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Abstract

Evolution of properties during processing of materials depends on the underlying material micro-
structure. A finite element homogenization approach is presented for calculating the evolution of
macro-scale properties during processing of microstructures. A mathematically rigorous sensitivity
analysis of homogenization is presented that is used to identify optimal forging rates in processes
that would lead to a desired microstructure response. Macro-scale parameters such as forging rates
are linked with microstructure deformation using boundary conditions drawn from the theory of
multi-scale homogenization. Homogenized stresses at the macro-scale are obtained through vol-
ume-averaging laws. A constitutive framework for thermo-elastic–viscoplastic response of single
crystals is utilized along with a fully-implicit Lagrangian finite element algorithm for modelling
microstructure evolution. The continuum sensitivity method (CSM) used for designing processes
involves differentiation of the governing field equations of homogenization with respect to the pro-
cessing parameters and development of the weak forms for the corresponding sensitivity equations
that are solved using finite element analysis. The sensitivity of the deformation field within the micro-
structure is exactly defined and an averaging principle is developed to compute the sensitivity of
homogenized stresses at the macro-scale due to perturbations in the process parameters. Computed
sensitivities are used within a gradient-based optimization framework for controlling the response of
the microstructure. Development of texture and stress–strain response in 2D and 3D FCC aluminum
polycrystalline aggregates using the homogenization algorithm is compared with both Taylor-based
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simulations and published experimental results. Processing parameters that would lead to a desired
equivalent stress–strain curve in a sample poly-crystalline microstructure are identified for single and
two-stage loading using the design algorithm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The thermo-mechanical description of polycrystals is usually based on two different
scales. The macro-scale is associated with a homogenized continuum and the meso-scale
is characterized by the underlying microstructure. For linearly elastic heterogeneous sol-
ids, exact averaging theorems and several homogenization models have been developed
in Nemat-Nasser and Hori (1993), starting with the pioneering work of Hill (1952,
1965). There are also several contributions to the development of a similar treatment
for homogenization of finitely deformed heterogeneous solids (e.g. see Nemat-Nasser,
1999; Hill, 1972, 1984; Havner, 1992).

The emphasis of this paper is on the calculation and design of effective response of a
polycrystal microstructure and study of the development of textural features in polycrys-
talline materials through homogenization. Simulation of texture evolution in polycrystals
has been well studied in the past (e.g. for a review see Kocks et al., 1998). Many of the
related works apply the Taylor-type micro-macro transition which assumes a purely kine-
matic constraint mainly that all grains are subjected to the same deformation. This
assumption satisfies compatibility but fails to account for equilibrium across grain bound-
aries. The effect of stereology and formation of disoriented regions within crystals due to
non-uniform deformation are not taken into account. In order to model these heterogene-
ities, several researchers have modelled discretized grain structures (Harren and Asaro,
1989; Bronkhorst et al., 1992; Becker and Panchanadeeswaran, 1995; Beaudoin et al.,
1996; Mika and Dawson, 1999) where microstructural constituents are idealized grains
with a fixed topology, or realistic polyhedral grains in two or three dimensions (Sarma
et al., 2002; Matous and Maniatty, 2004; Diard et al., 2005). In many of these cases, a
velocity-based finite element formulation is used (Beaudoin et al., 1996; Sarma et al.,
2002; Mika and Dawson, 1999) or displacement-based finite element formulations are
used, frequently implemented into commercial finite element codes (Bronkhorst et al.,
1992; Becker and Panchanadeeswaran, 1995).

The main feature of the present work is the use of alternative multi-scale transitions
that have been proposed using the theory of homogenization based on averaging the-
orems for linking scales (Nemat-Nasser, 1999). In these models, the Taylor assumption
arises naturally as a linking assumption and new linking assumptions that satisfy the
basic averaging theorems of Hill (1972) are identified. Such linking procedures for
modelling crystal plasticity were originally reported in Miehe et al. (1999) for polycrys-
talline microstructures. This approach is presently advanced towards interrogation of
complex 2D and 3D microstructures using single-crystal constitutive models based on
the continuum slip theory (Balasubramanian and Anand, 2002). The polycrystal repre-
sentative volume element is modelled with a displacement-based fully-implicit updated
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Lagrangian finite element formulation in thermo-mechanical loading conditions using
multi-scale boundary conditions arising from the theory of large strain homogenization.
Mechanical properties are obtained through associated volume-averaging laws. The
results of the homogenization scheme are compared with ODF-Taylor, aggregate-Tay-
lor and experimental results based on the development of texture and stress–strain
response.

The homogenization procedure is then used to construct a novel optimization
scheme for tailoring material response to loading. Very few published works in litera-
ture discuss design of processes leading to stipulated material performance require-
ments (materials by design/microstructure-sensitive design). Significant contributions
include (Adams et al., 2001) where the authors discuss the design of a compliant beam
so as to maximize the deflection without plastically deforming the beam. Strategies for
controlling processes to tailor texture and texture-dependent properties were introduced
in Acharjee and Zabaras (2003); Ganapathysubramanian and Zabaras (2004); Sundar-
araghavan and Zabaras (2005a,b). The emphasis of the present work is on identifying
process modes in single- and two-stage processes for controlling the final stress–strain
response of poly-crystalline micro-structures. A novel continuum sensitivity method
(CSM) is used for designing processes. This involves differentiation of the governing
field equations of homogenization with respect to the processing parameters and devel-
opment of the weak forms for the corresponding sensitivity equations that are solved
using finite element analysis. An averaging principle is then developed to compute the
sensitivity of the homogenized stresses at the macro-scale due to perturbations in the
process parameters. Computed sensitivities are used within a gradient-based optimiza-
tion framework for controlling the response of the microstructure. The rest of the
paper is organized as follows. In Section 2, the microstructure interrogation technique
used is introduced followed in Section 3 by a presentation of the continuum sensitivity
based process design methodology. In Section 4, we present examples of homogeniza-
tion and applications to design problems of practical significance. Conclusions are sum-
marized in Section 5.

2. Microstructure interrogation

The approach adopted here for interrogation of microstructures involves finite element
based elasto-visco-plastic analysis of microstructures using constitutive models based on
the continuum slip theory. The overall response of the microstructure at the macro-scale
is derived on the basis of homogenization. In this section, the microstructure interrogation
and property evaluation scheme is systematically developed using the theory of non-linear
homogenization.

Let y : Bref ! B represent the non-linear deformation map of the microstructure at
time t, and F = $refy the associated tangent map (see Fig. 1). F maps points Y 2 Bref onto
points y(Y,t) of the current configuration B. The reference microstructure configuration is
considered of volume V ðBrefÞ and boundary oBref with outward normal N. The micro-
structure at time t of volume V ðBÞ and boundary oB with outward normal n is attached
to the material point X in the macro-continuum (see Fig. 1). Further, we use superposed
bars (e.g. �F) to denote homogenized quantities and angular brackets (e.g. ÆFæ) to denote
volume-averaged quantities. In the subsequent analysis, the standard tensorial notation
developed in Gurtin (1981) is followed.



