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This paper provides a novel approach formesh generation formaterials that have distinct spatial components with

a smooth boundary between them. Experimental data are used in pixel/voxel format to label elements in a generic

finite element (FE) mesh of a representative volume element. The basis of this approach is a novel Potts energy

formulation to allow integer optimization on the dual of the FE mesh. The Potts energy can be decomposed into two

terms: the field energy/data cost and the interaction energy/smoothing cost. The field term is used to represent the

likelihoodof a grain label on an element basedon the experimental voxel data.The interaction termencodes a prior on

this labeling; in particular, it is used for smoothening the phase boundary. Energyminimization of this system leads to

a multiway cut problem, which is solved using graph cuts. A multilabel energy minimization problem is formulated

using a Potts form. This methodology allows capturing smooth boundaries in materials with nonequiaxed

morphologies. Applications to polycrystallinemicrostructures andwoven composites are presented. The extension to

nonequiaxed morphologies is presented using the Riemannian distance measure. This procedure allows re-usability

of an FE mesh by adaptively assigning pixel/voxel information to elements while preserving important features like

the phase boundary surface length/area.

Nomenclature

Di�f� = data cost contribution from ith vertexwith labeling f
f = array representation of labeling
G�V;E� = undirected graph with vertices V and edges E
g�n� = distance measure in direction n
H�f� = energy/cost function for labeling f
I�vi� = pixel/voxel-based coloring of ith vertex
int(.) = interior of a set (.)
L = set of labels
M = mode of the distribution of area/volume
Ph = partition of domain
Pi = indexed polygon
Vol(.) = area/volume of (.)
wi;j�:� = connection weight for edge �vi; vj�
α = scalar parameter
Δs = length/area of the edge/face (of element)
fϕg = null set

I. Introduction

S TRUCTURALmetallic materials used in the aerospace industry
(e.g., Aluminum 2000 and 7000 series, advanced titanium

alloys) are composed of aggregates of crystals. With the emergence
of the paradigm of integrated computational materials engineering
(ICME) [1], multiscale design/optimization approaches for tailoring
engineering properties of materials through controlled micro-
structure [2,3] are of great interest. A multiscale approach for the
design of turbine blades is presented in Fig. 1 to illustrate stress
variation in the macroscopic and microscopic scale. Such a
simulation involves solving for microstructure-dependent properties
for macroscale analysis, which in turn requires meshing at the
microstructural level that captures the grain size and shape features
[4]. Meshing of three-dimensional (3D) microstructures to conserve

such grain features is of immense interest as these play an important
role in processes such as localization [5] and fracture [6].
Computational tools, like finite element (FE) methods, are almost

ubiquitously present in the form of both commercial and private
software. In the realm of polycrystalline materials, numerical
procedures generally require the knowledge of the microstructure,
which is often provided through experimental methods such as
Electron Back Scatter Diffraction (EBSD). EBSD provides the
spatial distribution of crystallographic orientations of different grains
and can be used to estimate quantities like average misorientation. A
complete review of experimental and computational EBSD
techniques is provided in [7]. From the computational perspective,
these experimental images offer information about the spatial
distribution of phases in a pixelated format for two-dimensional (2D)
or voxelated format for 3D. These data also provide a convenient
form of a mesh that consists of uniform quadrilateral/hexahedral
elements. An open source package is developed in [8] for generation
of voxelated representations of serial sectioned EBSD maps.
However, voxelation leads to a stepped, block-like representation of
otherwise smooth boundaries. This affects the quality of computa-
tional simulation through the introduction of spurious stresses [9].
There are other drawbacks in using structured meshes of
quadrilateral/hexahedral elements for 2D/3D elements as well; for
example, the boundary length/area does not converge to the correct
value with refinement.
Unstructured gridswhere element surfaces conformwith the phase

boundaries offer a better approximation of the spatial morphology.
An unstructured meshing scheme, which is widely employed,
generates objects in the lowest dimension and then re-uses these
objects as seeds for generating higher-order objects. More precisely,
nodes (0-dimensional objects) are generated and are connected using
lines (1-dimensional objects), where more points are sampled. Faces
(2D objects) are created by joining these lines and are meshed using
triangles with edge points as seeds. Then, these faces are connected to
create a grain structure (3Dobjects) and aremeshedwith tetrahedrons
using face triangles as seeds. This procedure allows for a smoother
phase boundary and improves the estimation of quantities like phase
boundary energy. This procedure is also implemented for mesh
generation in polycrystalline materials in an open source software
package developed in Ref. [10]. However, this procedure can be
computationally expensive as it requires re-meshing for every new
experimental image.
A new technique for optimal partitioning of an arbitrary

