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The effect of structural relaxations in alloys is described using a multibody energy expansion formalism.
N-body potentials in the multibody expansion are computed from energies of isolated clusters, which, in turn,
are calculated from empirical potentials or self-consistent quantum mechanical calculations. Convergence
characteristics of multibody expansions �MBEs� are improved by weighting energies obtained from various
truncations of many-body expansions in a method called weighted MBE �WMBE�. It is shown that multibody
expansions of many-atom systems can be efficiently constructed using interpolation of isolated cluster energies
from databases. In contrast to the method of cluster expansion, WMBE focuses on positional degrees of
freedom and, hence, explicitly handles structural relaxations during computations of stable atom clusters and
periodic or amorphous phase structures.
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I. INTRODUCTION

The calculation of stable structures of alloys, clusters, sur-
faces, and molecules from first principles is an important
step towards the design of materials with exceptional prop-
erties. Identification of stable alloy phases aids in the con-
struction of phase diagrams from first principles. Because of
the immense variety of phase structures, identification of
stable structures at different combinations of the alloying el-
ements is a nontrivial problem. While a first-principles ap-
proach based on density functional theory �DFT� provides a
rigorous way for calculating the formation energies of phase
structures, the computational complexity of performing fully
relaxed calculations over the entire set of possible phase
structures makes this method prohibitive. Techniques such
as cluster expansion1–7 and, more recently, data mining
techniques8,9 allow one to accelerate the search for stable
phase structures.

In cluster expansion methods �CEMs�,1–4 the relaxed en-
ergy of an atomic structure is represented as a linear combi-
nation of the characteristic energies of clusters of atoms over
a fixed lattice. The coefficients in the cluster expansion are
computed using relaxed DFT energy calculations of a few
prototype structures.1 This method includes only ordering
degrees of freedom as provided by different possible ar-
rangements of atom types on a fixed parent lattice. Conse-
quently, CEMs fail in cases where the alloy phases have
complex structures that are different from the superstructures
of the underlying parent lattice �for example, fcc or bcc lat-
tices� and exhibit convergence issues in cases where struc-
tural relaxation effects are dominant5,6 �for example, in al-
loys involving constituents with large size differences�.

In another technique called multibody expansion �MBE�,
N-body potentials �or, otherwise, cluster potentials10� con-
structed from ab initio calculations are used to describe the
energies of arbitrary atomic structures as a function of atom
positions. The total energy is represented as a summation
over potentials of underlying isolated atom clusters in the
structure, with series terms involving pair, three-body, four-
body,…, N-body potentials. Up to third-order truncations of

multibody expansions have been previously used in related
empirically derived potentials: namely, the Gupta11 and
Murrell-Mottram12–15 �MM� potentials. Multibody potentials
focus on positional degrees of freedom and, hence, explicitly
handle structural relaxations during computations of stable
phase structures. Structural relaxation effects can be treated
in a cluster expansion approach by combining it with
position-dependent potentials in the form of a hybrid cluster
expansion.6 Another method combining CEMs and multi-
body potentials was proposed recently for introducing posi-
tional degrees of freedom in a more generalized cluster
expansion.16,17 However, building the N-body potentials
from atomistic calculations is quite a challenging problem.
First, the number of clusters �and thus the number of cluster
energies that need to be calculated� in an N-atom system
increases geometrically with the order of expansion �Fig. 1�.
Second, although the approach provides good convergence
for rare-gas crystals, convergence of MBEs is not smooth for
metallic crystals.18,21 The absence of smooth convergence
does not allow the establishment of a hard cutoff for the
series terms. Consequently, there have been no published re-
ports of a multibody expansion constructed directly from
first-principle calculations.
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FIG. 1. Increase in the total number of clusters involved in a
multibody expansion for a 32-atom system with the order of
expansion.
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This paper addresses these drawbacks by proposing a
multibody expansion with weighted terms. Using this tech-
nique, it becomes possible to accurately compute the ener-
gies of N-atom systems from knowledge of the small cluster
energies computed from first principles. The efficiency of
this method, called weighted multibody expansion �WMBE�,
is emphasized through examples in this work. Another con-
tribution of this paper is a formal technique to rapidly calcu-
late multibody expansions using linear interpolation over tes-
sellated cluster configurational spaces. The MBE using
interpolated energies is several orders of magnitude faster
than using DFT calculations, since cluster energies are com-
puted beforehand and are directly sampled from the database
when computing the multibody expansion.