Fig. 1. The microstructure homogenization technique: each integration point in the macro-continuum is
associated with an underlying microstructure. The microstructure reference configuration (Bref ) and the mapping
to the present microstructure configuration (B) are shown in contrast with the homogenized macro-continuum.
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The most general assumption behind homogenization theory is that the deformation
gradient as seen at the macro-scale can be represented purely in terms of the motion of
the exterior boundary of the microstructure (see Hill, 1972),

�F ¼ 1

V ðBrefÞ

Z
oBref

y�N dA. ð1Þ

The deformation of the microstructure is then related to the homogenized deformation
gradient in the macro-continuum based on the assumption,

y ¼ �FYþ ~w; ð2Þ
where the deformation consists of a homogeneous part �FY and an inhomogeneous part ~w
referred to as the fluctuation field. As a consequence, we have the relationship, F ¼ �F þ eF
(with eF ¼ r~w) between the microscopic (F) and the macroscopic ð�FÞ deformation gradi-
ents. From the homogenization law (Eq. (1)) and the decomposition described above, it
can be shown that the superposed field ~w follows the equation

1

V ðBrefÞ

Z
oBref

~w�N dA ¼ 0. ð3Þ

The condition is satisfied by the use of any one of the three linking assumptions: (1) ~w ¼ 0
in Bref , (2) ~w ¼ 0 in oBref , and (3) a periodic boundary condition (refer Miehe et al., 1999)
which is not dealt with in the present work. The first two multi-scale boundary conditions
are popular in homogenization (i) based on Taylor hypothesis that all crystals deform
identically (F ¼ �F) and (ii) homogeneous deformation on the boundaries of the micro-
structure while allowing for non-uniform deformations within the microstructure. The
Taylor hypothesis poses a stringent kinematic constraint on the grains and thus provides
a stiff response. In addition, as explained earlier, this assumption fails to model inter- and
intra-granular mis-orientation development which is a key feature in polycrystalline mate-
rials. The second hypothesis, which allows for homogeneous deformations at the bound-
ary of the microstructure (referred to as the HB (homogeneous boundary) condition from
here on) and inhomogeneous deformation within grains allowing study of mis-orientation
evolution, is adopted in this work.
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Macroscopic stress is defined according to a simple virtual work consideration. Here,
the variation of the internal work dWint performed by the homogenized PK-I stress tensor
�P at the macroscopic point on arbitrarily virtual displacements of the microstructure dy is
required to be equal to the work dWext performed by the external loads on the microstruc-
ture. Internal work done by the macroscopic stress can be written as

dW int ¼
Z
Bref

�P�rrefdy dV ð4Þ

¼ �P�

Z
oBref

dy�N dA. ð5Þ

External work is given as dW ext ¼
R

oBref
p � dy dA, where p is the traction vector at the

boundary of the reference microstructure. For the HB condition, the virtual displacements
at the boundary of the microstructure are obtained from the variation of the macroscopic
deformation gradient as,

dy ¼ d�FY . ð6Þ
Thus, the external work can be written as dW ext ¼ d�F�

R
oBref

Y � p dA. For satisfying the
balance of virtual work,

d�F�

Z
oBref

Y � pdA ¼ �P�

Z
oBref

dy�N dA ¼ �Pd�F�

Z
oBref

Y �N dA ¼ d�F��PV ðBrefÞ.

Taking into account the fact that the equality should be satisfied for any arbitrary varia-
tion of the deformation gradient tensor d�F, we obtain the macroscopic stresses to be of the
form

�P ¼ 1

V ðBrefÞ

Z
oBref

Y � p dA. ð7Þ

An equilibrium state of the micro-structure at a certain stage of the deformation process is
then assumed with the equations,

rref�P ¼ 0 in Bref ; ð8Þ
PTN ¼ p on oBref . ð9Þ

Using the divergence theorem, macroscopic stresses as defined by Eq. (7) can be shown to
be the volume-average of the microscopic stresses (P)

�P ¼ 1

V ðBrefÞ

Z
Bref

P dV ¼ hPi. ð10Þ

The following relationship between the homogenized PK-1 stress and homogenized Cau-
chy stress is then assumed

�P ¼ ðdet �FÞ�T �F�T. ð11Þ
Readers are referred to the fact that virtual work principle similar to that used in the der-
ivation of homogenized PK-1 stress can be used to prove that the macroscopic Cauchy
stress (�T) is also a volume-average (in the current configuration) of the microstructural
counterpart (T) as,

�T ¼ hTi. ð12Þ
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However, once Eq. (10) is assumed, then Eq. (11) is used to define the homogenized Cau-
chy stress. Thus, in the present approach, Eq. (12) is abandoned in favor of Eq. (10) (refer
Nemat-Nasser, 1999). It is to be noted that Hill (1984) and Nemat-Nasser (1999) advocate
the nominal stress tensor (S = (det F)F�1T) as the averaging measure. The choice of PK-I
stress as the stress measure for averaging in our work (as also in Miehe et al. (1999)) is
motivated by the fact that P and F are work conjugated.

Apart from these definitions, in macro-problems with temperature effects, the temper-
ature linking is achieved through equating the macro- (�h) and micro- (h) temperatures and
the macro- and micro-mechanical dissipation. Microstructure (material point) simulations
are deemed isothermal in this work since the macro-scale temperature evolution problem
is not solved.

The kinematic problem for microstructure deformation employs the updated Lagrang-
ian framework. Here, the total micro-scale deformation gradient Fn+1 at time t = tn+1 of
configuration Bnþ1 with respect to the initial undeformed configuration (B0) at time t = 0
is assumed to be decomposed as

Fnþ1 ¼ r0~yðY 0; tnþ1Þ ¼ rnŷðY n; tÞr0~yðY 0; tnÞ ¼ FrFn ¼ FeFp; ð13Þ

where Fe is the micro-scale elastic deformation gradient at time n + 1, Fp is the micro-scale
plastic deformation gradient at time n + 1, Fr is the relative deformation gradient with re-
spect to the configuration at time n and Fn refers to the total micro-scale deformation gra-
dient in the reference configuration (Bn) with respect to the initial undeformed
configuration. Going back to Fig.1, using the updated Lagrangian description of kinemat-
ics, Bref would now refer to Bn. Quantities used in the derivation of homogenized stresses
would now be defined with respect to Bn. For example, the microscopic deformation gra-
dient F would be equal to Fr as defined in Eq. (13).