unstructured mesh into different phases is proposed in this paper. In
practice, partitioning the mesh means assigning an index to each
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element where elements with similar indexes form a single phase.
Thus, any experimental image can be superimposed on a generic
unstructured FE mesh by effectively partitioning the mesh based on
voxelated data. Two conditions are expected to be satisfied. First, the
phase index assignment to the FEmesh should be as close as possible
to the experimental voxel data. Second, the phase index assignments
should be such that the boundaries are as smooth as possible. We
solve this problem using graph partitioning (GP) theory, and this is
the novel contribution of this paper.
It has been shown that GP is an NP-hard problem, thus achieving

an efficient exact solution is difficult unless P � NP [11]. Seminal
contributions in the development of the GP algorithm are made in
[12–14]. Spectral methods (for instance, see [15]) are often used.
Recent advances in this field have been reviewed in [16]. Improved
results are achieved with global methods, such as multilevel
approaches, which operate in stages with refinement. METIS and
KaHIP are good open source graph partitioners that use multilevel
methods and are developed in [17,18], respectively. Because GP is
often studied as a combinatorial optimization problem, combinatorial
optimization methods, in particular, metaheuristic methods such as
simulated annealing, are also commonly used. One of the most
widely used algorithms specialized for the Potts energy model was
developed in [19].A comparative study of some of these algorithms is
provided in [20].
The overall objective of this paper is to provide an effectiveway of

labeling the elements of a mesh into the representative phases such
that the spatial distribution of the phase is comparable to the
experimental data while maintaining the smoothness in the
boundaries. This is done by formulating a graph coloring problem on
a graph embedding on the dual of an FE mesh. A Potts-like energy is
formulated where the minimization of data term preserves the spatial
phase data and the smooth term penalizes the rough behavior of phase
boundaries. The resultant submodular energy is solved using graph-
cut algorithm. The above steps formalize the theory of embedding
pixelated/voxelated data into an user-generated unstructured grid.
The generalization to nonequiaxed morphologies of component
phases is presented using a Riemannian metric. Application of the
method to fiber composites is also studied.

II. Problem Formulation

Some definitions are presented for ease of understanding and to
facilitate a common vocabulary. The formulation for both 2D and 3D
mesh generation is presented in this section.
Definition 1 (FE mesh): Given a closed bounded polyhedral

domain Ω ∈ R3, we can associate a finite partition Ph of Ω in
polyhedrons Pi (indexed with i) such that

Ω �
[

Pi∈Ph

Pi

such that
1) int�Pi� ≠ ϕ∀Pi ∈ Ph

2) int�Pi� ∩ int�Pj� � ϕ∀Pi; Pj ∈ Ph s:t: Pi ≠ Pj

3) ifF � Pi ∩ Pj ≠ ϕ forsomePi; Pj ∈ Ph andPi ≠ Pj, thenF is
either a whole face (polygon), a whole edge (line segment), or a node
(point) of the polygons Pi and Pj

4) h � maxPi∈Phi, where hi denotes the longest Euclidean
distance between two points of Pi.

where int�:� denotes the interior. The partition Ph is called the mesh

of Ω.
Remarks: In the case of 2D polygonal domain, Ω ∈ R2, this

definition can be extended by considering the partitions of polygons,

Pi, and modifying condition (3) to consider only edges and corners.

Definition 2 (graph and undirected graph): A graph (G) is a pair of

sets �V; E�, where V is the set of vertices and E is the set of edges/

connections. For each element e ∈ E there is an associated order pair

�x; y� for some x; y ∈ V, that is,E ⊆ V × V. The graphG � �V; E� is
undirected if �x; y� ∈ E ⇒ �y; x� ∈ E ∀ x; y ∈ V.
Remark: To avoid confusion with the edges of a mesh, from here

on, the term connection is preferred for graphs.

The mesh for multiphase materials is defined by assigning a phase

to each element of the partition. This assignment or labeling, as it will

be referred to in the rest of the paper, is done using an undirected

graph �G�. The graph G is embedded in the mesh, Ph, by placing a

single vertex, vi, in the interior of eachPi. Without loss of generality,

the location of vi can be determined as the centroid of the polygonPi.