II. MULTIBODY EXPANSION METHODOLOGY

Consider, for instance, a configuration of M atoms �pos-
sibly all different�, whose energy we intend to compute. We
denote the total energy of this M-particle system using EP
=EP�X1 ,X2 , . . . ,XM�, where P is the order of the expansion
used and the position Rn of atom n is grouped together with
the species of atom n denoted by an integer �n, Xn
= �Rn ,�n�. As the order of labeling the M atoms is arbitrary,

the form of EP�X1 , . . . ,Xi , . . . ,Xj , . . . ,XM� must be symmetric
with respect to an interchange of Xi and Xj.

From here on, we denote M as the total number of atoms
in the system; N=1,2 , . . . , P denotes an N-atom cluster
within the M-atom system. Further, L=1,2 , . . . ,N denotes an
arbitrary L-atom cluster within an N-atom cluster. The en-
ergy EP of an M-particle system is represented as a summa-
tion over a series of N-body interaction potentials V�N� via

EP�X1,X2, . . . ,XM� = �
N=1

P

E�N��X1,X2, . . . ,XM� ,

E�N� = �
m1=1

M

�
m2=m1+1

M

¯ �
mN=mN−1+1

M

V�N��Xm1
,Xm2

, . . . ,XmN
� .

�1�

The potentials can be inverted via the Mobius inversion ap-
proach from number theory. Mobius inversion has been used
previously for the extraction of potentials from energy data
by Chen and Ren19,20 although in a different context. In the
case of multibody potentials V�N�, the Mobius inversion is
given as16

V�N��X1,X2, . . . ,XN� = �
L=1

N

�− 1�N−L �
m1=1

N

�
m2=m1+1

N

¯ �
mL=mL−1+1

N

E*�Xm1
,Xm2

, . . . ,XmL
� . �2�

Here, we denote the energies of L-atom clusters within the
N-atom cluster as E*. The above equation constitutes a
unique definition of N-body potentials V�N� which are struc-
ture independent because this equation does not carry any
information about the environment of the atom clusters.16

V�2��Xi ,Xj� can be understood as the excess energy attributed
to pair interactions in an isolated atom pair i , j—i.e.,
V�2��Xi ,Xj�=E*�Xi ,Xj�−E*�Xi�−E*�Xj�. Similarly, V�3�

��Xi ,Xj ,Xk� can be understood as the excess energy attrib-
uted to three-body interactions in an isolated trimer �i , j ,k�:

V�3��Xi,Xj,Xk� = E*�Xi,Xj,Xk� − �V�2��Xi,Xj� + V�2��Xj,Xk�

+ V�2��Xi,Xk�� − �E*�Xi� + E*�Xj� + E*�Xk�� .

�3�

Once the potentials V�N� have been constructed, they can
be used to calculate the energy EP�X1 ,X2 , . . . ,XM� for an
M-atom system using Eq. �1�. The first critical requirement
of the technique is knowledge of the complete energy surface
�cluster energies versus atom positions and types� of small
isolated clusters of atoms �E* ,L=1, . . . ,5� for building the
potentials in Eq. �2�. Second, it is essential that the expansion
converge within a small order of expansion �i.e., P�5� for
computational efficiency. These two aspects are addressed in

the next two sections. A complete energy surface for small
isolated clusters is created by mathematically defining the
configurational space of clusters, tessellation of the space,
and computation of cluster energies on nodal points, fol-
lowed by interpolation of cluster energies as described in the
next section. Computational efficiency is improved through
the use of weighted multibody expansions as explained in
Sec. IV. Efficiency can be further improved by performing
computations in parallel by distributing the M atoms in-
volved in the loop index m1 in Eq. �1� to different processors.

III. CONSTRUCTION OF CLUSTER ENERGY
SURFACES

The basic idea of the approach to rapidly compute multi-
body expansions of arbitrary systems is to build an interpo-
lation function for the isolated cluster energies E* from the
precomputed database. Given a set of n m-atom clusters rep-
resented as �= ��d

i �i=1
n in d-dimensional configurational

space, we try to build a smooth function that maps clusters to
ab initio energies, f :Rd→R. In particular, we use an inter-
polant If such that If��d

i �= f��d
i �, ∀i=1, . . . ,n.