The equilibrium equations can be expressed in the reference configuration Bn as,

rn � Pr ¼ 0; ð14Þ

where the PK-I stress Pr(Yn, t) is expressed as PrðY n; tÞ ¼ ðdet FrÞTF�T
r . The solution of a

generic loading increment involves the solution to the principle of virtual work (PVW) gi-
ven as follows: Calculate y(Yn, t) such thatZ

Bn

Pr � rn~u dV n ¼ 0 ð15Þ

for every admissible test function ~u expressed over the reference configuration Bn. The
weak form is solved in an incremental-iterative manner as a result of material non-linear-
ities. FEM is used for the solution of the weak form and bilinear quadrilateral elements are
used for the microstructure along with the assumed strain analysis scheme to counter the
effect of near-incompressibility. Microstructure homogenization and multi-scaling proce-
dure has been implemented in an object-oriented and parallel environment in C++ and
PetSc parallel toolbox and is applicable to both 2D and 3D microstructures, building from
our earlier work on large deformation process modeling and design in Akkaram and Zab-
aras (2001). The microstructure material point problem has been parallelized by efficiently
partitioning microstructure elements to every processor. Microstructure interrogation can
be thought of as a material point simulator with the macro-point under consideration
being subject to deformations corresponding to various processing conditions that are
transferred to the boundaries of the microstructure using the HB condition.
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In this work, the equivalent strain is computed based on the volume-average of the
deformation rate ð�D ¼ hDiÞ following the measure for which the constitutive laws in Bal-
asubramanian and Anand (2002) were originally developed. This is performed as a post
processing step and is not required for multi-scaling. The average effective plastic strain
��eff is defined as

��eff ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�D � �D

r
dt. ð16Þ

Average strain measures can be alternatively derived (van der Sluis et al., 2000) through an
additional assumption that the macroscopic plastic work rate equals the plastic work rate
of the microstructure in an averaged sense (Gurson, 1977). It should be noted that this
assumption does not hold for the definition of average deformation rate used in this work.

The equivalent stress for the microstructure is represented using the von-Mises norm as

�reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
�T 0.�T 0

r
. ð17Þ
2.1. Single crystal constitutive problem

The constitutive problem adopted for a single FCC crystal T = T(Fn+1,h, state), and
computation of reorientations of crystals is described in detail in Balasubramanian and
Anand (2002). Useful features of this model include its ability to accurately model large
strain elasto-viscoplastic response incorporating strain rate and temperature effects. A
fully-implicit integration scheme with implicit evaluation of consistent tangent moduli
as proposed in Ganapathysubramanian and Zabaras (2005) is used in the microstructure
deformation simulation. The constitutive problem uses a total-Lagrangian description of
deformation gradient (with Fn+1 denoting the deformation gradient at current time with
respect to the initial undeformed configuration).

In the constitutive model, it is assumed that deformation takes place in a single crystal
through dislocation glide and the evolution of the plastic flow is given by

_FpðFpÞ�1 ¼ L ¼
X

a

_caSa
0; ð18Þ

where Sa
0 ¼ ma � na is the Schmid tensor, _ca is the plastic shearing rate on the slip system a

and ma and na are the slip directions and the slip plane normals, respectively, in the initial
configuration (at t = 0). An Euler-backward time integration procedure leads to the fol-
lowing approximation:

Fp ¼ exp Dt
X

a

_caSa
0

 !
Fp

n � I þ Dt
X

a

_caSa
0

 !
Fp

n ð19Þ

for small Dt. Substituting Eq. (19) into Eq. (13) results in:

Fe ¼ Fe
trial I � Dt

X
a

_caSa
0

 !
; ð20Þ

where Fe
trial is the trial elastic deformation gradient and is given as Fnþ1ðFp

nÞ
�1. In the

constitutive equations to be defined below, the Green elastic strain measure defined on
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the relaxed configuration (plastically deformed, unstressed configuration) �B is utilized. It
is computed using Eq. (20) as

�Ee ¼ 1

2
FeTFe � I
� �

¼ �Ee
trial �

Dt
2

X
a

_ca ðSa
0Þ

TðFe
trialÞ

T
Fe

trial þ ðFe
trialÞ

T
Fe

trialS
a
0

� �
; ð21Þ

where �Ee
trial ¼ 1

2
ððFe

trialÞ
T
Fe

trial � IÞ.
The conjugate stress measure is then defined as

�T ¼ det FeðFeÞ�1
TðFeÞ�T

; ð22Þ
where T is the Cauchy stress for the crystal in the sample reference frame. All vector and
tensorial quantities are expressed in the initial configuration B0. Furthermore, crystal spe-
cific properties like the stiffness and compliance have to be transformed to this sample ref-
erence frame using the crystal orientation (r). The constitutive relation, for stress, for small
temperature changes about the initial temperature, h0, is given by

�T ¼Le½�Ee � Aðh� h0Þ�; ð23Þ
where Le is the fourth-order anisotropic elasticity tensor expressed in terms of the crystal
stiffness parameters and the orientation r, and A is the second-order anisotropic thermal
expansion tensor. Substitution of Eq. (21) into Eq. (23) results in the following

�T ¼ �T trial �
Dt
2

X
b

_cbLe ðSb
0Þ

TðFe
trialÞ

T
Fe

trial þ ðFe
trialÞ

T
Fe

trialS
b
0

h i
� ðh� h0ÞLe½A�;

ð24Þ
where �T trial ¼Le½�Ee

trial�.
Further, if sa(h) is the slip system resistance at temperature h K, then the thermal and

athermal components of the slip system resistance and the resolved shear stress are defined
as

sa ¼ sa
at þ sa

t ; ð25Þ
sa

t ¼ jsaj � sa
at; ð26Þ

where the subscripts t and at denote the thermal and athermal parts, respectively, and sa,
the resolved shear stress for the ath slip system, is computed as �T � Sa

0. Such a formulation
was developed in Kothari and Anand (1998) and Balasubramanian and Anand (2002).
Here, part of the resolved shear stress has to overcome the athermal barriers (such as
strong precipitates). Thermal barriers (such as Peierls stress and forest dislocations) are
overcome by a combination of thermal energy and the resolved shear stress. Stress levels
with resolved shear stress (jsaj) greater than slip resistance (sa) are unattainable. If the re-
solved shear stress exceeds the athermal resistance, slip is activated. The shearing rate is
then expressed accordingly as,

_ca ¼
0; sa

t 6 0;

_c0 exp � DGaðsa
t ;s

a
t Þ

kBh

n o
signðsaÞ; 0 < sa

t < sa
t ;

(
ð27Þ

where the activation enthalpy is given by

DGaðsa
t ; s

a
t Þ ¼ DF a 1� sa

t

sa
t

� �p	 
q

. ð28Þ



V. Sundararaghavan, N. Zabaras / International Journal of Plasticity 22 (2006) 1799–1824 1807
In the equation above, DFa is the activation energy at 0K, p and q are material parameters
(generally, 0 < p < 1 and 1 < q < 2) and kB is the Boltzmann constant. Furthermore, the
slip system resistance parameters sa

at and sa
t evolve with deformation as

_sa ¼
X

b

habj _cbj ð29Þ

and hab is defined as

hab ¼ qabhb ðno sum on bÞ; ð30Þ

hb ¼ hb
0 j1� sb=sb

s j
r1 sign 1� sb

sb
s

� �
. ð31Þ

In Eq. (30), qab represents the latent-hardening parameter with the following property

qab ¼
1 if a ¼ b;

qh ¼ 1:4 if a 6¼ b.

