstructure dis-
tributions are mainly physics-based techniques that require extensive
computational efforts [7]. Amongst phase-field [30,31], kinetic Monte
Carlo [32,33], and cellular automata [34,35] simulations, the phase-
field modeling techniques are often considered the most accurate ap-
proaches that can adequately capture the solute concentration, precipi-
tates, and dendrite shapes [36]. However, the advantage of using phase-
field techniques is obscured by the required computational power,
limiting the predictions to atomistic and continuum-length scales. Less
costly than phase-field, cellular automata enables the scalability for
larger domain sizes. However, the accuracy can diminish considerably
2

with increasing the cell size [37]. Additionally, the kinetic Monte Carlo
simulations (e.g., SPPARKS) [32,38] allow large-scale predictions but
have difficulties simulating the texture distributions and reconstruct-
ing complex components, such as non-equilibrium grain structures
after the solidification process. To overcome such shortcomings, there
has been considerable effort toward developing statistical-based mod-
els to generate representative microstructures. For instance, works
based on feature-matching algorithms using correlation functions [39]
or Markov Random Field (MRF) methods [40–43] can simulate mi-
crostructural components efficiently and are significantly less expensive
compared to the aforementioned physics-based models.

Modern data-driven microstructure reconstruction methods such as
MRF can employ snapshots of conventional 2D prototypes to rapidly
generate diverse groups of microstructures for new processing modal-
ities, such as hatch spacing, layer thickness, scan velocity, and effec-
tive laser energy density [28,43]. Consequently, here in this paper,
an image-based framework based on the MRF reconstruction tech-
nique [43] is used for the real-time description of microstructure
distribution of powder-based AM materials by combining material flow
fields that capture microstructural variations in grain growth direc-
tionality, anisotropy, and grain sizes. Fundamental steps include: (𝑖)
experimental acquisition of orthogonal Electron Backscatter Diffraction
(EBSD) scans of 2D microstructures, (𝑖𝑖) MRF for 3D reconstruction
of the microstructural unit cell, and (𝑖𝑖𝑖) embedding the realized 3D
microstructure into a virtual CAD geometry (i.e., a digital twin). As
a result, the method builds global models based on locally-extracted
images, warranting the term LEGOMAT: Locally-Extracted Globally-
Organized Microstructural Models. The first version of LEGOMAT, as
presented in this paper, is able to embed a single measured microstruc-
ture following the material flow path, while allowing the user to input
parameters such as hatch spacing, layer thickness, and scan direction.
Here, the algorithm reconstructs digital AM components, consisting
of several laser passes and deposition layers, with microstructural
information by mapping every finite element within the CAD model
to a microstructural domain. The algorithm utilizes an iterative patch-
based convergence criterion, minimizing the difference between the
tensor fields associated with embedding microstructures to the specified
local parameters in the CAD geometry. Such an approach can be used
for a rapid reconstruction of 3D maps of microstructures with billions
of grains at the component-scale level with user-defined processing
modalities. Table 1 provides a comparison for the strengths and weak-
nesses of the LEGOMAT reconstruction approach against existing AM
microstructure simulation techniques [7].

The following details the structure of the paper. The MRF algo-
rithm for the reconstruction of 3D small-scale images from three 2D
orthogonal EBSD exemplars is briefly described in Section 2.1. The
LEGOMAT algorithm to embed the MRF synthesized microstructures
is reviewed next in Section 2.2. Subsequently, the patch-based opti-
mization process in correlation with material flow paths is described
in detail. Thereafter, numerical and experimental results, along with
statistical comparisons for verification of grain size, crystal orientation
distribution, and grain boundary misorientation angles of the proposed
methodology, are presented in Section 3. The efficacy (i.e., computa-
tional cost and accuracy) of the LEGOMAT reconstruction framework
is then compared against known experimental characterization patterns
and simulated images from SPPARKS kinetic Monte Carlo [32].

2. Methodology

In this section, the mathematical formulation and implementation
for reconstructing large-scale 3D AM microstructures are discussed. The
overall process, as illustrated in Fig. 1, utilizes two separate algorithms.
First outlined in Section 2.1, the MRF theory, from a previously-
published work by authors [43], is summarized. There, the 2D mi-
croscopy imaging along with the MRF sampling algorithm is leveraged
to reconstruct a representative 3D microstructural unit cell from three
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Table 1
Comparison of computational methods for microstructure predictions in metal additive manufacturing.

Method Computational cost Benefits Challenges

Phase-field Extremely high Simulates both solidifications and solid-state phase
transformations

Is not suitable for large-scale predictions

Cellular automata High/intermediate (depending on
spatial domain being constructed)

Simulates solid-state transformations, and enables
crystallographic texture predictions

Accuracy of microstructure simulations depends on cell
size

Kinetic Monte Carlo Intermediate Allows for large-scale domains (dozens of layers and
passes)

Unable to predict crystallographic texture, and neglects
effect of temperature accumulation on melt pool geometry

LEGOMAT Low Allows for large-scale domains (dozens of layers and
passes), and crystallographic texture predictions

Requires microstructural libraries and knowledge of grain
growth directions
orthogonal planar experimental EBSD exemplars. Next, Section 2.2
describes the LEGOMAT large-scale synthesis process for embedding
site-specific unit cells through a tensor-based optimization procedure
that efficiently merges patches from the 3D unit cell onto a CAD model.

2.1. Generation of 3D unit cells - MRF sampling algorithm

The input to the MRF algorithm consists of three orthogonal planar
EBSD exemplars of an AM microstructure, whereas the output is a
statistically-equivalent 3D solid model of the same microstructure. The
overall process closely follows the numerical procedure published in
Javaheri et al. [43]. The key ingredients of the process are described
briefly here. Let 𝑺 𝑖 for 𝑖 = {𝑥, 𝑦, 𝑧} denote a set of three orthogonal
experimentally-obtained slices of an AM microstructure along the re-
spective 𝒙, 𝒚, and 𝒛 directions. The symbol 𝑽 indicates the synthesized
3

3D microstructure, with 𝑽 𝑣 representing the Red–Green–Blue (RGB)
coloring of the voxel 𝑣. In the realm of microstructures, RGB channels
(as a triplet) are often used for the representation of the phase infor-
mation (e.g., crystal orientations, chemical compositions, etc.). Based
on the Markovian assumption, the Probability Density Function (PDF)
of a voxel given the states of its spatial neighborhood is independent of
the entire dataset. Thus, only neighbors over a relatively small window
around the voxel 𝑣 are examined throughout the sampling process.
As seen in Fig. 2(a), the vector denoting the spatial neighborhood of
voxel 𝑣 in the slice orthogonal to the 𝑖-axis is denoted as 𝑽 𝑖

𝑣, where
𝑖 = {𝑥, 𝑦, 𝑧}. Additionally, let 𝑺 𝑖,𝑤 denote a window of the same size
in its respective 2D micrograph 𝑺 𝑖. Using the Markovian properties,
the most likely RGB triplet of the voxel 𝑣 can thus be estimated by
identifying center pixel values of 𝑺 𝑖,𝑤 in the planar micrographs that
Fig. 1. LEGOMAT approach: full-field component imaging built by using a single site-specific MRF unit cell. Here, a small-scale texture of the AM 316L stainless steel specimen in
three orthogonal planes is first extracted through Scanning Electron Microscopy (SEM) imaging. The 3D microstructure is then reconstructed using the MRF sampling algorithm as
introduced in Javaheri et al. [43]. The laser path, along with other processing parameters such as layer thickness and hatch spacing (imposed by the user), are then used to embed
the crystallographic patches from the MRF unit cell onto the CAD model. The BD, SD, and TD axes here represent the Building, Scanning, and Transverse Directions, respectively.
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best resemble the corresponding cross-sections of 𝑽 𝑖
𝑣. These windows,

as shown in Fig. 2(b), are denoted by 𝑺 𝑖
𝑣, where 𝑖 = {𝑥, 𝑦, 𝑧}.