The first step in this procedure will be to define the
d-dimensional configurational space of an m-atom cluster.
The positions of the atoms in the cluster are represented by
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the distance between atoms, Rij �0. For two-atom clusters
�m=2�, the configurational space is one dimensional, with
each point x in the space representing a two-atom cluster
with interatomic distance of R12=x. As the number of atoms,
m, in the cluster increases, the number of distances, Rij, nec-
essary to completely and uniquely describe the cluster in-
creases rapidly. Up to m�4, clusters are uniquely repre-
sented by 1

2m�m−1� independent variables.
For example, the space of all possible three-atom clusters

is three-dimensional as shown in Fig. 2�a�. This space is a
convex hull with nine planes �symmetries not included� due
to a linear set of constraints arising from three triangle in-
equalities of the form Rij +Rjk�Rik that constrain the loca-
tion of atoms in the three-atom cluster and the upper and
lower cutoffs used for possible cluster sizes in the database:
Rij � l and Rij 	u with i , j ,k=1, . . . ,3. Cluster symmetries
can be used to further reduce the space and, consequently,
reduce the number of energy calculations required. Figure
2�b� shows the reduced space accounting for symmetries
�R12�R23�R13� in the case where all three atoms are of the
same type. Also shown in Fig. 2�a� is the tessellation of the
configurational space of clusters. The energy of a cluster cor-
responding to each nodal point in the space is calculated and
stored in the database. The plot of energy versus interatomic
distance for a two-atom Pt cluster is shown in Fig. 3 with the
location of nodal points for two-atom clusters. Higher-
dimensional spaces are adaptively tessellated as shown in
Fig. 2�a� with a finer discretization of regions involving
small clusters. The tessellation of the configurational space is
carried out using n-dimensional Delaunay triangulation, as
implemented in the QHULL program.22 Tessellation generates
elements �known as a simplex� over which local linear inter-
polation is carried out to find the energy of any other three-
atom cluster within the space. The discretization and inter-
polation techniques are, in essence, the same as those used in
the popular finite-element techniques for partial differential
equations �PDEs�. The energy �E� of an arbitrary cluster with

cluster specifier �
d
*= �


1
* ,


2
* , . . . ,


d
*� in a tessellated

d-dimensional configurational space is given as

E = �TEe, �4�

where Ee is the vector containing energies at the nodes of
the simplex within which �

d
* is located. � is obtained

as �=A−1b, where A= �1 ,�1
e ,�2

e , . . . ,�d
e�T and b

= �1,

1
* ,


2
* , . . . ,


d
*�T. Here, �i

e denotes a vector containing the
ith coordinate value of all nodes in an element e. The ele-
ment e is located by calculating � for every element in se-
quence and selecting the element e where all elements of
��0. This step becomes more time consuming as the di-
mensionality of configurational space �hence, the number of
elements� increases. Further, the geometry of the configura-
tional space becomes more complex as the dimensionality of
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FIG. 2. �Color online� Left: the space of all possible three-atom clusters within an upper and lower cutoff cluster size. This space
represents a convex hull in three dimensions �3D�. Right: use of symmetries �in the case where all three atoms are of one type—e.g., Pt-Pt-Pt
clusters� can further reduce the space. The simplices used to perform local linear interpolation of energies are also shown. In 3D, the simplex
is a tetrahedron.
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FIG. 3. The plot of energy versus interatomic distance for a
two-atom Pt cluster. The location of nodal points in this one-
dimensional configurational space and the upper cutoff used for
calculations are indicated.
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the configurational space increases. For example, the con-
figurational space of a fourth-order cluster �excluding sym-
metries� involves 24 linear constraints and a quartic con-
straint.

The number of independent variables specifying an m
�4 atom cluster is given by d=3m−6 although 1

2m�m−1�
variables are needed to uniquely define a cluster.23 An ex-
ample of how cluster specifiers are determined for a five-
atom cluster is illustrated in Fig. 4. In this example, there are
nine independent variables and one dependent variable �R45�
that can take one of two values based on the location of the
fifth atom. Thus, m�4 cases present special difficulties as-
sociated with dependent variables. We address this issue by
creating different configuration spaces corresponding to the
values that each dependent variable takes. For the case of a
five-atom cluster, this means that two potentials need to be
created, one for the case where atom 5 is above the plane
formed by atoms 1-2-3 and another when it is below that
plane.

For a binary AB system, all possible cluster configura-
tional spaces are created for a given cluster size; e.g., for

L-atom clusters, L+1 energy databases �e.g., for L=2,3 da-
tabases containing E*�XA ,XA� ,E*�XA ,XB� ,E*�XB ,XB�� need
to be generated. The upper and lower cutoffs were selected
by carefully analyzing the energies of two-atom clusters over
a large range of R12 to locate an upper cutoff beyond which
the interaction between atoms were not significant and a
lower cutoff where the interaction energy is positive.