�
ð32Þ

Further, sb
s represents the saturation value of sb, hb

0 and r1 are material response parame-
ters. For FCC materials, sb

s , the saturation state of sb, is considered as a constant in this
work. Interested readers are referred to Balasubramanian and Anand (2002) and refer-
ences therein for a more detailed physical interpretation of parameters in the constitutive
model.

An Euler-backward time integration of Eq. (29) along with Eqs. (30) and (31) results in
the following

sa
nþ1 ¼ sa

n þ Dt
X

b

qabgbðsb
nþ1; s

b
nþ1; hÞ; ð33Þ

where gb ¼ hbj _cbj. For FCC materials, the ratio g ¼ sa
t

sa
at
, which is a constant, is utilized to

evaluate the thermal and athermal parts of slip system hardness as

sa
at ¼ sa

nþ1

1

1þ g
; ð34Þ

sa
t ¼ sa

nþ1

g
1þ g

. ð35Þ

The resolved shear stress sa and the slip system resistance sa is solved from the coupled
system given by Eqs. (24), (27) and (33) using an iterative scheme (algorithm can be found
in Ganapathysubramanian and Zabaras (2005)).

For calculation of texture, we employ the Rodrigues–Frank space representation of tex-
ture. Details of neo-Eulerian representations and the use of Rodrigues–Frank space can be
found in Ganapathysubramanian and Zabaras (2005). The re-orientation velocity is here
evaluated as:

v ¼ or

ot
¼ 1

2
xþ ðx � rÞrþ x� rð Þ; ð36Þ

where r is the orientation (Rodrigues’ parametrization) and x represents the spin vector
defined as x ¼ vectð _ReReTÞ ¼ vectðXÞ, where Re is evaluated through the polar decompo-
sition of the elastic deformation gradient Fe as Fe = ReUe. Considering the Euler-back-
ward time integration of _ReReT ¼ X, where X is the spin tensor, leads to the following:
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Re
nþ1 ¼ expðDtXnþ1ÞRe

n ð37Þ

and

Xnþ1 ¼
1

Dt
ln Re

nþ1ReT
n

� �
. ð38Þ

Once the constitutive problem is solved, Fe
nþ1 can be evaluated from Eq. (20). From the

elastic deformation gradient, Re
nþ1 and Re

n are evaluated and one can then evaluate the spin
tensor Xn+1 using Eq. (38). The re-orientation velocity can be computed from Eq. (36)
which is used to update the orientation of the crystal r.

This completes the constitutive problem which is solved at each integration point of the
discretized microstructure. In addition, to solve the non-linear Eq. (15) for the microstruc-
ture, a Newton–Raphson (NR) iterative scheme along with a line search procedure is
employed. An implicit technique for linearization of the PK-I stress for the NR iterations
based on the constitutive problem described here can be found in Ganapathysubramanian
and Zabaras (2005).

Although FE homogenization provides an improved model accounting for non-uni-
form deformations within the microstructure, two shortcomings need to be pointed out
in the context of multi-scaling. Firstly, the dimensions of the microstructure representative
volume element (RVE) do not influence the averaging procedure. This arises from the
assumption that the microstructure is infinitesimal compared to the macro-scale and
hence, is seen as a macroscopic material point. Thus, the homogenization result is indepen-
dent of the overall dimensions of the microstructure. Secondly, use of first-order expansion
of microstructural deformation (Eq. (2)) restricts the analysis to simple deformation
modes (rotation, tension, shear or combinations thereof) at the micro-scale. In spite of
these drawbacks, the homogenization approach followed here allows additional conve-
nience of using the same algorithm as a plug-in in large strain continuum scale simulations
with minimal modifications to account for microstructural degrees of freedom.
3. Continuum sensitivity technique for process optimization at a material point

A problem of interest to manufacturing engineers is to identify improved processing
parameters that would closely achieve desired properties in materials. We define the design
problem of interest as identification of the right combination of process modes involving
plane strain tension/compression (rolling), shear and rotation, and the corresponding pro-
cess parameters a that would lead to a desired property v that is a function of the given
microstructure. The macro-velocity gradient ðeL ¼ _�F �F�1Þ is decomposed uniquely for
2D microstructure analysis as follows:

eL ¼ a1

1 0 0

0 �1 0

0 0 0

264
375þ a2

0 1 0

1 0 0

0 0 0

264
375þ a3

0 �1 0

1 0 0

0 0 0

264
375. ð39Þ

Similar decomposition for 3D deformation problems can be found in Ganapathysubrama-
nian and Zabaras (2004). Each matrix in the decomposition of Eq. (39) corresponds to a
given deformation process namely plane strain tension/compression (a1), plane shear
mode (a2) and rotation mode (a3). Note that here eL is introduced to define the deforma-
tion modes at the macro-scale as in our earlier work and that eL 6¼ �L.
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The macroscopic deformation gradient at time step n + 1 ð�Fnþ1Þ is computed based
from the definition of eLnþ1 using a backward Euler approximation as,

�Fnþ1 ¼ �FnðI þ eLnþ1DtÞ. ð40Þ
The design problem is posed as the identification of process parameters a = [a1,a2,a3] that
would lead to a desired homogenized property v. This can be stated by the minimization
problem:

min
a

FðaÞ ¼ 1

N s

XN s

i¼1

ðviðBðaÞÞ � vdesirediÞ2; ð41Þ

where Ns is the total number of sampling points and vdesired is the discrete representation
of the desired homogenized microstructural property.

We denote the sensitivity (directional-derivative) of the microstructure to a small
change in the process parameter (a) as B

	
¼
b
B
	
ðr; t; a;DaÞ. The ith sensitivity problem is dri-

ven by Dai = 10�5 with Daj = 0 for j 6¼ i. The gradients of property (v) with respect to ai is
calculated as

ov
oai
¼ v
	ðr; t; a1; . . . ; a3; 0; . . . ;Dai; . . . ; 0Þ

Dai
. ð42Þ

In general, the homogenized property (v) is a function of a homogenized field (�!). In
Examples 4 and 5 of Section 4, the property to be optimized is taken to be the time history
of homogenized equivalent stress ðv ¼ �reffÞ. Calculation of the homogenized equivalent
stress involves calculation of the sensitivity of the PK-1 stress (in this case, ! = P). The
expression for the sensitivity of a homogenized field (�!) over the microstructure configu-
ration (B) is determined as follows:

�!
	
¼ 1

V ðBÞ

Z
B

!ðy; t; aÞ dV

	

¼ � V
	
ðBÞ

V ðBÞ
�!þ 1

V ðBÞ

Z
B

�
	
ðy; t; aÞ þ � ðy; t; aÞtr F

	
nþ1F�1

nþ1

 � �
dV ð43Þ

Sensitivities of the homogenized property are then used in the steepest descent optimiza-
tion algorithm to obtain the optimum process parameters that minimize the objective
function in Eq. (41). Computational schemes for rigorously computing these sensitivities
from the governing equations of microstructure evolution are described next.