Fig. 2. MRF unit cell reconstruction schematic: (a) the neighborhoods of the voxel 𝑣
in the slices orthogonal to the 𝑖 = {𝑥, 𝑦, 𝑧} axes, denoted as 𝑽 𝑖

𝑣, are shown. (b) The
windows in the input 2D micrographs shown in dotted lines are denoted by 𝑺 𝑖

𝑣. These
windows closely resemble the neighborhoods of the orthogonal cross-sections of voxel
𝑣, 𝑽 𝑖

𝑣.

Subsequently, let the value 𝑽 𝑖
𝑣,𝑢 denote the RGB coloring of voxel

𝑢 in the neighborhood of 𝑽 𝑖
𝑣. Let the values 𝑺 𝑖

𝑣,𝑢 and 𝑺 𝑖,𝑤
𝑢 , respec-

tively denote the RGB triplets of pixel 𝑢 in the windows 𝑺 𝑖
𝑣 and

𝑺 𝑖,𝑤. Consequently, the best-matching neighborhood of voxel 𝑣, 𝑺 𝑖
𝑣,

in each orthogonal planer image is selected by solving the following
minimization problem:

𝑺 𝑖
𝑣 = argmin

𝑺𝑖,𝑤

∑

𝑢
𝜔𝑖
𝑣,𝑢‖𝑽

𝑖
𝑣,𝑢 − 𝑺 𝑖,𝑤

𝑢 ‖

2
2 (1)

where ‖⋅‖2 represents the 𝐿2 norm, and 𝜔𝑖
𝑣,𝑢 denotes a per-pixel

radially-symmetric weighting factor, preserving the short-range corre-
lations of the nearby pixels/voxels. Here, a Gaussian distribution-based
function [43] is used to drive the corresponding influence weight-
ing factors, such that the magnitudes of the weights for nearby pix-
els/voxels are taken to be larger than the ones farther away.

The process outlined in Eq. (1) consists of an exhaustive search
that compares all the windows in the input 2D exemplars, 𝑺 𝑖,𝑤, to the
corresponding neighborhood of voxel 𝑣, 𝑽 𝑖

𝑣, and identifies windows,
𝑺 𝑖
𝑣, that lead to a minimum weighted squared Euclidean distance.

Generally, the center pixel values in 𝑺 𝑖
𝑣 for 𝑖 = {𝑥, 𝑦, 𝑧} are composed of

distinct RGB triplets. Yet, an optimal value of 𝑽 𝑣 needs to be inferred
by weighting colors pertaining to location 𝑣 not only in the matching
windows of voxel 𝑣 but also in its surroundings as follows:

𝑽 𝑣 = (
∑

𝑖∈{𝑥,𝑦,𝑧}

∑

𝑢
𝜔𝑖
𝑢,𝑣𝑺

𝑖
𝑢,𝑣)∕(

∑

𝑖∈{𝑥,𝑦,𝑧}

∑

𝑢
𝜔𝑖
𝑢,𝑣) (2)

note that the subscripts 𝑢 and 𝑣 are switched in Eq. (2), compared to
Eq. (1). This implies that the optimal color of the voxel 𝑣, 𝑽 𝑣, is the
weighted-average of the colors at locations corresponding to voxel 𝑣
in the best-matching windows of voxels 𝑢 found within the synthesized
3D microstructure. The RGB channels here are averaged independently.
Since 𝑽 𝑣 is continuously changing after each step, the set of closest
input neighborhoods 𝑺 𝑖

𝑣 may vary accordingly after each iteration.
Hence, the above two steps are repeated until convergence; that is, until
the set of 𝑺 𝑖

𝑣 remains unchanged.
Furthermore, the color space associated with micrographs is typi-

cally discrete and range-bound. Consequently, the averaging performed
in Eq. (2) always tends to shrink the color levels. For instance, the color
level 0 has the tendency to increase, due to it being averaged with all
the color levels that are greater or equal to 0. However, the assump-
tion in MRF reconstruction remains that the two datasets (i.e., three
orthogonal planar exemplars and the solid synthesized model) have
the same Cumulative Distribution Function (CDF) of color densities.
As a result, given the reference exemplars and the target synthesized
images, the MRF algorithm normalizes the color histograms at the end
of each iteration by first binning the colors into 255 discrete intervals.
4

Thereafter, histogram matching, as demonstrated in Fig. 3, is applied
independently for each RGB color channel such that the color density of
the synthesized model closely matches with the planar exemplars [43].

Fig. 3. Histogram matching algorithm: given the reference (2D) and the target (3D)
images, the color histograms are obtained by binning the colors into 255 discrete
intervals. Cumulative Distribution Functions (CDFs) of the two color histograms,
denoted as 𝐻2𝐷(.) and 𝐻3𝐷(.), are then computed and normalized. The color level
𝐺𝑝 in the synthesized 3D image is adjusted for each RGB channel independently. The
new color 𝐺𝑞 has the same CDF as in input 2D exemplars.

Although the methodology presented here is not tied to any specific
image resolution, all the input exemplars are initially re-sampled to
128 × 128 pixels prior to the 3D reconstruction. Next, a random RGB
triplet from the input planar exemplars is assigned to each voxel 𝑣,
as an initial condition. The MRF reconstruction process is then carried
out in a multi-resolution framework: starting with a coarse voxelated
mesh while progressively interpolating the results to a finer resolution.
The multi-resolution approach considerably increases the convergence
rate associated with the sampling algorithm. As such, three resolution
levels 323, 643, and 1283 are sequentially used for presented MRF unit
cell reconstructed examples. The computational cost for generating the
MRF unit cell is directly related to the pixel resolution and the sampling
window size. In the unit cell reconstruction framework, the majority of
the computational burden is related to identifying the best-matching
expectations in the orthogonal input images. The detailed computa-
tional breakdown can be found in [43]. In the following section, the
numerical process associated with the LEGOMAT for embedding the
location-specific unit cell in an engineering-scale geometry is discussed.