It ensures that vi ∈ int�Pi� when Pi is convex (generally true for all

elements of FE meshes). A connection is introduced between two

vertices vi and vj if and only ifPi andPj share a common face. In case

of 2D meshes, this connection is introduced if and only if Pi and Pj

share a common edge. Furthermore, each connection is endowed

with aweight determined by the area and the unit normal of the shared

face. Consequently in 2D meshes, the weight is determined by the

length and the unit normal of the shared edge. In particular, if n and

Δs are the unit normal and the area (length) of the face (edge),

respectively, then weight wi of the connection ei is given as

wi � g�n�Δs. The function g is restricted to be strictly positive and

symmetric, that is, g > 0 and g�n� � g�−n�. This construction is

illustrated in Fig. 2, where a connection between 2 representative

elements, A and B, is introduced with a weight determined by the

unit normal n and length of the edge Δs.
Definition 3 (multiway k-cut problem [21]): Given an undirected

graph, G � �V; E�, edge(connections) weights, w:ei → R� ∀ei ∈
E, and a set of terminalsS � fs1; s2; : : : ; skg ⊂ V, amultiway cut is a

set of edges(connections) E 0 that leaves each of the terminals in a

separate component. The cost of the multiway cut is defined as the

sum of the weights of the edges(connections) in E 0. The goal of the
multiway cut problem is to minimize this cost.

Remarks:

1) For k > 3, the multiway cut problem is NP-hard

Fig. 1 Multiscale design of turbine blades for aircraft engines.

Fig. 2 Construction of the graph G � �V;E� from a FE mesh.
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2) This problem can equivalently and rather more intuitively be
presented as a labeling problem where each vertex in V is assigned a
label fi ∈ L, where jLj � k. The multiway cut is defined as a set of
edges (connections) between vertices with different labels.
In this work, labels are identified as different phases. For a

particular choice of labels f (i.e., each vi is assigned the label fi), and
the corresponding multiway cut E 0, a Potts-like energy H of is
defined using Eq. (1). The first term in this form is referred to as the
data term, and the second term is referred to as the smooth term.

H�f� �
X
vi∈V

Di�f� �
X

�vi;vj�∈E 0
wi;j�f� (1)

The image information is encoded in the data term using a
phenomenological form. Let I be a function that evaluates the label
(phase information) from the image data (pixel/voxel). For instance,
I�vi� � r means vi belongs to the pixel region with phase index r.
Additionally, let the functionVol�Pi� evaluate the area/volume of the
ith element in case of 2D/3D meshes, with M representing mode of
the distribution.As an ansatz,Di assumes the formofEq. (2), whereα
is a positive real number and is treated as a control parameter. It is
worth observing that the minimization of this term leads to
preservation of phase structure of the input data.

Di�f� �
�
0 if I�vi� � fi
α�1 − e−Vol�Pi�∕M� if I�vi� ≠ fi

(2)

The smooth term, as the name suggests, penalizes any roughness of
phase boundaries. In this work, it is specialized to the form presented
in Eq. (3), where n represents the normal to the shared edge between
ith and jth element. The action of the second term can be better
understood by taking g�n� � 1 for all n. In this special case, the
second term reduces to the total length of the boundary between each
component of the k-way partition, that is, length of the phase
boundary. Minimization of this term leads to the minimization of the
phase boundary length and renders a smoothening effect. The total
energy is minimized using the alpha expansion method discussed in
[19] by solving the equivalent multiway k-cut problem. The data
structure and the pseudo-code for implementing this method are
presented in the Appendix.

wi;j�f� �
�
0 if fi � fj
g�n�Δs if fi ≠ fj

(3)

Simultaneous minimization of the two energy terms gives rise to
Pareto optimal solutions, that is, solutions where both terms cannot
be simultaneously decreased any further. This means that there exists
a labeling such that any change in it either leads to deviation from the
input image or introduces roughness in grain boundary. The solution
is selected based on the choice of α in Eq. (2). This phenomenon is
illustrated in the next section by means of an example.