For platinum with lattice parameter of a=7.5 bohrs, the
lower cutoff of atom spacing in a cluster within the database
was fixed as Rij �0.3a and the upper cutoff was fixed as
Rij 	1.5a. The plot of energy versus interatomic distance for
a two-atom Pt cluster, from which the cutoffs were identified,
is shown in Fig. 3. The cutoffs signify that clusters with
Rij 	0.3a and Rij �1.5a are not available in the database.
During MBE calculations, the energies of clusters containing
such interatomic distances are approximated using the fol-
lowing means. For Rij 	0.3a, cluster energies were given an
artificial high value to signify that such configurations are
not energetically feasible. For N-atom clusters with Rij
�1.5a, the excess energy attributed to N-body interactions is
assumed to be zero �i.e., V�N��0, for N-atom clusters with an
Rij �1.5a�. This is mathematically equivalent to approximat-
ing the energies of large clusters using energies of smaller
subclusters. For example, Fig. 5�a� shows the energy surface
of three-atom platinum clusters up to an upper cutoff size of
1.5a and Fig. 5�b� shows the complete energy surface when
the energies beyond the upper cutoff are approximated using
two- and one-atom energies.

IV. WEIGHTED MULTIBODY EXPANSION

Multibody expansion has been shown to work very well
for rare gases where the expansion is dominated by pair in-
teractions making higher terms in the expansion negligible.
The total energy of metallic systems, however, has signifi-
cant contributions from higher-order interactions and the ex-
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FIG. 4. �Color online� In the case of a five-atom cluster, the
locations of the fourth and fifth atoms can be fixed with respect to
the plane formed by atoms 1-2-3 using the cluster specifiers
�R12,R23,R13,R14,R24,R34,R15,R25,R35�. However, these specifiers
do not completely represent the cluster. The dependent variable in
this case is R45 which can take one of possible two values based on
the location of atom 5 either above or below the plane formed by
atoms 1-2-3.
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FIG. 5. �Color online� Energy surface �E*�X1 ,X2 ,X3�� for three-atom Pt clusters whose atoms are positioned at the vertices of a
right-angled triangle with line joining atoms X2 and X3 forming the hypotenuse. �a� shows computed platinum three-atom cluster energies,
while �b� shows the extension of energies beyond the cutoff using energies of smaller clusters �E*�Xi ,Xj� and E*�Xi��.
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pansion has nonsmooth convergence behavior.18 Figure 6
shows the behavior of multibody expansion for an eight-
atom �two unit cell� fcc platinum cluster that requires at least
a seventh-order expansion to capture the true energy. It is
observed here that energies computed by including succes-
sively higher orders of interaction, in fact, oscillate around
the true energy. An ad hoc numerical approach for estimating
the true energies for the case in Fig. 6 will be to appropri-
ately weight the energies obtained at different orders of the
multibody expansion, which is akin to smoothing �or filter-
ing� the energy oscillations in Fig. 6. Numerical experiments
presented in the next section indicate that WMBE calcula-
tions lead to a dramatic improvement in the convergence
behavior of the multibody expansion. In the WMBE ap-
proach, the energies up to a cutoff order of expansion P are
weighted so that we reach as close to the true energy �EM� of
an M-atom system as follows:

EM�X1,X2, . . . ,XM� = �1E1�X1,X2, . . . ,XM�

+ �2E2�X1, . . . ,XM� + . . .

+ �PEP�X1, . . . ,XM� . �5�

The coefficients �= ��1 ,�2 , . . . ,�P�T are computed by
solving the equation

� = C+E , �6�

where E are the true energies of q M-atom clusters �Xi , i
=1, . . . ,q� computed with self-consistent DFT calculations.
Each row of C contains the energies �E1 ,E2 , . . . ,EP��i� ob-
tained from multibody expansion of each of these clusters
�where Ep

�i�=Ep�Xi��. C+ is the pseudoinverse of matrix C.
The technique to obtain coefficients � is thus similar to the
method of Connolly and Williams1 used for cluster expan-
sions. In their technique, truncation of the expansion is based
on which clusters are important; for example, in fcc crystals

where only clusters containing nearest neighbors are impor-
tant, the series is truncated at fourth order. In the case of the
WMBE, however, the cutoff of the order of interactions
needs to be identified through numerical experiments as will
be demonstrated in the next section.