2.2. Large-scale synthesis - LEGOMAT embedding algorithm

The inputs of the LEGOMAT algorithm consist of a geometrical CAD
model and an exemplar solid 3D unit cell of an AM microstructure,
as outputted from the MRF reconstruction process. Here, the input
CAD geometry is discretized into tetrahedral meshes via Delaunay
tetrahedralization algorithm [44]. In return, the LEGOMAT output
is of a 3D CAD model filled with microstructural patches from the
exemplar 3D unit cell. It is worth noting that the LEGOMAT algo-
rithm, as presented in this paper, is a stand-alone approach and can
be ultimately utilized to reconstruct a wide range of part-scale 3D
solid textures using input unit cells obtained from either experimental
procedures or other existing numerical techniques (e.g., DREAM.3D,
Neper, etc.). The MRF algorithm, however, is notably more suitable
for reconstructing small-scale AM unit cells since it can systematically
model realistic grain structures (e.g., non-convex and non-equilibrium
grain structures) without assuming an idealized morphology based on
Voronoi tessellation employed in Neper [45] or superellipsoid geo-
metrical approach in DREAM.3D [46]. Furthermore, the generation
of statistically-representative 3D numerical models via DREAM.3D or
Neper generally requires information such as spatial distributions and
3D grain shapes, which is not readily attainable from a limited set of
orthogonal planar exemplars as used in this paper.



Computational Materials Science 206 (2022) 111228I. Javaheri et al.
Metal additive manufacturing processes can often be classified
based on powder-delivery methods into two general categories: Laser
Engineered Net Shaping (LENS) and Laser Powder-Bed Fusion (LPBF).
The LENS process utilizes a carrier gas stream to transport powder
through a nozzle directly onto the melt pool at the surface of the build.
In LPBF, however, a laser beam often rasters across the metallic powder
bed. Although these two manufacturing techniques have markedly
different melting and solidification dynamics, they often exhibit similar
underlying microstructural patterns. In particular, the solidification
process results in the formation of highly-localized non-equilibrium
microstructural components within the fusion zone [47–49]. Preferred
crystallographic growth directions in these manufacturing techniques
tend to align the columnar grains in the direction of increasing temper-
ature. For instance, on the SD plane, the columnar grains tend to grow
perpendicular to the melt pool’s solidification surface, while curving
toward the laser beam directions [50,51]. Hence, the alignment of such
complex features in 3D geometrical space while using a single reference
3D snapshot, requires a tensor field (i.e., a set of three orthogonal
vector fields) that can thoroughly capture the underlying material
growth orientations after the solidification process.

In the current implementation, as illustrated in Fig. 4(b), a volu-
metric vector field is specified over the CAD model, simply by manu-
ally drawing the material growth directions on the surface and cross-
sections of the CAD model. The second direction of the tensor field is
then chosen randomly upon embedding each microstructural element,
and the third direction is set to be the cross-product of the two vectors.
Alternatively, the volumetric tensor field can be automatically inferred
directly by the experimental measurements. However, such measure-
ments are only possible to obtain on external surfaces of the build and
not at the interior locations. Though, one can incorporate Computa-
tional Fluid Dynamics (CFD) simulations to reproduce the volumetric
5

temperature gradient that can ultimately inform the preferred material
flow directions [52,53]. The latter approach is outside the scope of
the presented methodology. However, it will be incorporated in future
studies upon automation of the material growth directions based on
a set of input parameters such as hatch spacing, layer thicknesses,
and scanning patterns. For interpolation of the user-specified vectors,
a Laplacian smoothing [54] is utilized, which has been previously
employed in lapped texture synthesis methods [55,56]. Once the ma-
terial flow paths are scribed, the local scaling of the grain sizes, as
seen in Fig. 4(c), is specified to incorporate size-varying crystals in
the CAD model. Additional details regarding the manual specification
of material flow fields and grain size scaling are provided in Sections
Sections 2.2.1 and 2.2.2, respectively. Next, the LEGOMAT algorithm,
as outlined in Section 2.2.3, repeatedly pastes the microstructural
patches from the MRF unit cell onto the CAD model while aligning
the embedding microstructures according to the local tensor orientation
and specified scaling parameter. The result of the embedding process
is shown in Fig. 4(d) along with a few of its cross-sections across each
orthogonal direction.

Contrary to the voxelated filling approach outlined in Section 2.1,
a patch-based optimization technique is implemented here that uses a
tetrahedral discretization to represent the solid geometrical CAD mod-
els. This formulation has certain benefits over voxel representation used
in Section 2.1. The main advantage is it requires a substantially smaller
number of elements to approximate the 3D CAD model, resulting in
considerably fewer iterations (and equivalently lower computational
cost) to complete its reconstruction task. Next, the manual specifica-
tions of the material flow field, grain size scaling, along with numerical
embedding process and its implementation are explained in detail in
Sections 2.2.1–2.2.3.
Fig. 4. Illustration of LEGOMAT embedding process: (a) inputting the geometrical mesh along with 3D solid microstructural unit cell, (b) manually drawing the local vector fields,
representing the preferred crystallographic growth orientation, (c) setting up the grain-scale parameterization by embedding larger grains farther away from the laser path, (d)
result of LEGOMAT’s embedding procedure, along with snapshots of three orthogonal cross-sections in the realized CAD structure.
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2.2.1. Material flow fields

In this paper, the preferred crystallographic growth orientations
illustrated in Fig. 4(b) are manually drawn as a set of orthogonal vector
fields based on known microstructural patterns seen in experimental
characterization techniques. Upon specification of the growth orienta-
tions, the LEGOMAT optimization procedure in Section 2.2.3 closely
follows the local directional vector fields throughout the embedding
process of the microstructural patches from the MRF unit cell onto
the CAD model. In structural systems manufactured by LENS or LPBF
techniques with a zig-zag rastering pattern, columnar-shape-like grains
are formed away from the laser beam track along the BD surface in-
plane to the build. Additionally, on the SD plane, columnar grains tend
to elongate perpendicular to the melt pool’s solidification boundary
while curving in the direction of increasing temperature (i.e., toward
laser beam track) [5,16,23,35]. On the TD surface, the elongated grains
tend to extend nearly perpendicular to the laser beam track while
becoming slightly inclined toward SD at regions closer to the beam
track [5,23,38,48,57,58]. Accordingly, given an input CAD model and
processing modalities, the user can follow the above crystallographic
growth patterns by manually drawing the columnar directions across
surfaces orthogonal to the laser direction. The second direction of the
tensor field is then chosen at random upon embedding each microstruc-
tural element. At the same time, the third direction is set to be the
cross-product of the two local vector fields. For volumetric interpola-
tion of these vectors, a Laplacian smoothing scheme [54] is employed
to approximate the preferred growth directions across non-trivial faces
with unspecified or unknown growth directions. The process for the
manual drawing of the first directional vector pertaining to the crystal
growth direction along with relative experimental images from the
work of Rodgers et al. [32] for a LENS build with a zig-zag rastering
pattern is shown in Fig. 5.