III. Results and Discussion

The salient features of the algorithm are illustrated using two
examples. In the first example, polycrystalline materials are used
with the grains representing the different phases of thematerial. Next,
a case study of woven fibers composite is considered where the fiber

and the matrix are identified as the two distinct phases. In
polycrystalline materials, the smooth boundary is an artifact of
microstructure evolution, which is governed by surface energy
minimization. According to the theory discussed in the previous
section, the naive labeling based on the pixel location results in rough
grain boundaries. The energy minimization problem is not required
to estimate this labeling. In fact, it can be uniquely determined by the
relation, fi � I�vi�, which was treated as the basis for formulating
the data cost. This grain boundary is smoothened by minimization of
energy form given in Eq. (1). This process is illustrated in Fig. 3 for a
microstructure image with 200 × 200 pixels. A triangular mesh with
30,625 nodes and 60,547 elements is, first, labeled based on pixel
positions. The boundaries are then smoothened by solving the
multiway k-cut problem on the embedded graph containing 90,470
connections with the data parameter chosen as α � 0.002 and the
metric function chosen as g�n� � 1. The same procedure can be
carried out for low-resolution imageswhere pixel-based labelingmay
result in a very rough grain boundary. Grain identification for mesh
elements using pixel-based andmultiway k-cut based is presented for
a low-resolution image of a pixel size of 50 × 50 in Fig. 4 It is
observed that the smoothening effect is less prominent (in
comparison to the high-resolution image) due to the pixelated nature
of the base image.
The dependence of partitioning on the data term is shown in Fig. 5.

The grain boundary length ratio (i.e., the nondimensional length of
the grain boundary with respect to the unit cell) is calculated with
respect to labelings for different data cost. Three regions are observed
based on the value of the α defined in Eq. (2). The first region
corresponds to the case when higher weight is given to the
minimization of length (low value of α). In this case, the addition of
data cost is preferred over the addition of surface energy. On the
contrary, labeling is governed by data cost in the third region.
Therefore, this region is plagued with rough boundaries and an
overall higher estimate of grain boundary length/area. Practical
meshes with smooth boundaries and aminimal loss of grain structure
are offered in the second region.
A comparison of the performance of this mesh with that of a

uniform mesh with pixel-based labeling and an exact mesh
(conformal mesh) is presented. A bicrystal with an incident angle of
60° between isotropic components is studied in uniaxial loading. For
simplicity, the FE simulations are presented for linear-elastic
deformation assuming plane strain. The distribution of Von-mises
stress is presented for the different meshes in Fig. 6. The grain

Fig. 3 An illustration of labeling procedure: a)Microstructure image. b) Pixel-based labeling. c) Smoothenedmesh usingmultiway k-cut-based labeling.

Fig. 4 Grain identification in a mesh using a 50 × 50 pixel image:
a) Pixel-based labeling. b) Multiway k-cut-based labeling.
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boundary is exactly mapped by the edges of the conformal mesh. It

captures all the localized data as well as the jump in stresses. In

comparison, the pixel-based mesh has a diffused solution near the

grain boundary and local features like stress concentrations are not

well captured. Performance of graph-labeled mesh is very similar to

the conformal mesh in terms of capturing discontinuity and localized

stresses.
Additive manufacturing techniques, like selective laser melting

(SLM), electron beam melting (EBM), and shaped metal deposition

(SMD), often result in microstructure with elongated grains [22–24].

These structures can be better captured using the characteristic

alignment of the grains. Motivated by the elliptical shape of grains, a

non-Euclidean distance measure can be used to favor or penalize

certain directions. A useful class of such distance measures is a

Riemannian norm. For this purpose, the function g can be specialized
as Eq. (4).

g�v� �
���������������
vT:D:v

p
(4)

where D is a positive definite matrix. In general, polycrystalline

materials with nonequiaxed morphology show smoother grain

boundaries in the normal/transverse direction (ND/TD). This

directional smoothening is achieved by penalizing the length of a line

element in an appropriate direction using the metric presented in

Eq. (4). An example of elongated microstructures is presented in

Fig. 7. It is observed that a metric with D11 � 1, D22 � 10, and
D12 � D21 � 0 minimizes the kinks in the normal direction. This

procedure can be specialized to many other kinds of morphologies

using the matrix, D. The iso-surfaces for the distance function g�n�

for different choices of matrix D are presented as an illustration in

Fig. 8. Based on the theory of Wulff construction, the iso-surface
represents the grain shape ([25]).
As suggested in Sec. III, this procedure can be easily extended to

3D meshes. For the purpose of illustration, a 64 × 64 × 64 voxelated
image of a microstructure is superimposed on an FE mesh with

tetrahedral elements. The sample solution is presented in Fig. 9 for a

mesh with approximately 3 × 105 elements. This smoothening

procedure is also illustrated for a woven fiber composite system. A
voxelated mesh and a tetrahedral (smooth) mesh with approximately

106 nodes are presented in Fig. 10. A comparative study of

convergence in volume and surface area is also presented in Fig. 10c.