Before proceeding to examples, we summarize the steps
involved in the overall algorithm as follows.

�1� Offline calculations (steps 1–4): constructing a data-
base. Generate coordinates ���d

i �i=1
n � for sampling the con-

figurational space of all cluster sizes involved. For example,
each three-atom cluster �1-2-3� corresponds to the coordinate

3

i = �R12,R23,R13� in the configurational space where, e.g.,
R12 is the interatomic distance between atoms 1 and 2. Dur-
ing this step, various constraints based on geometry or sym-
metry are used to reduce the number of nodes in the configu-
rational space.

�2� For an L-atom cluster of a binary system, coordinates
for L+1 configurational spaces need to be created during
step 1. Each configurational space corresponds to a different
atom type list; e.g., for L=2 atom clusters of a binary alloy
A-B, configurational spaces for clusters of types A-A, A-B,
and B-B need to be generated.

�3� Perform tessellation of coordinates in all configura-
tional spaces and store nodal coordinates and element-node
lists in the database.

�4� Generate input files and perform self-consistent DFT
calculations to compute energies �E*��d

i �� at nodal locations
of all configurational spaces. Energies from the DFT calcu-
lation are read and stored in databases, one corresponding to
each configurational space.

�5� Calculation of MBE coefficients. Computed self-
consistent ab initio calculations to compute energies �to ob-
tain E in Eq. �6�� of a few �three or four� different N-atom
configurations.

�6� Compute energies using MBE with increasing orders
of expansion and obtain �E1 ,E2 , . . . ,EP��i� for each N-atom
configuration used in step 5. During multibody expansion,
potentials �V�N�� are created using Eq. �2� on the fly, using
cluster energies E* obtained by interpolating from the data-
base constructed in steps �1–4�. The steps involved to com-
pute cluster energy, E*, of an arbitrary cluster are

�a� Locate the cluster in the corresponding configurational
space. For example, a three-atom cluster of type A-A-B is
located at the coordinate 
i

3= �R12,R23,R13� in the three-
dimensional configurational space of A-A-B type.

�b� Identify the element in which the cluster is located and
perform linear interpolation using known energies at nodal
values in that element using Eq. �4�.

�c� Energies of clusters that are not available in the data-
base are approximated using the methods detailed at the end
of Sec. III.

�7� Compute the coefficients � of weighted MBE using
Eq. �6�. Perform tests for convergence by comparing the en-
ergies predicted by WMBE with ab initio calculation for a
few other configurations of N atoms.

�8� MBE calculations for arbitrary N-atom configura-
tions. The converged weighted expansion can be now be em-
ployed for computing energies of other N-atom systems
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FIG. 6. Convergence of the many-body energy expansion of an
eight-atom fcc platinum cluster requires at least a seventh-order
expansion to reasonably capture the true energy.
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using Eqs. �5� and �1�. During calculations, cluster energies
E* are again interpolated from the database as in step 6.

V. RESULTS FOR METALLIC SYSTEMS

A. Extrapolatory performance of the WMBE approach

In the first test case, energies predicted by multibody ex-
pansion are compared with true energies obtained using the
embedded-atom potential of Sutton and Chen24 for platinum
atom clusters. Convergence of the expansion is tested using
exact cluster energies �without performing interpolation�.
Atom configurations used in these cases correspond to nx
�ny �nz clusters with ni unit cells located in the ith direc-
tion.

Figure 7 shows the energies obtained for an isolated 4

�1�1 �16-atom� cluster of platinum computed using
second-, third-, and fourth-order WMBEs and the true ener-
gies. In all cases, the parameters � were computed using 4
�1�1 Pt clusters using just three energies at lattice param-
eters of 7.2, 7.4, and 7.6 bohr as indicated in Fig. 7. The
energies increase linearly within this range of lattice param-
eters. In spite of this, the predicted energies from the third-
and fourth-order multibody expansions exactly capture the
parabolic nature of the true energy profile. As a test of the
extrapolatory performance of wMBE, we perturb the face
centered atoms in the x-y plane and y-z planes of the fcc
basis by �−0.1,−0.1,0� and �0, 0.1, 0.1�, respectively, in
crystal coordinates. In spite of the large changes in energy
resulting from this perturbation, the expansion built previ-
ously for a fcc cluster is able to reproduce the energy profile
of this distorted cluster accurately �Fig. 8�.
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second- and third-order WMBEs.
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FIG. 10. Comparison of the true energies obtained for a 2�2
�1 �16-atom� fcc platinum cluster with energies computed using
third-, fourth-, and fifth-order WMBEs for an extrapolatory case of
a fcc lattice with the face-centered atom in the x-y plane of the fcc
basis is translated by �−0.1,−0.1,0� in crystal coordinates.
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B. Convergence of WMBE in extrapolatory cases