2.2.2. Material grain size

As evident from experimental characterization techniques of AM
components [5,32,38,48,58], small grains near the laser path tend
to nucleate during the solidification process. These grains, however,
quickly transition to much larger elongated grains in between the laser
paths. Such transitions often result in three classes of grain morphology
depending on location within the build: (𝑖) large curved columnar
grains on TD and SD planes, (𝑖𝑖) fine equiaxed grains near the laser
6

path on BD plane, and (𝑖𝑖𝑖) large transversely-elongated columnar
grains across regions in between the laser paths across BD surface. The
resulting heterogeneous mixture of elongated and equiaxed grains often
has a visible periodicity with the deposition thickness, hatch spacing,
and scanning pattern [32]. This transition is further controlled by the
thermal gradient and solidification rate at the solid–liquid interface.
For instance, the width corresponding to small-scale grains along the
laser beam track often tends to grow with increasing laser speed or
decreasing laser power [58]. Fig. 6 illustrates these grain types in
cross-sectional regions orthogonal to the scan direction. Although the
curvature of these grains is mainly controlled by the directional vector
fields outlined in Section 2.2.1, for a more realistic reconstruction,
grain-scale parameterization must also be specified before initiating
the embedding process in Section 2.2.3. Accordingly, in the LEGOMAT
approach, the user may enforce smaller grain scales near the laser path
in cross-sections perpendicular to the scan direction. Such an approach
can efficiently create the equiaxed-to-columnar grain transition, as
elaborated above. The process for the manual specification of the grain
size parameterization for an AM build with a zig-zag tracing pattern is
shown in Fig. 6.

2.2.3. Tensor-based optimization procedure

The LEGOMAT embedding process closely follows the lapped tex-
ture reconstruction technique outlined in the work of Praun et al. [56],
which was initially developed for 2D texture embedding. Here, in the
process of volumetric embedding, a group (or a patch) of 𝑁 tetrahedral
elements, denoted as 𝑇𝑖 for 𝑖 = 0, 1, 2,… , 𝑁 − 1, is selected in the CAD
model such that there are slight variations in the user-defined tensor
field across the group. The size of the group of tetrahedral elements
is always chosen to be contained within the representative input MRF
microstructure. In particular, let the tetrahedron located at the center
of the patch, denoted by 𝑇0, constitute as the seeding element. The
LEGOMAT algorithm then acquires all neighboring elements of the seed
tetrahedron for which the following two conditions are satisfied: (𝑖) the
mapped vertices of the tetrahedron 𝑇𝑖 are inside the microstructural
unit cell, and (𝑖𝑖) the dot product between the tensor fields associated
with seed tetrahedron 𝑇0 and the element 𝑇𝑖 is greater than zero. In the
case of uniform discretization, the total number of assigned elements at
each iteration varies considerably based on global processing modali-
ties and relative spatial locations to the laser path. Generally, fewer
elements are assigned along the laser path, where grain size scaling
Fig. 5. Manual drawing of local vector fields, representing the preferred crystallographic growth orientation, based on known microstructural patterns seen from the experimental
characterization techniques. The shown TD image is taken from the centerline of a beam pass. The experimental images are reproduced from the work of Rodgers et al. [32] under
the terms of the Creative Commons CC-BY license.
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Fig. 6. Manual parameterization of grain size scaling by embedding larger grains farther away from the laser path in cross-sections orthogonal to the scan direction. The experimental
images shown here are reproduced from the work of Rodgers et al. [32] under the terms of the Creative Commons CC-BY license.
is small. In contrast, more significant numbers of tetrahedra are being
filled simultaneously at locations closer to the melt pools boundary.

The embedding algorithm is based on an optimization process that
computes the mapping of the vertices of the 4-node tetrahedral ele-
ments 𝑇𝑖 within each patch, to locations in the MRF microstructure
that closely resemble the user-specified tensor field. In the following
discussion, let 𝒗1,… , 𝒗4 represent four vertices of the seed tetrahedron
𝑇0 in the CAD model. Accordingly, the primary aim of the LEGOMAT
embedding process is to identify the linear mapping of these nodes to
positions 𝛹

(

𝒗1
)

,… , 𝛹
(

𝒗4
)

in the representative MRF unit cell.
Here, let �̃� , �̃�, and �̃� represent the set of three local orthogonal

vectors of the tensor field associated with the seed tetrahedron, 𝑇0.
Consequently, the barycentric coordinates, denoted as 𝑝1,… , 𝑝4, of
tetrahedral element 𝑇0 can be used to represent �̃� as follows:

{

𝑝1𝒗1 + 𝑝2𝒗2 + 𝑝3𝒗3 + 𝑝4𝒗4 = �̃�
𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 = 0

(3)

Similarly, �̃� and �̃� can be represented using 𝑞1,… , 𝑞4 and 𝑟1,… , 𝑟4,
respectively. Furthermore, due to the mapping associated with vertices,
i.e., 𝒗𝑗 ↦ 𝛹

(

𝒗𝑗
)

for 𝑗 = {1, 2, 3, 4}, being linear, the mapping of
vector �̃� in the CAD model to the corresponding vector 𝛹

(

�̃�
)

in the
microstructural space follows the same weighting factors as in Eq. (3),
as formulated below:

𝛹
(

�̃�
)

= 𝑝1𝛹
(

𝒗1
)

+ 𝑝2𝛹
(

𝒗2
)

+ 𝑝3𝛹
(

𝒗3
)

+ 𝑝4𝛹
(

𝒗4
)

(4)

Similarly, 𝛹
(

�̃�
)

and 𝛹
(

�̃�
)

can be formulated in terms of barycen-
tric coordinates 𝑞1,… , 𝑞4 and 𝑟1,… , 𝑟4, respectively. Ideally, when
mapped onto the microstructural domain, these vectors should be
aligned with the orthogonal 𝒙, 𝒚, and 𝒛 coordinate axes in the mi-
crostructure. However, as illustrated in Fig. 7, slight differences are
permitted in order to enforce microstructural continuity in the CAD
model. Therefore, difference vectors, denoted as 𝒅𝑝, 𝒅𝑞 , and 𝒅𝑟, are
defined for the seed tetrahedron, 𝑇0, as follows:

⎧

⎪

⎨

⎪

⎩

𝒅𝑝 = 𝛹
(

�̃�
)

− (1, 0, 0)𝑡

𝒅𝑞 = 𝛹
(

�̃�
)

− (0, 1, 0)𝑡

𝒅𝑟 = 𝛹
(

�̃�
)

− (0, 0, 1)𝑡
(5)

Similarly, the difference vectors associated with all tetrahedral ele-
ments in the patch, i.e., 𝑇 for 𝑖 = 0, 1, 2,… , 𝑁 − 1, can be computed.
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𝑖

Therefore, let 𝒅𝑖
𝑝, 𝒅

𝑖
𝑞 , and 𝒅𝑖

𝑟 denote the difference vectors associated
with the tetrahedral element 𝑇𝑖. The LEGOMAT optimization problem is
to find the vertex mapping for all 4-node tetrahedra 𝑇𝑖 within the patch
such that the least-squares functional defined below is minimized:

 = 1
𝑁

𝑁−1
∑

𝑖=0
‖𝒅𝑖

𝑝‖
2
2 + ‖𝒅𝑖

𝑞‖
2
2 + ‖𝒅𝑖

𝑟‖
2
2 (6)

However, the minima corresponding to Eq. (6) is unique up to a
translation vector. Thus, an additional constraint, as formulated below,
is set to fix the center of the seed tetrahedron, 𝑇0, to the center of the
microstructural volume:

𝛹
(

𝒗1
)

+ 𝛹
(

𝒗2
)

+ 𝛹
(

𝒗3
)

+ 𝛹
(

𝒗4
)

4
= (0.5, 0.5, 0.5)𝑡 (7)

Consequently, the optimized solution for mapped vertices associated
with 𝑇𝑖 for 𝑖 = 0, 1, 2,… , 𝑁 − 1 from the constrained minimization
problem formulated in Eqs. (6)–(7), can be efficiently obtained by solv-
ing a sparse linear system of equations. Once the patch of tetrahedral
elements 𝑇𝑖 is fully mapped to the microstructural space, the LEGOMAT
optimization procedure randomly continues with another location in
the CAD model consisting of an unmapped tetrahedron. The embedding
process repeats until all the nodes in the CAD model are mapped to the
microstructural unit cell.

The tensor-based optimization procedure elaborated here is specific
to a 4-node tetrahedral discretization. Generally, partitioned elements
need to allow for a linear interpolation of coordinates or variables as
formulated in Eqs. (3)–(4). Accordingly, a 10-node tetrahedron will
have non-linear interpolants and so need further modifications in the
LEGOMAT optimization algorithm to implement the mapping process
of the tensor fields in the CAD model onto the MRF microstructure.
The LEGOMAT algorithm and its Graphical User Interface (GUI) for
the manual drawing of material growth direction and grain size scaling
are implemented using C++ and OpenGL. Furthermore, large-scale
microstructure simulation times generally vary drastically depending
on the complexity of material flow fields (e.g., number of paths, layers,
etc.) and the mesh density in the CAD model. Amongst all the steps
described in Section 2.2, the manual drawing of the volumetric vector
field is the most time-consuming process, especially for multi-layer,
multi-track scenarios. Nonetheless, LEGOMAT reconstruction frame-
work is still fairly inexpensive in terms of computation and memory
for representing large-scale solid models.
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Fig. 7. LEGOMAT optimization schematic: the optimization process minimizes the difference vectors 𝒅𝑝, 𝒅𝑞 , and 𝒅𝑟 between microstructure coordinate axes 𝒙, 𝒚, 𝒛 and respective
transformed axes 𝛹

(

�̃�
)

, 𝛹
(

�̃�
)

, 𝛹
(

�̃�
)

for each tetrahedron.
3. Results and discussion

In this section, the process parameters for manufacturing and image
acquisition of EBSD sections of the AM 316L stainless steel specimen are
explained. Thereafter, the results for reconstructing digital twins using
a set of locally orthogonal planar images are highlighted. The efficacy
of the MRF algorithm is assessed by comparing the crystallographic
orientations, grain boundary misorientations, and grain size statistics of
the synthetic and experimental images. Next, the LEGOMAT algorithm
is used for the simulation of various part-scale AM microstructures con-
sisting of multi-layer and multi-track processes. The part-scale results
are then compared against known experimental imaging and simulated
microstructures using SPPARKS kinetic Monte Carlo simulator [32].

The 316L stainless steel specimen was fabricated via a Selective
Laser Melting (SLM) 280 HL machine, equipped with two 400 W Contin-
uous Wave (CW) Ytterbium fiber laser beams with approximately 80 μm
diameter at the focal point. The SLM 280 HL machine is composed of a
building platform with a maximum capacity of 280 × 280 × 350 mm3.
Prior to the operation, argon gas was flooded into the chamber to
lower the oxygen level below 0.1%. The pre-alloyed 316L stainless
steel powder, with particle sizes between 30 − 50 μm, was used as
the printing substance. A fully-dense cuboid of 10 × 6 × 10 mm3

sample was fabricated for microscopic analysis using the manufacturer
recommended guidelines with core processing parameters of 200 W
laser power, 800 mm/s scan speed, 30 μm layer thickness, and 120 μm
hatch spacing. The AM volume was printed using a bi-directional
scanning technique at which the laser beam moved across each layer in
a zig-zag pattern. The cuboidal sample was then sequentially polished
through diamond suspensions of 9 μm, 6 μm, and 3 μm. This followed
by alumina suspensions of 1 μm and 0.05 μm, intending to achieve fine
smooth faces. The EBSD analyses of three orthogonal 700 × 700 μm2

faces of the cuboidal specimen were subsequently performed using a
high-resolution Scanning Electron Microscopy (SEM) TESCAN MIRA3,
equipped with an EDAX Hikari XP EBSD detector. These orthogonal
sections were mounted separately using a slow-set epoxy. Each EBSD
scan was taken at 30 kV voltage and 1.0 μm step size. The EBSD camera
parameters were set to 1 × 1 binning, high-gain, and low-exposure to
achieve an average Confidence Index (CI) of 0.6.

Once the experimental EBSD images were generated, the raw Euler
angles were mapped to nodes in a discretized Orientation Distribution
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Function (ODF). The ODF provides a probability density of the crystal-
lographic textures by describing the Euler angles associated with each
node in the Rodrigues space. Here, the crystal orientation is represented
based on the unique association of a rotation axis, denoted as 𝒏, and
a counterclockwise angle, represented by 𝜃, about 𝒏. A proper axis-
angle rotation pair (i.e., 𝜃 and 𝒏) can relate the sample orientation
to the crystallographic orientation. The corresponding Rodrigues pa-
rameterization, denoted as 𝒓, can be computed as 𝒓 = 𝒏 tan( 𝜃2 ). The
lattice structure of the material of interest in this paper (i.e., 316L
stainless steel) is of cubic symmetry. Such a lattice structure reduces the
orientational space to a small subset, called the fundamental region that
accounts for the cubic symmetry of the lattice structure in the scanned
material. The resulting fundamental Rodrigues region is illustrated
in Fig. 8(a). For numerical analysis, the fundamental region can be
discretized using a tetrahedral finite-element mesh. However, due to
cubic symmetry, several of the nodes in the grid are equivalent. Hence,
the fundamental region can be further reduced to a smaller set of
independent nodes colored in blue as shown in Fig. 8(b). Accordingly,
each point in the EBSD dataset is mapped to the closest independent
node in the discretized ODF space. The measured EBSD images are
then colored according to the nodal numbers. A simple choice for the
colormap, as depicted in Fig. 8(c), is to apply the Rodrigues vector
itself for each independent node as an RGB triplet. Subsequently, for
MRF reconstruction, a subset of experimental EBSD sections of size
256 × 256 μm2 along each orthogonal axis is then selected and re-
sampled to 128 × 128 pixels. Note, the reconstruction scheme presented
in this work is not tied to a specific input resolution. Thus, any 2D
image resolution can be reconstructed, if needed. The implication is
that the user should ensure to specify a sufficient pixel resolution to
capture the phenomena of interest. Following this, the texture colorings
corresponding to TD and SD directions were adjusted such that they
represent a similar histogram as of BD image. The additive manufac-
turing processes tend to create large variations in the crystallographic
texture across a specimen. As such, performing histogram matching
can establish a consistent texture in the volumetric MRF unit cell, as
images are taken at different locations within the specimen. Fig. 9(a)
elucidates the orthogonal set of images for 316L stainless steel specimen
as inputted to the MRF reconstruction algorithm. The 3D EBSD image
from the MRF algorithm is shown in Fig. 9(b). A number of different
sections of the reconstructed model across TD axis are also shown in
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Fig. 8. Illustration of Orientation Distribution Function (ODF): (a) the Rodrigues fundamental region for cubic symmetry, (b) a discretized ODF with independent nodes along the
external surface, colored blue, (c) applied colormap showing the RGB values of independent nodes in the fundamental region. Here, the internal elements have been faded for a
better visualization of the colormap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Illustration of 2D/3D images: (a) set of orthogonal experimental EBSD images of AM 316L stainless steel microstructure as inputted in MRF sampling algorithm, (b)
representative 3D MRF reconstructed model, and (c) numerous sectional images of the reconstructed model along TD axis.
Fig. 9(c). The averaging step performed in Eq. (2) tends to smoothen
the noises within the MRF synthetic model, hence providing an overall
smoother reconstruction compared to input 2D exemplars.