3.1. Deformation sensitivity problem

The interest in this problem is to compute how perturbations on the macro-design vari-
ables a affect the micro-fields – mainly the stresses within the microstructure. We compute
the resulting variation of the microstructure and other microstructural properties from the

perturbation �F
	

nþ1 of �Fnþ1. �F
	

nþ1 is in turn obtained from perturbation eL	 nþ1 of the macro-
velocity gradient eLnþ1 as

�F
	

nþ1 ¼ ðI þ eLnþ1DtÞð�F
	

n þ eL	 nþ1
�Fnþ1DtÞ. ð44Þ



1810 V. Sundararaghavan, N. Zabaras / International Journal of Plasticity 22 (2006) 1799–1824
Similar multi-scale boundary conditions such as those developed in the previous section
can be used for the sensitivity problem. In particular, we define the sensitivity linking as
follows: the sensitivity of the averaged deformation gradient at a material point is taken
to be the same as the sensitivity of the deformation gradient on the boundary of the under-
lying microstructure, in the reference frame. The equilibrium equation for the microstruc-
ture is then considered and design-differentiated. This differential, sensitivity equilibrium
equation is posed in a weak form so as to establish a principle of virtual work like equation
for the calculation of the sensitivity of deformation fields in the microstructure. Consistent
with this mode of analysis, the sensitivity constitutive problem is directly derived by dif-
ferentiating the constitutive equations given in the previous section. Described below is
the analysis for the development of a total Lagrangian sensitivity formulation for the kine-
matic problem (with microstructure at time step t = t0 as the reference configuration at
time step n). The design-differentiation of the equilibrium equation (Eq. (14)) results in:

r0�P
zfflffl}|fflffl{	

¼ 0; ð45Þ
where P is the PK-I stress defined earlier. A variational form for the sensitivity equilibrium
equation (for parameter sensitivity) can be posed as follows: Evaluate y

	 ¼ ^
y
	ðY 0; t; a;DaÞ

such thatZ
B0

P
	
�r0~g dV 0 ¼ 0 ð46Þ

for every ~g, a kinematically admissible sensitivity deformation field expressed over the ref-
erence configuration. In order to solve the weak form, defined by Eq. (46), relationships

between (a) F
	

nþ1 and y
	

(sensitivity of the kinematic problem) and (b) P
	

and ½F
	

nþ1; h
	
� (sen-

sitivity of the constitutive problem) needs to be defined. The relationship between F
	

nþ1 and

y
	

is purely kinematic ðF
	

nþ1 ¼ r0 y
	Þ. The relationship between P

	
and ½F

	
nþ1; h

	
� is obtained

from the sensitivity constitutive problem to be discussed in Section 3.2 and takes the form:

P
	
¼B½F

	
nþ1� þ A h

	
þB; ð47Þ

where B is a fourth order tensor and A, B are second order tensors. These tensors, are
constants, defined from known direct and sensitivity fields at the previous time step, are
obtained by considering the crystal constitutive response as described in the next
subsection.
3.2. Sensitivity constitutive problem

Through the crystal sensitivity constitutive sub-problem, the relationship between the

crystal parameters, T
	

and fF
	
; h
	
g is computed. As part of the update procedure, one com-

putes the set fT
	
; s
	
; s
	
;F
	

e;F
	

pg at each integration point in the microstructure at the end of
the time increment tn+1, where the sensitivity of the deformation gradient at the boundary

of the microstructure F
	

nþ1 (and the sensitivity of the temperature field h
	

nþ1) are known
from the macro-perturbations. The microstructure configuration Bnþ1 is known at tn+1

from the direct problem. The constitutive sensitivity problem for a crystal orientation is
history-dependent and the solution of the sensitivity problem at time tn is known for each
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crystal orientation, yielding the variables fT
	
; s
	
; s
	
;F
	

e;F
	

pg at the beginning of each time
increment. Although the microstructure interrogation problem is at a fixed temperature,

the following discussion also includes thermal sensitivity effects based on h
	

nþ1 from the

macro-scale. Thermal effects would however play a role in multi-scale optimization
(involving two scales of sensitivity problems) which would be a subject of future
publication.

3.2.1. Computing the linear relation between sa
	

and {�T
	

nþ1; h
	

nþ1}
Consider the design-differentiation of the evolution equation for the deformation resis-

tance, sa (Eq. (29)). It results in:

os
	a

ot
¼
X

b

h
	
abj _cbj þ hab �j _cbj

		 

. ð48Þ

Incorporating Eqs. (30) and (31) and performing an Euler-backward integration results in:

s
	a

nþ1 � Dt
X

b

qab ogb

osb
s
	b

nþ1 ¼ s
	a

n þ Dt
X

b

qab ogb

osb
s
	b

nþ1 þ Dt
X

b

qab ogb

oh
h
	

nþ1. ð49Þ

Solving the above set of equations for s
	a

nþ1 results in:

s
	a

nþ1 ¼
X

b

mabs
	b

nþ1 þ ta
1h
	

nþ1 þ ta
2; ð50Þ

where mab, ta
1 and ta

2 are constants. It is further known that sb ¼ �T�S
a
0; design-differenti-

ation of this relation results in s
	b ¼ �T

	

�S
a
0. Note that Sa

0 is a constant as it is expressed
in the plastically deformed configuration which has the same crystal orientation as in
the reference configuration. Substituting this relation into Eq. (50) results in the desired
linear relation:

s
	

nþ1

n o
¼ Ds

Ds

	 

: �T
	
þft1g h

	
þft2g; ð51Þ

where ½Ds
Ds� is a third order tensor and t1, t2 are vectors.

3.2.2. Computing the linear relation between F
	

p
nþ1 and (�T

	

nþ1; h
	

nþ1)

The evolution equation for F
	

p is evaluated, by design-differentiating Eq. (18), as:

oF
	

p

ot
¼ LF

	
p þ L

	
Fp; ð52Þ

where L
	
¼
P

a½ _c
	aSa

0� can be computed as

L
	
¼
X

a

o _ca

osa
s
	a þ o _ca

osa
s
	a þ o _ca

oh
h
	

	 

Sa

0. ð53Þ

Euler-backward integration of Eq. (52), with Eqs. (51), (53) and the earlier definition of s
	a

results in the following:

F
	

p
nþ1ðF

p
nþ1Þ

�1 ¼ E þF �T
	

nþ1

	 

þ Gh

	
nþ1; ð54Þ
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where E, G are constant second-order tensors and F is a fourth-order tensor. Further-

more, �T
	

nþ1 is related to F
	

e
nþ1 and h

	
nþ1 as (by design differentiating Eq. (24)):

�T
	
¼ oLe

oh

 �
�Ee
� �

h
	
þLe Sym FeTF

	
e

 �	 

; ð55Þ

where Le, the fourth-order anisotropic elasticity tensor, is assumed to be a function of

temperature only. Using Eqs. (54) and (55), one can further obtain F
	

p
nþ1ðF

p
nþ1Þ

�1 as a func-

tion of F
	

e
nþ1 and h

	
nþ1.