Figure 9 shows the energies predicted at various lattice
parameters using second- and third-order WMBEs for an iso-
lated 2�2�1 fcc platinum cluster. In this case, the param-
eters � were originally computed using 2�2�1 fcc clusters
of Pt using 11 lattice parameters between 6 and 8 bohrs in
increments of 0.2 bohr. Although Fig. 9 shows that the third-
order expansion is adequate to capture the true energy pro-
file, use of higher orders of expansion improves the perfor-
mance in extrapolatory cases. Figure 10 depicts the
performance of third-, fourth-, and fifth-order MBEs in an
extrapolatory case where the face-centered atom in the x-y
plane of the fcc basis is translated by �−0.1,−0.1,0� in crys-
tal coordinates. Figure 11 shows the decrease in the l2 norm
error in energies predicted with increasing order of the multi-
body expansion. Several other numerical experiments of this
kind indicate that the WMBE approach captures the energy
profile for any random configurations of N-atom Pt clusters
and, thus, has potential applications in N-V-E or N-V-T ato-
mistic simulations. The weighting procedure aims to average
out the extraneous energy contributions �e.g., surface ener-
gies� arising due to lack of environment in isolated clusters.
The limitation in the procedure is that a change in the num-
ber of atoms �N� simulated necessitates recalibration of the
MBE coefficients. Figure 9 shows the energy variation with
lattice parameter obtained from an MBE expansion calcu-
lated using cluster energies interpolated from a database. For
interpolation, the second-order configurational space is dis-
cretized into 20 linear elements �21 nodes� and the third-
order configurational space �including symmetries� was ap-
proximated using 16 374 tetrahedral elements on which
energies were calculated at 3191 nodal locations. Although
discretization and linear interpolation introduce errors in the
calculation of energies, it is seen that the technique still rea-
sonably captures the energy profile and the energy minima.
The advantage of the interpolation approach is that it is an
order of magnitude faster since cluster energies are computed
beforehand and are directly sampled from the database dur-
ing simulations.

C. WMBE using interpolated energies from ab initio
calculations

Figure 12 shows structure optimization to find the lattice
constants for the fcc platinum system using interpolated en-
ergies of clusters computed from first-principles DFT calcu-
lations. Since MBE inherently uses nonperiodic configura-
tions, the energies of periodic structures are computed by
considering supercells with true energies E used for fitting
Eq. �5� obtained from self-consistent DFT calculations of a
periodic unit cell. In this example, a 5�5�5 �500-atom� fcc
cluster is considered. The variation of cohesive energy
�Ec�X1 , . . . ,Xm�=E*�X1 , . . . ,Xm�−�i=1

m E*�Xi�� of three-atom
clusters with interatomic distances �R12,R23,R13� is shown in
the configurational space �accounting for symmetry� in Fig.
12. The configurational space is discretized into 4609 tetra-
hedral elements on which linear interpolation is carried out.
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FIG. 11. Decrease in the l2 norm error in energies with increas-
ing order of multibody expansion for the extrapolatory case in Fig.
10.
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FIG. 13. �Color online� Comparison of the variation of energies
with lattice parameter for a periodic fcc pt lattice with WMBE
calculations involving cluster energy interpolation.
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Ab initio energy data were computed on 1027 nodal loca-
tions. Figure 13 shows a comparison of the energies com-
puted using third- and fourth-order WMBEs with the true
energies. The coefficients in the multibody expansion were
generated using three ab initio energy calculations of a peri-
odic fcc platinum lattice with lattice parameters of 6.5, 8.5,
and 9.0 bohrs. It is seen from Fig. 13 that the energy profile
is well captured using the technique within expected error
bounds as discussed later in this section. The significant ad-
vantage of using interpolated energies is that they do not
utilize any significant computational resource. This is due to
the fact that all heavy ab initio calculations are performed
beforehand and the data are stored for interpolation.