Following the reconstruction of the MRF unit cell, each color level
of the synthesized model is mapped to an independent node in the
fundamental Rodrigues region using the colormap shown in Fig. 8(c).
For every voxel in the unit cell, the four closest colors (in Euclidean
norm sense) in the discretized ODF space are identified. The voxel
coloring remains unaltered, provided the sampled RGB triplet is within
the specified threshold. Otherwise, the RGB coloring of the voxel is
replaced randomly with one of the four closest independent nodes in
the ODF fundamental region. As depicted in Fig. 10(a)–(b), it is found
that the resulting pole figures of the MRF reconstructed microstructure
closely resemble the measured texture distribution. Such an assessment
exhibits the ability of the MRF unit cell reconstruction algorithm to
accurately simulate textural descriptions of AM microstructures.

Once the RGB triplets are mapped through the discretized ODF
colormap, the grain boundary misorientation angles can be conve-
niently calculated. In the scheme of grain boundary geometry, the
misorientation is defined in terms of the required angle 𝜙 to bring
the two neighboring grains into coincidence about an axis common to
9

Fig. 10. Texture comparison of ⟨111⟩, ⟨110⟩, and ⟨100⟩ pole figures for: (a) the

orthogonal experimental images, against (b) the synthesized 3D MRF microstructure.
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Fig. 11. Illustration of 2D/3D spatial distribution of grain boundary misorientation angles for: (a) set of orthogonal experimental images of 316L stainless steel AM microstructure,
(b) representative 3D MRF reconstructed model, and (c) numerous sectional images of the MRF reconstructed model along TD axis.
both lattices. Such parameterization is concisely known as the angle-
axis misorientation pair. To perform mathematical manipulations, the
misorientation is conveniently expressed as a 3 × 3 orthonormal mis-
orientation matrix 𝑴 . Consequently, for two interfacing grains denoted
as grains 𝐴 and 𝐵, the columns of the matrix 𝑴 are equivalently the
direction cosines corresponding to the rotation of the crystal coordinate
systems of grain 𝐵 to grain 𝐴, as grain 𝐴 being the reference grain. The
misorientation angle is obtained from the matrix 𝑴 as follows:

2 cos𝜙 + 1 = tr(𝑴) (8)

where tr(⋅) is defined to be the trace or the sum of elements on the main
diagonal for an input matrix.

Furthermore, due to the symmetric nature of the crystallography
involved, the axes of grain 𝐵 can be chosen in more than one way in
respect to the reference grain 𝐴. For cubic symmetry, this multiplicity
is precisely 24; that is, there are 24 unique (but equivalent) ways in
which the misorientation matrix 𝑴 can be expressed. This results in 24
angle-axis pairs. Although these angle-axis pairs are all equivalent, it is
conventional to report the lowest angle solution when describing a mis-
orientation angle. Accordingly, Low-Angle Grain Boundaries (LAGBs),
defined as 𝜙 < 15◦, are often immediately obvious.

For assessment of grain boundary misorientation angles of the MRF
reconstruction, the reconstructed 3D image is properly segmented first.
The misorientation angles are then computed slice-by-slice using eight-
fold connectivity, where the crystal orientation (i.e., Rodrigues vectors)
of every voxel is being compared against its adjacent neighbors (along
the horizontal, vertical, and diagonal directions) positioned on each
cross-section. If the frequency of the most repeating orientation index
in the 3 × 3 window is within a specified threshold, the two most
frequent Rodrigues vectors inside the sampling window are identi-
fied. Following this, the misorientation angle between the two most
frequently-occurring orientation indices is computed. The same pro-
cess follows for the orthogonal experimental images. Fig. 11(a)–(b)
illustrates the spatial distribution of grain boundary misorientation
angles for experimental and 3D synthesized EBSD images, respectively.
As expected, the low-angle boundaries ranging between 0◦ − 15◦, as
illustrated in Fig. 11, are highly pronounced in both sets of images.
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The corresponding spatial distribution of misorientation angles of the
sections in Fig. 9(c) are also depicted in Fig. 11(c). Thereafter, the
High-Angle Grain Boundary (HAGB) misorientation values (referred to
as misorientation angles greater or equal to 15◦) are sorted to allow
for a quantitative comparison between experimental and synthesized
images. The probability densities of the HAGBs for the set of three
orthogonal images and cross-sections of the reconstructed MRF model,
as seen in Fig. 12 are then calculated over 21 bins. Here, because
of the cubic symmetry of the measured specimen’s lattice structure,
the maximum unique misorientation angle possible is limited to 62.8◦.
Overall, a close agreement between the scanned and reconstructed MRF
images is observed, with the 3D reconstruction predicts marginally a
lower probability for misorientation angles ranging between 40◦ − 52◦.

Fig. 12. Comparison of PDF of HAGB misorientation angles of the 3D synthesized
MRF microstructure against experimental imaging. Here, the probability densities of the
misorientation angles are computed over 21 bins. The maximum unique misorientation
angle possible due to cubic symmetry is 62.8◦.