3.2.3. Computing the linear relation between F
	

e
nþ1 and (F

	
nþ1; h

	
nþ1)

Starting from the multiplicative decomposition of the deformation gradient, one can

write F
	

nþ1 ¼ F
	

e
nþ1Fp

nþ1 þ Fe
nþ1F

	
p
nþ1, which can then be simplified to

Fe
nþ1

� ��1
F
	

nþ1F�1
nþ1

 �
Fe

nþ1 ¼ Fe
nþ1

� ��1
F
	

e
nþ1 þ F

	
p
nþ1 Fp

nþ1

� ��1
. ð56Þ

Substitution of the linear relationship between F
	

p
nþ1 and ½F

	
e
nþ1; h

	
nþ1� results in the desired

linear relationship:

F
	

e
nþ1 ¼ C0ðVnþ1Þ F

	
nþ1

	 

þH Vnþ1;V

	
n

 �
þMðVnþ1Þh

	
nþ1; ð57Þ

where H and M are known second-order tensor functions and C0, a known fourth-order

tensor function. The relationship between T
	

nþ1 and ½F
	

nþ1; h
	

nþ1� is obtained by design dif-
ferentiating Eq. (22):

T
	
¼ �tr F

	
eðFeÞ�1

 �
T þ 1

detðFeÞF
	

e �TFeT þ 1

detðFeÞF
e �T
	

FeT þ 1

detðFeÞF
e �TF
	

e
T

.

ð58Þ
Substitution of the linear relation between F

	
e
nþ1 and ½F

	
nþ1; h

	
nþ1� in Eq. (58) results in a lin-

ear relation between T
	

nþ1 and ½F
	

nþ1; h
	

nþ1�. This can be converted in terms of the PK I stress
as

P
	
¼ tr F

	
nþ1F�1

nþ1

 �
det Fnþ1TF�T

nþ1 þ det Fnþ1 T
	

F�T
nþ1 � det Fnþ1TF�T

nþ1F
	

T
nþ1F�T

nþ1. ð59Þ

From these equations, one can generate the constants in Eq. (47) and use this in the solu-
tion of the sensitivity kinematic problem.

3.3. Sensitivity of macro-properties

Finally, once the sensitivity micro-problem (Eq. (46)) is solved for stress sensitivities in
the microstructure due to a perturbation in the process parameter (strain rates), the macro-
stress sensitivities (o�T

oai
) need to be calculated from Eq. (42) to drive the gradient optimization

problem. This requires calculation of sensitivities of homogenized PK-1 stress using micro-
structure-average of the sensitivity fields using Eq. 43. This is followed by conversion of
sensitivity of PK-1 stress to sensitivity of homogenized Cauchy stress using the homoge-
nized counterpart of Eq. (59). Sensitivity of the equivalent stress is then evaluated as
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�r
	

eff ¼
3

2�reff

�T 0 � �T
	
0. ð60Þ

The design examples as presented in the next section aim to control equivalent stresses
over the deformation history of the material through design of strain rates (a). Gradients
of the desired property ðvi ¼ �reffðt ¼ tiÞ; i ¼ 1; . . . ;N sÞ with respect to each process
parameter aj is then calculated using Eq. (42) and used in the gradient optimization algo-
rithm which converges to an optimum value of the process parameter a over a few
iterations.

4. Numerical examples

In the numerical examples that follow, idealized grain structures are used to compare
the performance of homogenization model vis-a-vis Taylor-based models in Example 1
and experimental results in Example 2. Interrogation of realistic 3D polyhedral micro-
structure is demonstrated in Example 3 followed by design examples where the equivalent
stress history of complex 2D microstructures are controlled by designing the deformation
strain rates in single (Example 4) and two-stage (Example 5) processes. A material com-
posed of 99.987% pure polycrystalline FCC aluminum is used in these examples. The
anisotropic elasticity tensor for FCC aluminum can be specified in terms of the three stiff-
ness parameters (crystal stiffness tensor C in the crystal frame) which are approximated (in
GPa) in terms of the temperature h (in K) in Balasubramanian and Anand (2002) as
follows:

c11 ¼ 123:323þ 6:7008� 10�8h3 � 1:1342� 10�4h2 � 7:8788� 10�3h;

c12 ¼ 70:6512þ 4:4105� 10�8h3 � 7:5498� 10�5h2 þ 3:9992� 10�3h;

c44 ¼ 31:2071þ 7:0477� 10�9h3 � 1:2136� 10�5h2 � 8:3274� 10�3h.

ð61Þ

Furthermore, the saturation values of the slip system resistances are taken equal for all slip
systems as ss(300 K) = 50.6 MPa. Slip is assumed to occur in the twelve 111Æ11 0æ slip sys-
tems. Additional material properties taken from Balasubramanian and Anand (2002) are
listed in Table 1.

Example 1. Comparison of response of idealized 2D polycrystal in simple shear and plane
strain compression with Taylor models.
Table 1
Material properties of FCC aluminum

Material parameter Value

_c0 1.732E + 06 s�1

h0 250 MPa
r1 2.0
p 0.141
q 1.1
sat,0 8.76 MPa
st,0 8.76 MPa
- 1.0
q 2.77 Mg/m3

c 920.0 J/kg K
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The result of pure shear and plane strain compression of a 99.98% pure FCC aluminum
aggregate using homogenization are compared with Taylor models based on stress–strain
curves and texture evolution. The parameters used for the simulations are temperature of
300 K with strain rate of 6.667E � 4 s�1. Microstructure is modeled as a collection of 400
grains with each grain represented with a single finite element as shown in Fig. 2(a). The
corresponding initial ODF is plotted in Fig. 2(d). The ODF is obtained by assuming that
each orientation acts as a Gaussian point source within the fundamental region. This con-
verts the discrete set of 400 orientations to a continuous distribution of orientations in the
fundamental region. This representation was used in the ODF-Taylor simulation of Gana-
pathysubramanian and Zabaras (2005) for comparing with the FE-homogenized model.
The reference fundamental region is discretized into 148 tetrahedral elements with cubic
symmetry enforced in the solution procedure (for more details of this technique refer to
Ganapathysubramanian and Zabaras (2005)). The ODF-Taylor method utilizes a finite
element solution of ODF conservation law which conserves the crystal volume fractions
over the polycrystal when grains reorient during deformation. The other model used for
comparison is based on discrete-Taylor analysis of the aggregate of grains in Fig. 2(a).
The constitutive law was calibrated with experimental results in Balasubramanian and
Anand (2002) to suit Taylor based computations. Here, same constitutive law parameters
are used for both Taylor model and FE homogenization. From Fig. 2(c) it can be seen that
Fig. 2. Homogenization of an idealized 2D polycrystal: (a) Idealized 2D polycrystal with 400 grains with 1 finite
element per grain. (b) Equivalent stress field after deformation in pure shear mode at a strain rate of
6.667E � 4 s�1. (c) Comparison of the equivalent stress–strain curve predicted through homogenization with
Taylor simulation. (d) The initial texture of the polycrystals represented as an ODF in Rodrigues space. (e)
Texture prediction using finite element homogenization and (f) texture prediction using the Taylor model at time
t = 210 s. The Taylor model gives sharper and stronger textures and provides upper bound of the stress–strain
curve.
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homogenization technique provide a softer response than the Taylor model. The equiva-
lent stress–strain curve obtained from ODF-Taylor and aggregate-Taylor almost exactly
match. These models theoretically provide the upper bound of the stress–strain curve
for the given microstructure due to strong kinematic constraint of equal deformation in
all crystals. On the contrary, using finite element homogenization we find that crystal
deformation is partitioned so that both compatibility and equilibrium are satisfied leading
to a softer response. Uneven distribution of deformation among grains due to the effect of
neighbors with various degrees of misorientation can be seen from the final microstructure
in Fig. 4(a). Comparison of the ODFs in Figs. 2(e), (f) and 4(c), (d) show that Taylor
model provides sharper textures as expected, while over-predicting the final texture. The
Æ110æ and the Æ11 1æ pole figure from both the ODF-Taylor model and FE-homogenized
model are further compared in shear (Fig. 3(a)) and plane strain compression (Fig. 3(b)) at
equivalent strain of 0.3 reveal the sharper features of the Taylor model compared to FE-
homogenization.