D. Analysis of the accuracy of WMBE with interpolated ab
initio energies

The main sources of error in the WMBE procedure are the
errors involved in the interpolation of energies from the da-
tabase, fitting weighting coefficients and convergence accu-
racy for the ab initio energy data. The maximum interpola-
tion error over any element �including higher-dimensional
elements� is tightly bounded by ctrmc

2 , where the absolute
curvature of the true ab initio energy surface is bounded in
each element t by a constant 2ct and rmc is the minimum
containment radius of an element. For the two-atom Pt clus-
ter energy surface, the maximum interpolation error was
0.03 mRy. Although this error cannot be completely elimi-
nated, we use smaller element sizes in the regions where
large energy variations are expected in order to reduce the
interpolation error for larger clusters. The convergence accu-
racy of self-consistent DFT calculations of small clusters was
within 0.01 mRy in all cases. In order to study the error in
fitting MBE weights, we carried out a leave-one-out cross-
validation �CV� procedure. Here, the error in the reproduc-
tion of energies is studied by fitting the energy with N−1
clusters and computing the error in reproduction of energy of
the left-out cluster �Ei�. The process is repeated with every
single cluster used once as a left-out cluster. The CV error is
computed as the mean error 1

N�1
N	Etrue−Ei	. Compared to sta-

tistical estimates such as variance, the CV error provides a
more reliable estimate of the future performance of WMBE
when the energies of new clusters need to be predicted.

The ab initio energies of N=300 randomly generated 24-
atom Pt clusters were used for testing the accuracy of the
WMBE procedure. The 24 atoms were randomly placed at
grid points spaced 7 bohrs apart in each direction over a
cube of 105 bohr length and ab initio energies �E� for use in
Eq. �6� are computed. The mean CV error for third-order
MBE was found to be 0.381 Ry �15.9 mRy per atom�. The
mean CV error during cross validation for fourth-order ex-
pansion reduces to 0.121 Ry �5.04 mRy per atom�. This
demonstrates convergence towards ab initio energies, al-
though the error may still be significant for modeling phe-
nomena such as phase transformations where accuracy of the
order of mRy may be required.

E. Convergence of WMBEs for a binary system (�-alumina
Al2O3)

A multibody expansion is constructed for the �-alumina
�Al2O3� system using cluster energies computed using the

Streitz-Mintmire �SM� model.25 Streitz-Mintmire potential is
a many-body functional that merges electrostatic potential
with an embedded-atom potential to describe metal-oxide en-
ergies. �-alumina �Al2O3� has a rhombohedral primitive unit

cell and is described in space group R3̄c �No. 167� with two
lattice parameters a and b. The lattice parameter a is varied
while b is fixed at 0.4856 bohr. Figure 14 plots the variation
of energies, computed using WMBE, as a function of lattice
parameter a for a 2�2�1 cluster of �-alumina. The true
energies as computed by the SM model at each lattice pa-
rameter are also shown. Four energies at lattice parameters
a=7.0, 7.2, 7.4, and 7.6 bohrs were used to compute the
MBE coefficients. Within this range of lattice parameters,
energies increase linearly as indicated in Fig. 14. In spite of
this, a fourth-order expansion is able to represent the curva-
ture of the �-alumina energy profile predicted by the SM
model. In contrast to the fcc Pt case in Fig. 7, the predicted
energies from the third-order multibody expansion are not
able to predict the energy minima, while the fourth-order
predicts the lattice parameter a=6.6 bohrs accurately. Instead
of the SM model, ab initio calculations of isolated cluster
energies �E*� could have been used. Since we compute en-
ergies of isolated clusters by approximating a periodic lat-
tice, care must be taken to avoid the influence of lattice Cou-
lomb potentials on the ionic Al-O cluster �due to finite-size
effects� by using a large enough unit cell. DFT calculations
were avoided in this example due to the computational com-
plexity of handling a large number of plane waves because of
the sharply peaked valence states in oxygen and the require-
ment of a large unit cell. WMBE of a binary metallic system
that uses ab initio calculations is reported in the next ex-
ample.