Next, the ability of the MRF algorithm to accurately model grain
size statistics of the 316L stainless steel microstructure along TD axis as
compared to the respective input experimental exemplar is examined.
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Fig. 13. Comparison of PDFs for (a) grain size, and (b) aspect ratio of the 3D synthesized microstructure against experimental imaging along TD axis. The probability densities
of the measured statistics are computed over 21 bins and fitted using a log-normal distribution.
Grain size distribution is essential for simulating mechanical properties
in AM structures using Hall–Petch models [59,60]. In this assessment,
grain sizes of the 2D EBSD image are obtained using the following
procedure. The incomplete grains along the outer edges adjacent to the
borders of the experimental EBSD image are removed. For every inner
crystal, the grain areas, along with the ratio of the major over minor
diameters of the best-fitting ellipse with an equivalent normalized sec-
ond central moments, are computed and stored. Afterward, abnormally
small and large grains are removed from the measured grain area
dataset. The histograms of the grain area and the corresponding aspect
ratio for each grain, as depicted in Figs. 13(a)–(b) respectively, are
then plotted over 21 bins using a log-normal fit. Similarly, to capture
the grain size distribution of the 3D synthesized unit cell, slices along
the TD axis are extracted, and the same process as used in the 2D
exemplar is applied. That is, the external grains for every slice are first
eliminated, and for each inner grain, the grain area and its respective
aspect ratio are obtained. Here, aspect ratios near one represent near-
circular (i.e., equiaxed) grain morphology. In contrast, values close
to ∞ represent needle-like cross-sections. When comparing grain size
statistics, both the simulated and experimental log-normal distributions
peak near 160 μm2, indicating a considerable fraction of small-size
grains in the dataset. Additionally, on the TD plane, nearly 51.9% and
47.6% of the grains in experimental and simulated images, respectively,
have aspect ratios ranging from 5 to 20. This implies that a large
fraction of the realized 316L stainless steel microstructure on TD surface
consists of highly-elongated morphologies, which is also evident in
Fig. 9. Overall, as illustrated in Fig. 13, close agreements between the
input experimental image and MRF reconstruction are observed, with
minor deviations seen for the low-frequency components, where the 3D
MRF reconstruction marginally predicts a lower probability.

Thereafter, the LEGOMAT reconstruction technique follows by con-
structing global models shown in Fig. 14, based on the single locally-
extracted MRF microstructure shown in Fig. 9(b). The LEGOMAT ap-
proach presented in this paper is not tied to the MRF numerical
reconstruction algorithm only and can be coupled with a wide variety
of unit cell microstructural exemplars obtained from other computa-
tional frameworks (e.g., Voronoi tessellation [17], DREAM.3D [46],
Neper [45], supervised learning [28], etc.) or even experimental 3D
images [23,26,27]. The MRF reconstruction algorithm, however, is
specifically advantageous for building realistic small-scale AM unit cells
from a single set of orthogonal 2D planar exemplars. The LEGOMAT
numerical approach is to embed the reconstructed 3D microstructures
in the CAD geometry based on experimentally observed insights on
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AM microstructure formation, as it is inherently controlled by solid-
ification rate and thermal gradient, which are also functions of laser
parameters (e.g., speed, power) and the laser path (e.g., hatch spacing,
layer thickness). The effects of cooling rate and temperature gradient
history on microstructural patterns during the solidification process
have been well studied in literature [35,50,51,57]. Key components
seen in the solidification process include: (𝑖) smaller grain growth near
the laser track because of the high-temperature profile at the solid–
liquid interface, (𝑖𝑖) elongated grains away from the laser spot in-plane
to the surface of the build, and (𝑖𝑖𝑖) on SD face, the elongated grains
tend to grow perpendicular to the melt pool’s solidification surface,
bending toward the laser track [61,62]. The resulting heterogeneous
mixture of elongated and equiaxed grains often has a visible periodicity
with the deposition thickness, hatch spacing, and scanning pattern.

The preferred crystallographic growth direction is often specified
primarily by the heat flow direction. The grain size scaling of a build,
on the other hand often decreases with increasing laser speed or
decreasing laser power [58]. As a result of such geometrical principles,
a natural way to describe grain formation during the solidification
process is to align microstructural unit cells in the 3D geometrical
space using a material flow field as shown in Fig. 14(left). Generally,
these user-drawn vector fields work best when they are divergence-free,
as artifacts can appear around material flow fields with singularities
(e.g., sink or source points). The issue of microstructural artifacts
with singular vector fields can often be alleviated to some extent
by locally enhancing the mesh density (subdividing the tetrahedral
elements) at such regions, or equivalently by reducing the grain size
scaling, prior to LEGOMAT optimization procedure. In addition to
the material flow fields, the grain size scaling is represented using
the same approach as described in Section 2.2.2, with smaller grains
along the laser path gradually transitioning to columnar grains near
the melt pool’s boundary. Such geometric reconstruction methodology
can systematically simulate the preferred grain growth directionality
and size scaling for large-scale engineering components manufactured
by laser additive manufacturing processes consisting of several passes
and deposition layers. Fig. 14(right) presents the final reconstructed
outputs, displaying the grain sizes and shapes that result from the
LEGOMAT optimization procedure for various simulations, ranging
from a single-layer to multi-layer multi-track scenarios. This method
can readily extend to simulate dozens of deposition layers and hundreds
of laser passes. The CAD models for the block geometries illustrated
in Figs. 14(a)–(c) contain 22992, 31424, and 51312 linear tetrahedral
elements, respectively. Once generated, these synthetic large-scale AM
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Fig. 14. Illustration of LEGOMAT embedding algorithm for simulating AM microstructures for (a) a single-track single-layer example, (b) a double laser-track across a single-layer
CAD model, and (c) a double-layer simulation with a zig-zag scanning pattern. Here, the laser paths and vector fields representing the preferred columnar growth direction for
each case are shown on the left. Upon embedding microstructural patches, smaller grain sizes are pasted along the laser path and are quickly transforming to columnar grains
away from the laser beam track.
microstructures can be used in various material performance simula-
tions (e.g., material mechanics, conductivity, etc.) [17,18,63,64] or
otherwise provide insights for multi-dimensional analysis involving
desirable processing modalities and performance metrics [38], which
is an extremely difficult task to achieve by experimental means alone.

To further demonstrate the flexibility of the presented LEGOMAT
strategy, an assessment of the LEGOMAT simulated microstructure
against SPPARKS kinetic Monte Carlo simulation [32] with respective
experimental EBSD images is provided. The build in this example is
deposited using the LENS technique with a defocused high-power laser
beam, rastering back and forth at a rate of 10.58 mm∕s, with intended
layer thickness and hatch spacing of 1.25 mm and 2 mm, respectively.
Such a processing pattern results in similar formation principle as
outlined in Sections 2.2.1–2.2.2. In short, curved columnar grains are
formed on TD and SD planes, and on the BD plane, large grains elongate
across the central regions while transitioning to finer grains along
each laser track [65]. These grain types are illustrated in Fig. 15
alongside three orthogonal cross-sections of the build. The illustrated
TD images in Fig. 15 are taken from the centerline of the beam pass.
Qualitatively on BD plane, both simulated microstructures correctly
alternate between fine grains at the center to larger transversely-
elongated structures. Additionally, in the SD plane, vertically-oriented
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grains found at the center of each pass transition to exceptionally
curved grains in between. The grains along the TD plane illustrate
vertically-elongated grains slightly incline toward the SD at the top. The
strength of the LEGOMAT approach, as presented in this example, is its
ability to efficiently create 3D microstructures with spatially-varying
highly-curved non-convex structures over large regions at significantly
lower computational cost than existing large-scale texture synthesis
algorithms applicable for additive manufacturing. Additionally, as de-
picted in Fig. 15, physics-based models such as the kinetic Monte
Carlo simulator often have difficulty modeling the textural descriptions
(e.g., grain size and curvature) of AM specimens. As a result, the LEGO-
MAT algorithm offers an alternative solution for the rapid visualization
of microstructural variations with diverse processing parameters. This
is exceedingly important as AM microstructures vary both globally
with machine inputs and locally with build geometry, hence making
experimental characterization of AM build seemingly impossible.