Example 2. Comparison of response of idealized 3D polycrystal in simple shear with
experimental results from literature.

The experimental results of simple shear of an aggregate of FCC aluminum crystals
were obtained by digitizing the stress–strain curves presented in Carreker and Hibbard
(1957) (as was done in Balasubramanian and Anand (2002)). The experiment was per-
formed at a constant strain rate of 6.667E � 4 s�1 and a temperature of 300 K. The
numerical experiment simulated a simple shear motion with the final state of the micro-
structure depicted in Fig. 5(c). The initial texturing of the material is modelled to be ran-
dom with the initial Æ110æ and Æ111æ pole figures shown in Fig. 5(b). A 512 grain idealized
Fig. 3. Comparison of the FEM and Taylor predictions of final Æ110æ and Æ111æ textures after (a) pure shear and
(b) plane strain compression.



Fig. 4. (a) Final deformed state of the microstructure in Example 1 after plane strain compression. (b)
Comparison of the equivalent stress–strain curve predicted through homogenization with Taylor simulation. (c)
Texture prediction using finite element homogenization and (d) the Taylor model at t = 130 s.
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microstructure (with 1 finite element per grain) is used in the homogenization procedure to
numerically generate the response to simple shear. The predicted and experimental stress–
strain responses are superposed in Fig. 5(d). The simulation was also carried out using the
the 400 grain 2D idealized microstructure in Example 1 using an initial random texture
and the corresponding stress–strain curve is also superposed in Fig. 5(d) showing that a
2D approximation is equally valid in this case. Numerical response closely follows the
experimental response but is softer since parameters calibrated using Taylor model (in Bal-
asubramanian and Anand (2002)) were used in the homogenization model. The final tex-
ture of the material represented using the Æ1 10æ and Æ111æ pole figures are also depicted in
Fig. 5(b). As expected, simulated texture is dominated by x-axis Æ110æ fibers, (along the
x-face of the ODF) at the strain level of 0.3, as seen from the final ODF obtained in
Fig. 5(a).

Example 3. Response of realistic 3D microstructures.

Example of interrogation of realistic 3D microstructures obtained from Monte Carlo
Potts grain growth program from the work in Sundararaghavan and Zabaras (2005a) is
demonstrated in Fig. 6. Finite element discretization of the 3D microstructure was directly
transferred from the structured mesh used in the Monte Carlo Potts simulation. The
domain is discretized using a 24 · 24 · 24 grid and is shown in Fig. 6. The homogenized
response of the microstructure in plane strain compression and shear is compared and pre-
sented in Fig. 6(b). The equivalent stress field for both shear and plane strain compression



Fig. 5. Homogenization of an idealized 3D polycrystal with 512 grains: (a) The final ODF obtained after simple
shear. (b) The initial random texture of the material (top) represented using the Æ110æ and Æ111æ pole figures. The
final pole figures after deformation are shown at the bottom (c) Equivalent stress field after deformation in pure
shear mode. (d) Comparison of the equivalent stress–strain curve predicted through homogenization with
experimental results from Carreker and Hibbard (1957).
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is compared at a homogenized strain level of 0.060 in Figs. 6(c) and (d), respectively. The
simulation was performed on 60 X64 Intel processors with a clock speed of 3.6 GHz using
PetSc KSP solvers on the Cornell theory center’s supercomputing facility. Each simulation
was carried out over 2000 equal time steps and took about 1200 min to solve in the parallel
environment.

Example 4. Design for desired plastic response under a combination of process modes.

Two 2D microstructures (Figs. 7(a) and (b)) (from now on referred to as microstructures
A and B, respectively) with 151 and 162 grains, respectively, generated using a standard
voronoi construction and meshed using OOF-2 is employed in the design examples. Micro-
structure A is meshed using 3989 quadrilateral elements and microstructure B is meshed
using 4200 quadrilateral elements. The mesh conforms to grain boundaries such that each
element is fully within a particular grain. An initial random ODF is assigned to these micro-
structures as shown in the pole figures in Figs. 7(c) and (d) corresponding to microstruc-
tures A and B, respectively. Aim of this example is to demonstrate the technique for



Fig. 6. (a) Microstructure obtained from a MC grain growth simulation (b) Comparison of equivalent stress–
strain curve for the two cases and equivalent stress field of a 3D microstructure (above) after (c) simple shear and
(d) plane strain compression.
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obtaining desired equivalent stress response in microstructure A by controlling a combina-
tion of process modes applied on the microstructure. Sensitivities are computed with a per-
turbation of Dai = 1E � 5 for each process mode i. Thus, optimization is comprised of one
direct and three sensitivity problems. The optimization problem is executed until the objec-
tive function becomes less than 1E � 3 or if the objective function normalized with the ini-
tial objective showed less than 1E � 4 improvement between iterations. The response is
computed for a total time of 11 s with a total of 200 time steps.

The desired response is shown in Fig. 8(a) and is assumed to occur during a single pro-
cessing stage with unknown velocity gradient. Through optimization, we desire to identify
the velocity gradient applied on the microstructure. The desired response for the micro-
structure under consideration is assumed to be a simple cubic curve with equivalent stress
vs time characteristics of 30 MPa at 0.5 s, 40 MPa at 3 s, 47.5 MPa at 7 s, and 55 MPa at
11 s of deformation as shown in Fig. 8(a). Initial guess strain rate of 5E � 4 is given to all
three process modes of shear, rotation and plane strain compression, i.e. a vector of



Fig. 7. Initial microstructure for the design problems. (a) Microstructure A with 151 grains, (b) microstructure B
with 162 grains. Initial random texture depicted using the Æ110æ and Æ111æ pole figures for microstructure A in (c)
and microstructure B in (d).
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a = [5e � 4,5e � 4,5e � 4] is used in the first iteration. The response obtained in the first
iteration, two intermediate iterations and the final iteration are shown in Fig. 8(b). The
desired response is obtained with a converged mean square error (Eq. (41)) of 0.51 and
final parameters are found as a = [1.66E � 3,8.42E � 3,5E � 4]. Fig. 8(d) shows rapid
convergence of the objective function with increasing number of iterations showing the
numerical efficiency of the algorithm. Final microstructure at a time of 11 s is shown in
Fig. 8(c). Initially each grain was assigned a unique orientation. During deformation, mis-
orientation develops within grains leading to spread of orientations and development of
strong intra-granular texture. The misorientation development can be visualized using
the change in neo-eulerian angle of rotation n(t) at time t from the values of n(t = 0) of
the initial texture. n is obtained from the Rodrigues parametrization given by
r ¼ n tanðn

2
Þ where n denotes the axis of rotation. The change in the neo-Eulerian angle

from the initially assigned orientation of grains shown in Fig. 8(c) clearly shows the for-
mation of disoriented regions within grains at moderate deformation.