F. WMBE of a binary (Au-Cu) system using interpolated ab
initio energies

This example demonstrates structure optimization to find
the lattice constants for the fcc CuAu3 system �space group
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FIG. 14. �Color online� Comparison of the variation of energies
with lattice parameter for a 2�2�1 supercell of �-alumina �space

group R3̄c� using third- and fourth-order WMBEs. The true ener-
gies and the energies used for computing MBE coefficients are
indicated.
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Pm3̄m, No. 221� using interpolated energies of clusters com-
puted from first-principles DFT calculations. As in the case
of fcc Pt, the energies E used for fitting Eq. �5� are obtained
from self-consistent DFT calculations of a periodic unit cell.
A 6�6�6 �864-atom� fcc cluster is considered to approxi-
mate the periodic lattice, and MBE is constructed using en-
ergies interpolated from the tessellated configurational space.
As an example, the cohesive energy �Ec� variation with clus-
ter specifiers �R12,R23,R13� in the configurational space for
three-atom Cu-Cu-Au and Cu-Au-Au clusters is shown in
Figs. 15�a� and 15�b�, respectively. Apart from the nine con-
straints discussed in Sec. III, the inequalities R23	R13 and
R12	R13, respectively, are additionally used to account for
cluster symmetries in the space shown in Figs. 15�a� and
15�b�. The lower and upper cutoffs used for constructing
these spaces were 2.19 and 10.95 bohrs, respectively. For
single atom-type clusters of copper or gold, the upper and
lower cutoffs were fixed at 0.3 and 1.5 times the lattice pa-
rameters of pure fcc Cu and Au lattices.

Figure 16 shows a comparison of the energies computed
using third- and fourth-order WMBEs with the true energies.
The coefficients in the multibody expansion were generated
using three ab initio energy calculations of a periodic fcc
CuAu3 lattice with lattice parameters of 8.6, 8.7, and
8.8 bohrs. Similar to the Al2O3 case, the third-order multi-
body expansion is not able to capture the energy profile of
fcc CuAu3 whereas a fourth-order expansion provides a rea-
sonable approximation of the energy profile. The WMBE
approach allows computation of the energy of large systems
with accuracy subject to the errors discussed previously.
Cross-validation accuracy for this system using a similar
procedure as described before was also carried out. We em-
ployed 300 random clusters of 24-atom CuAu3 clusters for
testing the accuracy of the WMBE procedure. The 24 atoms
were randomly placed at grid points spaced 7.5 bohrs apart
in each direction over a cube of 112.5 bohr length. A cross-
validation error of 0.187 Ry �7.8 mRy per atom� was

achieved when a fourth-order expansion was used. This error
may be significant for modeling phenomena such as phase
transformations, but WMBE is a good replacement for em-
pirical potentials in several other multiscale modeling appli-
cations where reasonable accuracy is required. Although use
of higher �5+ � body interactions is expected to improve the
fit, it greatly increases computational overhead in tessellation
and data generation. We are currently working on the use of
data-adaptive hierarchical interpolation to address this issue.

VI. CONCLUSIONS

The developments presented here advance the existing
state of the art in multibody expansion technique for the
representation of energies of alloy systems through the fol-
lowing new contributions.
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�i� The convergence characteristics of multibody expan-
sions were improved by weighting energies obtained from
various orders of atom interactions in a method called
weighted multibody expansion.

�ii� In contrast to methods such as cluster expansion that
involve the ordering degrees of freedom, WMBE focuses on
the positional degrees of freedom. This allows one to explic-
itly model structural relaxations.

�iii� Database interpolation techniques are demonstrated
for accelerating computation of energies using multibody ex-
pansions. Multibody expansions were computed directly
from the ab initio energies of small clusters to model ener-
gies of platinum and a binary-alloy �Au-Cu� system. The
quality of the expansion was quantified using the leave-one-
out cross-validation technique.

�iv� The technique involves considerably lesser computa-
tional cost, with no requirement of periodicity, and hence,
could be used to perform more accurate N-V-E or N-V-T
molecular simulations of metallic clusters and complex
phase structures compared to other commonly used position-
dependent potential approximations. We are currently work-
ing on data-adaptive hierarchical interpolation which would
allow us to build higher �5+ � order potentials that would
lead to improved accuracy.
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APPENDIX: AB INITIO CALCULATIONS

Ab initio electronic-structure calculations were carried
out using density functional theory in the local density
approximation, as implemented in the PWSCF package, using
Perdew-Zunger parametrization of the exchange correlation
energy and Rabe-Rappe-Kaxiras-Joannopoulos26 �ultrasoft�
pseudopotential. Kohn-Sham orbitals were expanded in a
plane-wave basis up to an energy cutoff calculated to en-
sure convergence. Brillouin zone integrations were carried
out using single k-point calculation and Methfessel-Paxton
first-order spreading.27 The cell size is taken to be suffi-
ciently large to effectively simulate an isolated cluster. For
platinum, the energy cutoff was 244.8 eV and the cell
size was taken as 4 times the maximum size of the clus-
ter.
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