Additionally, since experimental information along all three orthog-
onal directions is available, quantitative comparisons of the experi-
mental and simulated results are possible. Fig. 16 displays histograms
of grain size statistics for both SPPARKS (on top) and LEGOMAT (on
bottom) against the experimental microstructures across the three or-
thogonal planes illustrated in Fig. 15. To obtain the grain size statistics,
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Fig. 15. Comparison between experimental and simulated AM microstructures using SPPARKS kinetic Monte Carlo simulator and LEGOMAT geometrical approach along orthogonal
planes. The experimental and SPPARKS simulated images shown here are reproduced from the work of Rodgers et al. [32] under the terms of the Creative Commons CC-BY license.
a similar procedure as in Fig. 13 is applied. That is, all images are first
segmented, and boundary grains along the border are removed. The
grain areas of all inner grains, excluding abnormally small and large
grains, are obtained, and subsequently plotted using a log-normal fit.
Across each orthogonal plane, the LEGOMAT’s log-normal distribution
is found to be closely following the experimental distribution. This is
while SPPARKS simulated results are shown to deviate significantly for
smaller-scale grain sizes.

The simulated results presented for the LEGOMAT reconstruction
framework show significant promise for the generation of large-scale
AM microstructures. However, the manual drawing of the volumetric
13
vector field can be relatively time-consuming, especially for multi-
layer, multi-track examples. For instance, it takes the user about 18 min-
utes to create a direction field for the CAD model shown in Fig. 14(c),
whereas the scaling parameterization of the patches takes about 8
minutes, and only 7 minutes to finalize the numerical computation per-
taining to LEGOMAT embedding process using a PC with 3.0 GHz CPU
and 64.0 GB RAM. Consequently, future work will focus on automating
the manual drawing of the preferred direction field as well as the pa-
rameterization of grain scaling based on a set of user-defined processing
parameters (e.g., hatch spacing, layer thicknesses, scanning pattern,
etc.). Nonetheless, the LEGOMAT methodology presented in this paper
Fig. 16. Comparison of grain size statistics for simulated SPPARKS kinetic Monte Carlo [32] (on top) and LEGOMAT (on bottom) microstructures against experimental images
across orthogonal (a) SD, (b) BD, and (c) TD planes.
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is still significantly computationally inexpensive compared to existing
physics-based models [30–32,34,35] for representing large-scale AM
solid textures.

Furthermore, the current LEGOMAT reconstruction framework is
limited to embedding a single 3D microstructural snapshot in the CAD
model. However, the LEGOMAT approach can benefit from multi-
ple input 3D exemplars imaged across various spatial locations. One
approach for direct implementation of spatial variations of the AM
microstructure is to exploit the mean locations of the input microstruc-
tural measurements in order to partition the CAD geometry in the form
of a Voronoi diagram. Mathematically, the measured locations directly
correspond to the centroid of the convex hull within each partition,
which is also correlated with differences in microstructural features
(e.g., grain size, shape, etc.). Accordingly, the Voronoi diagram can
provide a geometrical partitioning of the CAD specimen, where the
best-matching measured 3D unit cell can be identified (based on its
relative spatial coordinates to the laser path) and then be sampled
for the patching/embedding process. Additionally, a numerical method
can be developed to progressively enhance the resultant embedding
process based/conditioned on available input datasets. Here, geometric
partitioning of the CAD specimen can be updated as new measured 3D
microstructures become available. In this approach, regions in the CAD
model for which new reclassifications are available will be partitioned
and then progressively re-sampled/re-patched. Work on this is still in
progress and will be reported in future articles.

4. Conclusions

In this paper, an image-based framework is introduced for 3D
microstructure synthesis of metal AM materials over very large length-
scale CAD models. The complete workflow from orthogonal 2D experi-
mental EBSD images to a full-field microstructural CAD visualization
is an important and novel contribution in this work. Here, a set of
three EBSD exemplars imaged on orthogonal planes of a 316L stain-
less steel specimen manufactured by SLM process is first obtained
via SEM acquisition technique. The microstructures are subsequently
converted to a 3D representative unit cell using the MRF sampling tech-
nique. The MRF algorithm reconstructs 3D images through matching
orthogonal neighborhoods of each voxel to the sectional experimental
micrographs, while ensuring that the sampled voxels taken from the 2D
input exemplars have meshed together seamlessly in the 3D synthesized
image. Thereafter, statistical analyses of microstructural features, such
as grain size, orientation distribution, and grain boundary misorienta-
tion angles for the reconstructed 3D microstructures, are carried out
against the original 2D EBSD images. The results demonstrate that MRF
can effectively predict both textural and morphological descriptions of
AM microstructures at a small-length scale.

The variations of 3D microstructures during a laser additive man-
ufacturing process at larger length-scales are then captured using the
LEGOMAT tensor-based optimization process. The LEGOMAT optimiza-
tion procedure embeds 3D microstructures in a part-scale CAD geome-
try accordant with the user-specified material flow fields that efficiently
incorporate microstructural variations (e.g., grain size, shape, curva-
ture, anisotropy, and growth direction) in structural systems consisting
of several laser paths and deposition layers. Such formulation is shown
to be highly effective for modeling the location-specific microstruc-
tural geometries seen in experimental characterization techniques. For
instance, across BD surface, fine-size equiaxed grains often nucleate
near the laser track and then quickly transition to larger transversely-
elongated grains in between the laser paths. Similarly, on the TD plane
near the laser beam track, elongated grains tend to incline toward the
SD. On the SD plane, the columnar grains tend to grow perpendicular
to the melt pool’s solidification surface, curving toward the laser beam
direction. As a result, the LEGOMAT approach can provide in real-
time, an efficient methodology to describe textural components in 3D
geometrical CAD space via a user-defined tensor field, capturing the
14
preferred growth directions during the solidification process. Due to the
large-scale microstructure reconstruction model being primarily based
on geometrical principles, the LEGOMAT methodology is extremely
robust and requires minimal computational power and memory, com-
pared to existing AM microstructure simulation techniques. Near-term
future work will focus on (𝑖) implementing an encoder that accepts a
number of input microstructural unit cells while down selects the best
3D exemplar during each embedding iteration based on the relative
spatial location of the microstructural patch within the CAD model to
its nearest laser path, and (𝑖𝑖) automating the manual specifications of
the preferred growth orientation and grain size parameterization.
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