Example 5. Design of desired second stage microstructure response in two-stage
processes with unloading and development of residual stresses.



Fig. 8. Design for desired material response. (a) Desired response of the material given by a smooth cubic
interpolation of four desired coordinates. (b) Change in the microstructure response over various iterations of the
optimization problem. (c) Final microstructure at time t = 11 s of the design solution with mis-orientation
distribution over grains. (d) Change in objective function over various design iterations of gradient minimization
algorithm.
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The same model can be extended towards control in a multi-stage set up where a
sequence of process modes can be designed to achieve desired response in the processed
microstructure. A crucial aspect in multi-stage simulation is an accurate model of mechan-
ics in-between stages. This phase consists of removal of loads from the microstructure and
development of residual stresses. The unloading process here is modelled as a non-linear
(finite deformation) elasto-static boundary value problem. If B represents the final config-
uration of the workpiece at the end of the loading phase with the total deformation gra-
dient given as Fn+1 = FeFp, then the solution to the unloading process results in the final
body configuration ðBuÞ with the total deformation gradient after unloading given as
Fu ¼ Fe

uFp. In this work, two assumptions are made to model unloading: firstly, no crystal
reorientation is assumed to occur on unloading and secondly, no recovery (or evolution of
state) is assumed to occur. Microstructure proceeds from one stage to another stage imme-
diately upon completion of the unloading process. For design problems involving the
unloading stage, we need to consider the sensitivity of a finite deformation elasto-static
problem. The sensitivity constitutive problem is modified and the material deformation
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behavior treated as elastic in the unloading phase. During the unloading process, we
assume for simplicity that the bottom edge of the microstructure is fixed to prevent motion
in the normal direction.

Microstructure B is used in this example. A perturbation of 1E � 5 is applied to the
strain rate in the first stage. Sensitivity of residual stresses after unloading in the first stage
are transferred to the second stage. Aim of this example is to demonstrate the technique
for obtaining desired initial microstructure response after unloading from a process by
controlling the strain rate of initial loading. Unloading produces a heterogeneous distribu-
tion of residual stresses in the microstructure. High residual stresses are displayed by
grains in the vicinity of grains that displayed high stresses at the end of first stage as seen
by comparing residual stress distribution in Fig. 9(e) and the final stress state at the end of
first stage in Fig. 9(d). The second stage response is not only affected by the heterogeneity
of residual stresses but also due to changes in texture and slip system resistance (state var-
iable) distribution at the start of second stage. By controlling the strain rates used in the
first stage, parameters such as initial texturing and state variable at the start of the second
stage are also controlled. Numerical experiments reveal that the state variable distribution
at the end of the first stage is a dominant factor in determining the material response at the
second stage. Response shown in Fig. 9(a) corresponds to the desired equivalent stress-
time curve in the second stage under plane strain compression of the microstructure at
a strain rate of 5E � 3 mm/s. The velocity gradient applied to the microstructure in the
a
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Fig. 9. (a) Desired response in the second stage and response obtained at various design iterations. (b)
Microstructure response in the first deformation stage at various design iterations. (c) Change in objective
function over various design iterations of gradient minimization algorithm. (d) Equivalent stress distribution (at
final design solution) at the end of first deformation stage (time t = 1 s). (e) Residual equivalent stress distribution
after unloading at the end of first stage. (f) Equivalent stress distribution at the microstructure at time t = 0.45 s
of the second stage (plane strain compression).
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first stage (simple shear) is unknown and is taken as the design variable. Initial guess strain
rate of 5E � 4 s�1 is given to the first stage, i.e. a vector of a = [0, 5e � 4,5e � 4] is
employed. After optimization, the optimal first loading stage strain rates were found as
a = [0, 1.442E � 3,1.442E � 3] resulting in a response which was within a mean square
error of 1E � 6 from the desired response. Equivalent stress field of the microstructure
before and after unloading (initial state for the second stage) and after 0.45 s of second
stage are presented in Figs. 9(d), (e) and (f), respectively. Figs. 9(a) and (b) show evolution
of the response at various iterations of the optimization algorithm and Fig. 9(c) shows
rapid convergence of the objective function with increasing number of iterations again
demonstrating the numerical efficiency of the design algorithm.

5. Conclusions and future work

A finite element homogenization model is presented for modelling elasto-viscoplastic
behavior and texture evolution in a polycrystal subject to finite strains. The technique uti-
lizes macro-micro linking techniques obtained from homogenization theory. An updated
Lagrangian finite element formulation is invoked to interrogate the microstructure and
averaging schemes are utilized to identify the macro-response. The model is found to be
capable of predicting non-homogeneous stress and deformation fields in 2D and 3D
microstructures. Comparison to ODF-Taylor, aggregate-Taylor and experimental results
with respect to the equivalent stress–strain curves and texture development reveals that the
model performs as expected providing softer response and smoother textures. The prob-
lem of microstructure design is then attempted using a novel continuum sensitivity analysis
of homogenization. This involves differentiation of the governing field equations of
homogenization with respect to the processing parameters and development of the weak
forms for the corresponding sensitivity equations that are solved using finite element anal-
ysis. The technique is applied to identify optimal strain rates in single and multi-stage pro-
cesses (with intermediate unloading stages) that would lead to a desired microstructure
response. The algorithm is computationally efficient and is found to converge to the
desired response within a few iterations.

Work presented here is focused on the material point problem of controlling micro-
structures to obtain desired response. Few issues in design are still to be addressed, firstly
a question of how to select an appropriate sequence of processes for increasing the likeli-
hood of achieving a desired response. Secondly, explore the applicability of controlling the
initial features (texture and misorientations) of the microstructure to obtain desired
response. We plan to address these problems using statistical learning techniques such
as those proposed by the authors recently in Sundararaghavan and Zabaras (2005a).
Another area will be to develop gradient optimization techniques for microstructure-sen-
sitive design of thermo-mechanical forming processes. In the future, the present analysis
will be linked to a continuum model and CSM-based techniques will be extended in a mul-
tiscale framework to control macro-parameters (entities like preform and die shapes) to
achieve desired properties.
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