Fig. 5 Dependence of graph partitioning on the data term in energy.

Fig. 6 Comparative study of FE simulation results for a bicrystal in plane strain (linear elastic) using pixel-based (quad mesh), graph-based (triangle
mesh with smoothening), and conformal mesh.

Fig. 7 Grain identification for elongatedpolycrystals using a)Euclidean
metric and b) using Riemannian metric.
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Different voxelated meshes are used with “Vox < n >” representing

a mesh with �n� 1�3 nodes. The fiber composite with Vox100 mesh

is shown in Fig. 10a with the tetrahedral mesh (Tet100) in Fig. 10b.

The normalization is done with respect to the analytical values of

respective quantities. It is observed that the estimate of fiber volume is

almost consistent in all the meshes, but the estimate of fiber surface

area is improved in the tetrahedral mesh.

The time complexity of the algorithm is experimentally studied for

2D and 3D test cases. Ten instances of meshes with a similar number

of elements are labeled using GP. The total average time for GP using

alpha expansion is calculated for the 2D triangle and 3D tetrahedral

elements. An almost linear trend is observed in Fig. A1 (log-log scale

is shown but note that the simulation time scales linearlywith number

of elements). This is faster in comparison to the experimental results

presented in [26]. Faster heuristics are seen for the 2D mesh in

Fig. 8 Illustration of variousmythologies based on themetric tensor,D.

Fig. 9 Grain identification in 3D meshes using a 64 × 64 × 64 voxel base
image: a)Vertex-position-based labeling. b)Multiwayk-cut-based labeling.

Fig. 10 Mesh generation for woven fiber composite. a) Voxelated mesh with 102 × 102 × 102 elements. b) Tetrahedral mesh with multiway k-cut-based
labeling. c) Comparison of fiber volume and surface area of various voxelated meshes and a tetrahedral (smoothened) mesh.

Fig. A1 Time complexity analysis of the mesh generation procedure.
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comparison to 3D for the same number of elements. This is because
the embedded graph in the 2D case has a planar topology and graph-
cut algorithm is known to be more efficient in these cases.

IV. Conclusions

Based on the integrated computational materials engineering
paradigm, there has been increasing interest in the use of
microstructuremodeling tools for optimization of aerospacematerials
manufacturing processes. Experimental evaluation of the spatial
distribution of multiphase materials provides images in a voxelated/
pixelated format. However, such a format does not accurately capture
features like grain surface area and curvature that are important for
modeling fracture. In addition, FE simulation on voxelated
microstructures may lead to the prediction of spurious stresses due
to the stepped, block-like representation of otherwise smooth
boundaries. In this paper, a theory has been developed for conversion
of as-measured voxelated microstructure to an unstructured grid with
a smoother representationof boundaries. This problem is solved using
the graph partitioning theory, and this is the novel contribution of this
paper. This procedure smoothens the grain boundaries using a Potts
energy model while optimally preserving the grain label information
of the initial experimental data. The trade-off between smoothening
and data preservation is controlled using a user-controlled parameter.
The performance is tested for both equiaxed and nonequiaxed
morphologies using Riemannian metric measures. It is observed that
smoother grain boundaries in the normal/transverse direction (ND/
TD) can be realized using this approach. The methodology has an
efficient runtime and is easily extendable to 3D structures like woven
fiber composites and 3D polycrystalline material as demonstrated in
this work.
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Appendix: Pseudo-Code and Data Structures

Here, we present the data structure and the pseudo-code for the
mesh labeling algorithm. There are two kinds of data that are required
in this algorithm: 1) FE mesh data and 2) image data. It is
recommended to calculate and save all the variables as defined below
at the time of mesh generation and be passed on to mesh labeling
algorithm. The FE mesh data structure is preprocessed to include the
following variables:
1) Dimension: Value is 2 for 2D and 3 for 3D.
2) MeshSize: The x-dimension of mesh is in the range

�0;MeshSize�1�� and the y-dimension is in the range
�0;MeshSize�2��. For 3D mesh, the z-direction is in the
range �0;MeshSize�3��.
3) Coordinate: Location of each node of the mesh
4) Nnode: Number of nodes
5) Connectivity: Contains tuples with nodes of each element
6) Nelement: Number of elements
7)Neighbor: In 3Dmeshes this data contains each pair of elements

that share a face. In case of 2D, it contains each pair of elements that
share an edge.
8) Npair: Number of Neighbors
9) ElementVolume: Defined only for 3D meshes and contains the

volume of each element
10) Face: Defined only for 3D meshes and contains tuples with

nodes of the shared faces (indexed as the Neighbor data)
11) FaceArea: Area of face defined in Face data
12) FaceNormal: Unit normal of face defined in Face data

Algorithm 1: Set-up Data cost (2D/3D)

1: M← Mesh data ▹ Import mesh data
2: I← Image data ▹ Import Experimental image data
3: Unary←zeros(M.Nlabel,M.Nelement) ▹ Initialize Data cost variable as an matrix of zeros
4: if M:Dimension �� 3 then ▹ 3D Case
5: temp←mode(M.ElementVolume) ▹ Evaluate mode of the distribution of element volume
6: Factor←α�1 − exp�−M:ElementVolume∕temp�� ▹ Evaluate Eq. (2)
7: for index1←1 to M.Nelement do ▹Loop over each element
8: xpos←mean�M:Coordinate�M:Connectivity�index1; :�; 1�� ▹ Coordinates of center of the element
9: ypos←mean�M:Coordinate�M:Connectivity�index1; :�; 2��
10: zpos←mean�M:Coordinate�M:Connectivity�index1; :�; 3��
11: nx � floor�xpos × I:ImageSize�1� ∕M:MeshSize�1�� � 1 ▹Location of center with respect to image grid data
12: ny � floor�ypos × I:ImageSize�2�∕M:MeshSize�2�� � 1
13: nz � floor�zpos × I:ImageSize�2�∕M:MeshSize�3�� � 1
14: for index2←1 to I.Nlabel do ▹ Loop over each Label value
15: if LabelValues�index2� �� I:LabelGridData�nx; ny; nz� then
16: Unary�index2; index1�←0 ▹ No cost if the Label matches the image data
17: else

18: Unary�index2; index1�←Factor�index1� ▹Add cost determined by Eq. (2)
19: end if
20: end for
21: end for
22: else
23: temp←mode�M:ElementArea� ▹Evaluate mode of the distribution of element area
24: Factor←α�1 − exp�−M:ElementArea∕temp�� ▹Evaluate Eq. (2)
25: for index1←1 to M.Nelement do ▹Loop over each element
26: xpos←mean�M:Coordinate�M:Connectivity�index1; :�; 1�� ▹Coordinates of center of the element
27: ypos←mean�M:Coordinate�M:Connectivity�index1; :�; 2��
28: nx � floor�xpos × I:ImageSize�1�∕M:MeshSize�1�� � 1 ▹Location of center with respect to image grid data
29: ny � floor�ypos × I:ImageSize�2�∕M:MeshSize�2�� � 1
30: for index2←1 to I.Nlabel do ▹Loop over each Label value
31: if LabelValues(index2)==I.LabelGridData(nx,ny,nz) then
32: Unary�index2; index1�←0 ▹No cost if the Label matches the image data
33: else
34: Unary�index2; index1�←Factor�index1� ▹Add cost determined by Eq. (2)
35: end if
36: end for

37: end for
38: end if
39: return Unary
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13) ElementArea: Defined only for 2D meshes and contains the
area of each element
14) Edge: Defined only for 2D meshes and contains tuples with

nodes of shared edges (indexed as the Neighbor data)
15) EdgeLength: Length of each edge defined in Edge data
16) EdgeNormal: Unit normal of each edge defined in Edge data

The image data structure includes the following variables:
1) ImageSize: The tuple �Nx;Ny;Nz� represents the voxel size of

the image in each direction. In case of 2D, this variable contains a
pair �Nx;Ny�.
2) XGridData: Contains the x-coordinate value of the voxelated/

pixelated image with size determined by ImageSize.
3) YGridData: Contains the y-coordinate value of the voxelated/

pixelated image with size determined by ImageSize.
4) ZGridData: Defined only for 3D image data. Contains the

z-coordinate value of the voxelated/pixelated image with size
determined by ImageSize.
5) LabelGridData: Label values at each grid point.
6) NLabel: Number of labels
7) LabelValues: Contains the label values of enumerated from 1 to

NLabels

As discussed in the paper, this method uses an energy

minimization approach. Pseudo-code for estimation of data cost and

smooth cost is presented in Algorithms 1 and 2, respectively. The

energy minimization is carried out using the GCO library developed

in [19]. The pseudo-code for using this library is presented in

Algorithm 3:
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